
Asymmetric Distance Estimation with Sketches for
Similarity Search in High-Dimensional Spaces

Wei Dong
wdong@cs.princeton.edu

Moses Charikar
moses@cs.princeton.edu

Kai Li
li@cs.princeton.edu

Department of Computer Science, Princeton University
35 Olden Street, Princeton, NJ 08540, USA

ABSTRACT
Efficient similarity search in high-dimensional spaces is im-
portant to content-based retrieval systems. Recent stud-
ies have shown that sketches can effectively approximate L1

distance in high-dimensional spaces, and that filtering with
sketches can speed up similarity search by an order of magni-
tude. It is a challenge to further reduce the size of sketches,
which are already compact, without compromising accuracy
of distance estimation.

This paper presents an efficient sketch algorithm for simi-
larity search with L2 distances and a novel asymmetric dis-
tance estimation technique. Our new asymmetric estimator
takes advantage of the original feature vector of the query
to boost the distance estimation accuracy. We also apply
this asymmetric method to existing sketches for cosine simi-
larity and L1 distance. Evaluations with datasets extracted
from images and telephone records show that our L2 sketch
outperforms existing methods, and the asymmetric estima-
tors consistently improve the accuracy of different sketch
methods. To achieve the same search quality, asymmetric
estimators can reduce the sketch size by 10% to 40%.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Performance

Keywords
similarity search, sketch, asymmetric distance estimation

1. INTRODUCTION
In this paper, we consider similarity search in high-dimensional

spaces, a central problem in content-based retrieval sys-
tems: given a collection of data objects represented by high-
dimensional feature vectors, the objective is to preprocess

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’08, July 20–24, 2008, Singapore.
Copyright 2008 ACM 978-1-60558-164-4/08/07 ...$5.00.

them so that we can quickly find data objects similar to
queries issued at run time. A query is also represented by a
high-dimensional feature vector and the problem is to find
the k nearest neighbors to the query point.

Sketch construction is an effective way to approximate
feature vectors for similarity search. Sketches are compact
bit vectors that can be used instead of the original feature
vectors to estimate distances. In a search system, sketches
are scanned upon a query to quickly generate a small set of
candidates which can be ranked later with original feature
vectors to obtain the search result. Such a process is often
called filtering. As reported by previous work [10, 11, 15],
sketches are typically an order of magnitude smaller than
their feature vectors, and can significantly improve the space
requirement and search speed. A key challenge for sketch
construction is to achieve a high ratio of distance estimation
accuracy to sketch size.

The traditional method of using sketches to estimate dis-
tances, like L1 distance [10] and cosine similarity [2], is to
construct a bit vector for each feature vector where each bit
is determined by the position of the feature vector with re-
spect to a random hyperplane. The Hamming distance of
such sketches will then be used to approximate the origi-
nal distance measure. Since computing Hamming distance
(counting the number of bits that are different) is simple, the
filtering process can be an order of magnitude faster than
scanning the original feature vectors. However, the distance
estimation with such sketches is a crude approximation; ac-
curacy can be low when sketches are very compact. A chal-
lenging question is whether the accuracy of distance estima-
tion can be substantially improved using the same sketches.

Distance estimation using sketches is typically symmetric
in that two sketches are compared to produce an estimate of
the distance. In this paper, we propose a novel asymmetric
approach to estimate the distance between the feature vector
of a query and the sketch of a data object. As the distance
estimation is done in two different spaces, we call such algo-
rithms asymmetric estimators. Asymmetric estimators do
not impose additional space requirements because they use
the same sketches for all data points and there is only one
query point. These methods can achieve higher accuracy
because they take advantage of the position information of
the query point in the feature vector space. Another way to
look at the effect of the proposed approach is that it allows
the sketches to be more compact to achieve the same ac-
curacy. Asymmetric estimators achieve these improvements
at the cost of more computation than computing Hamming
distance (by a constant factor). In other words, they provide

a way to trade CPU time for accuracy or sketch compaction.
However, computation is less of an issue today given the ex-
panding gaps between CPU processing power, memory size
and disk bandwidth.

As a specific example, our paper first presents a new L2

sketch construction and its asymmetric estimator. Our new
method has an interesting property particularly desirable
for similarity search: it is only sensitive to a small distance
range covering most k-nearest neighbors. We then provide
general guidelines on designing asymmetric estimators and
show how to design asymmetric estimators for two existing
sketch constructions for L1 distance [10] and cosine similar-
ity [7, 2].

We evaluate all three sketch constructions with symmetric
and asymmetric estimators using real-life datasets extracted
from images and telephone records, and demonstrate the
significant space saving (10% to 40%) of the asymmetric
estimators, as well as the superiority of our new L2 sketch
over the existing methods.

2. RELATED WORK
Similarity search in high-dimensional spaces is a long-

studied problem so far without a general solution. It is
known that when dimensionality is high, existing tree-based
index structures degenerate to brute-force scan [16]. The re-
cently developed methods, like VA-file [16] and LSH [6], usu-
ally involve scanning a certain portion of the whole dataset.
Filtering with sketches can potentially be used to reduce the
candidates to be scanned.

Sketches were originally used to answer aggregate queries
over data streams [1], and were recently used as a filter to
accelerate similarity search [10, 11, 15]. In existing methods
for all these applications, however, the estimating opera-
tion is carried out completely in the sketch space. Simi-
larity search, as studied in this paper, is a typical scenario
where additional information other than sketches can be ex-
ploited to improve estimation accuracy. We believe our idea
of asymmetric distance estimation will find other applica-
tions as well.

A sketch algorithm for L1 distance was proposed in [10],
and later applied to other datasets [11]. The random hyper-
plane technique, first proposed in [7] for solving the max-cut
problem, and later used in [2] for locality sensitive hash-
ing, implicitly gives a sketch algorithm for cosine similarity,
which is essentially equivalent to L2 distance. However, its
performance in similarity search has not been experimen-
tally studied. In this paper, we propose asymmetric esti-
mators for both methods, and experimentally evaluate all
these methods as well as our newly proposed sketch for L2

distance.
An analytical performance model of similarity search us-

ing sketches was recently given in [15]. We use the same
query-processing algorithm, so the performance model can
be easily adapted to work with our method.

Dimension reduction is an active research area with many
applications, and various methods exist. [5] is a comprehen-
sive survey of popular methods. Though related in concept,
sketches are not merely new dimension reduction methods.
They are task-specific (similarity search in our case), and
the emphasis is more on reducing the size rather than keep-
ing high precision. PCA and random projection are used in
this paper as performance baselines.

q

p1 p2

p3 δ

(a) Partitioning scheme

 0

 0.25

 0.5

 0 0.5 1 1.5

E
[s

ke
tc

h
di

st
an

ce
]

(s
ym

m
et

ric
)

L2 distance / W

(b) Sketch vs. L2 distance

Figure 1: Illustration of L2 Sketch. (a) The space
is partitioned randomly into gray and white stripes,
inducing a 0/1 sketch function. (b) The left half of
the curve shows a near-linear relationship, meeting
the requirement of similarity search.

3. SKETCH AND ASYMMETRIC ESTIMA-
TOR FOR L2 DISTANCE

In this section we present our new sketch algorithm for L2

distance, which we call L2 Sketch, and show how to exploit
the raw feature vectors for asymmetric distance estimation.

3.1 L2 Sketch Construction
The goal of sketches for similarity search is different from

that for simple distance estimation. First, we only need to
know the distance relationships (smaller or larger), rather
than exact values. Second, we only need high accuracy
for small distances instead of uniform accuracy/inaccuracy
across the whole range of distances. These two relaxations
potentially allow data reduction more aggressive than tradi-
tional dimension reduction methods.

We achieve both requirements by a striping technique.
Figure 1(a) gives an illustration of the scheme in R2 space,
and the idea is exactly the same for high-dimensional spaces.
We randomly partition the space into interleaving white and
gray stripes of equal width, and use stripe colors to deter-
mine the sketch values of the points: gray for 0 and white
for 1. Points closer to each other are more likely to fall into
the same stripe, and subsequently, the XOR of their sketch
values has a smaller expectation. We do the random strip-
ing multiple times to produce a sequence of bits for each
point, and use the Hamming distance of the bit vectors as a
proximity estimator. Specifically,

L2 Sketch 1. For a point p ∈ Rn, its L2 sketch is a bit
vector σ(p) ∈ {0, 1}m, with each bit σi(p) produced by

σi(p) = �hi(p)� mod 2,

hi(p) =
Ai · p + bi

W
, ∀i = 1, 2, ..., m

where Ai ∈ Rn is a random vector with each dimension sam-
pled independently from the standard Gaussian distribution
N(0, 1), and bi ∈ R is sampled from the uniform distribu-
tion U [0, W). W is called the window size. For two points
p, q ∈ Rn, their sketch distance is defined as

dσ(p, q) =
1

m

mX
i=1

σi(p) ⊕ σi(q) =
1

m
dH [σ(p), σ(q)].

where dH is Hamming distance.

The above algorithm specifies how to produce a random
partitioning: Ai determines the direction of the stripes, ‖Ai‖2

and W together determine the width of the stripes, and
the random shift bi determines the ‘phase’. Figure 1(b)
shows the relationship between the expectation of symmetric
sketch distance and L2 distance (see Section 3.3 for formu-
las). The monotonicity of the curve satisfies our ranking
purpose. For small L2 distances, we can see a near-linear
relationship, and when L2 distance grows large, sketch dis-
tance quickly converges to the limit 0.5. The window size
W determines the sensitive distance range.

3.2 Asymmetric Estimator for L2 Sketch
Figure 1(a) explains how the original query point is useful

for asymmetric distance estimation. Assume p1, p2 and p3

are data points, with only sketches available, and q is the
query point, with both sketch and feature vector available.
We know the precise location of q, but only know that p1 and
p3 are in white stripes and p2 is in a gray stripe. Since p2

and q are in stripes of different colors, the distance between
p2 and q is lower-bounded by the minimum distance from
q to a stripe boundary. This lower bound (marked δ in
the figure) replaces the Hamming distance 1 in asymmetric
distance estimation. On the other hand, p1 and p3 are in
stripes of the same color as q, and the value 0 is used. The
asymmetric distance estimator is defined below.

L2 Sketch 2. Under the setting of L2 Sketch 1, for data
point p and query point q, both in Rn, the asymmetric sketch
distance is defined as

d∗
σ(p, q) =

1

m

mX
i=0

δi(q)[σi(p) ⊕ σi(q)]

where δi(q) = min{�hi(q)	 − hi(q), hi(q) − �hi(q)�}.
The asymmetric sketch distance is a weighted Hamming

distance of the sketches. The weight δi(q) is the distance
from q to the closest stripe boundary.

3.3 Statistical Analysis
The following lemma gives the relationship between sym-

metric and asymmetric sketch distances and original L2 dis-
tance.

Lemma 1. Under the setting of L2 Sketch, for any p, q ∈
Rn, let d = ‖p− q‖2 be the L2 distance, dσ = dσ(p, q) be the
symmetric sketch distance and d∗

σ = d∗
σ(p, q) be the asym-

metric sketch distance, then for any k ∈ R,

E[dσ] = f0(d/W) E[d∗
σ] = f1(d/W)

where

fk(t) =

Z 1

0

Z 1

0

min{x, 1 − x}k

t

X
j∈Z

φ

»
2j + x + y

t

–
dxdy

and φ(·) is the probability density function of the standard
Gaussian distribution N(0, 1).

Proof. The m bits in the sketch are identically distributed,
so we only consider the case when m = 1 and omit subscript
i as in Ai, bi and hi. For m
= 1, the expectation remains
the same, and variance is scaled by 1/m.

We shift the real line by �h(p)�, so that h(p) = y ∈ [0, W),
following uniform distribution. Let j ∈ Z be an arbitrary
integer. When h(q) ∈ [2jW, (2j + 1)W), dσ = d∗

σ = 0.
Thus only the case when h(q) ∈ [(2j + 1)W, (2j + 2)W) is
interesting. In this case, we have have dσ = 1 and d∗

σ =

min{x, W − x}, where x ∈ [0, W) is the distance from h(q)
to the left window boundary (2j +1)W . The probability for
this to happen is

X
j∈Z

Pr[h(p) = y ∧ h(q) = (2j + 1)W + x]

=
X
j∈Z

1

W
Pr[h(q) − h(p) = (2j + 1)W + x − y]

=
X
j∈Z

1

W
Pr[A · (q − p) = (2j + 1)W + x − y]

=
X
j∈Z

1

Wd
φ

»
(2j + 1)W + x − y

d

–

The last step is due to the 2-stability of Gaussian dis-
tribution [3], which states that for any p ∈ Rn, A · p ∼
‖p‖2 × N(0, 1).

The expectations of dσ and d∗
σ are obtained by averaging

the corresponding values weighted by the above probability
across all x, y ∈ [0, W).

The variances of the estimators can be obtained in a sim-
ilar way, and we do not show them here due to the page
limit. Instead, we use experimental evaluation in Section 5
to compare the performance of these estimators.

Choosing a proper window size W is a practical issue. For
k-nearest neighbor search, twice the typical distance of the
kth nearest neighbor is a good starting point for tuning.

4. ASYMMETRIC ESTIMATORS FOR OTHER
SKETCH ALGORITHMS

In this section we describe a general framework for design-
ing asymmetric estimators and use this to devise asymmetric
estimators for two existing sketch methods for cosine simi-
larity and L1 distance.

4.1 The Abstract Sketch Algorithm and Asym-
metric Estimator

The asymmetric estimator proposed in the previous sec-
tion can be generalized into the following framework

First, a sketch algorithm σ for a metric space 〈X, d〉 spec-
ifies a family σ = {σi | i ∈ I} of bipartitions of the space,
mapping an arbitrary point p ∈ X into a bit sequence σ(p) =
〈σi(p)〉i∈I . The sketch distance between two points p, q ∈
X is the expectation of XOR of the corresponding bits in
sketches: dσ(p, q) = Ei∈I [σi(p) ⊕ σi(q)]. A well-designed
sketch algorithm should establish a predictable relationship
between the sketch distance dσ and original distance d. A
closely related concept is locality sensitive hashing (LSH) [8].
Actually, a bipartition σi is a 0/1 valued LSH function.

Second, an asymmetric distance estimator specifies a dis-
tance function d∗ (not necessarily the original d) between
a point and a partition. In the case of L2 Sketch, d∗ is
the L2 distance measure under a random projection. If
we denote by [0]σiand [1]σi the two parts of σi, then the
asymmetric sketch distance is simply the average distance
from query point q to the part that the data point p is in:
d∗

σ(p, q) = Ei∈I{d∗([σi(p)]σi , q)}. Because d∗ gives a refined
lower bound of the crude XOR, the asymmetric estimator
potentially provides higher accuracy.

Given a sketch algorithm, the challenge then lies in finding
a meaningful asymmetric distance function d∗. Though the
sketch algorithm and the original distance measure usually

ρ

q

p

l

δ = ρ · q

(a) Cosine Sketch

p
δ

t1

t2

t3

(b) L1 Sketch

Figure 2: The space partitioning schemes of Cosine
Sketch and L1 Sketch, both based on random hyper-
plane method.

give useful clues, such an estimator is not always obvious
and does not always exist. This is one limitation of the
asymmetric distance estimation method. It is possible that
an asymmetric estimator results in a distance measure dif-
ferent from the original one, but is still helpful in improving
the search quality. We later discuss such an estimator for
the L1 case. It is also possible that more than one asym-
metric estimator might exist for a single sketch algorithm,
each having its own advantage.

Another limitation of the asymmetric method is the accu-
racy improvement. The error in distance estimation comes
from uncertainty in the positions of the data point and the
query point. Even if the asymmetric method fully eliminates
the error introduced by the query point, it eliminates only
half the source of error. In practice (mainly due to the ran-
domization in sketch algorithms), this 50% upper bound is
usually far from tight, even though the asymmetric estima-
tors do make a significant difference in many cases.

In the following two subsections, we restate two existing
sketch algorithms in our framework, and devise asymmet-
ric estimators for them. We call these algorithms Cosine
Sketch and L1 Sketch based on the distance measure they
approximate.

4.2 Cosine Sketch
Cosine similarity is not a strict distance measure, but is

still important to many applications like text document re-
trieval. For any p, q ∈ Rn, the cosine similarity is defined by
dcos(p, q) = p·q

‖p‖2‖q‖2
, and is related to L2 distance by

[dL2(p, q)]2 = ‖p‖2
2 + ‖q‖2

2 − 2 dcos(p, q) ‖p‖2 ‖q‖2.

Thus, L2 distance and cosine similarity have the same rank-
ing effect for normalized datasets, and for unnormalized
datasets, given the 2-norms of the points, a sketch algo-
rithm for cosine similarity automatically induces one for L2

distance.
The following sketch algorithm for cosine distance is im-

plicitly given in [7, 2]. For simplicity of presentation, we
assume all the points are normalized to unit vectors.

Cosine Sketch 1. For a point p ∈ Sn−1 = {r ∈ Rn | ‖r‖2 =
1}, its cosine sketch is a bit vector σ(p) ∈ {0, 1}m, with each
bit σi(p) produced by

σi(p) =

(
0 if ρi · p < 0

1 if ρi · p ≥ 0
∀i = 1, 2, . . . , m

where ρi for each i is sampled uniformly at random from the

unit hypersphere Sn−1. The symmetric sketch distance be-
tween p, q ∈ Sn−1 is defined as dσ(p, q) = 1

m
dH [σ(p), σ(q)].

The idea of the random hyperplane method is illustrated
in Figure 2(a). The random vector ρ ∈ Sn−1 determines
a hyperplane l (the orthogonal complement of ρ) which bi-
partitions the sphere. A bit in the sketch records whether
or not the point falls on the same side of the hyperplane as
ρ. To design an asymmetric distance estimator, we need to
assess the distance from the query point q to its neighbor-
ing half space (the gray one). We find the distance from q
to the hyperplane l, indicated by δ in the figure, a natural
choice. Simple enough, δ is exactly |ρ · q|. Thus, we have
the following asymmetric estimator.

Cosine Sketch 2. Under the setting of Cosine Sketch 1,
for data point p and query point q, both in Sn−1, the asym-
metric sketch distance is defined as

d∗
σ(p, q) =

1

m

mX
i=0

|ρi · q| × [σi(p) ⊕ σi(q)]

=
1

m

mX
i=0

−sgn(ρi · p) × (ρi · q) × [σi(p) ⊕ σi(q)]

The following lemma gives the relationship between sym-
metric and asymmetric sketch distances and the original co-
sine similarity.

Lemma 2. Under the setting of Cosine Sketch, for any
p, q ∈ Sn−1, let θ = bpq be the angle between p and q,
d = cos(θ) be the cosine similarity, dσ = dσ(p, q) be the
symmetric sketch distance and d∗

σ = d∗
σ(p, q) be the asym-

metric sketch distance, then the following relations hold:

E[dσ] =
θ

π
(a)

E[cos(πdσ)] =
mX

k=0

m

k

!
θk(π − θ)m−k

πm
cos
“ π

m
k
”

(b)

E[d∗
σ] =

B(n
2
, 1

2
)

2π
(1 − d) (c)

var[d∗
σ] =

1

m
{θ − 1

2
sin 2θ

nπ
− E[d∗

σ]2} (d)

where B(·, ·) is the Beta function.

Proof. (a) See [7, 2].
(b) Given the angle θ between p and q, the probability that

the sketches have different values of the ith bit is θ/π. Thus,
the probability that the sketches have Hamming distance k
is given by the binomial distribution B(m, θ/π). The expec-
tation of cos πdσ can be obtained by taking the average for
k from 0 to m.

(c) By linearity of expectation, we only need to consider
the case m = 1, and we drop the subscript i. We use hyper-
spherical coordinate system, where each point is represented
with one radial coordinate r and n − 1 angular coordinates
φ1, . . . , φn−1. Because the radius is always 1 in Sn−1, we
simply omit this coordinate. Moreover, for particular p and
q, we rotate the coordinate system so that

φi(p) = φi(q) =
π

2
∀i = 1, . . . , n − 2

φD−1(p) = 0, φD−1(q) = θ.

 0

 0.005

 0.01

-1 -0.5 0 0.5 1

m
ea

n
sq

ua
re

d
er

ro
r

cosine similarity

symmetric
asymmetric

Figure 3: Mean squared error of Cosine Sketch esti-
mators vs. cosine similarity (n = 128, m = 256). The
asymmetric curve has its left half higher than the
symmetric one. We use a trick (described in Sec-
tion 4.2) to lower it down to the dotted curve, which
mirrors the right half of the asymmetric curve.

The corresponding Cartesian coordinates are p = 〈0, . . . , 1, 0〉
and q = 〈0, . . . , cos(θ), sin(θ)〉. Let the hyper-spherical coor-
dinates of the random vector ρ ∈ Sn−1 be 〈φ1, . . . , φD−1〉.
We thus have

ρ · q = sin(φ1) · · · sin(φn−2) cos(φn−1 − θ)

Only the hyperplanes that separate p and q make a non-zero
contribution to the asymmetric distance. These hyperplanes
correspond to ρ ∈ Ω1 ∪ Ω2, where

Ω1 = {ρ | ρ · p < 0, ρ · q > 0} = {ρ | 1

2
π < φn−1(ρ) <

1

2
π + θ},

Ω2 = {ρ | ρ · p > 0, ρ · q < 0} = {ρ | 3

2
π < φn−1(ρ) <

3

2
π + θ)}.

Thus

E[d∗
σ(p, q)] =

R
Ω1

ρ · q dρ +
R
Ω2

−ρ · q dρR
Sn−1 dρ

=
B(n

2
, 1

2
)

2π
(1−cos θ)

(d) Similar to (c).

The symmetric estimator actually estimates the angle θ
instead of the cosine similarity. In practice we use cos(πdσ)
as a biased estimator of cosine similarity.

Figure 3 shows the mean squared error of both symmet-
ric and asymmetric estimators when n = 128 and m = 256
based on Lemma 2. We can see that the asymmetric esti-
mator works well when cosine similarity is close to 1, but
degrades badly when smaller than 0. For similarity search
under cosine similarity, this works well, for only similarity
close to 1 is interesting. For estimating L2 distance, how-
ever, we actually want low error across the whole range. We
use the following trick to circumvent this flaw.

For arbitrary p, q ∈ Sn−1, we have dcos(−p, q) = −dcos(p, q);
and at any time, either dcos(p, q) or dcos(−p, q) is non-negative,
and is estimated more accurately. Furthermore, the sketch
σ(−p) of −p is exactly the binary complement of that of p,
and is thus available at query time. As a result, we always
compute an estimation for both p and −p, and use the better
one to produce the final estimation.

4.3 L1 Sketch
[10] introduced a sketch algorithm for weighted L1 dis-

tance. To simplify the presentation, we only consider the
unweighted case here. Our asymmetric estimator can be

easily adapted to work with the weighted case. Following is
the unweighted version of the L1 sketch algorithm proposed
in [10]. Note that the algorithm works only for limited space,
and requires the range of each dimension as input.

L1 Sketch 1. Given a closed space X = [l1, u1] × · · · ×
[ln, un] ⊂ Rn, for a point p ∈ X, its L1 sketch is a bit vector
σ(p) ∈ {0, 1}m, each bit σi(p) produced by

σi(p) = σi,1(p) ⊕ σi,2(p) ⊕ · · · ⊕ σi,b(p)

σi,j(p) =

(
0 if psi,j < ti,j

1 else

∀i = 1, 2, ..., m, j = 1, 2, ..., b.

Each bit in the sketch is the XOR of b independently gen-
erated bits, and b is a parameter specified by the user. For
each 〈i, j〉pair, the index si,j and threshold ti,j are generated
in the following two steps:

1. Pick si,j such that Pr[si,j = k] ∝ (uk−lk), k = 1, 2, ...n;

2. Pick ti,j uniformly at random from [lsi,j , usi,j].

The symmetric sketch distance between p, q ∈ Sn−1 is de-
fined as dσ(p, q) = 1

m
dH [σ(p), σ(q)].

It can be proved that if b = 1, the expectation of sketch
distance is proportional to L1 distance. XORing b bits
has the effect of increasing the sensitivity to small distance
range, similar to what is shown in Figure 1(b). Though
the theoretical properties of this XOR idea are interesting,
no intuitive explanation is given in [10, 11, 15]. Here we
give a geometrical view of the XOR method, which is rather
straightforward.

Figure 2(b) illustrates a bipartition of a 2D space accord-
ing to the sketch algorithm, with b = 3. The three random
dimension-threshold pairs partition the space into six rect-
angular regions, and the XOR scheme induces a gray-white
coloring of the regions such that touching regions are always
colored differently. Note that regions of the same color, as
in L2 Sketch, are considered as one partition.

Given the geometrical view of the bipartition scheme, one
asymmetric estimator is straightforward. We take the dis-
tance from the query point q to the closest boundary of the
region, which is t3 in the figure, as the asymmetric distance
function d∗. This distance is indicated in the figure by δ.
Following is the algorithm of the asymmetric estimator.

L1 Sketch 2. Under the setting of L1 Sketch 1, for data
point p and query point q, both in X, the asymmetric sketch
distance is defined as

d∗
σ(p, q) =

1

m

mX
i=0

δi(q)[σi(p) ⊕ σi(q)]

where δi(q) = min{|qsi,j − ti,j | | j = 1, 2, . . . , b}.

The drawback of the above asymmetric estimator is that
it is not a proper estimator of L1 distance. It can be shown
that when b = 1, the asymmetric distance is in fact propor-
tional to the L2 distance. Nevertheless, as the experimental
results in Section 5 show, it does improve search quality in
practice.

Dataset # Points Dimension Total size
image 4,459,549 128 2.28GB
audio 2,663,040 192 2.04GB

Table 1: Summary of datasets.

5. EVALUATION
In this section, we conduct experiments with two real-life

datasets to study the performance of the methods described
in the previous two sections. We first measure the accuracy
of different methods to demonstrate the advantage of sketch
methods over traditional dimension reduction methods and
the improvement of asymmetric estimators over the basic
symmetric ones. We then plug our methods into a similarity
search algorithm and evaluate the space reduction achievable
by the new asymmetric estimators.

We have shown in Section 4.2 that L2 distance and cosine
similarity are essentially equivalent. Due to the page limit,
we evaluate both L2 Sketch and cosine sketch under L2 mea-
sure by using the Cosine Sketch to estimate L2 distance.

5.1 Datasets
We use two high-dimensional datasets, i.e. images and

audio, in our evaluation. These datasets are reasonably large
and reflect real-life usage. Table 1 is a summary of these
datasets.
Image: The image dataset is extracted from the Caltech
101 [4] object recognition benchmark. This dataset con-
tains 101 object categories and a background clutter cate-
gory, with 9144 images in total. We convert the images into
grayscale PGM format and use the SIFT [9, 12] algorithm
with default parameters to extract feature vectors, obtain-
ing nearly 4.5 million 128-dimensional feature vectors. We
treat feature vectors extracted from the same image as in-
dependent objects, as we only consider similarity search on
the feature vector level.
Audio: The audio dataset is the LDC-SWITCHBOARD-
1 [13] collection, which is a collection of about 2,400 two-side
telephone conversations among 543 speakers from all areas
of the United States. The conversations are segmented into
individual words based on human transcription. We use the
Marsyas library [14] to extract feature vectors from the word
segments. For each word segment, we take a 512-sample
sliding window with variable stride to obtain 32 windows,
and from each window extract the first six MFCC param-
eters, resulting in a 192-dimensional feature vector. About
2.5 million feature vectors are extracted.

5.2 More on the Methods
For L2 distance, we compare the following six methods.

• L2 Sketch with symmetric and asymmetric estimators.
We use window size W = 900 for the image dataset,
and W = 23 for the audio dataset. These parame-
ters are tuned to be optimal for 100-nearest neighbors
search. We build lookup tables based on Lemma 1 to
map the sketch distances to L2 distance for explicit L2

distance estimation. For similarity search, the sketch
distances are directly used.

• Cosine Sketch with symmetric and asymmetric estima-
tors. We use Lemma 2 to directly convert the sketch

1e+02

1e+03

1e+04

1e+05

m
ea

n
sq

ua
re

d
er

ro
r

PCA
RP

sym cos
sym L2

asym cos
asym L2

 100 150 200 250 300 350 400 450 500 550 600
L2 distance

distance distribution

Figure 4: Accuracy of various L2 distance estima-
tion methods on different distance values of the im-
age dataset. Note that only the small distances are
interesting to similarity search.

distances to cosine similarity, and further convert co-
sine similarity to L2 distance with saved 2-norms.

• PCA (Principal Component Analysis) and RP (Ran-
dom Projection), also considered as sketches to serve
as performance baselines.

For L1 distance, we simply compare the symmetric and
asymmetric estimators of L1 Sketch.

We always allocate sketches in full bytes to simplify im-
plementation. Actually, varying sketch size by less than one
byte does not make a practically significant difference in per-
formance. For Cosine Sketch, we need the 2-norms of the
vectors to estimate L2 distance, and count 4 extra bytes into
sketch size. For PCA and RP, we use 32-bit floating-point
representation, and thus count each dimension as four bytes.

We implement asymmetric sketch distances in the follow-
ing way. Assume an m-bit sketch length, we pre-calculate for
each query point an m×2 matrix M , M [i][j] being the value
to be added if bit-i of the data sketch is j. Therefore, eval-
uating the asymmetric sketch distance for each data point
involves m floating-point additions.

5.3 Evaluation of Distance Estimation
Because our asymmetric estimator of L1 Sketch does not

produce a proper estimation of L1 distance, we do not con-
sider L1 distance here. We only evaluate the L2 distance re-
lated methods. Also, we only use the image dataset, which is
sufficient to demonstrate the behavior of different methods.

First, we measure the mean squared error of various meth-
ods at different distance values. We randomly sample 100,000
pairs of points from the image dataset, create sketches for
them, estimate the distance for each pair with sketches, and
then compare the estimations with real distances. We then
bin the squared error values according to the correspond-
ing real distances and take the average of each bin. For
asymmetric estimators, we use the raw feature vector of one
arbitrary point from each pair. The results are plotted in
Figure 4. We also attach the distribution of real L2 distance
in the bottom of the figure to show the relative importance
of different distance values.

1e+02

1e+03

1e+04

1e+05

 0 20 40 60 80 100 120 140

m
ea

n
sq

ua
re

d
er

ro
r

sketch size / byte

PCA
RP

sym cos
sym L2

asym cos
asym L2

Figure 5: Mean squared error of different methods
vs. sketch size, image dataset.

Figure 4 gives a clear view of how different methods be-
have for different distance values. The L2 Sketch curves
are most interesting, for the errors are low when distance is
small, but beyond 400, the errors increase dramatically as
distance grows. Note that the turning point is tunable in
practice via the window size W . The curves of the other
methods are relatively flat. Especially, the Cosine Sketch
estimators are pretty consistent across the whole distance
range, and are the first choice if one is interested in estimat-
ing distances for arbitrary points rather than for the nearest
neighbors only.

We then consider the overall accuracy vs. sketch size. For
the purpose of nearest neighbor search, it does not make
sense to cover the whole distance range from zero to infinite.
Instead, we only consider the distance range from 0 to 300,
which is around one standard deviation (∼ 60) beyond the
average distance of the 100th nearest neighbor (∼ 250). We
sample from the image dataset 1000 pairs of points that are
within this distance range, and take the mean squared error
of different methods at different sketch sizes. The results are
shown in Figure 5.

The curves in Figure 5 can be grouped into three cate-
gories, from low to high in accuracy: dimension reduction
methods, sketches with symmetric estimators and sketches
with asymmetric estimators. The relative performances of
these methods are mostly consistent across the whole figure.
The more than 50% error reduction of the sketch methods
over PCA and RP clearly shows their superiority. The figure
also shows that the improvement of an asymmetric estima-
tor (from “sym cos” to “asym cos”) is larger than using a
better sketch scheme (from “sym cos” to “sym L2”).

In the above two figures, RP consistently out-performs
PCA in terms of mean squared error. This is mainly be-
cause PCA has a systematic bias that makes it always lower-
estimate actual distance. This bias does not affect similarity
search and we will see that PCA is actually better at simi-
larity search.

5.4 Evaluation of Similarity Search
With the accuracy improvements of our new methods con-

firmed, in this subsection we evaluate the methods in the sce-
nario of similarity search, and see how they improve search
quality, and equivalently, reduce the space requirement to
achieve a fixed quality.

Here is how we create the evaluation benchmark: for each

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

re
ca

ll

sketch size / byte

(a) Image

asym L2
asym cos

sym L2
sym cos

PCA
RP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

re
ca

ll

sketch size / byte

(b) Audio

asym L2
asym cos

sym L2
sym cos

PCA
RP

Figure 6: Recall vs. sketch size, L2 distance.

dataset, we pick 100 points at random as query points, and
use the rest of the points as the data points indexed. For
each query point, we sequentially scan all the data points for
k nearest neighbors under each distance measure concerned,
and use these results as the ground truth. We use k = 100
in our experiments.

We measure search quality by recall, which is the per-
centage of the true nearest neighbors found by the query
algorithm. We do not consider precision here, but use the
equivalent filter ratios t and t′ as input parameters to the
query algorithm explained below.

We use the same query algorithm as modeled in [15]. The
query algorithm with symmetric estimators proceeds in two
steps: first, scan the sketches for a candidate set of t × k
points with smallest sketch distances to the query point;
second, scan the raw feature vectors of the candidate set,
and find the top k within them as the final result. We use
t = 20 in all our experiments.

Asymmetric estimators take more computation than the
symmetric ones, and filtering all the sketches with asymmet-
ric estimators is not always affordable. As a work-around,
we extend the query algorithm with an extra filtering step.
We first scan the sketches with a symmetric estimator for
t′× t×k candidate points, and then use an asymmetric esti-
mator to rank them and choose the top t× k candidates for
final re-ranking with raw feature vectors. Our experience
shows that t′ = 10, which we use throughout the following
experiments, provides nearly identical recall as using asym-
metric estimators to scan all the sketches.

The relationships between t, k and recall are thoroughly
studied in [15] and are not our focus in this paper. Instead,
we focus on the recall/size performance of different sketch
algorithms. Figure 6 shows the experimental results of L2

distance, and Figure 7 shows those for L1 distance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

re
ca

ll

sketch size / byte

(a) Image

asym L1
sym L1 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

re
ca

ll
sketch size / byte

(b) Audio

asym L1
sym L1

Figure 7: Recall vs. sketch size, L1 distance.

Image Audio
Recall 0.85 0.9 0.95 0.85 0.90 0.95

L2
sym 32 40 56 32 42 60
asym 22 29 39 23 32 48

Reduction 31% 28% 30% 28% 24% 20%

Cos
sym 40 54 73 41 54 73
asym 26 32 42 25 32 46

Reduction 35% 41% 43% 30% 41% 37%

L1
sym 51 66 92 64 80 120
asym 43 59 83 47 64 106

Reduction 16% 11% 10% 27% 20% 12%

Table 2: Space requirement (in bytes) of various
methods to achieve specific recalls. Here L2 sketch
and Cosine sketch are evaluated with L2 distance,
and L1 sketch is evaluated with L1 distance.

Figure 6 shows that for each sketch method, the asym-
metric estimator always out-performs the symmetric one.
The improvement is especially significant when the sketch is
small. But even at a baseline recall of 0.90, the asymmet-
ric methods still achieve a 0.05 improvement in most cases.
The results for L1 distance, as shown in Figure 7, are not as
good; however, we do see a consistent improvement.

The performance of PCA on the audio dataset is pretty
interesting, as the recall grows very quickly when the size
is smaller than 32, or 8 dimensions, reaching one of the
sketch methods at 8 dimensions, and then slows down sig-
nificantly. This suggests that the intrinsic dimension of the
audio dataset might be around 10.

Table 2 shows the minimal sketch sizes of symmetric and
asymmetric methods to reach various recall values. For L2

distance, the asymmetric estimators achieve sketch size re-
duction from 20% to 43%. For L1 distance, the reduction is
smaller, from 10% to 27%.

6. CONCLUSION
In this paper, we proposed the idea of asymmetric distance

estimators to exploit the raw query points, which are not
used by traditional methods when estimating distances with
sketches. We apply the idea to three sketch algorithms, one
of them newly proposed in this paper. Our experimental
results confirm the precision improvement of the asymmetric
estimators, and show that to achieve the same search quality,
the asymmetric estimators can reduce the space requirement
by 10% to 40%.

The asymmetric estimators designed in this paper are a
proof of concept, and the potential performance limit of

asymmetric estimators is an open question. Designing bet-
ter asymmetric estimators, especially for L1 distance, is an
interesting direction for future research.

Acknowledgments
This work is supported in part by NSF grants EIA-0101247,
CCR-0205594, CCR-0237113, CNS-0509447, DMS-0528414
and by research grants from Google, Intel, Microsoft, and
Yahoo!. Wei Dong is supported by Gordon Wu Fellowship.

7. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity

of approximating the frequency moments. In STOC ’96:
Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pages 20–29, 1996.

[2] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In STOC ’02: Proceedings of the
thiry-fourth annual ACM symposium on Theory of
computing, pages 380–388, 2002.

[3] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SCG ’04: Proceedings of the twentieth
annual symposium on Computational geometry, pages
253–262, 2004.

[4] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: an incremental
bayesian approach tested on 101 object categories. In
IEEE. CVPR 2004, Workshop on Generative-Model Based
Vision, 2004.

[5] I. Fodor. A survey of dimension reduction techniques.
[6] A. Gionis, P. Indyk, and R. Motwani. Similarity search in

high dimensions via hashing. In Proc. of 25th Intl. Conf.
on Very Large Data Bases(VLDB), pages 518–529, 1999.

[7] M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J.
ACM, 42(6):1115–1145, 1995.

[8] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In STOC
’98: Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 604–613, 1998.

[9] D. G. Lowe. Object recognition from local scale-invariant
features. In Proc. of the International Conference on
Computer Vision ICCV, Corfu, pages 1150–1157, 1999.

[10] Q. Lv, M. Charikar, and K. Li. Image similarity search with
compact data structures. In CIKM ’04: Proceedings of the
thirteenth ACM international conference on Information
and knowledge management, pages 208–217, 2004.

[11] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.
Efficient filtering with sketches in the ferret toolkit. In MIR
’06: Proceedings of the 8th ACM international workshop
on Multimedia information retrieval, pages 279–288, 2006.

[12] SIFT demo. http://www.cs.ubc.ca/~lowe/keypoints/.
[13] SWITCHBOARD-1 Release 2.

http://www.ldc.upenn.edu/Catalog/docs/switchboard/.
[14] G. Tzanetakis and P. Cook. MARSYAS: A Framework for

Audio Analysis. Cambridge University Press, 2000.
[15] Z. Wang, W. Dong, W. Josephson, Q. Lv, M. Charikar, and

K. Li. Sizing sketches: a rank-based analysis for similarity
search. In SIGMETRICS ’07: Proceedings of the 2007
ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pages
157–168, 2007.

[16] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In VLDB ’98:
Proceedings of the 24rd International Conference on Very
Large Data Bases, pages 194–205, 1998.

