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ABSTRACT

In this paper, we propose two techniques for near-duplicate im-
age detection at high confidence and large scale. First, we show
that entropy-based filtering eliminates ambiguous SIFT features
that cause most of the false positives, and enables claiming near-
duplicity with a single match of the retained high-quality features.
Second, we show that graph cut can be used for query expansion
with a duplicity graph computed offline to substantially improve
search quality. Evaluation with web images show that when com-
bined with sketch embedding [6], our methods achieve false posi-
tive rate orders of magnitude lower than the standard visual word
approach. We demonstrate the proposed techniques with a large-
scale image search engine which, using indexing data structure of-
fline computed with a Hadoop cluster, is capable of serving more
than 50 million web images with a single commodity server.
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1. INTRODUCTION
Near-duplicate image detection is the task of finding different

versions of the same image, i.e., images that are not exact dupli-
cates in binary form, but can be visually identified as the same im-
age having undergone various editing steps such as color mapping,
scaling, format changing, etc. In particular, we are also interested
in detecting partial-duplicates, i.e., images with padding and crop-
ping, but still containing sub-images that are near-duplicates.
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Near-duplicates are common in web images. Being able to effi-
ciently detect them is important to applications such as copyright
violation detection and finding alternate versions of existing im-
ages. Eliminating near-duplicates is also an important preprocess-
ing step for many applications.

Previous researches have achieved high quality search results in
small to medium scale (one million images or less) experiments [10,
14, 3, 21], but the challenge remains in pushing the retrieval scale
to the World Wide Web level. Today’s web contains hundreds of
billions of images and continues to grow rapidly. Both commercial
search engines and academic experiments run at a much smaller
scale. For example, Tineye (http://www.tineye.com/), the
first commercial near-duplicate image search engine available to
the public, indexes 1.8 billion images as of 2010. In the literature,
a recent system [21] achieved 1.9 second search time on one mil-
lion images with a single machine.

The goal of this paper is to design a building block for a large-
scale near-duplicate image search engine — a single node sys-
tem that substantially improves the search capacity over existing
approaches without increasing search time, and most importantly,
conducts search with high confidence, i.e., low false positive rate.
The false positive problem is not prominent in traditional content-
based image search due to the lack of an objective and unambigu-
ous definition of visual similarity. In our case, there is a clear yes-
or-no answer to whether two images are near-duplicates, and one
can easily spot irrelevant images in the search result, so it is im-
portant for the search result not to be dominated by false positives.
The challenge is that there is usually only a few (a few to thou-
sands) true positives, and when multiplied by a virtually unlimited
number of background images (e.g., 1 billion), even a very small
false positive rate (e.g., 0.1%) could potentially generate an over-
whelming number of false positives.

Even though various approaches have been published, they all
fail to meet our efficiency and/or quality requirements. Global fea-
tures like GIST [7], including pooled local features [5, 9], are not
intended for detecting partial-duplicates, and it is essential to index
local features. SIFT [11] has been firmly established in the litera-
ture as the local feature of choice for a variety of image retrieval
tasks, including near-duplicate image detection, we focus on sys-
tem designs using SIFT features.

The state-of-the-art approach to near-duplicate image detection
is the Bag-of-Word (BoW) model, i.e., to convert SIFT features
into visual words via vector quantization, and then apply well-
developed text retrieval techniques like inverted index and TF-IDF
ranking [14, 15, 21]. This approach, however, is not sufficient to
lower false positive rate to our desired level because: first, as we
will show later, a small fraction of SIFT features are intrinsically
ambiguous and can cause a large amount of false positives; second,
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Figure 1: System architecture. Section numbers are indicated for the key components.

vector quantization loses the discriminating power of raw SIFT fea-
tures [2] and further increases false positive rate. We will show by
experiments that TF-IDF ranking and geometric verification have
their limits on compensating for the information lost during vector
quantization.

Another approach is to conduct retrieval directly on raw SIFT
features with Locality Sensitive Hashing [8, 10, 3]. The problem
is that the large raw feature size (typically a few hundreds of 128-
dimension feature vectors per image) imposes a high storage and
retrieval cost and could become a capacity bottleneck. It is known
that plain LSH takes too many hash tables [12], and the recently
developed Multi-Probe LSH [12], although reduces storage cost,
requires too many disk seeks when implemented out of core. Ex-
pensive geometric verification is also needed for this approach to
ensure low false positive rate.

In this paper, we achieve both efficiency and quality by making
the following three contributions.

First, we eliminate the previously indispensable stage of geo-
metric verification by making the following important observation:
false positives are mainly caused by a small fraction of SIFT fea-
tures that are intrinsically ambiguous due to the lack of internal
structure within the SIFT region. We propose an entropy-based fil-
tering method that can effectively filter out these non-discriminative
features, and show that with the retained high quality features, a

single match is sufficient for claiming a near-duplicate relationship

between images with high confidence. This finding dramatically
simplifies our retrieval model and system design and also reduces
the number of SIFT features to be indexed.

Second, we propose a query expansion method based on graph
cut. We construct offline a duplicity graph by connecting all pairs
of images predicted to be near-duplicates. At query time, all ver-
tices reachable from the initial search results are potentially posi-
tive results. We use a graph cut method to exclude pathetic cases
when large clusters of negative images are connected to the initial
results. Our query expansion method substantially improves recall,
or equivalently, reduces false positive rate by orders of magnitude
at the same recall level.

Third, we implemented a search system based on the proposed
techniques. For space and time efficiency, we represent SIFT fea-
tures with sketches [6], which is a bit-vector representation more
compact than raw feature vectors and more accurate than visual
words, and index the sketches with an efficient out-of-core data
structure [13]. Our system is capable of indexing more than 50
million web images on a commodity server and returning search
results in less than two seconds.

We evaluated our system as well as some representative existing
techniques with a benchmark (will be made public upon the accep-

tance of this paper) consists of ten thousand manually verified near-
duplicate web images and one million random background images.
Our system achieves a false positive rate of 2.4 × 10−6 (at recall
0.8), three orders of magnitude smaller than the state of the art [21].

2. SYSTEM DESIGN

2.1 Overview
Our system is based on a very simple retrieval model. Each

image is represented as an ID with an attached set of features:
Ii = 〈i, {fij}〉. A flat database DB = {〈fij , i〉} of ID-feature
pairs is maintained for the indexed image dataset. For each query
image Q = 〈·, {fk}〉, a query is issued for each feature fk to re-
trieve database records whose features are within a fixed distance
threshold d:

Nd(fk) = {〈fij , i〉 ∈ DB| ‖fk − fij‖2 ≤ d}.

The retrieved lists are merged: Nd(Q) = ∪kNd(fk), and all IDs
in Nd(Q) are returned as near-duplicates. An optional query ex-
pansion stage (Section 3.1) can be applied to improve recall.

Local features can get matched to different degrees and there can
be multiple matched local features, with consistent or inconsistent
spatial layout. It is non-trivial to design a principle measure to
cover all these aspects. We circumvent the complexity by assuming
that we can produce local features of sufficiently high quality, so
that a single match of local feature provides a strong indication of
image duplicity.

An extra ranking stage can be potentially carried out to re-arrange
the search results with voting or geometric verification — if geo-
metric information are retained with SIFT features. However, this
is not critical for our system because of our extremely low false
positive rate, and is not the interest of this paper.

The system architecture is shown in Figure 1, with Section num-
bers indicated for the major components. The sketch embedding
and indexing methods are based on existing techniques and are
briefly described in the remainder of this section. The novel fea-
ture filtering and query expansion techniques are detailed in the
following two sections.

2.2 Sketch Construction and Indexing
We use sketch embedding, a compact bit-vector representation,

of raw SIFT features to achieve space and time efficiency, without
losing as much as accuracy as visual word representation. Specif-
ically, we use the method proposed by Dong et al. [6] and imple-
mented in the open-source LSHKIT 1. It does not require offline

1
http://lshkit.sourceforge.net/
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Figure 2: Illustration of SIFT features. A random sample of

SIFT features extracted from the Lena image is plotted. Each

SIFT feature consists of 4 × 4 histograms of edge orientation.

In general, a matching of SIFT features means that the spatial

configuration of 16 small regions is consistent between two im-

ages. It is a strong signal of near-duplicity, except for features

like A and D, which contain little internal structure. We use

entropy-based filtering to remove such bad features.

training and can be tuned to be sensitive to a particular distance
range, which fits our distance thresholding retrieval model.

For a point p ∈ R
d, we define the following function to map it

to a single bit:

f(p) = ⌊
A · p+ b

W
⌋ mod 2

where A ∈ R
d is a random vector with each dimension sampled in-

dependently from the standard Gaussian distribution, and b ∈ R is
a random variable sampled from the uniform distribution U [0,W ).
W is called the window size, which controls the distance range that
the sketch is sensitive to. We use W = 8.0 in our system. To obtain
a B-bit sketch, we independently sample B such random mappings
with equal W , and concatenate the produced bits. We find that for
our system, B = 128 is an appropriate size which both retains good
accuracy and provides an 8× compression over raw SIFT features.
We claim a match if the hamming distance is≤ 3 for online search,
or ≤ 2 for offline duplicity graph construction.

Our indexing data structure for online search is a simple special
case of the technique proposed by Manku et al [13]. We divide
the 128-bit into 4 blocks, and build a hash table with each block
as a key. For a pair of matching sketches, there could be at most
3 different bits, so at least one hash key is identical. By searching
all the 4 hash tables, we are guaranteed not to miss any match-
ing sketches. Offline duplicity graph construction is carried out
with the same technique. The sketch index and the duplicity graph
are constructed with Hadoop on a cluster, but after being created,
the data structures are compact enough to be served with a single
server.

SIFT feature indexing is orthogonal to the main techniques pro-
posed in this paper, and can be easily replaced with other meth-
ods. For example, Weiss et al. [20] proposed a sketch construction
method based on offline learning.

3. FEATURE PROCESSING
The wide adoption of the visual word approach creates the im-

pression that SIFT is a point feature (hence the phrase key point),
and that a strong match between two images probably needs the
agreement of multiple matches of key points. But in fact, as we can
see from Figure 2, a SIFT feature describes a region that usually oc-
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Figure 4: Distribution of SIFT feature values before and after

log scaling. Log scaling makes the curve much more flat.

cupies a significant area in the image and has rich internal content.
We believe that in most cases, one matched SIFT region, like B and
C in Figure 2, is already a strong indication of near-duplicity. Our
retrieval model is based on a simple thesis: SIFT feature match
⇒ image match. We will show with experiments that this seem-
ingly loose assumption works sufficiently well with high quality
SIFT features produced with the two techniques described in this
section.

We use VLFeat2 [19] for SIFT feature extraction. To limit the
number of features generated from each image, we resize large im-
ages to 300×300. After applying entropy-based filtering described
below, roughly 80 features are extracted from each image.

Entropy-Based Filtering

The SIFT features best suitable for near-duplicate detection are
those with rich internal structure. SIFT features associated with
near-empty regions are the main source of false positives: they
tend to occur frequently and get easily matched against one an-
other. We use entropy to measure the richness of internal struc-
ture of a SIFT region. Specifically, we treat the SIFT feature F =

2
http://www.vlfeat.org/



[f1, f2, . . . , f128] as 128 samples of a discrete random variable in
{0, 1, . . . , 255}:

H(F ) = −
255∑

i=0

pi(F ) log
2
pi(F ), pi(F ) =

|{k | fk = i}|

128
.

Note that each SIFT dimension is a 8-bit integer, so the entropy has
a range of [0, 8].

We measure the entropy distributions of (1) SIFT features gener-
ating false matches, (2) SIFT features generating true matches and
(3) randomly sampled SIFT features as background. The results are
plotted in Figure 3. We see that the features causing false positives
have a more concentrated distribution, with the peak at a relatively
low entropy value of 4.1, while the good and background SIFT fea-
tures have very similar distributions, both have a peak at 5.1. In our
system, we discard all SIFT features with an entropy smaller than
4.4.

Log Scaling

The values for individual dimensions of SIFT feature follow a near-
exponential distribution, with small values dominating the whole
distribution. A SIFT value has a range of [0, 255], but find more
than 97% of the values are smaller than 128 and 67% of the val-
ues are smaller than 25. This means that the range of the value is
not efficiently used. We propose to scale the dimensions of SIFT
features logarithmically. Figure 4 shows the SIFT value distribu-
tion before and after log scaling. Note that the distribution is more
uniform after log scaling.

3.1 Query Expansion with Graph Cut
We set a tight threshold on similarity measure to ensure a low

false positive rate, but that also cause us to fail to detect a significant
portion of true positives. Query expansion can be used to recover
some of the missed positive images. In this section, we propose
an effective method of query expansion that particularly fits our
retrieval model.

The high level idea of query expansion is to use the search re-
sults to query the database again. The procedure can be recursively
applied until no new results are found (transitive closure expan-
sion). As the queries used in expansion are all images known to
the system, we can accelerate the process by computing the near-
duplicates of each indexed image offline.

To ease further discussion, we restate the above in the language
of graph theory. We use a duplicity graph G to represent the of-
fline computed duplicity relationship. Each indexed image is rep-
resented as a vertex in G, and an edge is established between each
pair of images with at least one matched local feature. We use G to
represent G augmented with the query image q and edges between
the query and the initial search results. We use Bk(q) to denote the
set of vertices that can be reached from q within k steps, so B1(q)
is exactly the initial search results without query expansion. We
use B∞(q) to denote the connected component of G including q,
or equally, the results one will get with transitive closure expan-
sion. Bk(q) and B∞(q) consists of our baseline query expansion
strategies.

To inspire our improved strategy, we categorize potential sources
of false positives involved in query expansion into the following
three types:

Sporadic False Positives: This is also how false positives get
into the initial search results, and is governed by the false positive
rate.

Clusters: Dense clusters exist in G. They could either be mean-
ingful clusters of popular images like Mona Lisa, or clusters of

unrelated noisy images. One common cause of the latter is that im-
ages with dense patterns and rich in local feature, e.g., windows of
a skyscraper, tend to get matched to a lot of false positives. Such
“hub” images can even interconnect to create huge noise clusters.
No matter how a cluster is generated, it could dramatically increase
false positive rate when hit via a sporadic false positives.

Bridging Images: Even if we achieve 0 false positive rate in
building G, false positives could still occur in query expansion via
bridging images. For example, an image composed of both Mona

Lisa and The Last Supper should be connected to both clusters by
definition. When the query contains only Mona Lisa, transitive
closure expansion will reach the cluster of The Last Supper via the
bridging image.

Because our graph has extremely low false positive rate, we are
relatively confident when query expansion leads to individual im-
ages only. What we want to avoid is hitting an irrelevant cluster
through either sporadic false positives or bridging images. On the
other hand, if a cluster has many different connections to the query,
then we have reasons to believe that they are actually positive re-
sults. In all, we want the query expansion result B(q) to be con-
nected, have many internal connections but few connections to the
rest of G, and be large. We find that these requirements can be
jointly captured by the conductance of a subgraph, defined as

Φ(S) =
|E[S,G \ S]| //connections to the rest of graph

µ(S) //size and intra-connections
,

where S is the subgraph of interest, E[S,G \ S] is the set of edges
between S and G \S, and µ[S], called the volume of S, is the sum
of degrees of vertices in S3. The sparse cut problem is to optimize
for minimal conductance:

B(q) = arg min
S⊂G,q∈S
S connected

Φ(S).

The problem is hard, but efficient approximate solutions exist [17,
1]. In our system, we use an adapted version of PageRank-Nibble [1],
which is listed in Algorithm 1. It simplifies the original algorithm
by (1) removing many parameters that are necessary when the al-
gorithm is used as a subroutine of a provable graph partitioning
algorithm, and (2) choosing the sweep set with the smallest conduc-
tance rather than returning one only when it satisfies a number of
requirements. The subroutine to compute approximate PageRank
is exactly the same as in the original paper. The algorithm requires
two parameters α, ǫ ∈ (0, 1). We find the final results relatively in-
dependent on those parameters, and use α = 0.5 and ǫ = 0.00001
in our experiment. The computational cost of the method, assum-
ing G fits in main memory, is negligible when compared to sketch
index lookup, and the improvement in recall is huge: from 45% to
nearly 80%.

The size of G depends on both the size of the dataset and how
often duplicate images appear in the dataset. When we indexed a
dataset including 30 million Flickr images and 30 million product
images crawled from taobao.com, the size of G is 7.8GB and
fits in the main memory of our server.

4. EXPERIMENTAL SETUP
We are interested in evaluating how the proposed techniques im-

prove search quality. This section describes the configuration of
our experiments, including the dataset, performance measures and

3This definition is equivalent to the standard definition [17] under

the assumption that S is a always smaller than G\S. This assump-
tion is reasonable in our setting as we are never to return more than
half of the indexed images.



Algorithm 1: PageRank-Nibble

Data: graph G (adjacent list), query q, α, ǫ
begin

P ←− ApproximatePageRank(q, α, ǫ)
// P consists of vertices with non-zero PageRank,
// sorted in descending order of PageRank

e←− 0 // Count |E[S,G \ S]|
v ←− 0 // Count volume of S
min← +∞, B ← ∅ // Lowest conductance
for i←− 1 to |P | do

v ←− v + |G[Pi]|

e←− e+ |G[Pi] \ P1..i−1| − |G[Pi] ∩ P1..i−1|
c←− e/v
if c < min then

min←− c
B ←− P1..i

return B

evaluated methods. The results are to be reported in the next sec-
tion.

4.1 Dataset
We gathered ground truth images by issuing text queries to the

popular image search engines and then manually identifying near-
duplicate images from the search results:

1. 81 titles of famous paintings, movies and CDs were picked;
2. Four popular image search engines, i.e., Google, Bing, Yahoo

and Flickr, were queried with these titles, and original images were
downloaded using the URLs returned by the image search engines;

3. Exact duplicates were removed from the crawled images using
MD5 checksums. The remaining images were manually inspected,
and between 40 and 120 near-duplicate images were identified from
each group. The total dataset consists of 10839 images.

We did not use text information in our system so images gathered
with text queries should allow us to obtain a good estimation of
performance on real web images.

We use one million random Flickr images as background. Even
though we have collected more web images, some methods we
compare against (e.g. linear scan of raw features) are very expen-
sive and do not scale up.

4.2 System Environment
We used commodity servers of the following configuration for

experiments: dual quad core Intel E5430 2.66GHz CPU; 16GB
main memory; 4 Seagate Barracuda 7200.11 1.5TB disks (for on-
line serving, less than 30% of both main memory and disk storage
are used). All machines ran CentOS 5.3 with Linux kernel 2.6.18.

4.3 Performance Measures
We are mainly interested in evaluating the receiver operating

characteristic (ROC), which includes the following two measures.
True Positive Rate (Recall): number of retrieved near-duplicates

divided by the total number of near-duplicates in the ground truth
dataset.

False Positive Rate: number of falsely retrieved background im-
ages divided by the total number of background images.

When evaluating a retrieval system, a common practice is to use
a single measure of quality, e.g., precision@k, or average preci-
sion. Such measures are meaningful only when the ratio between
positive and negative is fixed, and are not appropriate in our set-

ting because we gather positive and negative examples separately,
and the combination does not necessarily approximate the real-life
ratio, which is subject to change depending on the application.

When evaluating false positive rate, we assumed that there are
no near-duplicates of the ground truth images in the one million
background images. This might not be true as we did not label the
background data, which would require a huge amount of human la-
bor. However, we believe that this approximation is not a problem
for our particular evaluation setup. First, the expected number of
true positives in the background set is extremely small according
to our experiments. We achieve a false positive rate of 4.9× 10−7

at recall 0.43 (without query expansion). That means that the ex-
pected number of near-duplicates mixed in the one million back-
ground dataset is 4.9 × 10−7/0.43 × 106 = 0.1, less than one.
Second, even if there are near-duplicates in the background im-
ages, that only means that the real false positive rate of our method
is lower (better) than what we report.

4.4 Simulation
We built a simulator to evaluate various retrieval methods. Our

simulator is different from a full search engine in that it does not
build an out-of-core index data structures but rather sequentially
scans all the data images. All performance numbers reported are
exactly the same as if full search engines were built, except that we
cannot use the simulator to evaluate search speed.

The following retrieval methods are implemented in the simula-
tor.

Raw The raw SIFT feature retrieval method as described in Sec-
tion 2.1. This method provides the best search quality, but is too
time-consuming for online search. It represents the highest search
quality achievable with our retrieval model (without query expan-
sion) when an ideal feature index is used.

TF-IDF The bag-of-word method with TF-IDF ranking. We use
a dictionary of one million visual words and soft assign each feature
to four visual words.

Bundle The TF-IDF method augmented with bundle informa-
tion [21].

Sketch The proposed sketch based retrieval method.
Sketch+Exp The sketch based retrieval method with result set

expansion.

5. EXPERIMENTAL RESULTS
We first evaluate the individual techniques proposed, then com-

pare our full system to existing retrieval methods. Finally, we pro-
vide some space/time performance numbers of our system.

5.1 Entropy-Based Filtering and Log Scaling
Because entropy-based filtering and log scaling are independent

from the retrieval models, we first show their improvement by ap-
plying them on the raw SIFT feature retrieval method. We then
apply them to all the retrieval methods for fair comparison.

Figure 5 shows the huge impact these two feature processing
steps can make. Entropy-based filtering helps to reduce false pos-
itive rate by orders of magnitude, which is especially prominent
when true positive rate is low. Without entropy-based filtering,
there are always 354 background hits no matter how we tighten
the retrieval threshold. These potential false positives are caused
by SIFT features that are intrinsically ambiguous, and would other-
wise require geometric verification to get eliminated. With entropy-
based filtering, false positive rate can be tuned very close to zero,
which is the normal behavior desired by a retrieval method.

The effect of log scaling is not as gigantic. Unlike entropy-based
filtering, it mainly works at the range of high true positive rate.
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Figure 5: The effects of entropy-based filtering and log scal-

ing. Entropy-based filtering eliminates most of the false pos-

itives caused by ambiguous SIFT features. Log scaling helps

further reducing false positives in most cases.

Even when stacked with entropy-based filtering, it still helps to fur-
ther lower the false positive rate.

5.2 Query Expansion
Figure 6 compares various strategies of query expansion. We

observe that for the Bk(q), k ≥ 2 family of strategies to achieve
the same recall, false positive rate increases as k becomes larger,
with B2(q) being the most practical strategy. This is because larger
k means more aggressive query expansion, and is more susceptible
to false positives. Our graph-cut-based expansion strategy is way
better in avoiding false positives, achieving false positive rate two
orders of magnitude lower than B2(q) at recall around 0.8.

5.3 Comparison of Retrieval Methods
Figure 7 shows the performance or various retrieval methods.

We see that the raw SIFT feature retrieval method has the best per-
formance, except that it is too time-consuming to be practically
applicable. Plain TF-IDF ranking with visual words has the worst
performance. Furthermore, the items of around 20,000 background
images (indicated by the rightmost point on the curve) have to be
first retrieved from disk before ranking can be carried out, i.e., the
retrieval cost is the same for all points on the curve. By attaching
geometric information on the visual words, the bundling method
helps to reduce background hit rate by a factor of 3 for most points
on the curve. The curve of our sketch method lies in the middle be-
tween the BoW methods and the raw SIFT method, and by applying
query expansion, true positive rate can be significantly improved to
make the performance very close to the raw SIFT curve.

In the real system, we use a hamming distance threshold of 3,
which corresponds to true positive rate = 0.43 and false positive
rate = 4.9×10−7 without query expansion, and true positive rate =
0.79 and false positive rate = 2.5×10−6 with query expansion. For
the sketch curve, false positive rate increases exponentially with
recall, and the point we choose represents a good trade-off between
precision and recall.

5.4 Whole System Performance Numbers
We use our search engine to index 50 million web images. Ta-

ble 5.4 summarizes the whole system performance numbers to-
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Figure 6: Comparison of various query expansion methods

with sketch-based retrieval. Raw SIFT retrieval (impractical

for online search due to high costs in time and space) perfor-

mance is included for reference. Graph cut achieves the best

accuracy among the sketch-based retrieval methods.
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Figure 7: Comparison of various retrieval methods. At the re-

call level of our system configuration, the sketch-based method

lowers the false positive rate of the bundling method by an or-

der of magnitude. Recall can be improved by result set expan-

sion.



Image Indexed 50 million

Offline Processing ∼ 3 days × 66 nodes

Index memory usage 16× 177MB = 2.8GB
Index disk usage 16× 81GB = 1.3TB
Thumbnails (128× 128) & URLs 374GB
Overall memory usage 3.2GB
Overall disk usage 1.7TB
Average CPU usage§ 1.8%
Peak CPU usage§ 3.8%
Response time † 1.29 ± 1.02 seconds

False positive rate‡ 4.9× 10−7

Initial true positive rate‡ 0.45
True positive rate w/ Expansion‡ 0.70

Table 1: System performance numbers. §Running one query at

a time. †Feature extraction and index search, without retriev-

ing thumbnails. ‡Estimated with one million samples.

gether with the true/false positive rates estimated with small scaled
experiments to be reported later. Our sketch index runs one sketch
query for 0.069 second sequentially, and for our benchmark, each
image requires 77.7 sketch queries on average. To reduce the search
time, we scatter the index hash tables to four disks for parallel read-
ing, and batch process the sketch queries so disk accesses can be
properly scheduled [10]. The result is that feature extraction and
sketch searching can be finished in 1.29 seconds on average. That
is faster than the 1.9 second reported by the bundled feature pa-
per [21] to search one million images.

Our sketch index takes 1.3TB disk storage and 2.8GB main mem-
ory. The duplicity graph for query expansion takes about 5GB main
memory. The thumbnails (128x128), densely stored in a single
file, takes about 400GB disk space. Overall, less then 30% of the
server’s memory and disk storage is used. We use a cluster of 66
nodes for offline indexing, and processing 50 million images takes
about one day.

6. RELATED WORKS
Near-duplicate image detection, especially detecting duplicates

subject to cropping and padding, has only been practically viable
after the invention of the groundbreaking SIFT local feature [11].
Ke et al. [10] were the first to study a SIFT based method for near-
duplicate image detection. They used LSH to index PCA-SIFT (a
variant of SIFT) and RANSAC for verification, and demonstrated
superior retrieving performance at the scale of 20K images. They
showed that running queries in a batch and linearizing disk ac-
cesses can bring a 20× speed-up. We also implemented similar
disk scheduling algorithm in our system.

Most recent methods are based on the Bag-of-Word model [14,
15, 21]. Although the BoW approach has been successful at mil-
lion image level, it has intrinsic limitations preventing it from scal-
ing up to the level of a billion images. On one hand, a large visual
dictionary is needed for better discriminating power and to limit the
amount of data needed to be read from disk. On the other hand, the
larger dictionary usually means lower recall when visually identical
local features are over-quantized into different visual words. Soft
assignment [16] can be used to recover some of the lost recall due to
over-quantization, but it also enlarges the retrieval cost by several
times. One million is a widely accepted size for a visual dictio-
nary [15, 21]. Such a large dictionary can be efficiently created by
hierarchical clustering [14]. Assume we extract 100 features from
each image on average, and these features are uniformly distributed
across all the visual words. The chance for any two images to share

at least one visual word is about 0.01. That means nearly 1% of
all indexed images will be ranked for each query. When we need
to index tens of millions of images on a single server, the retrieval
and ranking cost would be too high to make a online search system
possible.

Several approaches have been explored to improve the discrim-
inating power of visual words. The visual phrase [23] method
links near-by visual words to form phrases and conduct retrieval
at phrase level. Visual phrases do have much higher discriminating
power than visual words. However the number of visual phrases
extracted from each image can easily grow out of control. Bun-
dled Feature [21] is another method to improve the discriminating
power of visual words. It attaches information on its relative posi-
tion within its surrounding MSER region to each visual word. Thus
explicit geometric verification can be avoided. However, the disk
I/O problem is not solved because retrieval is still carried out at
individual visual word level.

Turcot and Lowe [18] proposed a SIFT feature pruning method
based on the observation that a SIFT feature is only useful when it
contributes to a matching within the database, assuming that each
image in the database has at least one near-duplicate. This strategy
is effective in reducing the number of features by more than an
order of magnitude without compromising search quality, and its
application is not limited to near-duplicate detection. The drawback
is that, effectively only images with duplicates in the database are
indexed, which is not usually tolerable. Also, this method aims at
reducing the space overhead, rather than filtering out low-quality
features. Our entropy-based filtering method is orthogonal to this
methods and can be used as a complement.

Chum et al. [4] studied various query expansion methods, in-
cluding transitive closure expansion, for local-feature based object
retrieval with vector quantization and geometric verification. The
other methods proposed, like average query expansion and multi-
ple image resolution expansion are potentially applicable to near-
duplicate image detection, but involves reconstructing queries un-
known to the system, and running those new queries could substan-
tially increase search time.

Xu et al. [22] proposed to divide images into overlapping and
non-overlapping blocks over multiple levels, and to compare and
align the blocks with SIFT features and Earth Mover’s Distance(EMD).
Even though the method is reported to achieve high detection qual-
ity, it is only applicable to small datasets as it involves a very ex-
pensive similarity measure and requires scanning the full dataset in
brute force.

7. CONCLUSION
We proposed two techniques for large-scale near-duplicate im-

age detection:

• We found that entropy-based filtering can eliminate > 99%
of false positives, and allows one to claim near-duplication
relationship with a single match of the retained high quality
features.

• We developed a query expansion method with graph cut to
substantially improve search quality.

With the proposed techniques, we built a search engine that is capa-
ble of online serving more than 50 million web images with a single
commodity server and achieving a false positive rate three orders of
magnitude smaller than the standard visual word approach.
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