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ABSTRACT

As the commonly used representation of a feature-rich data
object has evolved from a single feature vector to a set of
feature vectors, a key challenge in building a content-based
search engine for feature-rich data is to match feature-sets
efficiently. Although substantial progress has been made
during the past few years, existing approaches are still inef-
ficient and inflexible for building a search engine for massive
datasets. This paper presents a randomized algorithm to
embed a set of features into a single high-dimensional vec-
tor to simplify the feature-set matching problem. The main
idea is to project feature vectors into an auxiliary space using
locality sensitive hashing and to represent a set of features
as a histogram in the auxiliary space. A histogram is simply
a high dimensional vector, and efficient similarity measures
like L1 and L2 distances can be employed to approximate
feature-set distance measures.

We evaluated the proposed approach under three differ-
ent task settings, i.e. content-based image search, image
object recognition and near-duplicate video clip detection.
The experimental results show that the proposed approach
is indeed effective and flexible. It can achieve accuracy com-
parable to the feature-set matching methods, while requir-
ing significantly less space and time. For object recognition
with Caltech 101 dataset, our method runs 25 times faster
to achieve the same precision as Pyramid Matching Kernel,
the state-of-the-art feature-set matching method.
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H.3 [Information Storage and Retrieval]; I.2.10 [Artificial
Intelligence]: Vision and Scene Understanding
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1. INTRODUCTION
Using sets of local features to represent multimedia data

objects for content-based similarity search or object recog-
nition has been gaining popularity during the past few years
because of the superior discriminating power of local features
over global features. However, matching sets of unordered
high-dimensional feature vectors imposes much higher com-
plexity in both space and time. The challenge is to develop
a method to substantially reduce the complexity of the set-
matching operation while maintaining the search or recog-
nition quality of using sets of features.

For example, the state-of-the-art approach to object recog-
nition is to extract local features such as SIFT [21] from
“interesting” points in an image and form a set of feature
vectors for each image. The number of such feature vectors
for each image varies, depending on its content, but it is
common for an image to have a set of hundreds of SIFT fea-
tures where each feature vector has 128 dimensions. Recent
advanced search systems for audio [23], video [29] and sensor
data also use sets of unordered high-dimensional feature vec-
tors as their metadata representations, thus it is important
to develop a flexible, effective and space and time efficient
approach to represent and perform similarity match for sets
of features.

There are two challenging aspects in solving the problem
of matching sets of features. The first is that its memory
space requirement is high. Local feature vectors are high
dimensional. A SIFT feature vector for example has 128
dimensions. A typical MFCC feature vector, a commonly-
used feature extraction for audio data, typically has about
200 dimensions. The number of SIFT feature vectors or
MFCC feature vectors for each image or audio sentence is
typically on the order of hundreds and sometimes thousands.
The space requirement for such set of feature vectors can
easily exceed 100KB which is often larger than the size of
the original data object.

The second is that the complexity to compute a commonly-
used set similarity measure is high. Since the set representa-
tion disregards the spatial orders or semantic relationships
among the feature vectors, the similarity between two sets
of feature vectors is typically defined as an overall measure
of the similarity between the matched points under certain
condition from the two sets. A commonly-used similarity
measure is the sum of point distances of the one-to-one best
matched points from the two sets [27]. The complexity of
computing this measure is O(n3), where n is the average
number of feature vectors in a set. If a search engine had
to compare the set of features of a query image with that



of each of billions of images, the computation cost would be
formidably expensive, especially when n is on the order of
hundreds and sometimes thousands.

Previous content-based data retrieval methods [22, 10]
have take the filtering-then-ranking approach. The filtering
step uses a fix number of indices to index a subset of feature
vectors of the query data object to obtain a candidate set
of data objects. The ranking phase will rank the candidate
set by computing the similarity measure between the query
object’s set of features with that of each data object in the
candidate set. This approach is reasonably efficient though
the ranking phase can become a performance bottleneck if
the candidate set is large. Also, the space requirement for
the indices can be significant.

The state-of-the-art light-weight set matching algorithm
is Pyramid Matching Kernel (PMK) [11, 13]. Its main idea
is to uniformly quantize the feature space in multiple resolu-
tions, and to represent a set of features as a list of the space
quanta that include a set member. Such lists are ordered,
and can be matched in linear time, which is a substantial
improvement over the polynomial set-matching algorithms.
However, PMK has two drawbacks. First, it works with fea-
ture space of limited dimensionality. For high-dimensional
feature vectors, it requires applying a dimension reduction
method first which may cause significant loss of information
if the intrinsic feature dimensionality is high. Second, the
sparse and hierarchical representation imposes a significant
space overhead.

This paper presents a randomized algorithm to embed a
set of features into a single high-dimensional vector to sim-
plify the feature-set matching problem. The main idea is to
project all feature vectors into an auxiliary space using local-
ity sensitive hashing [14, 9] and to represent a set of features
as histograms, which are simply high dimensional vectors.
Histogram similarity measures will be employed to approx-
imate feature-set distance measures. By doing so, the chal-
lenging feature-set matching problem is reduced to a simpler
similarity match problem in a single high-dimensional space.

To evaluate the effectiveness of the proposed approach,
we have implemented it in a toolkit[1] and conducted ex-
periments under three different task settings, i.e. content-
based image similarity search, image object recognition, and
near-duplicate video clip detection. The experimental re-
sults show that the proposed approach is indeed effective
and flexible. It can achieve search and recognition accuracy
comparable to the feature-set matching methods, while re-
quiring significantly less space and time. For object recogni-
tion with Caltech 101 dataset, our method achieves the same
precision as the feature-set matching method, but runs 25
times faster than Pyramid Matching Kernel, the state-of-
the-art kernel for feature-set matching.

In addition, the proposed approach is flexible and can eas-
ily be used to construct search systems for multiple feature-
rich data types with different similarity measures. By using
different LSH families, one can approximate different point
distance functions. Users can define different histogram dis-
tance metrics to satisfy desired set matching conditions.
Since histograms are straightforward vectors, it is easy to
pass them to existing software modules. Since the dimen-
sionality of the histogram vectors does not explicitly depend
on the feature vector’s dimensionality nor the set size, users
can configure it according to their needs.
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Figure 1: Illustration of the proposed approach. (a)
Features are extracted from interesting points. (b)
Objects are represented as sets of points in the fea-
ture space. These points are mapped to discrete val-
ues via locality preserving random mappings (LSH).
A mapping is equivalent to a partitioning of the fea-
ture space. (c) Sets of features are embedded to his-
tograms over the values mapped to. The histograms
are matched with standard vector similarity mea-
sures.

2. PRELIMINARIES
In this section we recap the various concepts related to

similarity measures, and the main technique, LSH, which
we use to create random histograms.

2.1 Similarity, Distance and Kernel
Set similarities are defined in terms of point similarities.

Let X and Y be two finite sets in an arbitrary feature space,
and let n be the average set size. In this paper, we use s to
denote an arbitrary point similarity (s(x, y) is the similarity
between points x and y, larger values indicate higher similar-
ity). We use S for the corresponding set similarity (S(X, Y )
is the similarity between sets X and Y of features). We
study the following two set similarities which are commonly
used in practice.

The first set similarity S1 is defined in a similar way as
the Earth Mover’s Distance [27]:

S1(X, Y ) = max
X

x∈X

X

y∈Y

ax,ys(x, y)

s.t.
X

x∈X

ax,y ≤ 1, ∀y ∈ Y

X

y∈Y

ax,y ≤ 1, ∀x ∈ X

ax,y ∈ {0, 1}, ∀x ∈ X, y ∈ Y.

The above assignment problem formation (a special case of
integer linear programming) searches for an optimal one-
to-one matching between the set members. The coefficient
ax,y = 1 means that the point x is matched to the point
y, and a point can be used at most once. The best known
method to find the optimal matching is the Hungarian al-
gorithm, which takes O(n3) time. A similar measure can
be defined for weighted sets which can be expressed as the
optimum of a linear program (in fact min cost flow), which
can also be solved in polynomial time.

The second set similarity S2 is for one-to-many matching,



which is defined as

S2(X, Y ) =
X

x∈X

X

y∈Y

s(x, y).

The above similarity obviously takes O(n2) time.
Distance and kernel are two related concepts in measur-

ing similarity (for either points or sets). Distances are more
often used in data retrieval tasks, which are commonly for-
mulated as the k-nearest neighbor problem. Though a prop-
erly defined distance metric should be positive, symmetric,
and satisfy the triangle inequality, certain measures violating
one or more of these conditions, like the Kullback–Leibler di-
vergence, are also considered distance measures in practice.
Kernels are most commonly used with support vector ma-
chine (SVM) related methods. A well defined kernel should
follow the Mercer condition (positive definiteness), which en-
sures the convergence of the SVM learning process. Taking
a Mercer kernel between two objects is equivalent to taking
the inner product between vectors obtained by mappings of
these objects into certain high dimensional L2 space. This
equivalence allows SVM to apply to arbitrary feature space
so long as there is a well-defined kernel. Note that higher
similarity means a larger kernel value, and a smaller dis-
tance.

For set similarity, our proposed approach explicitly maps
(embeds) sets of features to high-dimensional vectors, and is
thus a complement to the kernel method, where the mapping
is implicit. The Mercer condition is automatically guaran-
teed by the explicit mapping to a vector space. One can
essentially try out any distances and kernels with the em-
bedded vectors. In this paper, we limit our discussion to
L1 and L2 distance for set similarity. Given two arbitrary
points x, y ∈ R

d, the L1 and L2 distances are defined as
follows:

L1(x, y) =

d
X

i=1

|xi − yi| L2(x, y) = {
d

X

i=1

|xi − yi|2}1/2

We also define the corresponding K1 and K2 kernels as fol-
lows:

K1(x, y) =

d
X

i=1

min{xi, yi} K2(x, y) =

d
X

i=1

xi · yi

The following two relationships can be easily verified:

L1(x, y) = K1(x, x) + K1(y, y) − 2 × K1(x, y)

[L2(x, y)]2 = K2(x, x) + K2(y, y) − 2 × K2(x, y)

The above two equalities essentially have the same form. For
normalized vectors, we have Ki(x, x) = Ki(y, y) = 1, i =
1, 2, and the relationships are exactly linear. For unnormal-
ized vectors, there is still a conceptual equivalence. Thus
later in this paper when set similarity is concerned, we will
only discuss in the kernel setting, knowing that the results
apply to the corresponding distance metric.

2.2 Locality Sensitive Hashing
Unlike set similarity, which we measure via the embedding

vectors by distance or kernel functions, the point similarity
is directly incorporated into the embedding method by Lo-
cality Sensitive Hashing(LSH).

An Locality Sensitive Hashing1 is a random mapping de-
fined on a set of objects, such that the probability of two
object being mapped to the same value reflects the similar-
ity between these objects. Formally, given a feature space
M, we say H is a LSH family if for arbitrary x, y ∈ M,

Pr
h∈H

[h(x) = h(y)] = sH(x, y),

where sH is a similarity measure of M. Note sH may not
be a kernel or distance defined in a standard fashion; it can
be an increasing function of a kernel, like K1 and K2, or a
decreasing function of a distance, like L1 and L2. We say
that the similarity measure sH is induced by LSH family H.

Given an arbitrary locality sensitive hash function h ∈ H,
we also define the corresponding similarity measure as

sh(x, y) = δh(x),h(y) =

(

1 if h(x) = h(y)

0 if h(x) 6= h(y),

such that Eh∈H[sh(x, y)] = sH(x, y). The Kronecker delta δ
will appear again later.

LSH families have been devised for various similarity mea-
sures. Some of the most popular examples are bit sampling
for hamming distance [14], min-wise independent permuta-
tion for set similarity (Jaccard index) [2], random hyper-
plane for cosine similarity [4] and random projection for L2

distance [5]. In Section 4, we will present two locality sensi-
tive hashing families based on [7] as case studies. These two
LSH families will be used in our experimental studies.

3. THE PROPOSED APPROACH
In this section we formalize the random histogram con-

struction algorithm, and establish a correspondence between
the histogram kernels K1, K2 and the set similarity measures
S1, S2.

3.1 Random Histograms Construction
Our approach is to represent a set of features as a his-

togram. However, creating a histogram in the original fea-
ture space is not always possible if the feature space is not
simply a vector space, or may lead to several issues: the
histogram can be extremely large and sparse if the dimen-
sionality is high, and multiple resolutions may be needed
to attain reasonable accuracy. To avoid such issues, we pro-
pose to first project the feature space into an auxiliary space,
and create histograms on the auxiliary space. The mapping
used for projection should preserve the locality information,
so point similarity is preserved in the auxiliary space. LSH
is a perfect tool for this purpose.

We first formalize the concept of histogram as used in this
paper. Given a finite set A, let {e[i] | i ∈ A} be the standard
basis of the |A|-dimensional vector space, so that for any
i, j ∈ A,

e[i] · e[j] = δi,j .

A histogram G over the set A is represented as a point in
the |A|-dimensional vector space, i.e. G =

P

i∈A
αiei, with

αi being the “count” of bin i.
We then formalize how to embed a set of features into a

histogram. Let M be an arbitrary feature space, and H be
an LSH family of mappings from M to A. Note that M can

1We use the definition of LSH given in [4], which better fits
our purpose, rather than the one given in [14, 9].



be any space that admits an LSH family, not necessarily a
vector space. We define the family of mappings

GH = {gh : 2M → R
|A| |h ∈ H}, 2

such that for any X ⊂ M and h ∈ H, X is mapped to a
histogram on A:

gh(X) =
X

x∈X

e[h(x)].

Because the histogram gh(X) is determined by the hash
function h chosen at random from H, we call it a random

histogram.
The above scheme can be easily extended to work with

sets of weighted features. If X ′ ⊂ R×M is a set of weighted
features, then we define

gh(X ′) =
X

〈w,x〉∈X′

w × e[h(x)].

We assume an unweighted set for the rest of this paper be-
cause this extension is straightforward.

In practice, we maintain N independent random histograms
to improve accuracy. Specifically, we choose N hash func-
tions H = 〈h1, . . . , hN 〉 from H independently, and concate-
nate them to form a “super” histogram:

gH(X) = 〈gh1
(X), . . . , ghN

(X)〉.

We extend any similarity measure function f(·, ·) on single
histograms to this “super” histogram:

f [gH(X), gH(Y )] =
1

N

N
X

i=1

f [ghi
(X), ghi

(Y )].

In doing so, we keep the expectation the same, while lower-
ing variance by a factor of 1/N .

For most applications, the scaling factor 1/N will not af-
fect the search or learning result, and the “super” histogram
can be treated as a single vector.

3.2 Matching Random Histograms
Recall that we set out to describe our technique to effi-

ciently estimate similarity between sets of feature vectors.
So far we have explained the representation of sets of fea-
tures as histograms. Now we explain how we compute the
similarity for these histograms. In principle, one can use
any histogram matching distances or kernels with the ran-
dom histogram. In this paper, we discuss two special cases,
i.e. the K1 and K2 kernels, corresponding to two set similar-
ity measures S1 and S2 (introduced earlier) that have been
proved practically effective. Given two sets X, Y ⊂ M, and
a mapping h ∈ H, the kernels K1,h and K2,h induced by the
mapping h are just the K1 and K2 kernels in the histogram
space:

K1,h(X, Y ) =
X

i∈A

min{gh(X) · e[i], gh(Y ) · e[i]}

K2,h(X, Y ) =
X

i∈A

{gh(X) · e[i]} × {gh(Y ) · e[i]}.

We will explain how these two histogram kernels relate to
the two set similarity measures S1 and S2.

2For an arbitrary set M, the power set 2M is the set of all
subsets of M.

3.2.1 One-to-One Matching

The kernel K1,h corresponds to one-to-one matching. The
intuition is that points hashed into the same bin by h can be
matched to each other, and for each bin, the set with fewer
points in this bin is always guaranteed to have its members
matched. Formally, the point similarity measure induced
by h is sh and the corresponding set similarity measure for
one-to-one matching is S1,h. It can be easily verified that

K1,h(X, Y ) = S1,h(X, Y ) ∀X, Y ∈ M.

However, this equality does not strictly carry over to the
similarity sH and S1,H which are actually interesting. Though
sH(X, Y ) = E[sh(X, Y )], we only have E[K1,h(X, Y )] ≥
S1,H(X, Y ). In the worst case, E[K1,h(X, Y )] can be signif-
icantly larger than S1,H(X, Y ).

Nevertheless, sh does contain information about sH. In
practice, using K1,h as a biased approximation of S1,H(X, Y )
yields good results when one-to-one matching is desirable.

3.2.2 One-to-Many Matching

The kernel K2,h corresponds to one-to-many matching,
and we show a direct connection between the histogram ker-
nel K2,h and the set similarity measure S2,H. We have

Eh∈H[K2,h(X, Y )] = S2,H(X, Y ), ∀X, Y ⊂ M.

This can be seen by the following:

K2,h[X, Y ]

=gh(X) · gh(Y ) =

(

X

x∈X

e[h(x)]

)

·
(

X

y∈Y

e[h(y)]

)

=
X

x∈X

X

y∈Y

e[h(x)] · e[h(y)] =
X

x∈X

X

y∈Y

δh(x),h(y)

Because Eh∈H[δh(x),h(y)] = Prh∈H[h(x) = h(y)] = sH(x, y),
the relationship can be obtained by linearity of expectation.

4. POINT SIMILARITY: CASE STUDIES
In this section, we present LSH families for two point simi-

larities, i.e. L2 distance and cosine similarity. In order to fa-
cilitate tuning of histogram sizes to provide a size/performance
trade-off, we build LSH families from 0/1 valued atomic LSH
families. Let F be an atomic LSH family, we concatenate
B independent atomic hash functions to make a B-bit hash
function: H = {〈f1, . . . , fB〉 | fi ∈ F}. We use H to build
random histograms, which are of size 2B .

Concatenating B atomic mapping has the effect of en-
hance locality sensitiveness. The similarities induced by H
and F have the relationship sH(x, y) = [sF (x, y)]B for any
x, y ∈ M. Figure 2 shows such a relationship. The effect of a
larger B is to have a smaller range (at the high end) of point
similarity that actually contributes to the set similarity (i.e.
only very similar pairs of points have an effect on the set
similarity value). In practice, this often means higher dis-
criminative power, and thus higher retrieval or recognition
accuracy, but at the same time, a larger histogram size is
required. Such threshold effect has been proved effective in
previous studies [22, 25].

An easier approach to tune histogram size is to use map-
pings that produce an integer value, and use the modulo
operation to limit the range of this value. One potential
drawback of this approach is that the mapping might con-
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Figure 2: Concatenating B atomic mappings en-
hances the locality sensitiveness.

centrate on a few values, resulting in a biased histogram
with some bins more often used than others.

In the following two subsections, we present the atomic
LSH families for L2 distance and cosine similarity. The same
mappings have been used to compress high dimensional vec-
tors into bit vectors [7]. Both schemes assume that the fea-
ture space is d dimensional vector space, i.e. M = R

d. The
choice between different LSH families depends on the under-
lying point similarity measure of interest.

4.1 L2 Distance
The atomic LSH family for L2 distance is based on random

projection. For a point p ∈ R
d, we define the following

atomic LSH function:

f(p) = ⌊A · p + b

W
⌋ mod 2

where A ∈ R
d is a random vector with each dimension sam-

pled independently from the standard Gaussian distribution
N(0, 1), and b ∈ R is sampled from the uniform distribution
U [0, W ). W is called the window size, which controls the
distance range that the mapping is sensitive to.

The similarity sF is a function of L2 distance d between
two points, and the following relationship holds [7]:

sF = Ef∈F [sf ] = 1−
Z 1

0

Z 1

0

W

d

X

k∈Z

φ

»

W

d
(2k + x + y)

–

dxdy,

where φ is the probability density function of the standard
Gaussian distribution. See Figure 3 for this relationship. We
can see that when the distance is small, there is a near-linear
relationship between d and sF , and after certain threshold,
sF quickly converges to a small value. We can also see the
effect of concatenating B atomic mappings.

4.2 Cosine similarity
Some applications, like text document retrieval, use the

angle, or the cosine of the angle (cosine similarity), between
two feature vectors as a similarity measure. Cosine similar-
ity can also be used as a set similarity measure, when sets
are represented as 0/1 vectors. The cosine similarity is also
closely related to the widely used statistical indicator Pear-
son correlation. For any p, q ∈ R

d, the cosine similarity is
defined by dcos(p, q) = p·q

‖p‖2‖q‖2

, and the angle between two

vectors is defined accordingly.
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Figure 3: The similarity induced by LSH (B bits) as
a decreasing function of the L2 distance.

The LSH family to approximate the angle between vectors
is based on the random hyper-plane technique [4]. For a
point p ∈ R

n, we define the atomic LSH as

f(p) =

(

0 if ρ · p < 0

1 if ρ · p ≥ 0

where ρ is a random d-dimensional vector sampled from the
unit hyper-sphere {v ∈ R

d | ‖v‖2 = 1}. Suppose the angle
between two points p and q is θ, we have

sF(p, q) = Ef∈F [sf (p, q)] = 1 − θ

π
.

5. PRACTICAL ISSUES

5.1 Compact Histogram Representation
Usually the histogram size needs to be large for high dis-

criminative power. The result is that 1) the histogram can
be very sparse and 2) the count of each bin is small. Next, we
describe two practical techniques for compact histogram rep-
resentation. These methods are specially designed to work
with random histograms for unweighted features. Other gen-
eral dimension reduction methods like PCA, and sketches [7]
can be applied to the histograms for lossy compression.

5.1.1 Folding

The folding technique applies to the K2 histogram kernel
(inner product). The main objective of folding is to produce
a more accurate estimator of similarity without increasing
the space and time requirement. Basically the histograms
corresponding to several different hash functions are added
together; hence the name. The K2 histogram kernel applied
to this folded histogram has roughly the same expectation
as the kernel applied to each individual histogram, but has
lower variance. This technique is based on the following
observations: the same LSH function causes similar points
to collide, but if two points are mapped with different LSH
functions, the values are independent. Specifically, for two
points x, y, and two different B-bit LSH functions h1, h2, if
a random atomic hash function is equally likely to map a
point to 0 or 1 and if the atomic hash functions are picked
independently of each other, we have

Pr[h1(x) = h2(y)] = 2−B



The probability is close to 0 when B is large. As a result,
for two sets X and Y , gh1

(X) · gh2
(Y ) should also be small:

E[gh1
(X)·gh2

(Y )] =
X

x∈X

X

y∈Y

Pr[h1(x) = h2(y)] = 2−B |X| |Y |.

Our folding technique is simply to add multiple indepen-
dent random histograms together to make a single vector.
Given M independent LSH mappings H = {h1, h2, . . . , hM} ⊂
H, we use the following conceptual random histogram

gH(X) =
1√
M

M
X

i=1

ghi
(X).

We have

E[gH(X) · gH(Y )]

=E[

(

1√
M

X

i

ghi
(X)

)

·
(

1√
M

X

j

ghj
(Y )

)

]

=E[
1

M

X

i

ghi
(X) · ghi

(Y ) +
1

M

X

i6=j

ghi
(X) · ghj

(Y )]

=E[gh1
(X) · gh1

(Y ) + (M − 1)E[gh1
(X) · gh2

(Y )]

=E[gh1
(X) · gh1

(Y )] + (M − 1)2−B |X| |Y |.

Thus the value of the folded estimator is essentially an un-
biased main term plus an error term. The error term only
depends on the sizes of X and Y , and is not locality sen-
sitive. The effect of folding is that the error is reduced by
lowering the variance of the main term (roughly by a fac-
tor of M), with a small amount of extra error introduced.
When the similarity value is higher than a certain threshold,
the main term is dominant, and the overall effect of folding
is positive. In practice, high similarity values are more im-
portant, and thus folding can potentially improve the end
performance. The limitation is that folding is only helpful
when the histograms are very sparse, and the parameter M
cannot be too large. We use both folding and concatenation
in our final scheme.

5.1.2 Bit-Coding

If bin counts of the histogram are still small after folding,
it will be wasteful to use full integers or floating point num-
bers to represent such small counts. We can fit multiple bins
into a single byte via bit-encoding. Assume we encode each
bin with C = 1, 2, 4, 8 bits, then each byte can hold 8/C
bins. If the count of a bin is larger than 2C , the exceeding
part is trimmed. When computing the kernel functions on-
line, it would be slow if we first extract the bin counts from
the bit-encoding. We thus use a lookup table of 256 × 256
entries with pre-computed kernel values. By doing so, the
8/C multiplications or minimum operations are substituted
with a single memory lookup. However, bit-encoding is a
specialized representation which might not be supported by
existing software, and we do not use it in the experiments
reported in this paper.

5.2 Complexity and Parameter Tuning
Figure 4 illustrates the whole scheme of our proposed

method, showing all the tunable parameters.
The complexity of our method has two aspects — off-

line and online, and in practice, the latter is usually more
important. Assume the feature space has a dimension of

d, and the average set size is n. The off-line part involves
generating the hash values and adding to the histogram bins.
It is straightforward that the time complexity to embed a
single set is O(dnBMN + 2BN) (for dense representation,
2BN is necessary for histogram initialization). The online
part depends entirely on the histogram size, and thus takes
time O(2BN). The online part does not explicitly depend
on the set size or the dimensionality, and can be potentially
very fast.

We briefly comment on how to tune each of the parameters
for a given dataset.

• The parameter B determines the size of a single his-
togram. Larger B usually improves the accuracy, but
exponentially enlarges the histogram size. So B is
more limited by available space. A good starting point
for tuning B is to make the histogram size (2B) similar
to the average set size.

• The parameter N lowers the variance of the result.
This is necessary as our method is a randomized algo-
rithm. Our suggested range of values for N is 10 to
50.

• The parameter M determines the number of histograms
folded together. It depends on the histogram size, and
can be slightly enlarged as the histogram expands. Our
experiments show that M is mostly useful when less
than 5.

• The LSH family used actually has the largest impact
on the result. The right LSH family depends on the
dataset, and different choices of LSH need to be tested
if the feature extraction algorithm does not suggest an
obvious choice.

6. EVALUATION
In this section, we evaluate the random histogram tech-

nique with real-life datasets under three different task set-
tings, i.e. object recognition, content-based image retrieval,
and near-duplicate video clip detection. The tasks are ex-
perimented with different configurations of parameters to
illustrate the flexibility of our method—they either use dif-
ferent LSH families or different set similarity measure. We
show the comparable accuracy of our method with the state-
of-the-art set matching techniques, mainly EMD [27] and
PMK [13], as well as our superiority in speed. The effect of
different parameters to accuracy is evaluated in detail with
the Caltech-101 dataset to serve as a guide for parameter
tuning.

6.1 Object Recognition
This task is to recognize the semantic category of images.

We evaluate our method with two datasets, i.e. Caltech-101
and Graz-01. The former focuses on distinguishing between
different object categories, and the latter emphasizes on pre-
dicting whether an object of certain single category appears
in the image or not,

Following the previous studies, we use SVM for machine
learning. Because the random histograms are just high-
dimensional vectors, off-the-shelf software like [16, 3] can
be directly applied.
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Figure 4: Overview of the embedding scheme

6.1.1 Caltech-101

The Caltech-101 dataset [8] contains 101 object categories,
with 40 to 800 images per category. The names of the cat-
egories were chosen from the Webster Collegiate Dictionary
and the images were manually selected from Google image
search results. Most of the images are of medium resolution,
i.e. about 300 × 300 pixels, and contain little or no clutter.
The objects tend to lie in the center of the images and to be
presented in similar poses. Images from some categories are
artificially rotated and have partially black background.

We evaluate our method with the same features as used
in [11]. The features were extracted on a uniform grid from
the images, and each set has on average 1140 features. Each
feature is the concatenation of a 10D PCA-SIFT [17] de-
scriptor and a 2D positional feature. The standard evalua-
tion protocol with the dataset is used, i.e. 15 images from
each category are selected as training example, and a model
is trained with the training images of all categories. The
model is then used to predict the category of the remaining
images. The recognition rate of each category is averaged as
the overall performance.

Table 1 compares the performance of our method and
some of the previous methods based on the set-of-feature
model. Zhang [30] use an EMD based kernel, but their fea-
ture sets are slightly different from ours. First, they use
four combinations of interesting point detectors (Harris +
Laplacian) and descriptors (SIFT and SPIN), each channel
is matched individually and the sum of the channel similar-
ity is used as the kernel value for learning. Second, when
matching in a single channel, the features of a image are
first clustered, and EMD is applied upon the clusters as
weighted features. This method uses more information than
[13] and our method, and is the best result so far achieved by
a pure set-of-feature model. The Spatial Pyramid Matching
Kernel proposed by Lazebnik [19] represents the best result
achieved on the dataset among all existing approaches. They
divide the features into different channels by clustering the
features of all the images, and then do pyramid match in
each channel with the positional features. We see in Table 1
that our fast configuration achieves roughly the same perfor-
mance of PMK, and the slow configuration approaches that
of Wang [30]. We run our experiment on a Pentium 4 2.2GHz
CPU, and the fast configuration takes only 4× 10−6 second
to match a pair of images, while the number reported for
PMK on a slightly faster machine (2.4GHz) was 1×10−4 [13].

Grauman Zhang Lazebnik
Ours A Ours B

[13] [30] [19]

0.50 0.539 0.646 0.497 0.541

Table 1: Comparison of different methods with
Caltech-101 benchmark. We test two different con-
figurations of our methods. Both use the LSH for
L2 distance and match histograms with K2 kernel.
Other parameters are: (A, for speed) B = 6, M =
5, N = 20; (B, for accuracy) B = 10, M = 20, N = 20.

Thus our method is 25 times the speed of PMK for match-
ing images from Caltech-101 benchmark to achieve the same
recognition performance.

Lazebnik [19] out-performs all other methods in this task.
This is partly due to that the images in the dataset tend
to present in similar poses, and Lazebnik [19] is specially
optimized for such tasks. We can see that with the Graz-01
dataset, which has more variations, the performance differ-
ence is not this significant.

Figure 5 shows the effects of different parameters on the
performance. These curves are just as expected in our dis-
cussion in the previous section. Generally, enlarging the
single histogram size (B), folding more histograms (M) and
concatenating more histograms (N) all lead to higher per-
formance, and all have a threshold beyond which the perfor-
mance improvement becomes very slow. For B the threshold
is around 8 ∼ 10, and for N it is 20. For M , the thresh-
old depends on the histogram size, and folding tends to add
more to the performance when histograms are large.

We also evaluated our method on a similar but easier
dataset ETH-80 [20] with the same protocol as used by [11].
We achieve an accuracy of 84.3%, using the configuration
B = 8, M = 20, N = 20, which is similar to the performance
of PMK, which is 84%.

6.1.2 Graz-01

The Graz-01 dataset [26] contains two object classes, bike
(373 images), person(460 images), and a background class(270
images). This dataset is of high intra-class scale and pose
variation. We use the Difference-of-Gaussian (DoG) detec-
tor and SIFT descriptor for feature extraction [21].

We perform two-class (object vs. background) categoriza-
tion using the same experimental setup of [26]. For each ob-
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Figure 5: Recognition performance vs. different embedding parameters. The embedding has N × 2B dimen-
sions, and the figures indicate that accuracy generally increases with dimensionality. When histograms are
sparse (with large B), folding (increasing M) can also improve accuracy without extra space requirement.

Opelt [26] Zhang [30] Lazebnik [19] Ours
Bike 0.865 0.920 0.863 0.883

Person 0.808 0.880 0.823 0.805

Table 2: Comparison of different methods with
Graz-01 benchmark. We use LSH for L2 distance
and match histograms with K2 kernel. Other pa-
rameters are: B = 12, M = 20, N = 20

ject class, we train a model on 100 positive and 100 negative
images (of which 50 are drawn from the other object class
and 50 from the background class). We generate ROC curves
by thresholding raw SVM output, and report the ROC equal
error rate, which is the point on the ROC curve where

true positive

positive
= 1 − false positive

negative
.

We show the recognition rates in Table 2. We optimize the
parameters of our method for accuracy, and our result is on
a similar level as other methods. Here the gap between our
method and Zhang [30] is more obvious, showing accuracy
loss of our randomized algorithm and its potential limitation
in application to tasks requiring very high accuracy.

6.2 Content-Based Image Retrieval
We use the same image collection and feature extraction

algorithm as in [22], where content-based image retrieval
with a tweaked version of EMD distance is studied. The
image collection consists about 10,000 general-purpose im-
ages. We use 32 sets of similar images as the ground truth in
our evaluation. These sets are manually selected, and each
of these sets contains images that are visually similar. We
use JSEG [6] to segment the images into regions. The aver-
age number of regions per image is 7.16. We extract from
each region a feature vector of 14-dimensions, including 9
dimensions of color moment information and 5 dimensions
of bounding box information. We use the region weight that
is proportional to the square-root of the region’s size, which
as shown by [22] is better than the raw region’s size.

We use average precision to measure the effectiveness of
the retrieving method. Given a query and k relevant items
excluding the query, let ranki be the rank of the ith retrieved
relevant item, then average precision is defined as following:

average precision =
1

k

k
X

i=1

i

ranki
.

Table 3 compares four methods: SIMPLIcity [28], EMD,

Method SIMPLIcity EMD EMD* Ours
Avg. Prec. 0.331 0.548 0.615 0.548

Time/match N/A 5.0e-5 5.0e-5 3.1e-7

Table 3: Comparison of SIMPLIcity, EMD, EMD*
and out method with a 10K image benchmark. We
use LSH for L2 distance, with W = 1 and match
histograms with K2 kernel. Other parameters are:
B = 4, M = 1, N = 50.

EMD* and random histogram. The performance of random
histogram is the same as EMD. The highest performance
is achieved by EMD*, which involves a thresholding tweak
that is highly specialized to the particular feature extraction
method.

Though we cannot directly compare the image retrieval
speed with [22] without implementing the system, we note
that the retrieval process of [22] need to re-rank 5% the
whole dataset with EMD. Thus, even if we scan all the his-
tograms in brute-force, our method only cost the time of
their ranking phase, and is around 3.5 times faster than
SIMPLicity [28]. In practice, our method can be further ac-
celerated by various high-dimensional indexing data struc-
tures.

6.3 Near-Duplicate Video Detection
We also experiment our embedding methods with the task

of near duplicate detection of video clips. The near dupli-
cate video clips benchmark is provided by Wu [29]. The
benchmark consists of 24 sets of video clips downloaded from
websites such as Youtube using specific keywords. Each set
of videos are manually labeled by human to find near du-
plicate video clips, the first relevant video clip is used as
the query video to find other near duplicate videos within
the set. Due to the difference in the time that the videos
are downloaded, our video collection (7127 video clips) is a
subset of the video clips used in paper [29].

We first segment the video and take one key frame from
each segment, resulting in an average of 124 key frames per
video clip. Then we extract a simple HSV based color his-
togram from each key frame. The 24 dimensional HSV color
histogram is concatenated with 18 bins for Hue, 3 bins for
Saturation and 3 bins for Value as described in [29]. Fi-
nally we embed this set-of-feature representation into our
histogram representation. Because video clips involve high
occurrence of near-duplicate features, which can dominate
the set similarity easily under one-to-many match, we use
K1 kernel to match histograms.



Wu SIG CH Wu SET NDK ours SIG CH ours Embedding
Average Precision 0.892 0.952 0.835 0.893
Speed (second) “fast” “minutes” 1.7e-4 4.6e-3

Table 4: Performance comparison for near duplicate video detection. We use LSH for cosine similarity and
match histograms with K1 kernel. Other parameters are: B = 8, M = 3, N = 10.

Wu’s paper proposed two methods to do near duplicate
detection. One is to use a global signature with HSV color
histogram (SIG CH) which is fast but with less precision;
the other is to use expensive local feature descriptor based
pairwise comparison among key frames (SET NDK). The
performance metric used is the average of Mean Average
Precision for each video set. Table 4 shows that by using our
embedding method to embed the set of color histogram, we
can achieve similar percentage improvement over SIG CH
while maintaining high speed. Note that due to the differ-
ence in video clips and segmentation method, our SIG CH
result is not directly comparable to Wu’s SIG CH.

7. RELATED WORK
Existing methods for measuring set similarity roughly fall

into two categories. Methods in the first category depend
on a given point similarity measure, and directly work on
the sets by matching the member points. The S1 similar-
ity for one-to-one matching [27] and S2 similarity for one-
to-many matching [25] are two commonly used approaches.
Such methods usually involve high on-line computational
cost. Further more, storing raw sets of high-dimensional fea-
tures can easily outgrow the limited main memory, leading
to an out-of-core implementation and further slowing down
the computation.

Methods in the second category, on the other hand, cal-
culate set similarity via certain intermediate representation.
They assume that the points are from certain metric space,
often the Euclidean space, making the point similarity mea-
sure implicit. The intermediate representation can be a his-
togram created by quantizing the space. For example, Pyra-
mid Matching [11, 13, 15] corresponds to scalar quantization,
and the bag-of-word model commonly used in computer vi-
sion often use vector quantization [30]. These methods ei-
ther require large space to store the high dimensional sparse
histograms, or long running off-line clustering. The interme-
diate representation can also be parameters of certain dis-
tributional model, e.g. Gaussian-mixture [24], though such
methods also tend to be CPU intensive, and are not as gen-
eral.

Among the various methods mentioned above, the pyra-
mid method [11, 13, 15] and the bag-of-word model are the
two that are most related to our work. Note that [15] and
[11, 13] are essentially the same method developed by two
groups of people, the former in the distance metric setting
and the latter in the kernel setting. They scalar-quantize
the feature space in multiple resolutions and maintain a his-
togram for each resolution. Though in practice a sparse
data structure is used, the cost in space is still significant
when the feature space is of high dimensionality, and dimen-
sion reduction methods like PCA need to be applied first.
A recent work [12] alleviates the problem at the cost of a
time-consuming off-line clustering phase and a slower online
matching process.

The bag-of-word model works by clustering the feature
vectors into a fixed number of key words, turning a set of
points into a bag of words. The clustering process is essen-
tially vector-quantization of the feature space. The mapping
from feature vectors to key words induced by the cluster-
ing result can be viewed as a deterministic locality sensitive
hashing, while from the other perspective, our method is
just a randomized version of the bag-of-word model.

The idea of LSH was original proposed to solve the high-
dimensional indexing problem [14, 9]. The 0/1 valued map-
pings used in this paper are based on [7], where they are used
to construct sketches for high dimensional vectors. LSH can
also be used to construct bloom filters like ordinary hash
function [18]. Such bloom filters have a special property
that allows one to estimate the distance between a point
and the sets of point embedded in the bloom filter. The
random histogram proposed in this paper can be viewed as
an extended version of such bloom filter. We not only record
whether each bucket is empty, but also keep a count for each
bucket.

The compact data structure proposed in [22] to approxi-
mate EMD distance is actually a specialized version of our
method. Their final data structure is more compact than
ours via a further level of sampling and sketching, but they
need to maintain the raw data for re-ranking due to the pre-
cision loss of compression. With our method, the raw data
is no longer needed.

8. CONCLUSION
In this paper we propose an efficient method for repre-

senting and estimating similarities between sets of features.
Representing multimedia objects as sets of local features
has been quite successful recently, but suffers from high
storage requirements and high time complexity. Our main
idea is to project the feature points into a compact auxil-
iary space with LSH mappings, and then represent the sets
as histograms on the auxiliary space. The histograms are
just standard high-dimensional vectors. Our method has
the flexibility that allow the user to approximate different
measures of point similarity by choosing corresponding LSH
families, and implement different measures of set similar-
ity with appropriate choice of histogram distances/kernels.
Experiments with various datasets under different task set-
tings show that our method has accuracy comparable to the
best-known set matching algorithms, and has much higher
speed. For example, to achieve the same recognition perfor-
mance on the Caltech-101 dataset, our method is 25 times
the speed of Pyramid Matching Kernel for set matching,
the latter being the fastest known set matching algorithm.
Because our histogram embedding is essentially a global fea-
ture extracted from the intermediate local feature represen-
tation, our results show that global features, when properly
extracted, can also achieve high accuracy while maintaining
a significant speed advantage.
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