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ABSTRACT
Ferret is a toolkit for building content-based similarity search
systems for feature-rich data types such as audio, video,
and digital photos. The key component of this toolkit is
a content-based similarity search engine for generic, multi-
feature object representations. This paper describes the
filtering mechanism used in the Ferret toolkit and experi-
mental results with several datasets. The filtering mecha-
nism uses approximation algorithms to generate a candidate
set, and then ranks the objects in the candidate set with
a more sophisticated multi-feature distance measure. The
paper compared two filtering methods: using segment fea-
ture vectors and sketches constructed from segment feature
vectors. Our experimental results show that filtering can
substantially speedup the search process and reduce mem-
ory requirement while maintaining good search quality. To
help systems designers choose the filtering parameters, we
have developed a rank-based analytical model for the filter-
ing algorithm using sketches. Our experiments show that
the model gives conservative and good prediction for differ-
ent datasets.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Search pro-
cess, Information filtering]

General Terms
Algorithms, Measurement, Performance, Design

Keywords
filtering, similarity search, feature-rich data, toolkit, sketch

1. INTRODUCTION
During the past decades, substantial progress has been

made on extracting features for similarity search and ob-
ject recognition from feature-rich data such as audio, im-
age, video, and other sensor datasets. However, not much
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progress has been made in building efficient content-based
search systems for large feature-rich datasets. One of the
main reasons for the lack of progress is that searching in
high-dimensional spaces is a difficult problem. Unlike in tra-
ditional database systems where most searches are on low-
dimensional data and can be solved efficiently with a tree-
based index data structure (such as B-tree), the dimension-
alities of the feature vectors extracted from feature-rich data
can be as high as tens or hundreds. To perform k-nearest
neighbor (kNN) search efficiently in such high-dimensional
spaces has been an open problem since most tree-based in-
dexing algorithms are less efficient than the brute-force ap-
proach when the dimensionality is beyond 10 [29]. Some
researchers call this problem the “curse of dimensionality”.

Recently, the theory community has made some progress
on the approximate-nearest-neighbor (ANN) search prob-
lem, but proposed solutions have many limitations. The
best-known approach is locality-sensitive hashing (LSH) that
uses a family of locality-preserving hashing functions to hash
a high-dimensional feature vector into buckets in multiple
hash tables [13]. To achieve good approximation, however,
the proposed approach requires a large number of hash ta-
bles (e.g. hundreds) and each table to have as many entries
as the number of data objects [11]. Furthermore, LSH ap-
proach is limited to a single feature vector and it does not
apply directly to multi-feature vector representations and
EMD (Earth Mover’s Distance) similarity measure in sys-
tems such as RBIR (Region-Based Image Retrieval).

A good search mechanism in an efficient content-based
search system for feature-rich data should satisfy four re-
quirements. First, it should deliver search results efficiently
on large datasets without using much CPU and memory re-
sources. For example, it should be able to search millions
of data objects in seconds. Second, it should be able to
achieve high search quality by utilizing sophisticated fea-
ture extraction methods. For example, it should be able to
handle multi-feature vector representations and EMD sim-
ilarity measure used in a RBIR system. Third, it should
be able to search data with multiple modalities effectively.
For example, when searching the continuous archived data
recorded from multiple medical devices in an intensive care
unit, a user should be able to express and search patterns of
multiple data sources. Fourth, it should be able to integrate
with the keyword-based search engine. For example, users
should be able to perform content-based similarity search
together with attribute-based search such as time range or
annotation-based search.

Princeton’s CASS (Content-Aware Search Systems) project



investigates how to design efficient content-based search sys-
tems that satisfy the four requirements above. We have
developed Ferret, a toolkit for constructing content-based
similarity search systems for feature-rich datasets and have
successfully used the toolkit with five data types including
images, audio, personal video, 3D shapes and genomic mi-
croarray data. The toolkit includes a basic attribute-based
search engine to integrate with the content-based similarity
search engine.

The content-based similarity search engine used in Ferret
decomposes the similarity search process into two steps: the
first step quickly generates a candidate set of similar objects
and the second step ranks the data objects in the candidate
set. By having the separate two steps, we can use a forgiv-
ing approximation method in the filtering process to improve
search speed and then apply a sophisticated and perhaps in-
efficient ranking step to ensure the search quality. A natural
way to integrate the content-based similarity search engine
with an attribute-based search engine is to filter and rank
the results from an attribute-based search. The challenge
is to use a high-speed filtering process to generate a small
candidate set by filtering out most of the data objects which
are dissimilar to the query data object, while retaining most
of the similar data objects.

This paper describes the filtering mechanism used in the
Ferret toolkit in detail and reports our analytical and ex-
perimental results on the filtering technique using sketches.
By filtering with the sketches constructed from feature vec-
tors, Ferret can reduce the filtered metadata by up to an
order of magnitude and use an extremely fast distance func-
tion such as Hamming distance to approximate user-defined
segment distance function. Experimental results on several
datasets show that the filtering techniques can achieve a
factor of 3-10 speedup on search speed while maintaining
good search quality. While the brute-force approach can
only search about 17,000 images per second, the filtering
with sketches method can search more than 100,000 images
per second. Also, to help systems designers choose the filter-
ing parameters, we have developed a rank-based analytical
model for the filtering algorithm using sketches. Our ex-
periments show that the model gives conservative and good
prediction for different datasets.

The rest of the paper is organized as follows. Section 2
gives an overview of the Ferret toolkit. Section 3 describes
in detail the filtering algorithm using sketches, and a rank-
based analytical model to help systems designers choose fil-
tering parameters. Section 4 reports our performance evalu-
ation of the filtering technique, and how well the analytical
model predictions are compared to the experimental results.
Section 5 presents the related work. Finally, Section 6 con-
cludes and discusses future work.

2. THE FERRET TOOLKIT
The Ferret toolkit is designed to allow systems builders

to construct efficient content-based similarity search systems
for various feature-rich data types [19]. This section gives an
overview of the software architecture, the similarity search
problem and metadata representation in the toolkit.

2.1 Architecture Overview
There are three kinds of components in the Ferret toolkit:

• Core components are the key elements of the toolkit

that are data type independent. These include the
core similarity search engine, an attribute-based search
tool, metadata management, and a command-line query
interface.

• Plug-in components are provided by systems builders
to construct similarity search systems for specific data
types. There are two plug-in components: segmenta-
tion and feature extraction, and distance functions.

• Customizable components provide a set of functions
that are commonly needed in a similarity search sys-
tem. These include data acquisition, web interface,
and performance evaluation tool.

Users of the toolkit construct search systems by selecting
components from the toolkit, supplying a small number of
data-type specific routines that adhere to the construction
interface, and customizing the user interface, performance,
and data acquisition components as necessary. The core
components and the data-type specific algorithm implemen-
tations are linked into a single, concurrent program, while
the data acquisition and user interface modules interact with
the search engine either through the function-call level API
or remotely via a simple network protocol.
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Figure 1: Dataflow in the core similarity search en-
gine of Ferret

Figure 1 shows the dataflow in the core similarity search
engine of Ferret. There are two main operations: data input
and query processing. As shown in Figure 1, an input data
object is passed to a data specific segmentation and fea-
ture extraction unit, which is provided by the programmer
via the Plug-in interface of the toolkit. This unit will seg-
ment the input data object and generate a feature vector for
each segment. Each data object is now represented by a set
of feature vectors which are then passed to the sketch con-
struction unit. The sketch construction component converts
each feature vector into a compact bit vector (sketch). The
sketches will then be passed to the sketch database which is
managed by the metadata management component.

When a query is presented to the similarity search engine
via the similarity search API, the query data is first passed
to the same segmentation and feature extraction unit. Sim-
ilar to processing the input data, the unit will segment the



query data into segments and generate a set of feature vec-
tors. The feature vectors will be passed to the sketch con-
struction component to convert them into a set of sketches
for the filtering unit and similarity ranking unit.

The filtering unit filters the dataset according to the query
data object, either by comparing the sketches against the
sketch database or by computing the user-supplied segment
distance function directly against all feature vector meta-
data. The result is a candidate set of data objects. The
candidate set may include objects that are not similar to
the query object, but by design it misses very few objects
that are similar. The similarity ranking component will then
be invoked to rank the objects in the candidate set by com-
puting the object distance function plugged in by the user.

2.2 Similarity Search and Multi-Feature Rep-
resentation

The problem of similarity search refers to searching for
objects similar to a query object, i.e., containing similar fea-
tures. It is also referred to as the k nearest neighbor (kNN)
problem. Usually, objects are represented by feature vec-
tors and a distance function is used to measure the similar-
ity/dissimilarity between pairs of objects. The complexity of
the similarity search problem depends on how complicated
the data representation and distance function are. A sim-
ple representation is to represent each object by a point in
the D-dimensional space. One particular class of distance
functions commonly used with such a representation are the
`p norms, where the distance between points (X1, . . . , XD)
and (Y1, . . . , YD) is given by

`
ΣD

i=1(Xi − Yi)p
´1/p.

In many practical settings, feature-rich data is more com-
plex than the simple description above and objects are better
represented by a set of feature vectors. Ferret uses a multi-
feature object representation, which represents an object by
multiple segments, each a point in some high-dimensional
space with an associated weight:

X = {< X1, w(X1) > . . . , < Xm, w(Xm) >}

where Xi = (Xi1, . . . , XiD), w(Xi) is the weight of Xi, and
m is variable. Since m may vary from object to object, this
representation is flexible and applicable to most feature-rich
data types. For example, an image can be decomposed into
a set of segments, and each segment can be represented by
a D-dimensional feature vector with associated weight to
describe its color, shape, coordinates, etc.

With the multi-feature representation, there are now two
distance functions. The first is the segment distance func-
tion, which is the distance between two feature vectors in the
D-dimensional space. The commonly used segment distance
functions are `p norms.

The second is the object distance function, defined to be
the distance between two sets of feature vectors, by matching
up the weighted vectors of one object with the weighted
vectors of another object in the best possible way.

An example of an object distance function is the Earth
Mover’s Distance (EMD) [22], which has been used success-
fully in both image and audio similarity search. EMD calcu-
lates the minimal amount of work needed to transform one
distribution into another by moving distribution “mass”.
Given a data object X with m segments, and an data object
Y with n segments, EMD(X, Y ) is defined as:

EMD(X, Y ) = minΣiΣjfij · d(Xi, Yj)

subject to the following constraints:

fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n

Σn
j=1fij = w(Xi) 1 ≤ i ≤ m

Σm
i=1fij = w(Yj) 1 ≤ j ≤ n

where fij is the extent to which vector Xi is matched to
Yj . An optional implementation of EMD has been included
in the Ferret toolkit as the default object distance function.
But users can plug in their own object distance function
when using the Ferret toolkit.

3. FILTERING
The most general but inefficient method is the brute-force

approach that goes through all data objects, computes their
distances from the query object, and returns the most sim-
ilar ones. This approach is extremely inefficient for large
datasets using a sophisticated similarity measure such as
EMD.

To accelerate the search process, Ferret processes a search
in two steps:

• Filtering filters out dissimilar objects and generates a
candidate set.

• Similarity Ranking ranks the objects in the candidate
set according to their distances to the query object.

By separating the search process into these two steps, one
can use a forgiving approximation method in the filtering
process to improve search speed and allow the user to ap-
ply a sophisticated and perhaps inefficient ranking step to
ensure the search quality. If the candidate set size is small,
only a small number of EMD computations are needed in
the second step. In addition to speed, the filtering step also
provides a natural way to integrate the content-based simi-
larity search engine with an attribute-based search engine.

The goal of filtering is to generate a small candidate set
quickly that contains most of the similar data objects. There
are two challenging aspects in designing the filtering mecha-
nism. The first is to filter multi-feature data objects whose
similarity measure requires complex computations between
two sets of feature vectors. The second is to generate a
small and high-quality candidate set quickly. The following
describes our approaches to address these two issues in Fer-
ret toolkit and shows how to determine proper parameters
for filtering.

3.1 Filtering Multi-Feature Objects
The Ferret toolkit is designed to construct content-based

search systems for generic feature-rich datasets including
multi-feature datasets.

To efficiently filter multi-feature data objects, Ferret’s fil-
tering mechanism must avoid complex computations required
by the multi-feature object similarity measure or distance
function. As discussed in the previous section, Ferret has
two distance functions for multi-feature data objects: seg-
ment and object distance functions. Typical segment dis-
tance functions such as `1 (Manhattan) and `2 (Euclidean)
are simple and fast, whereas typical object distance func-
tions such as EMD tends to be complex and time consum-
ing.

Our approach is to use segment distance functions to fil-
ter out dissimilar data objects. The main rationale of this



approach is that the distance between two similar multi-
feature objects must have certain number of “match up”
segments. Intuitively, if two objects are similar, their “ma-
jor” segments should be similar. In other words, for an ob-
ject to be included in the candidate set, it must have at least
one segment that matches up well (within a small distance)
with a major segment in the query object.

Algorithm 1 shows the pseudo code of the filtering method.
The filtering algorithm first selects the r segments with

the highest weights of query object Q. This step finds the
“major” segments of Q. Next, the filtering algorithm iden-
tifies objects in the dataset with at least one segment that
is close to one of these high-weight segments. A segment Rj

is determined to be close to a high-weight segment Qi if it
is one of the n nearest segments to Qi.

Algorithm 1 Filtering for multi-feature based object simi-
larity search

Input: query object Q, r, n
Output: candidate set C

C = ∅
Topr(Q) = r largest-weight segments in Q

for segment Qi ∈ Topr(Q) do
Topn(Qi) = Qi’s n nearest segments

for each segment Tj ∈ Topn(Qi) do
let T be the object that segment Tj belongs to
C = C ∪ {T}

end for
end for

return C

Different methods can be used to find the n nearest seg-
ments of a query segment. The simplest way is linear scan,
which goes through all segments in the system and finds n
segments whose distance are closest to the query segment.

The filtering algorithm can also be combined with index-
ing techniques to further speed up the query process. Vari-
ous indexing techniques have been proposed in the literature
for the nearest neighbor search problem, but few works well
in high-dimensional spaces. A detailed study of filtering
with indexing is beyond the scope of this paper. Instead,
we focus on filtering techniques that scans through all the
segment sketches.

3.2 Filtering with Sketches
Ferret allows users to either filtering with original fea-

ture vectors or sketches. Sketches are typically an order-
of-magnitude smaller than their original feature vectors and
sketch distance can be computed more efficiently than fea-
ture vector distance, thus filtering with sketches can speedup
the filtering process and reduce metadata size.

The construction unit in the Ferret toolkit constructs a
bit vector (sketch) for each high-dimensional feature vec-
tor, such that the `1 distance of two high-dimensional fea-
ture vectors can be estimated by computing Hamming dis-
tance between sketches, via XOR operations. We give a brief
overview of the sketch construction procedure here. Detailed
description and proofs can be found in [18].

Let B be the sketch size and H be the XOR block size,

both are in bits. To generate a B-bit sketch for a D-dimen-
sional feature vector, we first construct B×H bits such that
the expected distance between any pair of such B × H bits
is proportional to the `1 distance between the correspond-
ing high dimensional feature vectors. Next, every group of
H bits are XORed to produce the final B-bit sketch. The
Hamming distances between these sketches are proportional
to a transformed version of the `1 distances between the fea-
ture vectors. For feature vectors that are close, their sketch
distance is proportional to the original distance. However
for feature vectors that are far apart, their sketch distance
is proportional to a dampened version of the original dis-
tance. Further, this dampening effect increases with H.
This dampening (or thresholding) transformation is useful
in limiting the effect of large distances.

Sketches are typically an order of magnitude smaller than
the original feature vectors, so using filtering with sketches
can dramatically reduce the CPU and memory resource re-
quirements. Our experimental results on two large image
datasets show that filtering with sketches achieves good search
quality with high search speed (a factor of 3-10 speedup),
as compared to the brute-force approach.

3.3 Modeling Filtering with Sketches
To design a real system using filtering with sketches, an

important design decision is the choice of sketching and fil-
tering parameters, given a targeted dataset size and desired
filtering quality. Specifically, the parameters that we need
to choose for the filtering and sketching techniques are:

• r: number of query segments per query object

• t: filter ratio – i.e. filtered set size is t × k (where k is
the number of similar objects to return)

• B: sketch size in bits

• H: XOR block size in bits for sketching

We now describe a rank-based analytical model for filter-
ing using sketches. This model works for the single-feature
scenario (i.e., each object is represented by a single seg-
ment)1 It provides a basis for systems designers to choose ap-
propriate parameter values for a sketch-based filtering sim-
ilarity search query processor. In particular, for a given
dataset size, N , and result set size, k, the model predicts
the relationship between recall, filter ratio (t), sketch size
(B), and XOR block size (H).

In the following description, let S be a set of N objects,
each represented by a D-dimensional feature vector. Let
wi, ui, li be the weight, upper bound and lower bound of
the i-th dimension, respectively. Let T =

P
i wi × (ui − li).

Given query object q, for object p ∈ S, let d(q, p) be the fea-
ture distance between q and p, s(q) and s(p) be the sketches
of q and p, respectively, and ds(q, p) the sketch distance be-
tween q and p. We define the rank of p given q to be the
number of points in S that precede p when objects are or-
dered in increasing order of feature distance from q. For
a fixed query q, let ri denote the i-th object in S in this
ordering. Similarly, we define the sketch rank of p to be

1 For the multi-feature scenario, we also need to choose the
number of query segments r. An analytical model for the
multi-feature scenario is much too complicated. Instead, we
use experimental results to show how to choose r.
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Figure 2: Modeling Feature Distance Distribution.

the number of points in S that precede p when objects are
ordered in increasing order of sketch distance to q.

Our analytical model is developed in a series of steps. We
describe the results from each step below. For more details,
please see our technical report [15].

Feature Distance Distribution.First, we model the fea-
ture distance distribution of a dataset. Given a query object
q, its feature distance distribution can be calculated as the
feature vector distances between q and each object in the
dataset. In our study, we consider three common distribu-
tions: normal, lognormal, and polynomial. We use the first
2×k×t data points in the full distance distribution to fit the
statistical models, and then use the models to extrapolate
to the full set of distances. As shown in Figure 2, lognormal
distribution fits the real feature distance distribution best
among the three models.

Sketch Distance Distribution.Second, we obtain an ex-
pression for the distribution of the sketch distance as a func-
tion of the feature distance. For a fixed query point q, con-
sider object p ∈ S and let x = d(q, p)/T . The probability
that the two B-bit sketches s(q) and s(r) differ in exactly b
bits is given by the binomial distribution:

Pr[ds(q, r) = b] = p(x, b) =

 
B

b

!
p(x)b (1 − p(x))B−b

where p(x) = 1
2

`
1 − (1 − 2x)H

´
.

Rank Distribution.Next, we model the sketch rank distri-
bution of an object for a query q as a function of its feature
distance from q. The sketch rank of object p depends on
the sketch distance ds(q, p). Consider the event ds(q, p) = b,
consider an object p′ ∈ S such that d(q, p′)/T = x. Let
P (x, b) be the probability that p′ is ranked lower (i.e. closer
to q) than p, we have

P (x, b) =
b−1X
i=0

p(x, i) +
1
2
p(x, b)

Let rank (p) denote the sketch rank of p, let f(x) be the
probability density function for the feature distances. The
expected value and variance of rank (p) (ds(q, p) = b) are

Eb = N

Z 1

0
P (x, b)f(x)dx

V arb = N

Z 1

0
(P (x, b) − P (x, b)2)f(x)dx

Given the fact that N is usually at the order of hundreds of
thousands, the distribution of rank (p) (for a specific value
of ds(q, p)) is approximately normal by the Central Limit
Theorem. The normal distribution parameters can be deter-
mined by µb = Eb and σb = V arb. Note that Pr[ds(q, p) =
b] = p(x, b). The probability that rank (x) is at most M is

Pr[rank (x) ≤ M ] =
BX

b=0

p(x, b)
Z M

0
f(y; µb, σb)dy

where f(y; µ, σ) = 1
σ

√
2π

e−(y−µ)2/2σ2
,

Search Quality Estimation.Finally, we use the sketch
rank distribution to estimate the recall for a given filter ra-
tio value. For a given filter set size M , the expected fraction
of the k nearest neighbors being included in the filtered set
can be computed as:

Recall =
N

k

Z x0

0
Pr[rank (x) ≤ M ]f(x)dx

where x0 can be derived from k = N
R x0
0 f(x)dx.

To choose the sketching and filtering parameters for a tar-
geted dataset size and desired filtering quality, one first com-
putes the feature distance distribution using a small sample
dataset and obtains the distribution parameters (thus allow-
ing extrapolating to larger dataset sizes). Next, using the
rank-based analytical model, one can compute the expected
filtering quality (recall) using different B, H, t values. After
this, one can simply pick the set of parameter values that
delivers the required filtering quality.

4. EXPERIMENTAL RESULTS
In this section, we study the performance of the filtering

technique using sketches, and also validate the rank-based
analytical model for choosing filtering parameters. We are
interested in answering the following questions:

• How effective is the filtering technique using sketches?

• How to choose the filtering parameters? How well can
the analytical model help systems designers choose pa-
rameters such as sketch size and filter ratio?

4.1 Evaluation Datasets
We have used two evaluation suites. The multi-feature

evaluation suite is used to evaluate the effectiveness of filter-
ing for multi-feature objects. The single-feature evaluation
suite is used to validate the analytical model and study how
to choose filtering parameters using the analytical model.



Total Total #Seg. / Image
#Images #Seg. Avg. Stdev

COREL 59,624 591,610 9.92 4.73
MIXED-WEB 657,379 7,072,108 10.76 4.95

Table 1: Multi-Feature Evaluation Datasets.

#Objects Feature Vec. Dimensions
Image 662,317 14
Audio 54,387 192

3D shape 28,775 544

Table 2: Single-Feature Evaluation Datasets.

There are two image datasets in the multi-feature evalu-
ation suite:

• COREL image dataset contains about 60,000 JPEG
images from the Corel Stock Photo Library. These are
general-purpose images grouped by CDs of different
themes (e.g. birds, flowers, cars).

• MIXED-WEB image dataset contains about 660,000
images crawled from the Internet. These are general-
purpose color images in JPEG format.

Table 1 shows the number of segments after using the JSEG [7]
image segmentation tool on the two image datasets. Each
image is represented by a set of segments, and each segment
is represented by its weight and a 14-dimensional feature
vector: 9 dimensions for color moments and 5 dimensions
for bounding box information (aspect ratio, bounding box
size, area ratio, and x, y positions of segment centroid). The
image similarity measure is EMD* match [18].

There are three datasets in the single-feature evaluation
suite (Table 2):

• Image dataset is generated from about 60,000 images
in the Corel Stock Photo Library and about 10,000
VARY images 2. We use JSEG to segment the images
into about 660,000 regions. Each region is represented
by a 14-dimensional feature vector (see above).

• Audio dataset is drawn from the DARPA TIMIT
collection [9]. This collection contains 6,300 English
sentences spoken by people with different accents. We
break the sentences into about 54,000 segments. For
each audio segment, a 192-dimensional feature vector
(32 windows × 6 MFCC parameters) is extracted using
the Marsyas library [27].

• 3D Shape dataset contains about 29,000 3D polygo-
nal models gathered from commercial viewpoint mod-
els, De Espona Models, Cacheforce models and from
the web. Each model is represented by a single 514-
dimensional spherical harmonic descriptor (SHD) [16].

In this evaluation suite, each object is represented by a single
feature vector. Weighted `1 distance is used to compute the
similarity between pairs of objects.

2http://www-db.stanford.edu/~wangz/image.vary.jpg.
tar

4.2 Evaluation Metrics
To evaluate the performance of a similarity search sys-

tem, we consider three measures: search quality, search
speed, and space requirement. Given a dataset, we ran-
domly pick 100 query objects. For each query object, we
use the domain-specific similarity measure to compute its k
nearest neighbors. Search quality is measure by recall, which
is the fraction of the k nearest neighbors that are actually
returned in the results. Let A be the set of objects retrieved
by the system (the actual answer), and S be the set of ob-
jects that are similar to this query object (the ideal answer),
recall is defined as:

recall = |A ∩ S| / |S|

Search speed is measured by query time, which is the la-
tency between submitting a query and getting the results.
Space usage is measured by the metadata size of the original
feature vectors or the sketches.

All experiments are performed on a PC with two 3.00GHz
Pentium 4 CPUs. The PC system has 4GB of DRAM and
two 250GB 7,200RPM SATA disks. It runs Linux with a
2.6.9 kernel. All results are averaged over 100 queries. Due
to the randomness nature of the sketch construction algo-
rithm, each experiment involving sketches is repeated mul-
tiple times and the average is reported.

4.3 Effectiveness of Filtering with Sketches
We compare the following three techniques:

• Bruteforce-Vec is the baseline approach. It com-
putes the object distances for all objects in the system
using segment feature vectors.

• Filter-Vec uses filtering to generate a small candidate
set and computes object distance only for objects in
the candidate set. It uses segment feature vectors to
find the nearest segments of a query segment (weighted
ell1 distance).

• Filter-Sketch is the same as Filer-Vec except that
it uses segment sketches to compute segment distance
(Hamming distance on bit vectors).

Table 3 compares the search performance of brute-force
approach and the filtering methods, using the COREL and
MIXED-WEB multi-feature image datasets. As we can see,
the filtering methods achieve good search quality and speed
up the query time by a factor of 3-10, as compared to the
Bruteforce-Vec approach. While the brute-force approach
can only process about 17,000 images per second, the fil-
tering with sketches method can search more than 100,000
images per second. Also, the time saving is more significant
for the MIXED-WEB dataset (660K images) than for the
COREL dataset (60K images). What is more, compared
to Filter-Vec, Filter-Sketch achieves better or similar search
performance, while using less than half space (22MB vs.
49MB for the COREL dataset, 242MB vs. 517 MB for the
MIXED-WEB dataset).

4.4 Choosing Filtering Parameters
To answer the question of how to choose the filtering pa-

rameters, we first conduct experiments on the multi-feature
datasets to study how many query segments (r) are needed
to achieve good performance. Next, we perform experiments
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Dataset Method Recall Avg. Query # Images Speedup
Time (s) / second Factor

Bruteforce-Vec 1.0 3.60 17k 1.0
r = 4 Filter-Vec 0.88 0.52 115k 6.9

COREL n = 1200 Filter-Sketch 0.90 0.67 89k 5.4
r = 3 Filter-Vec 0.74 0.37 161k 9.7

n = 900 Filter-Sketch 0.86 0.40 149k 9.0
Bruteforce-Vec 1.0 38.7 17k 1.0

r = 3 Filter-Vec 0.85 10.6 62k 3.7
MIXED-WEB n = 6500 Filter-Sketch 0.83 9.87 67k 3.9

r = 2 Filter-Vec 0.83 5.55 118k 7.0
n = 6000 Filter-Sketch 0.78 5.14 128k 7.5

Table 3: Performance comparison of the brute-force approach and the filtering methods, using the COREL
and MIXED-WEB multi-feature image datasets. (B = 128, H = 3)
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Figure 3: Recall and average query time of the Filter-Sketch method using different number of query segments
r, for the COREL and MIXED-WEB multi-feature image datasets. (B=128, H=3)

on the single-feature datasets and study how well the ana-
lytical model can help systems designers choose sketch size
B, XOR block size H, and filter ratio t. We also report how
well the analytical model predicts for large datasets when
its parameters are set with a small sample dataset.

Choosing number of query segmentsr. Figure 3 shows
the performance (recall and average query time) of the Filter-
Linear-Sketch method using different parameter settings.
The plots on the first column show the search quality (recall)
as a function of the number of results per segment. The plots
on the second column show the average query time as a func-
tion of the number of results per segment. The plots on the
last column show the search quality (recall) as a function of
the average query time. A good search system should have
high search quality and small search time, so a curve that
is closer to the top left corner means better search perfor-
mance. As we can see, for the COREL image dataset, using
3 or 4 query segments gives better performance, and for the
MIXED-WEB image dataset, using 2 or 3 query segments
gives better performance.

Choosing sketch sizeB. Figure 4 shows the filtering qual-
ity for different sketch sizes. The red line is the experimental
results, and the green line is the prediction by the analytical

model using lognormal feature distance distribution. As we
can see, the analytical model conservatively predicts the av-
erage recall in all cases and the predicted trend is consistent
with the experimental results.

Choosing XOR block sizeH. Figure 5 shows that our an-
alytical model predicts similar H values to the experimental
results. For the image dataset, both predicted and experi-
mental results indicate the the best H value is 3. For audio
dataset, the model predicts that the best H value is 3 and
the experimental results show that the best is 2. For 3D
shape data both indicate that the best H value is 4. As
before, the model predictions are consistently conservative.

Choosing filter ratiot. Figure 6 shows the results of using
the analytical model to estimate the filter quality using dif-
ferent filter ratio for k = 100. The results show that the an-
alytical model predicts the filtering quality quite well. Our
analytical model predicts the same or similar knee points for
all datasets. The knee points are all around a filter ratio of
5, although there is a larger gap between the predicted and
experimental results for the 3D shape dataset.

Extrapolating to Larger Dataset Size.When building
a real system, it is common not to have the full dataset
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Figure 4: Filter Quality vs. Sketch Size B. (H = 3, k = 100, t = 10)
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Figure 5: Filter Quality vs XOR Block Size H. (k = 100, t = 10)

available at the initial deployment. It is important to be
able to choose system parameters with only a small sample
dataset, and have some performance and quality guarantees
as the dataset size grows.

In order to validate our model’s prediction, we conducted
an experiment that simulates dataset growth. For each
dataset, we only use one tenth of the total data objects
to model the distance distributions and then use the model
parameters derived from the sample dataset to predict the
filter quality when dataset size grows. The result is com-
pared with the experimental results, where more and more
data points in the dataset are included in each experiment
to simulate the growing dataset.

Figure 7 shows the filtering quality with different dataset
sizes. In each plot, the first data point corresponds to the
small sample dataset that we use to derive our model param-
eters. The results show that the filtering quality degrades
gradually as the dataset grows larger. The model can give a
good prediction on the degree of quality degradation as the
dataset size grows. The prediction works better when the
sample dataset size is reasonably large as seen in the im-
age dataset. For other datasets, the degradation prediction
is more conservative, but conservative estimates are more
acceptable than optimistic in real systems designs.

5. RELATED WORK
Content-based similarity search for feature-rich data has

been a popular research topic for over a decade. However,
most work focuses on domain-specific data types and fea-
ture extraction techniques [28, 25, 23, 4, 14]. The problem
of efficient similarity search for general-purpose, large-scale
feature-rich datasets has not been solved.

Several recent systems have focused on building a uni-

fied index for content in a personal file system. These in-
clude Apple’s Spotlight [26], MyLifeBits [10], and desktop
search tools from Google, Yahoo!, MSN, and others. Search
is performed on text-based keywords, attributes, and anno-
tations. None of these systems has addressed how to perform
content-based similarity search for noisy, high-dimensional,
feature-rich data.

A number of indexing structures (such as K-D tree, R-
tree, X-tree) have been devised for nearest neighbor search,
as surveyed in [2, 5]. Although these indexing techniques
perform well at low dimensions, their performance degrades
quickly as the dimensionality increases, so called curse of
dimensionality [8, 20]. It has been shown that in both theory
and practice, if the number of dimensions exceeds around 10,
a simple linear scan outperforms all indexing methods that
are based on space partitions [29].

More recently, several filter-based indexing techniques have
been proposed. Such techniques try to overcome the curse
of dimensionality by filtering the vectors (using approxi-
mations) so that only a small fraction of them need to be
searched when processing a query. For example, VA-file [29]
uses a compact, geometric approximation for each vector.
By first scanning these smaller approximations, only a small
fraction of the vectors need to be visited. Later approaches
combine space partitioning and approximation. The A-tree
method [24] uses virtual bounding rectangles which contain
approximated minimum bounding rectangles and data ob-
jects. The AV-tree method [1] approximates data points
with prefix paths through a quad-tree-like structure. These
filter-based techniques are different from Our filtering al-
gorithm is different in that it is designed for multi-feature
based object similarity search, where each object is repre-
sented by a set of segment feature vectors, while the filter-
based techniques above are designed for single-vector ob-
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Figure 6: Filter Quality vs Filter Ratio t. (H = 3, k = 100)
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Figure 7: Filter Quality vs Dataset Size (H = 3, k = 100, t = 10)

jects. One other filter-based work is the SnapFind [12] image
retrieval system, which allows users to search non-indexed
data in a brute force manner. Each query is translated into
a customized searchlet that is executed in parallel by pro-
cessors near the storage devices, enabling early discarsion of
the majority of irrelevant images.

To address the “curse of dimensionality” issue, Indyk and
Motwani introduced in [13] the notion of locality sensitive
hashing (LSH) with which closer objects have a higher chance
to be hashed to the same value. This new technique provides
fast approximate nearest neighbor search [13, 11, 6]. Re-
cently, Panigrahy proposed a point-perturbation based (also
called entropy-based) LSH approach [21], which uses per-
turbed objects in the neighborhood of the query object to
check multiple buckets in each hash table, thus reducing
the number of hash tables required for good search quality
and performance. In [17], Krauthamer and Lee proposed a
new indexing structure for nearest neighbor search, called
navigating nets, whose query time complexity is logarith-
mic in the number of objects in a dataset. Beygelzimmer et
al. have proposed another indexing structure, called cover
tree [3], which improves on the navigating nets technique
by using linear search space. These techniques do not di-
rectly work with the multi-feature based similarity search
for feature-rich data, but may be combined with our filtering
technique to further speedup the similarity search process.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we study the filtering with sketches algo-

rithm we have proposed in the Ferret toolkit for efficient
content-based similarity search of feature-rich data. De-
signed for the multi-feature based object similarity search,
the filtering algorithm quickly filters out unlikely answers

and generates a small candidate set, thus greatly reducing
the number of object distance computations needed to an-
swer each query, in effect speed up the search process. Our
experimental results show that filtering method achieves
good search quality with a factor of 3-10 speedup on the
search speed, as compared to the brute-force approach. Also,
using sketches for filtering can reduce the space requirement
by at least a half while maintaining search quality.

To design a real system using the filtering and sketch-
ing techniques, an important design decision is the choice of
sketching and filtering parameters, given a targeted dataset
size and desired filtering quality. We have developed a rank-
based analytical model for the filtering technique using sketch-
es. Our results show that the model gives conservative and
good prediction for different datasets. What is more, the
parameters of the model can be set with a small sample
dataset and the resulting model still gives good predictions
for larger datasets of the same type of data.

Currently, our analytical model only works for the single-
feature object representation. We are working to extend this
model so it can handle multi-feature object representations.

Further optimizations for the filtering algorithm can be
investigated. For example, we can consider query segment
weights in the filtering process, and obtain more results for
query segments with larger weights. Also, the number of
segments that we need to examine can be reduced by con-
sidering only segments that are big enough (e.g., if an im-
age has several large segments and many small segments, we
only need to consider the large segments).
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