Image Compositing and Morphing

Thomas Funkhouser
Princeton University
C0S 426, Fall 2000

Image Processing

- Quantization
 - Uniform Quantization
 - Random dither
 - Ordered dither
 - Floyd-Steinberg dither

- Pixel operations
 - Add random noise
 - Add luminance
 - Add contrast
 - Add saturation

- Filtering
 - Blur
 - Detect edges

- Warping
 - Scale
 - Rotate
 - Warp

- Combining
 - Composite
 - Morph
Image Processing

- Quantization
 - Uniform Quantization
 - Random dither
 - Ordered dither
 - Floyd-Steinberg dither

- Pixel operations
 - Add random noise
 - Add luminance
 - Add contrast
 - Add saturation

- Filtering
 - Blur
 - Detect edges

- Warping
 - Scale
 - Rotate
 - Warp

- Combining
 - Composite
 - Morph

Overview

- Image compositing
 - Blue-screen mattes
 - Alpha channel
 - Porter-Duff compositing algebra

- Image morphing
 - Specifying correspondences
 - Warping
 - Blending
Image Compositing

- Separate an image into “elements”
 - Render independently
 - Composite together

- Applications
 - Cel animation
 - Chroma-keying
 - Blue-screen matting

Dobkin meets Elvis

Blue-Screen Matting

- Composite foreground and background images
 - Create background image
 - Create foreground image with blue background
 - Insert non-blue foreground pixels into background
Alpha Channel

- Encodes pixel coverage information
 - $\alpha = 0$: no coverage (or transparent)
 - $\alpha = 1$: full coverage (or opaque)
 - $0 < \alpha < 1$: partial coverage (or semi-transparent)

- Example: $\alpha = 0.3$

![Partial Coverage](image1.png) or ![Semi-Transparent](image2.png)

Pixels with Alpha

- Alpha channel convention:
 - (r, g, b, α) represents a pixel that is
 α covered by the color $C = (r/\alpha, g/\alpha, b/\alpha)$
 - Color components are premultiplied by α
 - Can display (r,g,b) values directly
 - Closure in composition algebra

- What is the meaning of the following?
 - $(0, 1, 0, 1) =$ Full green, full coverage
 - $(0, 1/2, 0, 1) =$ Half green, full coverage
 - $(0, 1/2, 0, 1/2) =$ Full green, half coverage
 - $(0, 1/2, 0, 0) =$ No coverage
Compositing with Alpha

- Controls the linear interpolation of foreground and background pixels when elements are composited

![Image showing different values of \(\alpha \)]

\(\alpha = 1 \)
\(0 < \alpha < 1 \)
\(\alpha = 0 \)

Semi-Transparent Objects

- Suppose we put A over B over background G
 - How much of B is blocked by A?
 \(\alpha_A \)
 - How much of B shows through A?
 \((1 - \alpha_A) \)
 - How much of G shows through both A and B?
 \((1 - \alpha_A) * (1 - \alpha_B) \)
Opaque Objects

- How do we combine two partially covered pixels?
 - 3 possible colors (0, A, B)
 - 4 regions (0, A, B, AB)

Composition Algebra

- 12 reasonable combinations
 - clear
 - A over B
 - B over A
 - A in B
 - B in A
 - A out B
 - B out A
 - A atop B
 - B atop A
 - A xor b

Porter & Duff ‘84
Over Operator

- For C_B and C_F, which are not premultiplied:
 - $C' = \alpha_B(1-\alpha_F)C_B + \alpha_F C_F$
 - $\alpha = \alpha_B(1-\alpha_F) + \alpha_F$

- For C'_B and C'_F, which are premultiplied:
 - $C' = (1-\alpha_B)C'_F + C'_B$
 - $\alpha = \alpha_B(1-\alpha_F) + \alpha_F$

Assumption: coverages of B and F are uncorrelated for each pixel

Image Composition Example

Jurassic Park
Overview

- Image compositing
 - Blue-screen mattes
 - Alpha channel
 - Porter-Duff compositing algebra

- Image morphing
 - Specifying correspondences
 - Warping
 - Blending

Image Morphing

- Animate transition between two images

Figure 16.9
Transformation of an STP oil can into an engine block (Courtesy of Silicon Graphics, Inc.)
Cross-Dissolving

- Blend images with “over” operator
 - alpha of bottom image is 1.0
 - alpha of top image varies from 0.0 to 1.0

\[\text{blend}(i,j) = (1-t) \text{src}(i,j) + t \text{dst}(i,j) \quad (0 \leq t \leq 1) \]

Image Morphing

- Combines warping and cross-dissolving
Image Morphing

- The warping step is the hard one
 - Aim to align features in images

![Image Morphing](image1.png)

Feature-Based Warping

- Beier & Neeley use pairs of lines to specify warp
 - Given p in dst image, where is p' in source image?

![Feature-Based Warping](image2.png)
Warping with One Line Pair

• What happens to the “F”?

Translation!

Warping with One Line Pair

• What happens to the “F”?

Scale!
Warping with One Line Pair

- What happens to the “F”?

[Diagram showing the transformation of the letter F]

Rotation!

Warping with One Line Pair

- What happens to the “F”?

[Diagram showing the transformation of the letter F]

In general, similarity transformations

What types of transformations can’t be specified?
Warping with Multiple Line Pairs

- Use weighted combination of points defined by each pair of corresponding lines

Beier & Neeley, Figure 4
Weighting Effect of Each Line Pair

- To weight the contribution of each line pair, Beier & Neeley use:

\[
weight[i] = \left(\frac{\text{length}[i]^p}{a + \text{dist}[i]} \right)^b
\]

Where:
- \(\text{length}[i] \) is the length of \(L[i] \)
- \(\text{dist}[i] \) is the distance from \(X \) to \(L[i] \)
- \(a, b, p \) are constants that control the warp

Warping Pseudocode

```
Warplmage(Image, L[...], L[...])
begin
    foreach destination pixel p do
        psum = (0,0)
        wsum = 0
        foreach line L[i] in destination do
            p'[i] = p transformed by (L[i],L'[i])
            psum = psum + p'[i] * weight[i]
            wsum += weight[i]
        end
        p' = psum / wsum
        Result(p) = Image(p')
    end
end
```
Morphing Pseudocode

GenerateAnimation(Image₀, L₀[...], Image₁, L₁[...])
begin
 foreach intermediate frame time t do
 for i = 1 to number of line pairs do
 L[i] = line t-th of the way from L₀[i] to L₁[i]
 end
 Warp₀ = WarplImage(Image₀, L₀, L)
 Warp₁ = WarplImage(Image₁, L₁, L)
 foreach pixel p in FinalImage do
 Result(p) = (1-t) Warp₀ + t Warp₁
 end
 end
end

Beier & Neeley Example

Image₀ → Warp₀

Result

Image₁ → Warp₁
Beier & Neeley Example

Image₀ → Warp₀

Result

Image₁ → Warp₁

CS426 Examples

CS426 Class, Fall98

Robert Osada, Fall00
Summary

- Image compositing
 - Blue-screen mattes
 - Alpha channel
 - Porter-Duff compositing algebra

- Image morphing
 - Specifying correspondences
 - Warping
 - Blending

Image Processing

- Quantization
 - Uniform Quantization
 - Random dither
 - Ordered dither
 - Floyd-Steinberg dither

- Pixel operations
 - Add random noise
 - Add luminance
 - Add contrast
 - Add saturation

- Filtering
 - Blur
 - Detect edges

- Warping
 - Scale
 - Rotate
 - Warp

- Combining
 - Composite
 - Morph
Next Time: 3D Rendering

Misha Kazhdan,
CS426, Fall99