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ABSTRACT
Sketches are compact data structures that can be used to
estimate properties of the original data in building large-
scale search engines and data analysis systems. Recent the-
oretical and experimental studies have shown that sketches
constructed from feature vectors using randomized projec-
tions can effectively approximate `1 distance on the feature
vectors with the Hamming distance on their sketches. Fur-
thermore, such sketches can achieve good filtering accuracy
while reducing the metadata space requirement and speed-
ing up similarity searches by an order of magnitude. How-
ever, it is not clear how to choose the size of the sketches
since it depends on data type, dataset size, and desired fil-
tering quality. In real systems designs, it is necessary to
understand how to choose sketch size without the dataset,
or at least without the whole dataset.

This paper presents an analytical model and experimental
results to help system designers make such design decisions.
We present a rank-based filtering model that describes the
relationship between sketch size and dataset size based on
the dataset distance distribution. Our experimental results
with several datasets including images, audio, and 3D shapes
show that the model yields good, conservative predictions.
We show that the parameters of the model can be set with
a small sample dataset and the resulting model can make
good predictions for a large dataset. We illustrate how to
apply the approach with a concrete example.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Search pro-
cess, Information filtering]

General Terms
Algorithms, Measurement, Design
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1. INTRODUCTION
Content-based similarity search for massive amounts of

feature-rich (non-text) data has been a challenging problem
because feature-rich data objects such as images, audio, and
other sensor data is typically represented by many feature
vectors with tens to hundreds of dimensions each. As a
result, the key challenge in designing a content-based simi-
larity search engine is solving the general high-dimensional
search problem for very large datasets. In other words, we
must understand how to find data objects similar to a query
data object quickly with small data structures.

Although past research has made significant progress on
the high-dimensional search problem, there is still no sat-
isfactory general solution. Tree data structures such as R-
tree [13], K-D tree [2], SR-tree [15], and more recently
navigating-nets [17] and cover-tree [3], have been proposed
to solve the K-Nearest-Neighbor (KNN) search problem in
high-dimensional spaces. But they work well only when the
(intrinsic) dimensionality is relatively low. When the dimen-
sionality is beyond 15 or so, such approaches are typically
slower than the brute-force approach which scans through
all data objects in the dataset. Recently, several indexing
methods based on locality sensitive hashing (LSH) [14, 12,
6, 22] have been proposed for approximate KNN search, but
they are also limited to relatively low intrinsic dimensional-
ity. When the intrinsic dimensionality is high, the LSH ap-
proach typically requires hundreds of hash tables to achieve
reasonably good search quality.

A promising approach is to use sketches as compact meta-
data for a similarity search engine. Sketches, which are
constructed from domain-specific feature vectors, have two
salient properties: their small size and the ability to estimate
the distance between two feature vectors from their sketches
alone. At search time, sketches are used to filter out unlikely
answers, resulting in a much smaller candidate set which is
then ranked with a sophisticated distance function on the
original feature vectors. This approach is practical for two
reasons: the first is that for feature-rich data with high in-
trinsic dimensionality, filtering metadata is more efficient in
both space and time than other known approaches. The
second is that content-based similarity search capability is
often integrated with traditional search tools based on at-
tributes such as time, location, and other annotations. A
typical integration method is to perform an attribute-based
search to produce an intermediate dataset which can be fil-
tered on-the-fly efficiently into a small candidate set for final
ranking.



Recent theoretical and experimental studies have shown
that sketches constructed based on random projections can
be used to approximate `1 distance and that such sketches
can achieve good filtering accuracy while reducing the meta-
data space requirement and speed up similarity searches by
an order of magnitude[5, 20]. An important advantage of
this approach over other dimension reduction techniques is
that sketch construction based on random projections re-
quires no prior knowledge about the content of the datasets.
The challenge of designing a real system using this approach
is to choose the sketch size wisely.

Properly sized sketches can greatly reduce the storage re-
quirement for metadata and speed up similarity search while
maintaining good search quality. An important design deci-
sion is sketch size in bits, given the desired filtering quality
and the dataset size of a specific data type. Choose too few
bits, and the distance estimates computed from the sketches
will be inaccurate. Choose too many bits, and the sketches
will needlessly waste storage space and CPU time. Ideally, a
system designer can determine the sketch size and other pa-
rameters of the algorithm at system initialization time when
he knows only the targeted data type, dataset size, and per-
haps a small sample dataset. In order to achieve this goal,
we need to model the relationship between the sketch size
and other information and understand how to use the model
in real systems designs.

This paper presents two analytical and experimental re-
sults to help systems designers achieve the goal above. The
first is a rank-based filtering model for the random projec-
tion based sketching technique that uses Hamming distance
to approximate `1 distance. We have validated the model
with image, audio, and 3D shape datasets and shown that
the model can conservatively predict the required sketch
size, given desired filtering quality, target dataset size, and
filtering result size.

The second is the result of investigating how to use the
rank-based filtering model to help systems designers make
design decisions without the whole dataset. Experimental
results on three real datasets show that the rank-based filter-
ing model performs well, yielding useful, conservative pre-
dictions for larger datasets even though the parameters of
the model are set with a small sample dataset. This result
allows systems designers to build the model into a software
tool.

We then show how to apply the analytical results to size
sketches in configuring a content-based similarity search tool
for a 3D-shape dataset. The case study shows that the an-
alytical model is convenient to use.

2. FILTERING FOR SIMILARITY SEARCH
This section describes the similarity search problem, sketch-

ing algorithm, and filtering method using sketches that are
considered in our analytical and experimental study.

2.1 Similarity Search
Informally, similarity search refers to searching a collec-

tion of objects to find objects similar to a given query ob-
ject. The objects we will be interested in are noisy, high-
dimensional objects such as images and audio recordings.
Here, similarity between objects refers to a human-perceived
notion of similarity. This informal notion of similarity search
is made concrete as follows: objects are represented by high-
dimensional feature vectors and similarity is defined in terms

of a distance metric on the underlying space of features.
Given a query object, q, in this setting, the goal is to find
nearby objects, r, such that the distance d(q, r) is small. In
particular, we may ask for all objects r within some chosen
distance of the query point, or more often, we may ask for
the k nearest neighbors of the query point. This latter for-
mulation of the search problem is commonly referred to as
the k-nearest neighbor (k-NN) problem.

Although the choice of how to extract features and which
distance function to use are domain specific, in practice, it
is frequently the case that objects are represented by D-
dimensional real-valued vectors and the perceptual distance
between objects is modeled by one of the `p norms. For
a pair of points X = (X1, . . . , XD) and Y = (Y1, . . . , YD),
these distance functions have the form:

d(X, Y ) =
“ DX

i=1

|Xi − Yi|p
”1/p

2.2 L1 Sketch Construction
In this paper, we focus on a recently proposed sketching

technique [18]. The sketches constructed using this tech-
nique are bit vectors and the Hamming distance between
two bit vectors approximates the weighted `1 distance be-
tween the original feature vectors. This sketching technique
has proved useful in several application domains[20].

Briefly, the sketch construction algorithm works by ran-
domly picking a threshold in a particular dimension and
checking if the vector’s value in that dimension is larger
(bit 1) or smaller (bit 0) than the threshold. Let B be the
sketch size in bits, and H be the XOR block size in bits.
Each sketch is constructed by first generating B × H bits
and then XORing every H consecutive bits, resulting in the
final B-bit sketch. By XORing H bits into 1 bit, this al-
gorithm produces a dampening (or thresholding) effect such
that smaller distances are approximated with higher resolu-
tion, making it suitable for nearest neighbor search1.

Let wi be the “weight” (or importance) assigned by the
domain-specific feature extraction algorithm to dimension i
and let li and ui, respectively, be the minimum and maxi-
mum values for the i-th coordinate over all observed feature
vectors. Let D be the dimension of the feature vector. At
system startup time, B × H random (i, ti) pairs are gen-
erated using Algorithm 1. At run time, the D-dimensional
feature vector x is converted into a B-bit bit vector using
Algorithm 2. For further details and a proof of correctness,
we refer the reader to [18].

2.3 Filtering using Sketches
Since sketches require little storage space and since the

distance between query objects can be estimated from sketches
efficiently, sketches can be used to implement a filtering
query processor for similarity search. A filtering query pro-
cessor first constructs a candidate set of result objects for
a given query object on the basis of sketch distance. The
candidate set size is chosen to be large enough such that it
is likely to contain the k-nearest neighbors under the orig-
inal distance on feature vectors. In effect, the construction
of the candidate set “filters out” the vast majority of ob-
jects in the system that are far from the query object while
still capturing the objects close to the query. Since sketches

1See Formula 1 in Section 3 for details.



Algorithm 1 Generate B × H Random (i, ti) Pairs
input: B, H, D, l[D], u[D], w[D]
output: p[D], rnd i[B][H], rnd t[B][H]

pi = wi × (ui − li); for i = 0, . . . , D − 1
normalize pi s.t. Σd−1

i=0 pi = 1.0

for (b = 0; b < B; b + +) do
for (h = 0; h < H; h + +) do

pick random number r ∈ [0, 1)
find i s.t. Σi−1

j=0 pi <= r < Σi
j=0 pi

rnd i[b][h] = i
pick random number ti ∈ [li, ui]
rnd t[b][h] = ti

end for
end for

Algorithm 2 Convert Feature Vector to B-Bit Vector
input: v[D], B, H, rnd i[B][H], rnd t[B][H]
output: bits[B]

for (b = 0; b < B; b + +) do
x = 0
for (h = 0; h < H; h + +) do

i = rnd i[b][h]; ti = rnd t[b][h]
y = (vi < ti ? 0 : 1)
x = x

L
y

end for
bits[b] = x

end for

are small and distance estimation on sketches are very ef-
ficient, a simple, yet practical approach for generating this
candidate set is a linear scan through the set of all sketches.

The second step in a filtering query processor is the rank-
ing of the candidate set by the original distance metric on
the original feature vector. This exact computation need
only be carried out once for each point in the candidate
set. The k-nearest neighbors in the candidate set under the
original distance metric is then taken as the query result set.
The underlying assumption in a filtering query processor is
that the k-nearest neighbors in the candidate set is an ac-
curate estimate of the k-nearest neighbors in the full data
set. In practice, one must choose the candidate set to be
large enough that it captures a sufficiently large fraction of
the k-nearest neighbors under the original distance, but not
so large that it adversely affects search engine performance.
If the candidate set is too small, the query processor will
be fast, but the search quality may be poor. On the other
hand, if the candidate set is too big, the processor will waste
time and resources on unlikely candidates. We can capture
this inherent trade off between search quality and filter set
size by asking what filter ratio is necessary to achieve a par-
ticular quality goal. If k is the number of results to return,
a filter with filter ratio t will return a candidate set of size
t × k. A filtering query processor seeks to optimize t for a
given fraction of the k-nearest neighbors in the final result
set.

A system designer who adopts the filtering approach to
similarity search must choose not only a particular domain-
specific feature representation and distance function, but

also an appropriate sketching algorithm and a set of param-
eters for sketching and filtering. More specifically, we are
mainly interested in answering the following questions:

• What is an appropriate choice for the sketch size, B?

• How to size the sketch if the input data set grows over
time?

We are also interested in the other parameters involved for
sketching such as the best H value for XORing and best
filter ratio t when constructing sketches as they are part of
the sketching parameters system designer need to decide at
design phase. The rest of the paper presents our analytical
and experiment results to answer these questions.

3. ANALYTICAL MODEL
We use the following notation:

• B: sketch size in bits

• k: number of similar objects to return

• t: filter ratio – i.e. filtered set size is k × t

• H: XOR block size in bits for sketching

• S: the set of domain-specific feature vectors

• D: the dimensionality of vectors in S

• d(x, y): the domain-specific distance on x, y ∈ S

• s0(x): the H × B-bit sketch of x ∈ S before XORing

• s(x): the B-bit sketch of the feature vector x ∈ S

• ds(x, y): the sketch distance between x, y ∈ S

We now describe a simple analytical model for filtering
using the `1 sketch of Section 2.2. This model provides a
basis for system designers to choose appropriate parameter
values for a sketch-based filtering similarity search query
processor. In particular, for a given data set size, N , and
result set size, k, the model predicts the relationship between
recall, filter ratio (t), sketch size (B), and XOR block size
(H). Thus, the model allows a system designer to choose
the system parameters in anticipation of future growth.

In the following description let S be a set of N objects,
each represented by a D-dimension feature vector. Given
objects q and r, let d(q, r) be the feature distance between q
and r, s(q) and s(r) be the sketches of q and r, respectively,
and ds(q, r) the sketch distance between q and r. We define
the rank of r given q to be the number of points in S that
precede r when objects are ordered in increasing order of
feature distance from q. For a fixed query q, let ri denote
the ith object in S in this ordering. Similarly, we define
the sketch rank of r to be the number of points in S that
precede r when objects are ordered in increasing order of
sketch distance to q.

The goal is for the analytical model to answer the follow-
ing question: Given N , k fixed, as a function of t, B, and H,
what fraction of the points p ∈ S with rank at most k have
sketch rank at most k × t? We develop the model in a series
of steps. First, we describe how we model the distribution
of feature distances in the data set. Second, we obtain an
expression for the distribution of the sketch distance as a



function of the feature distance. Next, we model the distri-
bution of the sketch rank of an object r ∈ S for a query q
as a function of its feature distance from q. This uses the
distribution of feature distances in the data set and distri-
bution of sketch distances. Finally, we use this model for
the sketch rank to estimate the recall for a given filter ratio
value. Each of these steps is described in the subsections
that follow.

3.1 Distance Distribution
Since the sketch distance between two objects is related to

the original feature vector distance, we first study the distri-
bution of feature vector distances. For one particular query
object, we calculate the feature vector distances of all the
other objects in the dataset to this query object. The his-
togram of all the object feature distances forms the feature
vector distance distribution for that particular query object.
With the feature distance distribution known, we will be
able to predict the sketch distance between the query object
and rest of the objects using the analytic model described
in the next section. Note that in k-nearest neighbor search,
objects that are nearby have much more impact on the over-
all search quality than the ones that are further away. When
we model the distance distribution, we are mostly interested
in the distance distribution close to the k nearest neighbors.

One of the goals for our approach is to predict the sketch
performance when the dataset size changes. In order to do
this, we predict the distribution of object distances in a data
set using the distribution of distances in a smaller sample.
The basis for this is the hypothesis that every data type is
associated with an underlying object distance distribution.
The particular distances observed in a specific data set can
be viewed as a sample of the distribution associated with
the data type. For example, in Figure 1, we compare the
average distance distribution of 100 query points with the
full dataset with that of a uniformly sampled dataset with
only one-tenth of the data points.

One subtlety in modeling distances is that the distribu-
tion of distances from different query objects can be different
and using a single distribution for them can lead to errors.
The distance distributions for different query objects have
similar shapes but are peaked at different points. Since our
data objects have a natural bound on each dimension, the
objects are contained in a high dimensional rectangle. The
location of the query object in this high dimensional rectan-
gle will affect the peak of the feature distance distribution.
In order to model this variation, we pick a random sample of
100 query objects and use their distance distributions to ap-
proximate the overall distance distributions. We compared
this approach with using a single average distance distribu-
tion. The latter did not perform as well as the approach
that explicitly models the variation in object distance dis-
tributions.

Further, we approximate the empirical individual query
object distance distributions by a distribution with a closed
form expression. Due to the nature of k-nearest neighbor
search, we are not trying to approximate the full distance
distribution. Instead, only the distance distribution close
to k-nearest neighbors are considered during fitting. The
details of this appear in Section 5.1.

3.2 Sketch Distance Distribution
Given a dataset S, let wi, ui, li be the weight, upper bound

and lower bound of the i-th dimension, respectively. Let T =P
i wi × (ui − li). Using the sketch algorithm of Section 2.2,

for every object r ∈ S, we construct the initial bit vector
s0(r) of length B × H. For a fixed query point q, consider
object r ∈ S and let x = d(q, r)/T . The probability that
s0(q) disagrees with s0(r) in the j-th bit is:

Pr[s0
j (q) 6= s0

j (r)] = d(q, r)/T = x

After XORing contiguous H-bit blocks of s0 to produce the
final B-bit sketch, the probability that the two sketches dif-
fer in bit j is:

Pr[sj(q) 6= sj(r)] = p(x) =
1
2

“
1 − (1 − 2x)H

”
(1)

Thus, the probability that the two B-bit sketches s(q) and
s(r) differ in exactly b bits is given by the binomial distri-
bution:

Pr[ds(q, r) = b] = p(x, b) =

 
B

b

!
p(x)b (1 − p(x))B−b (2)

where p(x) is given by equation (1). This formula gives the
probability distribution of the sketch distance as a function
of the feature distance. The proof in detail can be found
[18].

3.3 Rank Distribution
Consider an object r ∈ S. We would like to estimate the

sketch rank of r, i.e. the number of objects that precede r
when we order all objects in S in increasing order of sketch
distance to query object q. A key assumption in this calcu-
lation is that the sketch distances are independent of each
other. While this assumption is not completely accurate,
it is a reasonable approximation. As we discuss later, this
leads to a conservative estimate on the quality of the filter-
ing results. We also assume that in the ordering by sketch
distances, objects with the same sketch distance are ordered
randomly, that is, for two objects with the same sketch dis-
tance, the probability that one precedes the other is exactly
1/2.

The sketch rank of r is dependent on the sketch distance
ds(q, r). Consider the event ds(q, r) = b. Note that the
probability of this event is a function of the feature distance
d(q, r) and is calculated in (2). Consider an object r′ ∈ S
such that d(q, r′)/T = x and let s = ds(q, r′) be the sketch
distance of r′. Let P (x, b) be the probability that r′ is ranked
lower (i.e. closer to q) than r when ds(q, r) = b. Note that
this is a function of x = d(q, r′)/T and the value b of ds(q, r).

P (x, b) = Pr[s < b] +
1
2

Pr[s = b]

=
b−1X
i=0

Pr[s = i] +
1
2

Pr[s = b] (3)

=
b−1X
i=0

p(x, i) +
1
2
p(x, b) (4)

Let rank (r) denote the sketch rank of r. rank (r) is the
sum of indicator random variables Y (ri, r), one for every
object ri ∈ S. The indicator variable Y (ri, r) for ri ∈ S
corresponds to the event that ri precedes r in the ordering by
sketch distance. Our independence assumption implies that
given a value for ds(q, r), all these variables are independent.
Let xi = d(q, ri)/T . Note that Pr[Y (ri, r) = 1|ds(q, r) =



 0

 1

 2

 3

 4

 5

 6

 0  0.1  0.2  0.3  0.4  0.5

Pr
ob

ab
ilit

y 
Di

st
rib

ut
io

n

Distance (r/T)

Image

With 1/10 data points
With all data points

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.1  0.2  0.3  0.4  0.5

Pr
ob

ab
ilit

y 
Di

st
rib

ut
io

n

Distance (r/T)

Audio

With 1/10 data points
With all data points

 0

 2

 4

 6

 8

 10

 12

 0  0.1  0.2  0.3  0.4  0.5

Pr
ob

ab
ilit

y 
Di

st
rib

ut
io

n

Distance (r/T)

3D shape

With 1/10 data points
With all data points

Figure 1: Compare Distance Distribution of Full Dataset and 1/10 of Dataset.

b] = P (xi, b) computed in (4). The expected value and
variance of rank (r) are given by

E[rank (r) |ds(q, r) = b] =
NX

i=1

P (xi, b)

Var[rank (r) |ds(q, r) = b] =
NX

i=1

P (xi, b) − [P (xi, b)]2

When we use the feature distance distribution model, let
f(x) to be the probability density function for the distances,
i.e.

R x2
x1

f(x)dx is the fraction of points r′ ∈ S such that
d(q, r′)/T ∈ [x1, x2]. We can replace the summation over all
data points with an integration over the distance distribu-
tion:

E[rank (r) |ds(q, r) = b] = N

Z 1

0
P (x, b)f(x)dx

Var[rank (r) |ds(q, r) = b] =

N

Z 1

0
(P (x, b) − P (x, b)2)f(x)dx

Given the fact that N is usually on the order of hundreds of
thousands, the distribution of rank (r) (for a specific value of
ds(q, r)) is approximately normal by the Central Limit Theo-
rem. The normal distribution parameters can be determined
by E[rank (r) |ds(q, r) = b] and Var[rank (r) |ds(q, r) = b].
Thus the probability that rank (r) is at most M can be ex-
pressed as:

Pr[rank (rk) ≤ M |ds(q, r) = b] =
Z M

0
f(y; µb, σb)dy

where
µb = E[rank (r) |ds(q, r) = b]

σb =
p

Var[rank (r) |ds(q, r) = b]

f(y; µ, σ) =
1

σ
√

2π
e−(y−µ)2/2σ2

Now, we can write the distribution of rank (r) as a mixture
of normal distributions, one for each value of ds(q, r). The
distribution for b is weighted by Pr[ds(q, r) = b]. This gives
us the distribution of rank (r) and allows us to calculate the
probability that rank (r) is at most M as follows:

Pr[rank (r) ≤ M ] =
BX

b=0

Pr[ds(q, r) = b]
Z M

0
f(y; µb, σb)dy

We overload the notation somewhat and use rank (x) for
x ∈ [0, 1] to denote the sketch rank of an object r ∈ S such
that ds(q, r)/T = x. Note that Pr[ds(q, r) = b] = p(x, b).
Using the previous expression for Pr[rank (r) ≤ M ], we get

Pr[rank (x) ≤ M ] =
BX

b=0

p(x, b)
Z M

0
f(y; µb, σb)dy

Given this expression for the rank distribution, we can now
estimate search quality for a given filter set size, M .

3.4 Search Quality Estimation
Once we have an expression for the rank distribution for

objects r ∈ S, for a given filter set size M , the expected
fraction of the k nearest neighbors being included in the
filtered set (i.e. the recall) can be computed as:

Recall =
1
k

kX
j=1

Pr[rank (rj) ≤ M ]

When the feature distance distribution is used, the recall
can be calculated as:

Recall =
N

k

Z x0

0
Pr[rank (x) ≤ M ]f(x)dx

where x0 can be derived from:

k = N

Z x0

0
f(x)dx

Note that the sketch distributions and rank distributions are
computed based on a single query object q. As a result, the
search quality estimate (recall) may vary for different query
points. To ensure that the results are representative of the
entire data set, we use multiple representative query ob-
jects to model the distance distribution. To estimate overall
search quality, we average the recall value computed using
the distance distributions for each of these query objects.

4. EVALUATION
We have employed three kinds of feature-rich datasets to

validate our models. To evaluate the filtering quality, we
have used average recall in which the “gold standard” for
comparison is the results computed with the original dis-
tance function.

4.1 Datasets
We have studied three kinds of data: images, audio, and

3D shapes. Table 1 provides a summary of the dataset sizes
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Figure 2: Compare the Real Distance Distribution with Lognormal Distribution: We only fit the initial part
of real distribution for k-nearest neighbour search.
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Figure 3: Filter Quality with Different Distribution Models (H = 3): Lognormal distribution gives conser-
vative filtering quality prediction.

and the number of dimensions in the domain-specific feature
vector representations.

Dataset Number of Feature Vectors Dimension
image 662,317 14
audio 54,387 192

3D shape 28,775 544

Table 1: Dataset Sizes and Dimensions.

4.1.1 Image Data
The image dataset used in our study is drawn from the

Corel Stock Photo Library, which contains about 60,000 im-
ages. The main reason to choose this dataset is that it has
become a standard dataset for evaluating content-based im-
age retrieval algorithms.

We used the JSEG [7] image segmentation tool to seg-
ment each image into multiple homogeneous regions based
on color and texture. On average, each image is segmented
into 10 regions, resulting in about 660,000 regions in total.
The image region representation we use is similar to the
one proposed in [18], where each region is represented by
a 14-dimensional feature vector: nine dimensions for color
moments and five dimensions for bounding box informa-
tion. The bounding box is the minimum rectangle covering
a segment and is characterized by five features: aspect ra-
tio (width/height), bounding box size, area ratio (segment
size/bounding box size), and region centroids. The sim-
ilarity between two regions is determined by weighted `1
distance on their 14-dimensional feature vectors.

4.1.2 Audio Data
Our audio dataset is drawn from the DARPA TIMIT

collection [11]. The TIMIT collection is an audio speech
database that contains 6,300 English sentences spoken by
630 different speakers with a variety of regional accents. We
chose this dataset also because it is available to the research
community.

We break each sentence into smaller segments and extract
features from each segment. For each audio segment, we use
the Marsyas library [24] to extract feature vectors. We begin
by using a 512-sample sliding window with variable stride
to obtain 32 windows for each segment and then extract
the first six MFCC (Mel Frequency Cepstral Coefficients)
parameters from each window to obtain a 192 dimensional
feature vector for each segment. We use weighted `1 dis-
tance on the 192-dimensional feature vectors to determine
similarity. As a result, the sentences of the dataset are par-
titioned into about 54,000 word segments, and we extract
one feature vector per word segment.

4.1.3 3D Shape Models
The third dataset we use in our study contains about

29,000 3D shape models, which is a mixture of 3D polyg-
onal models gathered from commercial viewpoint models,
De Espona Models, Cacheforce models and from the Web.
Each model is represented by a single feature vector, yield-
ing about 29,000 feature vectors in total.

To represent the 3D shape models, we use the Spherical
Harmonic Descriptor (SHD) [16], which has been shown to
provide good search quality for similarity search of 3D shape
models. The models are first normalized, then placed on a
64 × 64 × 64 axial grid. Thirty-two spheres of different di-



ameters are used to decompose each model. Up to order
16 spherical harmonic coefficients are derived from the in-
tersection of model with each of the 32 spherical shells. By
concatenating all the spherical descriptors of a 3D model
in a predefined order, we get a 32 × 17 = 544-dimensional
shape descriptor for each 3D model. Although the original
SHD algorithms used `2 distance as the similarity metric,
we have found that `1 distance delivers similar search qual-
ity. As a result, in this study we use `1 distance on the
544-dimensional feature vector.

4.2 Evaluation Metrics and Method
We have conducted two types of experimental studies in

this paper: distribution model fitting and filtering model
validation.

For distribution model fitting, we use some common dis-
tribution functions to fit the distance distribution and com-
pare the fitted distance function with the real distribution.
In order to validate the fit, we compare the residuals after
the least squared fitting and also plot the result for visual
inspection. Moreover, we put each fitted distribution func-
tion into our model and compare their results with the result
using real distance distribution to determine the best distri-
bution function.

For filtering model validation, we compare the filtering
results predicted by the model with those by an implemen-
tation of the sketch-based filtering algorithm. The filter-
ing qualities are measured against the gold standard of each
dataset, which are computed by a brute-force approach over
the entire dataset using the original distance function. Specif-
ically, we compare the recall value at filter ratio t predicted
by our model with that computed experimentally. The re-
call at filter ratio t is the fraction of the k nearest neighbors
to the query point that appear in the first t × k objects
found by the filtering search algorithm. An ideal filtering
algorithm will have a recall value of 1.0 at a filter ratio of
1. In practice, a good filter is one that achieves a satisfac-
tory recall with a small filter ratio. Since re-ranking of the
candidate objects filter using the original feature vectors is
done after filtering, we do not need to report the precision
of our filtering method here.

The method used in our experimental evaluation is to pick
one hundred objects uniformly at random from each dataset
as queries. For each query object, we use the domain-specific
feature vector distance to compute the k nearest neighbors.
We then fix the size of the sketch produced by the sketch-
ing algorithm and for each object in the dataset generate a
sketch of that size, and use the sketches to compute the fil-
tered candidate set of t×k objects and calculate the fraction
of the k nearest neighbors appearing in this set. Since the
sketching algorithm is itself randomized, we take the average
recall over ten instances of the sketch algorithm. Finally, for
each sketch size, we report the average recall value at a fixed
filter ratio t over the one hundred randomly chosen query
objects and compare that recall to the recall predicted by
our model.

5. EXPERIMENTAL RESULTS
We are interested in answering the following three ques-

tions:

• How shall we model the distance distribution of real
datasets to be used in the analytical model?

• How well can the analytical model help system design-
ers choose design parameters such as sketch size?

• How well can the analytical model predict for large
dataset if its parameters are set with a small sample
dataset?

This section reports the experimental answers to these ques-
tions.

5.1 Distance Distribution Model
In this section, we explore the possibility of using a simple

distribution – with closed form expression – to model the
real data distance distribution. This allows us to model the
system with fewer parameters (typically two) rather than
the full distance distribution. Furthermore, we can reuse
the distribution model when the dataset size grows.

We have investigated several common distance distribu-
tions which may be used to model the observed real distance
distribution from the dataset and decided to choose lognor-
mal distribution in our experiments. Note that in k-nearest
neighbor search, objects that are much further away than
the k-th nearest neighbor have much less impact on the over-
all search quality than the ones that are closer. As a result,
the distance distribution close to the k nearest neighbors are
the most important in the overall result.

Based on this observation, we use the distance values of
the 2 × k × t closest data points to fit the statistical mod-
els, and then use the models to extrapolate to the full set
of distances. We use GNU Scientific Library [9]’s nonlinear
least-square fitting library to find fitting parameters. We
only use initial part of the distance distribution correspond-
ing to the 2 × k × t closest data to do the fitting. It tries
to minimize the error between the real distance distribution
and the corresponding portion of lognormal distance distri-
bution. As shown in Figure 2, the lognormal distribution fits
the data, even when extrapolated to the full dataset. Since
this shows the distance distribution of just a single query
point, we can see the distance distribution is not as smooth
as in Figure 1 where the average distance distribution of 100
query points is used.

To model the real dataset, we use 100 randomly chosen
query points to generate 100 distance distributions. After
that, each distance distribution is fitted with the lognormal
distribution. We then use these 100 sets of lognormal dis-
tribution parameters to model the distance distribution of
the whole dataset. This helps us to model the variation of
distance distributions as seen from different data points in
the real dataset.

We have also validated the choice of the distribution model
by comparing the filtering result generated from the real
distance distribution with that generated by the model dis-
tribution. Figure 3 shows the filtering results using lognor-
mal distribution model, together with the filtering results
when the real distance distribution is used2. We can see
that the lognormal distribution generates close trend to the
real distance distribution. It is important to note that us-
ing lognormal distribution gives a conservative estimate of
the recall compared to the real distribution. From the sys-
tem designer’s perspective, this is desirable behavior since
the recall is bounded by the model at a small cost in sketch
size.
2The real distance distribution is directly computed from
the dataset and no parameter fitting is performed.
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Figure 4: Filter Quality vs Sketch Size (H = 3): Model gives conservative estimate, and the estimate is
closer when recall value is high

5.2 Sizing Sketches
The goal of the analytical model is to help systems de-

signers choose design parameters properly. The following
reports our experimental results to see how well the model
can help systems designers choose sketch size B and the re-
lated parameter XOR Bits H properly. In our experiments,
we set the result set size k to be 100 and filter ratio t to be
10.

Choosing sketch sizeB. Sketch size in bits B is perhaps
the most crucial parameter in a sketch-based filtering mech-
anism for similarity search. Finding a good sketch size for
a real system with a given expected dataset size will deliver
high filter quality with minimal storage requirement.

Figure 4 shows the trend of filtering quality for different
sketch sizes. The recall at a filter ratio of 10 is used to
compare the experimental result with our analytical model.
As expected, using more bits in a sketch leads to higher
filtering quality.

Suppose we wish to build a system that achieves a recall
of 0.9. Our results show that the sketch sizes must be about
160 bits, 256 bits and 128 bits for the image, audio, and 3D
shape datasets, respectively. The amount of storage required
for sketch storage are substantially smaller than the feature
vector storage requirement. We use these sketch sizes in the
following experiments.

Notice that our analytical model conservatively predicts
the average recall in all cases and the predicted trend is con-
sistent with the experimental results. This implies that the
model is appropriate for conservative estimates for real sys-
tems designs. We will discuss the reasons for the consistent
underestimation in Section 5.4.

Choosing XOR BitsH. Choosing the H judiciously is im-
portant because a good choice of H may give better filtering
quality without increasing the sketch size and thus the stor-
age requirement. Although the best H value is data type
dependent, our analytical model can help choose the value
without experimenting with full original dataset. We found
that the best H value is relatively stable when the sketch
size B changes, so in practice we will choose the best H
value first.

Figure 5 shows that our analytical model predicts sim-
ilar H values to the experimental results. For the image
dataset, both predicted and experimental results indicate
the the best H value is 3. For audio dataset, the model pre-

dicts that the best H value is 3 and the experimental results
show that the best is 2. For 3D shape data both indicate
that the best H value is 4.

5.3 Extrapolating to Larger Dataset Size
When building a real system, it is common not to have

the full dataset available at the initial deployment. It is im-
portant to be able to choose system parameters with only
a small sample dataset, and have some performance and
quality guarantees as the dataset size grows. Our analytical
model is useful in this scenario since the system designer
cannot conduct full-scale experiments to figure out the pa-
rameters to be used.

In order to validate our model’s prediction, we conducted
an experiment that simulates dataset growth. For each
dataset, we used a small subset of the full dataset to con-
figure our model: that is, we only use one tenth of the total
data objects to model the distance distributions and then
use the model parameters derived from small dataset to pre-
dict the filter quality when dataset size grows. The result
is compared with the experimental results, where more and
more data points in the dataset are included in each exper-
iment to simulate the growing dataset.

Figure 6 shows the filtering quality with different dataset
sizes. In each plot, the first data point corresponds to the
small sample dataset that we use to derive our model pa-
rameters; the following data points labeled as “rank-based
model” are the projected results using the model. The ex-
perimental results are also shown in the same plot.

The results show that the filtering quality degrades grad-
ually as the dataset grows larger. The model can give a
good prediction on the degree of quality degradation as the
dataset size grows. The prediction works better when the
sample dataset size is reasonably large as seen in the im-
age dataset. For other datasets, the degradation prediction
is more conservative, but conservative estimates are more
acceptable than optimistic in real systems designs.

5.4 Discussion
For all the figures showing the recall value, we noticed a

consistent underestimate of the model result compared with
the experimental result. In fact the underestimate of the
model is largely due to the simplified independence assump-
tion of the model – i.e. the assumption the sketch distances
of objects are independent of the k-th nearest neighbor’s
sketch distance.

In section 3.3, we assumed that the sketch distances for
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around H=3 and is not sensitive beyond that
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different objects r ∈ S are independent This assumption
simplifies the model, but in reality, there is some dependency
that the model ignores. In fact, when r’s sketch distance is
large, the other sketch distances are also likely to be large
and vice versa. In other words, there is a small positive
correlation between sketch distances. In order to understand
how such a correlation arises, it is instructive to consider
the 1-dimensional case. Consider objects r and r′ such that
d(q, r) ≤ d(q, r′). The algorithm to generate the bit vector
sketch picks random thresholds for a dimension and checks
if the coordinate in that dimension is above or below the
threshold. The bit thus generated for q and r is different if
the random threshold separates q and r. If this happens, it
also likely to separate q and r′. If the sketch distance of r
is large, then q and r must have been separated by several
such randomly picked thresholds. But then it is likely that
q and r′ are also separated by these thresholds. Thus, the
sketch distance of r′ is likely to be large.

The positive correlation between sketch distances results
in the rank of rk being lower than that predicted by the
independent model. In order to understand this, consider
the extreme situation where the positive correlation is of
the following form: for i randomly chosen in [0, 100], each
sketch distance is equal to the value at the i-th percentile of
its individual distribution. In this case, objects with higher
feature distance than the kth nearest neighbor rk will never
have their sketch distance lower than the sketch distance
of rk. The effect of positive correlation is similar, but less
extreme than the situation described above. In other words,
the positive correlation lowers the probability that objects
further than the kth nearest neighbor will have their sketch
distance lower than the sketch distance of rk.
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We conducted an experiment with the real dataset which
clearly demonstrates such a dependence. In the experiment,
we repeated the sketch construction 100,000 times and ob-
served the relationship between sketch distance s of a par-
ticular data point r and the sketch distance sk of the kth
nearest neighbor rk. Figure 7 shows the result. The points
show the average value of s when sk takes different values
and the dashed line shows the constant s value expected
with independent model. We can see that there is a small
positive correlation between r’s sketch distance s and rk’s
sketch distance sk. Figure 8 further shows the experimental
result where the (empirically observed) probability distribu-
tions of r’s sketch distance is plotted for two different values
of sk.

This data dependence affects the expected probability of
r overtaking rk. The experimental result shows that the
probability of that particular data point r overtaking rk is
0.125 while our independent model’s prediction is 0.167 ac-
cording to Equation 4. The higher rank prediction of rk’s
sketch distance of our model will generate lower recall value
in the quality score at filter ratio t and cause a consistent
underestimate to the experimental results.

In order to accurately model the dependence of data ob-
ject r’s sketch distance r on rk’s sketch distance rk, much
more information about the data set is needed: value distri-
butions on each dimension, data value dependence between
different objects on each dimensions, etc. While this might
give more accurate predictions, it is much harder to obtain
reliable estimates of such fine grained information about the
data set. Also it is unclear how well a model that incorpo-
rates such detailed information can be extrapolated to larger
data set sizes. We have decided to adopt a simpler model
in this paper that captures the essence of the experiment.
Although our model gives a consistently low estimate of re-
call, it matches the general trend of the experimental results
very well.

6. CASE STUDY
In this section, we use the 3D shape dataset as an example

to illustrate how to use the rank-based analytical model to
decide the parameters for sketching.

The sample dataset consists of 10,000 3D shape models,
each represented by a 544-dimensional feature vector. The
first step is to compute the feature vector distance distri-
bution by randomly picking a number of query vectors, for
instance 100 of them, and computing their `1 distances to
the feature vectors in the sample dataset. As shown in Fig-
ure 1, the feature distance distribution of the sample dataset
is very similar to that of the larger dataset.

Next, we use nonlinear least-squares curve fitting to find
the parameters of the lognormal distribution that best ap-
proximate the feature distance distribution we have com-
puted. The results are shown in Figure 2 and Figure 3.
This gives us a closed form distance distribution which we
can then use in the rank-based filtering model.

Next, using the analytical model of Section 3, we can com-
pute the estimated filtering quality for a target dataset size
– in this case 28,755 objects – using different sketch sizes B
(Figure 4) and different XOR block size H (Figure 5).

Based on the estimations of the analytical model, we can
then decide the sketching parameters. For example, sup-
pose we want to design a system with a target recall value
of around 0.8. Then the model predicts a sketch size of 128

bits and a XOR block size of 3 bits. Given that the analytical
model’s predictions are conservative, we know that a simi-
larity search system using B = 128 and H = 3 will be able
to achieve recall value greater than 0.8 in practice and the
sketches are 544×32/128 = 136 times smaller than the orig-
inal shape descriptors3. If we want to design a system with
recall value around 0.9, we can also consult the model to pick
a sketch size of 256 bits and XOR block size of 3 to achieve
the desired quality. The sketches are 544 × 32/256 = 68
times smaller than the original shape descriptors.

7. RELATED WORK
Similarity search is typically formulated as a k-nearest

neighbor (k-NN) search problem. The exact form of this
problem suffers from the “curse of dimensionality” – ei-
ther the search time or the search space is exponential in
dimension d [8, 21]. Previous study [25] has shown that
when the dimensionality exceeds around 10, space partition
based k-NN search methods (e.g. R-tree [13], K-D tree [2],
SR-tree [15]) perform worse than simple linear scan. As
a result, researchers have instead focused on finding ap-
proximate nearest neighbors whose distances from the query
point are at most 1 + ε times the exact nearest neighbor’s
distance.

Recent theoretical and experimental studies have shown
that sketches constructed based on random projections can
effectively use Hamming distance to approximate `1 distance
for several feature-rich datasets [5, 18, 20]. A recent work
shows that such sketches can be used as an efficient filter
to create candidate sets for content-based similarity search
[19], which focused on efficient filtering methods of data ob-
jects each represented by one or multiple feature vectors,
and not on the rank-based analytical model and experimen-
tal results.

Although recent theoretical and experimental research has
made substantial progress on sketch constructions for build-
ing large-scale search engines and data analysis tools [10],
not much work has been done on modeling sketches. Broder
did an excellent analytical analysis for sketches constructed
based on min-wise permutations for near-duplicate detection
[4]. Since the application is for near-duplicate detection, his
method is based on probabilistic analysis for random distri-
bution of data.

Several approximation-based filtering techniques for k-NN
search have been proposed in the literature. For example,
the Vector Approximation file (VA-file) [25] method rep-
resents each vector by a compact, geometric approximation
where each dimension is represented by l bits. Other approx-
imation techniques such as A-tree method [23] and Active
Vertice tree (AV-tree) method [1] were also proposed. Al-
though experimental results using different approximation
sizes were reported for these methods, no formal analysis on
how to choose the approximation parameters were given.

Most previous work on content-based similarity search
of feature-rich data has focused on segmentation and fea-
ture extraction methods. We are not aware of prior work
on modeling the Lp distance distributions of feature-rich
data such as image, audio and 3D-shape datasets. Previ-
ous work either assume uniform distribution of feature vec-
tors in high dimensional spaces, or present end results using

3We assume each of the 544-dimensions of a shape descriptor
is represented by a 32-bit floating point number.



the whole dataset. The notions of doubling dimension and
intrinsic dimensionality (see [17, 3]) have been used previ-
ously to capture the inherent complexity of data sets from
the point of view of several algorithmic problems including
nearest neighbor search. However these notions do not pro-
vide a fine-grained model for distance distributions and do
not have enough information to accurately estimate the per-
formance of filtering algorithms for nearest neighbor search.
By modeling distance distributions of a dataset, our ana-
lytical model can be easily adapted to different data types,
and only a small sample dataset is needed for the analytical
model to give good predictions for larger datasets.

8. CONCLUSIONS
This paper reports the results of modeling the param-

eters of using sketches to filter data for similarity search.
The goal of our study is to help systems designers choose
key design parameters such as sketch size. We validated our
model with three feature-rich datasets including images, au-
dio recordings, and 3D shape models. Our study shows two
main results for sketches that use Hamming distance to ap-
proximate `1 norm distance:

• We have proposed a rank-based filtering model for the
sketch construction to use Hamming distance to ap-
proximate `1 distance. We have shown, by experiment-
ing with image, audio, and 3D shape datasets, that this
model can conservatively predict the required sketch
size for required recall, given the dataset size and its
filtering candidate set size.

• Using the distance distribution with its parameters de-
rived from a small sample dataset, we show that the
rank-based filtering model can be used to perform good
predictions of sketch sizes for a large dataset.

Our experimental studies show that the rank-based filtering
model predicts results close to experimental results. Al-
though there are noticeable gaps between the predicted and
experimental results for certain systems parameters, the pre-
dicted trends are consistent with the experimental results.
Furthermore, the predictions from the model are consis-
tently conservative in all cases.
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