
Efficient K-Nearest Neighbor Graph Construction for
Generic Similarity Measures

Wei Dong
wdong@cs.princeton.edu

Moses Charikar
moses@cs.princeton.edu

Kai Li
li@cs.princeton.edu

Department of Computer Science, Princeton University
35 Olden Street, Princeton, NJ 08540, USA

ABSTRACT

K-Nearest Neighbor Graph (K-NNG) construction is an im-
portant operation with many web related applications, in-
cluding collaborative filtering, similarity search, and many
others in data mining and machine learning. Existing meth-
ods for K-NNG construction either do not scale, or are spe-
cific to certain similarity measures. We present NN-Descent,
a simple yet efficient algorithm for approximate K-NNG con-
struction with arbitrary similarity measures. Our method is
based on local search, has minimal space overhead and does
not rely on any shared global index. Hence, it is especially
suitable for large-scale applications where data structures
need to be distributed over the network. We have shown
with a variety of datasets and similarity measures that the
proposed method typically converges to above 90% recall
with each point comparing only to several percent of the
whole dataset on average.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]

General Terms

Algorithms, Performance

Keywords

k-nearest neighbor graph, arbitrary similarity measure, iter-
ative method

1. INTRODUCTION
The K-Nearest Neighbor Graph (K-NNG) for a set of ob-

jects V is a directed graph with vertex set V and an edge
from each v ∈ V to its K most similar objects in V under
a given similarity measure, e.g. cosine similarity for text,
l2 distance of color histograms for images, etc. K-NNG con-
struction is an important operation with many web related
applications: in (user-based) collaborative filtering [1], a K-
NNG is constructed by connecting users with similar rating
patterns, and used to make recommendations based on the
active user’s graph neighbors; in content-based search sys-
tems, when the dataset is fixed, a K-NNG constructed of-
fline is more desirable than the costly online K-NN search.
K-NNG is also a key data structure for many established

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0632-4/11/03.

methods in data mining [6] and machine learning [5], es-
pecially manifold learning [23]. Further more, an efficient
K-NNG construction method will enable the application of
a large pool of existing graph and network analysis methods
to datasets without an explicit graph structure.

K-NNG construction by brute-force has cost O(n2) and is
only practical for small datasets. Substantial effort has been
devoted in research related to K-NNG construction and K-
NN search, and numerous methods have been developed,
but existing methods either do not scale, or are specific to
certain similarity measures.

Paredes et al. [19] proposed two methods for K-NNG con-
struction in general metric spaces with low empirical com-
plexity, but both require a global data structure and are
hard to parallelize across machines. Efficient methods for l2
distance have been developed based on recursive data par-
titioning [8] and space filling curves [9], but they do not
naturally generalize to other distance metrics or general sim-
ilarity measures.

Indexing data for K-NN search is a closely related open
problem that has been extensively studied. A K-NNG can be
constructed simply by repetitively invoking K-NN search for
each object in the dataset. Various tree-based data struc-
tures are designed for both general metric space and Eu-
clidean space [18, 15, 4]. However, they all have the scal-
ability problem mentioned above. Locality Sensitive Hash-
ing (LSH) [13] is a promising method for approximate K-
NN search. Such hash functions have been designed for a
range of different similarity measures, including hamming
distance [13], lp with p ∈ (0, 2] [10], cosine similarity [7], etc.

However, the computational cost remains high for achiev-
ing accurate approximation, and designing an effective hash
function for a new similarity measure is non-trivial.

In the text retrieval community, methods based on prefix-
filtering have been developed for ǫ-NN graph construction,
a.k.a. all pairs similarity search or similarity join [2, 22, 21].
An ǫ-NN graph is different from a K-NNG in that undi-
rected edges are established between all pairs of points with
a similarity above ǫ. These methods are efficient with a tight
similarity threshold, when the ǫ-NN graphs constructed are
usually very sparse and disconnected.

Thus, efficient K-NNG construction is still an open prob-
lem, and none of the known solutions for this problem is
general, efficient and scalable. In this paper, we present
NN-Descent , a simple but effective K-NNG construction al-
gorithm meeting these requirements with the following prop-
erties:

• General. Our method works with an arbitrary simi-

larity oracle — a function that produces a similarity
score for two objects.

• Scalable. As the size of the dataset grows, our method
only sees a marginal decline in recall, and the empir-
ical cost is around O(n1.14) for all datasets we exper-
imented with. Our method mainly operates on infor-
mation that is local to each data item, and is intrinsi-
cally suitable for a distributed computing environment
like MapReduce [11].

• Space efficient. In principle, the only data structure
we need is an approximate K-NNG which is also the
final output: our method can iteratively improve the
graph in place. For optimization, or in a distributed
implementation, minimal extra data are maintained.

• Fast and accurate. We demonstrate with real-life datasets
that our method typically converges to above 90% re-
call with each point comparing only to several percent
of the whole dataset on average.

• Easy to implement. Our single-node implementation
with all optimizations described in this paper takes
less than 200 lines of C++ code (excluding I/O and
evaluation code).

We compare our method against two existing methods,
i.e. Recursive Lanczos Partitioning [8] and Locality Sensi-
tive Hashing [13] for the special case of the l2 metric, and
show that our method consistently out-perform those meth-
ods.

2. THE PROPOSED METHOD

2.1 Notations and Background
Let V be a dataset of size N = |V |, and let σ : V ×V → R

be a similarity measure. For each v ∈ V , let BK(v) be v’s
K-NN, i.e. the K objects in V (other than v) most similar to
v. Let RK(v) = {u ∈ V | v ∈ BK(u)} be v’s reverse K-NN.
In the algorithm, we use B[v] and R[v] to store the approx-
imation of BK(v) and RK(v), together with the similarity
values, and let B[v] = B[v]∪R[v], referred to as the general
neighbors of v. B[v] is organized as a heap, so updates cost
O(log K).

We are particularly interested in the case when V is a
metric space with a distance metric d : V × V → [0, +∞)
for which more specific analysis can be done. Since smaller
distance means higher similarity, we simply let σ = −d. For
any r ∈ [0, +∞), the r-ball around v ∈ V is defined as
Br(v) = {u ∈ V | d(u, v) ≤ r}.

A metric space V is said to be growth restricted if there
exists a constant c, s.t.

|B2r(v)| ≤ c|Br(v)|, ∀v ∈ V.

The smallest such c is called the growing constant of V ,
which is a generalization of the concept of dimensionality
and captures the complexity of the dataset.

2.2 The Basic Algorithm
Our method is based on the following simple principle: a

neighbor of a neighbor is also likely to be a neighbor. In other
words, if we have an approximation of the K-NN for each
point, then we can improve that approximation by exploring

each point’s neighbors’ neighbors as defined by the current
approximation.

This observation can be quantified by the following heuris-

tic argument when V is a growth restricted metric space.
Let c be the growing constant of V and let K = c3. Assume
we already have an approximate K-NNG B, and for every
v ∈ V , let B′[v] =

S

v′∈B[v] B[v′] be the set of points we
explore trying to improve B. If the accuracy of B is reason-
ably good, such that for certain fixed radius r, for all v ∈ V ,
B[v] contains K neighbors that are uniformly distributed
in Br(v), then assuming independence of certain events and

that k ≪ |Br/2(v)|, we can conclude that B′[v] is likely to
contain K neighbors in Br/2(v). In other words, we expect
to halve the maximal distance to the set of approximate K
nearest neighbors by exploring B′[v] for every v ∈ V . This
can be seen from the following.

For any u ∈ Br/2(v) to be found in B′[v], we need to
have at least one v′ such that v′ ∈ B[v] ∧ u ∈ B[v′]. Any
v′ ∈ Br/2(v) is likely to satisfy this requirement, as we have:

1. v′ is also in Br(v), so Pr {v′ ∈ B[v]} ≥ K/|Br(v)|.

2. d(u, v′) ≤ d(u, v) + d(v, v′) ≤ r, so Pr {u ∈ B[v′]} ≥
K/|Br(v

′)|.

3. |Br(v)| ≤ c|Br/2(v)|, and |Br(v
′)| ≤ c|Br/2(v

′)| ≤

c|Br(v)| ≤ c2|Br/2(v)|.

Combining 1—3 and assuming independence, we get

Pr {v′ ∈ B[v] ∧ u ∈ B[v′]} ≥ K/|Br/2(v)|2

In total, we have |Br/2(v)| candidates for such v′, so that

Pr {u ∈ B′[v]} ≥ 1−
`

1−K/|Br/2(v)|2
´|Br/2

(v)|
≈ K/|Br/2(v)|.

Let the diameter of the whole dataset be ∆. The above
heuristic argument suggests that so long as we pick a large
enough K (depending on the growing constant), even if we
start from a random K-NNG approximation, we are likely to
find for each object K items within a radius ∆/2 by explor-
ing its neighbors’ neighbors. The process can be repeated
to further shrink the radius until the nearest neighbors are
found.

Our basic NN-Descent algorithm, as shown in Algorithm 1,
is just a repeated application of this observation. We start
by picking a random approximation of K-NN for each ob-
ject, iteratively improve that approximation by comparing
each object against its current neighbors’ neighbors, includ-
ing both K-NN and reverse K-NN, and stop when no im-
provement can be made.

The approximate K-NNG can be viewed as K ×N func-
tions, each being the distance between one of the N objects
and its k-th NN. The algorithm is simply to simultaneously
minimize these K × N functions with the gradient descent
method, hence the name “NN-descent”. But unlike regular
gradient descent, which is applied to a function on R

D and
always explores a small neighborhood of fixed radius, our
functions are defined on the discrete set V , and the radius
we explore around an object is determined by the previous
iteration’s approximation of the K-NNG. In fact, the ra-
dius starts from a large value as the initial approximation
is randomly formed, and shrinks when the approximation
is improved through iterations (the number of objects we
examine within the radius remains roughly the same). The
idea of gradually shrinking search radius through iterations

Algorithm 1: NNDescent

Data: dataset V , similarity oracle σ, K
Result: K-NN list B
begin

B[v]←− Sample(V, K)× {∞}, ∀v ∈ V
loop

R←− Reverse(B)

B[v]←− B[v] ∪ R[v], ∀v ∈ V ;
c←− 0 //update counter
for v ∈ V do

for u1 ∈ B[v], u2 ∈ B[u1] do
l←− σ(v, u2)
c←− c + UpdateNN(B[v], 〈u2, l〉)

return B if c = 0

function Sample(S, n)
return Sample n items from set S

function Reverse(B)
begin

R[v]←− {u | 〈v, · · ·〉 ∈ B[u]} ∀v ∈ V
return R

function UpdateNN(H , 〈u, l, . . .〉)
Update K-NN heap H ; return 1 if changed, or 0 if not.

is similar to decentralized search of small-world networks [14]
(global optimization). The effect is that most points can
reach their true K-NN in a few iterations.

The basic algorithm already performs remarkably well on
many datasets. In practice, it can be improved in multiple
ways as discussed in the rest of this section.

2.3 Local Join
Given point v and its neighbors B[v], a local join on B[v]

is to compute the similarity between each pair of different
p, q ∈ B[v], and to update B[p] and B[q] with the similarity.
The operation of having each point explore its neighbors’
neighbors can be equally realized by a local join on each
point’s neighborhood, i.e. each point introducing its neigh-
bors to know each other. To see that, consider the following
relationship: a → b → c, meaning that b ∈ BK(a) and
c ∈ BK(b) (the directions does not matter as we also con-
sider reverse K-NN). In the basic algorithm, we compare a
and c twice, once when exploring around either a or c (the
redundancy can be avoided by comparing only when a > c).
Equally, the comparison between a and c is guaranteed by
the local join on B[b].

Even though the amount of computation remains the same,
local join dramatically improves data locality of the algo-
rithm and makes its execution much more efficient. Assume
that the average size of B[·] is K, in the basic algorithm,

exploring each point’s neighborhood touches K
2

points; the
local join on each point, on the contrary, touches only K
points.

For a single machine implementation, the local join opti-
mization may speed up the algorithm by several percent to
several times by improving cache hit rate. For a MapReduce
implementation, local join largely reduce data replication
among machines.

2.4 Incremental Search
As the algorithm runs, fewer and fewer new items make

their way into the K-NNG in each iteration. Hence it is
wasteful to conduct a full local join in each iteration as many
pairs are already compared in previous iterations. We use
the following incremental search strategy to avoid redundant
computation:

• We attach a boolean flag to each object in the K-NN
lists. The flag is initially marked true when an object
is inserted into the list.

• In local join, two objects are compared only if at least
one of them is new. After an object participates in a
local join, its flag is marked false.

2.5 Sampling
So far there are still two problems with our method. One

is that the cost of local join could be high when K is large.
Even if only objects in K-NN are used for a local join, cost of
each iteration is K2N similarity comparisons. The situation
is worse when reverse K-NN is considered, as there is no
limit on the size of reverse K-NN. Another problem is that
it is possible that two points are both connected to more
than one point, and are compared multiple times when local
join is conducted on their common neighbors. We use the
sampling strategy to alleviate both problems:

• Before local join, we sample ρK out of the K-NN items
marked true for each object to use in local join, ρ ∈
(0, 1] being the sample rate. Only those sampled ob-
jects are marked false after each iteration.

• Reverse K-NN lists are constructed separately with the
sampled objects and the objects marked false. Those
lists are sampled again, so each has at most ρK items.

• Local join is conducted on the sampled objects, and
between sampled objects and old items.

Note that the objects marked true but not sampled in the
current iteration still have a chance to be sampled in future
iterations, if they are not replaced by better approximations.

We found that the algorithm usually converges to accept-
able recall even when only a few items are sampled. Both
accuracy and cost decline with sample rate ρ, though cost
declines much faster (evaluated in Section 4.4.2). The pa-
rameter ρ is used to control the trade-off between accuracy
and speed.

2.6 Early Termination
The natural termination criterion is when the K-NNG can

no longer be improved. In practice, the number of K-NNG
updates in each iteration shrinks rapidly. Little real work
is done in the final few iterations, when the bookkeeping
overhead dominates the computational cost. We use the
following early termination criteria to stop the algorithm
when further iteration can no longer bring meaningful im-
provement to accuracy: we count the number of K-NN list
updates in each iteration, and stop when it becomes less than
δKN , where δ is a precision parameter, which is roughly the
fraction of true K-NN that are allowed to be missed due to
early termination. We use a default δ of 0.001.

Algorithm 2: NNDescentFull

Data: dataset V , similarity oracle σ, K, ρ, δ
Result: K-NN list B
begin

B[v]←− Sample(V, K)× {〈∞, true〉} ∀v ∈ V
loop

parallel for v ∈ V do
old[v]←− all items in B[v] with a false flag
new[v]←− ρK items in B[v] with a true flag
Mark sampled items in B[v] as false;

1 old′ ← Reverse(old), new′ ← Reverse(new)
c←− 0 //update counter
parallel for v ∈ V do

old[v]←− old[v] ∪ Sample(old′[v], ρK)
new[v]←− new[v] ∪ Sample(new′[v], ρK)
for u1, u2 ∈ new[v], u1 < u2

or u1 ∈ new[v], u2 ∈ old[v] do
l←− σ(u1, u2)
// c and B[.] are synchronized.

2 c←− c + UpdateNN(B[u1], 〈u2, l, true〉)
3 c←− c + UpdateNN(B[u2], 〈u1, l, true〉)

return B if c < δNK

2.7 The Full Algorithm
The full NN-Descent algorithm incorporating the four op-

timizations discussed above is listed in Algorithm 2. In this
paper we are mainly interested in a method that is inde-
pendent of similarity measures. Optimizations specialized
to particular similarity measures are possible. For exam-
ple, if the similarity measure is a distance metric, triangle
inequality could be potentially used to avoid unnecessary
computation.

Our optimizations are not sufficient to ensure that the
similarity between two objects is only evaluated once. Full
elimination of redundant computation would require a table
of O(N2) space, which is too expensive for large datasets.
Space efficient approximations, like Bloom filter, are pos-
sible, but come with extra computational cost, and would
only be helpful if similarity measure is very expensive to
compute.

2.8 On MapReduce Implementation
Our algorithm can be easily implemented under the MapRe-

duce framework. A record consists of a key object and a list
of (candidate) neighbors each attached with its distances to
the key object. An iteration is realized with two MapReduce
operations: first, the mapper issues the input record and the
reversed K-NN items, and the reducer merges the K-NN and
reverse K-NN; second, the mapper conducts a local join and
issues the input record as well as compared pairs of objects,
and the reducer merges the neighbors of each key object,
keeping only the top K items.

3. EXPERIMENTAL SETUP
This section provides details about experimental setup, in-

cluding datasets and similarity measures, performance mea-
sures, default parameters and system environments. Exper-
imental results are to be reported in the next section.

3.1 Datasets and Similarity Measures
We use 5 datasets and 5 similarity measures, divided into

three categories as described below. These datasets are cho-
sen to reflect a variety of real-life use cases, and to cover
similarity measures of different natures. Table 1 summa-
rizes the salient information of these datasets.

Four of the datasets are each experimented with two sim-
ilarity measures (l1 and l2, or Jaccard and cosine). Our
results show that the two similarity measures for the same
dataset usually produce very similar performance numbers
and overlapping curves, so in some plots and tables we only
report results with one similarity measure per dataset due
to space limitation. However, this is not to suggest that
different similarity measures for the same dataset are in-
terchangeable. For example, if we test our method with l1
distance on a benchmark generated with l2 distance (or vise-
versa), only around 70% recall can be reached as apposed to
above 95% when the right measure is used.

Dataset # Objects Dimension Similarity Measures
Corel 662,317 14 l1, l2
Audio 54,387 192 l1, l2
Shape 28,775 544 l1, l2
DBLP 857,820 N/A Cosine, Jaccard
Flickr 100,000 N/A EMD

Table 1: Dataset summary

3.1.1 Dense Vectors

Datasets in this category are composed of dense feature
vectors with l1 and l2 metrics. These datasets are used in
a previous work [12] to evaluate LSH, and the reader is re-
ferred to that study for detailed information on dataset con-
struction.
Corel: This dataset contains features extracted from 66,000
Corel stock images. Each image is segmented into about 10
regions, and a feature is extracted from each region. We
treat region features as individual objects.
Audio: This dataset contains features extracted from the
DARPA TIMIT collection, which contains recordings of 6,300
English sentences. We break each sentence into smaller seg-
ments and extract features. Again, we treat segment fea-
tures as individual objects.
Shape: This dataset contains about 29,000 3D shape mod-
els from various sources. A feature is extracted from each
model.

3.1.2 Text Data

We tokenize and stem text data and view them as, de-
pending on the context, multisets of words, or sparse vectors.
We apply two popular similarity measures on text data:

• Cosine similarity (vector view) : C(x, y) = x·y
‖x‖·‖y‖

;

• Jaccard similarity (multiset view): J(x, y) = |x∩y|
|x∪y|

.

DBLP: This dataset contains 0.9 million bibliography records
from the DBLP web site. Each record includes the authors’
full names and the title of a publication. The same dataset
was used in a previous study [22] on similarity join of text
data.

3.1.3 Earth Mover’s Distance

The Earth Mover’s Distance (EMD) 1 [20] is a measure
of distance between two weighted sets of feature vectors
and has been shown effective for content-based image re-
trieval [16]. Let P = {〈wi, vi〉} and Q = {〈wj , vj〉} be two
sets of features with normalized weights

P

i wi =
P

j wj =
1, and let d be the feature distance, we use the following
definition of EMD:

EMD(P, Q) = min
X

i

X

j

fijd(vi, vj)

s.t.
X

j

fij = wi,
X

i

fij = wj .

Evaluating EMD is costly as it involves solving a linear
programming. We use EMD to show the generality of our
method.
Flickr: We apply the same feature extraction method [16]
as used for the Corel dataset to 100,000 randomly crawled
Flickr images. We set the weights of the feature vectors to be
proportional to the number of pixels in their corresponding
image regions. Following the original paper [16], we use l1
as feature distance.

3.2 Performance Measures
We use recall as an accuracy measure. The ground truth

is true K-NN obtained by scanning the datasets in brute
force. The recall of one object is the number of its true K-NN
members found divided by K. The recall of an approximate
K-NNG is the average recall of all objects.

We use the number of similarity evaluations conducted as
an architecture independent measure of computational cost.
The absolute number depends on the size of the dataset
and is not directly comparable across datasets. So we use a
normalized version of the measure:

scan rate =
similarity evaluations

N(N − 1)/2
.

The denominator is the total number of possible similarity
evaluations of a dataset, and should not be exceeded by any
reasonable algorithm.

When scan rate is not an appropriate cost measure for
an existing method, we simply compare costs by measuring
CPU time.

3.3 Default Parameters
Our method involves three parameters: K, sample rate ρ,

and termination threshold δ (note that K would have to be
enlarged if the value required by the application is not big
enough to produce high recall). Unless otherwise mentioned,
we use a default K = 20 for all datasets, except that for
DBLP we use K = 50. The DBLP dataset is intrinsically
more difficult than the others and need a larger K to reach
about 90% recall. We use a default sample rate of ρ = 1.0,
i.e. we do not conduct sampling except for trimming reverse
K-NN to no more than K elements. For some experiments,
we also report the performance numbers for ρ = 0.5, as a
faster but less accurate setting. We use a default termination
threshold of 0.001.

1Code obtained from http://www.cs.duke.edu/~tomasi/
software/emd.htm, minor changes made to support paral-
lelization.

Dataset Measure
Default Fast (ρ = 0.5)

Recall Cost Recall Cost
Corel l1 0.989 0.00817 0.983 0.00467
Corel l2 0.997 0.00782 0.995 0.00436
Audio l1 0.972 0.0764 0.945 0.0450
Audio l2 0.985 0.0758 0.969 0.0445
Shape l1 0.995 0.137 0.989 0.0761
Shape l2 0.997 0.136 0.994 0.0754
DBLP Cosine 0.894 0.0271 0.839 0.0146
DBLP Jaccard 0.886 0.0309 0.848 0.0173
Flickr EMD 0.925 0.047 0.877 0.0278

Table 2: Overall performance under default setting
(ρ = 1.0) and a “fast” setting (ρ = 0.5), with cost
measured in scan rate. The default setting ensures
high recall (near or above 90%). When minor loss
in recall is acceptable, the fast setting reduces scan
rate by nearly half. Shape has a particularly high
scan rate due to its small size.

3.4 System Environment
We used commodity servers of the following configuration:

dual quad core Intel E5430 2.66GHz CPU; 16GB main mem-
ory. All machines ran CentOS 5.3 with Linux kernel 2.6.18
and gcc 4.3.4. We use OpenMP based parallelization for our
own code and LSHKIT 2. The Recursive Lanczos Bisection
code 3 is not parallelized and we disabled the parallelization
of our code when comparing against it.

4. EXPERIMENTAL RESULTS
This section reports experimental results. We are inter-

ested in answering the following questions:

• How does our method perform under typical settings?

• How does our method compare against existing ap-
proaches?

• How do accuracy and cost change as dataset scales?

• How to pick a suitable set of parameters?

• How does intrinsic dimensionality affect performance?

The last question is answered by an empirical study with
synthetic data.

4.1 Overall Performance
Table 2 summarizes the performance of our method on

all the datasets and similarity measures under two typical
settings: the default setting (ρ = 1.0) achieving highest pos-
sible accuracy and a “fast” setting (ρ = 0.5) with slightly
lower accuracy. We see that even with the fast setting, our
method is able to achieve ≥ 95% recall, except for DBLP
and Flickr. for which recall is below 90%. By putting in
more computation with the default setting, we are able to
boost recall for the more difficult datasets to close or above
90%.

We see that scan rate has a larger variation across datasets,
ranging from below 0.01 for Corel to 0.15 for Shape. Mul-
tiple factors could affect scan rate, but we will show (Sec-
tion 4.3) that the size of the dataset is the dominant factor,

2Code available at http://lshkit.sourceforge.net/.
3Code obtained from http://www.mcs.anl.gov/~jiechen/
research/software.html.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

re
c
a
ll

iteration

Corel l2
Audio l2

Shape l2
DBLP cos

Flicrk EMD
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 0 2 4 6 8 10 12

s
c
a
n
 r

a
te

iteration

Corel l2
Audio l2

Shape l2
DBLP cos

Flicrk EMD

Figure 1: Recall and scan rate vs. iterations. Recall increases fast in the beginning and then quickly
converges.

and with all other parameters fixed, scan rate shrinks as
dataset grows. The scan rate of Shape is relatively high
mainly because its size is small. In general, at million-
object level, we expect to cover several percents of the total
N(N − 1)/2 comparisons.

For a closer observation of the algorithm’s behavior, Fig-
ure 1 shows the accumulative recall and scan rate through
iterations. The curves of different data have very similar
trends. We see a fast convergence speed across all datasets
— the curves are already close to their final recall after five
iterations, and all curves converge within 12 iterations.

 0

 1

 2

 3

 4

 5

 6

 7

0.1 0.5 1.0

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

square of l2 distance

iteration 5 recall 0.991
iteration 4 recall 0.849
iteration 3 recall 0.259
iteration 2 recall 0.027
iteration 1 recall 0.002

Figure 2: Approximate K-NN distance distributions
of Corel dataset after each iteration. The peaks of
the bottom three curves spread equally on the log-
scaled horizontal axis, suggesting the exponential re-
duction of the radius covered by approximate K-NN
during the execution of our method.

Figure 2 shows the approximate K-NN distance (N ×K
distance values) distributions of the Corel datasets during
the first five iterations. The peaks of the first three iterations
spread equally on a log-scaled horizontal axis, i.e. the search
radius around each object shrink exponentially in the initial
iterations. This remotely confirms our observation made in
Section 2.

4.2 Comparison Against Existing Methods
We compare our method with two recent techniques, both

specific to l2 distance, so only the three dense-vector datasets
are used. The brute-force approach, even though achieving

100% accuracy, is too expensive for large datasets and is not
considered here.

4.2.1 Recursive Lanczos Bisection

Recursive Lanczos Bisection (RLB)[8] is a divide-and-conquer
method for approximate K-NN graph construction in Eu-
clidean space. According to the two configurations sup-
ported by RLB, we conduct comparison under two settings,
one for speed (R = 0.15 for RLB and ρ = 0.5 for ours) and
one for quality (R = 0.3 for RLB and ρ = 1.0 for ours).
Table 3 summarizes the recall and CPU time of both meth-
ods under those settings. Our method consistently achieves
both higher recall and faster speed (2× to 16× speedup) in
all cases. Actually, even the recall of our low-accuracy set-
ting beats RLB’s high-accuracy setting in all cases except for
the Corel dataset, where there is only a difference of 0.001.

Dataset Method
For Speed For Accuracy

recall time recall time

Corel
RLB 0.988 1844s 0.996 5415s
Ours 0.995 252s 0.997 335s

Audio
RLB 0.906 84.6s 0.965 188.6s
Ours 0.969 21.1s 0.986 31.5s

Shape
RLB 0.961 29.7s 0.989 56.0s
Ours 0.994 14.0s 0.997 24.4s

Table 3: Comparison against Recursive Lanczos Bi-
section (RLB) under two settings. Our method runs
2 to 16 times faster with consistently higher recall.

4.2.2 Locality Sensitive Hashing

LSH is a promising method for approximate K-NN search
in high dimensional spaces. We use LSH for offline K-NNG
construction by building an LSH index (with multiple hash
tables) and then running a K-NN query for each object.
We use plain LSH [13] rather than the more recent Multi-
Probing LSH [17] in this evaluation as the latter is mainly
to reduce space cost, but could slightly raise scan rate to
achieve the same recall. We make the following optimiza-
tions to the original LSH method to better suit the K-NNG
construction task:

• For each query, we use a bit vector to record the objects
that have been compared, so if the same points are seen
in another hash table, they are not evaluated again.

Dataset
LSH Ours

recall scan rate recall scan rate
Corel 0.906 0.004 0.995 0.004
Audio 0.615 0.047 0.969 0.045
Shape 0.925 0.076 0.994 0.075

Table 4: Comparison against LSH. We achieve much
higher recall at similar scan rate. It is impractical
to tune LSH to reach our recall as it would become
slower than brute-force search.

• We simultaneously keep the approximate K-NN lists
for all objects, so whenever two objects are compared,
the K-NN lists of both are updated;

• A query is only compared against objects with a smaller
ID.

These optimizations eliminate all redundant computations
without affecting recall. We translate the cost of LSH into
our scan rate measure, so the two methods are directly
comparable (we ignore the cost of LSH index construction
though).

It is hard for LSH to achieve even the recall of our low-
accuracy settings, as the cost would be higher than brute-
force search. Hence we tune the scan rate of both methods
to an equal level and compare recall. For LSH, we use the
same default parameters in our previous study [12], except
that we tune the number of hash tables to adjust scan rate.
For our method, the low-accuracy setting is used (ρ = 0.5).

Table 4 summarizes recall and scan rate for both method.
We see that our method strictly out-performs LSH: we achieve
significantly higher recall at similar scan rate. Also note
that the space cost of LSH is much higher than ours as tens
of hash tables are needed, and the computational cost to
construct those hash tables are not considered in the com-
parison.

4.3 Performance as Data Scales
It is important that an algorithm has a consistent accu-

racy and a predictable cost as data scales, so that param-
eters tuned with a small sample are applicable to the full
dataset. To study the scalability of our algorithm, we run
experiments on subsamples of the full datasets with fixed
parameter settings and observe the changes in recall and
scan rate as sample size grows.

Table 5 shows recall vs. sample size. We see that as
dataset grows, there is only a minor decline in recall. This
confirms the feasibility of parameter tuning with a sampled
dataset.

Figure 3 plots scan rate vs. dataset size, in log-log scale,
and we see a very interesting phenomenon: all curves form
parallel straight lines, and the curves of all datasets except
DBLP almost coincide. This suggests that our method has
a polynomial time complexity disregard the complexity of
the dataset (which affects the accuracy rather than speed
when parameters are fixed). Table 6 shows the empirical
complexity of our method on various datasets obtained by
fitting the scan rate curves, which is roughly O(n1.14) for all
datasets.

The main reason that the DBLP curve is higher is that
we use K = 50 for DBLP and K = 20 for other datasets. As
a local join costs O(K2), we expect the scan rate of DBLP

Size Corel Audio Shape DBLP Flickr
l2 l2 l2 cos EMD

1K 1.000 0.999 1.000 0.959 0.999
5K 1.000 0.996 0.992 0.970 0.991

10K 1.000 0.993 0.998 0.970 0.983
50K 0.999 0.988 - 0.951 0.953

100K 0.999 - - 0.940 0.925
500K 0.997 - - 0.907 -

Table 5: Recall vs. dataset size. The impact of data
size growth is small.

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06

s
c
a

n
 r

a
te

Corel l2
Audio l2

Shape l2
DBLP cos

Flickr EMD

Figure 3: Scan rate vs. dataset size. The conin-
cidence of various datasets (except DBLP) suggests
that when parameters are fixed, the time complexity
of our method depends polynomially on the dataset
size, but is independent on the complexity of the
dataset (DBLP is different due to a larger K value
used).

to be about (50/20)2 = 6.25 times the scan rate of other
datasets if they all converge at the same speed. The real
value we estimate from the curves (by dividing the intercept
of the DBLP curve and the average intercept of the rest) is
5.2, which is close to the expected value.

4.4 Parameter Tuning
We need to fix three parameters for the algorithm: K,

sample rate ρ and termination threshold δ. The meaning of
δ is clear: the loss in recall tolerable with early termination.
Here we study the impact of K and ρ on performance.

4.4.1 Tuning K as a Parameter

The application determines the minimal K required. Mean-
while, a sufficiently large K is necessary to achieve high re-

Dataset & Measure Empirical Complexity

Corel/l2 O(n1.11)
Audio/l2 O(n1.14)
Shape/l2 O(n1.11)

DBLP/cos O(n1.11)
Flickr/EMD O(n1.14)

Table 6: Empirical complexity of different datasets
and similarity measures under default parameter
settings. The values are obtained by fitting the scan
rate curves in Figure 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

re
c
a
ll

K

Corel l2
Audio l2

Shape l2
DBLP cos

Flickr EMD
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

s
c
a
n
 r

a
te

K

Corel l2
Audio l2

Shape l2
DBLP 12

Flickr EMD

Figure 4: Recall and scan rate vs. K. For a particular dataset, a sufficiently large K is needed for >90%
recall. Beyond that, recall only improves marginally.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

re
c
a

ll

dimension

0.03

0.04

0.05

0.06

 1 10 100 1000

s
c
a

n
 r

a
te

dimension

Figure 6: Recall and scan rate vs. dimensionality
with K = 20. There is a limit of dimensionality up
to which the algorithm is able to achieve high recall.

call. The minimal value required by the application might
need to be enlarged.

Figure 4 plots the relationship between K and perfor-
mance. We see that K ≥ 10 is needed for the dense vector
datasets to achieve good recall, and for text, recall reaches
90% only with K ≥ 50. This suggests that text has a high
intrinsic dimensionality than the other datasets. We also see
that beyond a critical point, recall only improves marginally
as K further grows.

4.4.2 Sample Rate for Accuracy-Cost Trade-Off

The sample rate ρ can be used to control accracy-cost
trade-off. Figure 5 plots sample rate vs. performance. We
see that even with a sample rate of 0.1, reasonably high recall
can be achieved for most datasets, and recall grows very
slowly beyond ρ = 0.5. Scan rate, on the other hand, has a
near-linear relationship with ρ across the whole range. We
suggest ρ = 0.5 for applications without a critical dependent
on high recall.

4.5 Impact of Intrinsic Dimensionality
We use synthetic data to study the impact of dimension-

ality on the performance of our algorithm, as the intrinsic

dimensionality of real-life datasets is not obvious and can
not be controlled. We generate a D dimensional vector by
concatenating D independent random values sampled from
the uniform distribution U [0, 1]. Data generated in this way
have the same intrinsic dimensionality and full dimension-
ality. We then test the performance of our method with
different dimensionality, each with a dataset size of 100, 000.

Figure 6 plots the performance of our algorithm, with
default setting, under different dimensionality with a fixed
K = 20. We see that recall decreases as dimensionality in-
creases, and our method performs well (recall > 95%) with
dimensionality ≤ 20 (which happens to be the value of K).
Beyond that, recall rapidly drops to about 50% as dimen-
sionality grows to 50, and eventually approaches 0 as dimen-
sionality further grows.

The impact of dimensionality on cost, although not as
large, is also interesting. When dimension is low and most
points are able to reach their true K-NN (global optima),
cost is low. Convergence speed slows as dimensionality in-
creases and scan rate also increases. Scan rate peaks at
around 30 dimensions. After that, most points are not able
to reach their true K-NN and get more and more easily
trapped at local optima, so scan rate begins to shrink as di-
mensionality further grows. Overall, the fluctuation of cost
is low, within a range of 2×.

We then study how recall can be improved by enlarging
K. Table 7 summarizes the recall and scan rate of represen-
tative K values at various dimensionality. The results can
be categorized into three zones of dimensionality:

• Small dimensionality (D = 2, 5): extremely high recall
(close to 1) and very low scan rate (< 0.01) can be
achieved.

• Medium dimensionality (D = 10, 20): recall reaches
95% with K = D; scan rate is relatively higher, around
5% (due to a larger K). Recall still increases as K
grows, but a recall close to 1 is no longer practical as
scan rate would grow too high.

• Large dimensionality (D = 50, 100): recall peaks at
K = 50 and declines beyond that, and the peak recall
shrinks as D grows (94% for D = 50 and 78% for
D = 100). Scan rate is around 1/4, already too high
for the algorithm to be practically useful.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

re
c
a
ll

sample rate

Corel l2
Audio l2

Shape l2
DBLP cos

Flickr EMD
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 0 0.2 0.4 0.6 0.8 1

s
c
a
n
 r

a
te

sample rate

Corel l2
Audio l2

Shape l2
DBLP cos

Flickr EMD

Figure 5: Recall and scan rate vs. sample rate ρ. Recall grows marginally after ρ > 0.5 while cost grows in a
near-linear fashion across the whole range of ρ.

D = 2 D = 5 D = 10 D = 20 D = 50 D = 100
K recall cost K recall cost K recall cost K recall cost K recall cost K recall cost
4 0.875 0.004 5 0.862 0.006 9 0.925 0.014 19 0.942 0.0487 49 0.934 0.238 49 0.774 0.240
5 0.990 0.005 6 0.957 0.007 10 0.950 0.016 20 0.952 0.0527 50 0.939 0.245 50 0.781 0.248
6 0.996 0.006 7 0.980 0.009 11 0.967 0.019 21 0.957 0.0569 51 0.925 0.253 51 0.778 0.257

Table 7: Tuning K for various dimensionality. For a dataset of fixed size and when dimensionality is high
(D ≥ 50), recall cannot always be improved by enlarging K, and the highest achievable recall shrinks as
dimensionality grows.

This suggest that our method is best applied to dataset
with intrinsic dimensionality around 20. It still works, but
with relatively high cost, for dimensionality around 50, and
start to fail as dimensionality further grows. Fortunately, all
datasets we experimented with, and actually most real-life
datasets where K-NN is meaningful [3], are of relatively low
dimensionality.

5. RELATED WORKS
Paredes et al. [19] are the first to study K-NNG construc-

tion for general metric space as a primary problem (rather
than an application of K-NN search methods). Some general
observations they made also apply to our work: the K-NNG
under construction can be used to improve the remaining
construction work and cost can be reduced by solving the
N K-NN queries jointly. They solved the K-NNG construc-
tion problem in two stages: first an index is built, either a
tree structure or a pivot table, and then the index is used to
solve a K-NN query for each object. Despite the high level
similarity to using a general K-NN search index for K-NNG
construction, strategies to exploit the approximate K-NNG
already constructed are incorporated to the search process.
They also studied the empirical complexity of their meth-
ods. For example, the pivot based method achieves a better
empirical complexity, which is O(n1.10) at 4 dimensions and
O(n1.96) at 24 dimensions.

Efficient K-NNG construction methods have been devel-
oped specifically for l2 metric. Recursive Lanczos Bisec-
tion [8] uses inexpensive Lanczos procedure to recursively
divide the dataset, so objects in different partitions do not
have to be compared. Connor et al. [9] used space filling
curve to limit the search range around each object, and an
extra verification and correction stage is used to ensure ac-

curacy. These methods do not easily generalize to other
distance metrics or general similarity measures.

The K-NN search problem is closely related to K-NNG
construction. After all, if the K-NN search problem is solved,
K-NNG can be constructed simply by running a K-NN query
for each object. For datasets of small dimensionality, various
tree data structures [18, 15, 4] can be used to efficiently solve
the problem. K-NN search in high dimensional spaces is
still and open problem, and the most promising approach is
to solve the problem approximately with Locality Sensitive
Hashing [13, 17]. As we have shown with experiments, it
is hard for LSH to achieve high recall, and designing an
affective hash function for a new similarity measure is non-
trivial.

In the text retrieval community, efficient methods based
on prefix-filtering are developed for the ǫ-NN graph con-
struction [2, 22, 21], a different kind of nearest neighbor
graph which establishes an edge between all pairs of points
whose similarity is above ǫ. The problem is that such meth-
ods are only efficient for a very tight similarity threshold,
corresponding to a very sparse and disconnected graph.

6. CONCLUSION
We presented NN-Descent , a simple and efficient method

for approximate K-Nearest Neighbor graph construction with
arbitrary similarity measures, and demonstrated its excel-
lent accuracy and speed with extensive experimental study.
Our method has a low empirical complexity of O(n1.14) (on
various tested datasets) and can be easily parallelized, po-
tentially enabling the application of existing graph and net-
work analysis methods to large-scaled dataset without an
explicit graph structure. Rigorous theoretical analysis of
our method is an interesting problem to be solved.

Acknowledgments

This work is supported in part by Gigascale Systems Re-
search Center, Google Research Grant, Yahool Research Grant,
Intel Research Council, by National Science Foundation grants
CSR-0509447 and CSR-0509402.

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.

on Knowl. and Data Eng., 17(6):734–749, 2005.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In WWW ’07: Proceedings of

the 16th international conference on World Wide Web,
pages 131–140, 2007.

[3] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is “nearest neighbor” meaningful? In
ICDT ’99: Proceedings of the 7th International

Conference on Database Theory, pages 217–235, 1999.

[4] A. Beygelzimer, S. Kakade, and J. Langford. Cover
trees for nearest neighbor. In ICML ’06: Proceedings

of the 23rd international conference on Machine

learning, pages 97–104, 2006.

[5] O. Boiman, E. Shechtman, and M. Irani. In defense of
nearest-neighbor based image classification. In CVPR

’08: Proceedings of the 2008 IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition, 2008.

[6] M. R. Brito, E. L. Chávez, A. J. Quiroz, and J. E.
Yukich. Connectivity of the mutual k-nearest-neighbor
graph in clustering and outlier detection. Statistics &

Probability Letters, 35(1):33–42, August 1997.

[7] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In STOC ’02: Proceedings of the

thiry-fourth annual ACM symposium on Theory of

computing, pages 380–388, 2002.

[8] J. Chen, H. ren Fang, and Y. Saad. Fast approximate
knn graph construction for high dimensional data via
recursive lanczos bisection. Journal of Machine

Learning Research, 10:1989–2012, 2009.

[9] M. Connor and P. Kumar. Fast construction of
k-nearest neighbor graphs for point clouds. IEEE

Transactions on Visualization and Computer

Graphics, 16:599–608, 2010.

[10] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SCG ’04: Proceedings of the twentieth

annual symposium on Computational geometry, pages
253–262, 2004.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[12] W. Dong, Z. Wang, W. Josephson, M. Charikar, and
K. Li. Modeling LSH for performance tuning. In
CIKM ’08: Proceeding of the 17th ACM conference on

Information and knowledge management, pages
669–678, 2008.

[13] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In VLDB ’99:

Proceedings of the 25th International Conference on

Very Large Data Bases, pages 518–529, 1999.
[14] J. Kleinberg. The small-world phenomenon: an

algorithm perspective. In STOC ’00: Proceedings of

the thirty-second annual ACM symposium on Theory

of computing, pages 163–170, 2000.

[15] T. Liu, A. W. Moore, A. Gray, and K. Yang. An
investigation of practical approximate nearest
neighbor algorithms. In Advances in Neural

Information Processing Systems 17. 2005.

[16] Q. Lv, M. Charikar, and K. Li. Image similarity search
with compact data structures. In CIKM ’04:

Proceedings of the thirteenth ACM international

conference on Information and knowledge

management, pages 208–217, 2004.

[17] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-Probe LSH: efficient indexing for
high-dimensional similarity search. In VLDB ’07:

Proceedings of the 33rd international conference on

Very large data bases, pages 950–961, 2007.

[18] A. W. Moore. The anchors hierarchy: Using the
triangle inequality to survive high dimensional data.
In In Twelfth Conference on Uncertainty in Artificial

Intelligence, pages 397–405, 2000.

[19] R. Paredes, E. Chávez, K. Figueroa, and G. Navarro.
Practical construction of -nearest neighbor graphs in
metric spaces. In WEA, pages 85–97, 2006.

[20] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for
distributions with applications to image databases. In
ICCV ’98: Proceedings of the Sixth International

Conference on Computer Vision, page 59, 1998.

[21] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In SIGMOD ’10:

Proceedings of the 2010 international conference on

Management of data, pages 495–506, 2010.

[22] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient
similarity joins for near duplicate detection. In WWW

’08: Proceeding of the 17th international conference on

World Wide Web, pages 131–140, 2008.

[23] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and
S. Lin. Graph embedding and extensions: A general
framework for dimensionality reduction. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 29:40–51, 2007.

