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ABSTRACT
Building content-based search tools for feature-rich data has
been a challenging problem because feature-rich data such
as audio recordings, digital images, and sensor data are in-
herently noisy and high dimensional. Comparing noisy data
requires comparisons based on similarity instead of exact
matches, and thus searching for noisy data requires similar-
ity search instead of exact search.

The Ferret toolkit is designed to help system builders
quickly construct content-based similarity search systems for
feature-rich data types. The key component of the toolkit is
a content-based similarity search engine for generic, multi-
feature object representations. To solve the similarity search
problem in high-dimensional spaces, we have developed ap-
proximation methods inspired by recent theoretical results
on dimension reduction. The search engine constructs sketches
from feature vectors as highly compact data structures for
matching, filtering and ranking data objects. The toolkit
also includes several other components to help system builders
address search system infrastructure issues. We have im-
plemented the toolkit and used it to successfully construct
content-based similarity search systems for four data types:
audio recordings, digital photos, 3D shape models and ge-
nomic microarray data.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Search pro-
cess, Information filtering]

General Terms
Algorithms, Measurement, Performance, Design

Keywords
similarity search, feature-rich data, toolkit, sketch

1. INTRODUCTION
Digital data volume has been increasing at a phenomenal

rate during the past decades [28]. The “Moore’s law curve”
(doubling every 18 months) no longer refers only to the expo-
nential improvement rate of processor performance, storage
density and network bandwidth, but also to the data growth
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rates of many disciplines [19]. The dominating data types
are feature-rich data such as audio, digital photos, videos,
and other sensor data. As we are moving into a digital so-
ciety where all information is digitized and where the world
is interconnected by digital means, it is highly desirable for
next-generation systems to provide users with abilities to
access, search, explore and manage feature-rich data.

A key challenge in implementing a content-based similar-
ity search system for feature-rich data is that such data is
noisy and complex. For example, consider two different pho-
tographs of an identical scene, or two separate recordings of a
person speaking the same sentence. Despite the high degree
of similarity between the two images or between the audio
recordings, the digital representations are different at the bit
level. Comparing noisy, feature-rich data requires matching
based on similarity instead of exact match, and thus search-
ing for noisy data requires similarity search instead of ex-
act search. However, similarity search in high-dimensional
spaces is notoriously difficult (the so called curse of dimen-
sionality). Hence, practical advanced search solutions, such
as database tools and search engines (e.g. Google), have
been limited to searching for exact matches and tend to work
only for text documents and text annotations.

This paper presents a toolkit called Ferret that is designed
to help system builders quickly construct content-based sim-
ilarity search systems for various types of feature-rich data.
By building a toolkit as the common software infrastruc-
ture to solve the core content-based similarity search prob-
lems, system implementers can easily add new content-based
search capabilities by developing and plugging in data-type
specific segmentation and feature extraction modules. This
allows implementers to separate their design concerns for
specific data types from the core capability of content-based
similarity search. With the toolkit, a computer vision engi-
neer can plug in her image segmentation, feature extraction,
and distance function modules to construct a content-based
similarity search system without worrying about how to deal
with metadata management, filtering, indexing and ranking.
A genomic researcher can use the toolkit as her research
platform to experiment with her new distance functions for
finding similar genes. The toolkit for content-based similar-
ity search of feature-rich data will play a similar role to that
of the text-based search engines in next-generation operating
systems.

A key component in the Ferret toolkit is a general-purpose
similarity search engine. To deliver high-quality similarity
search results with minimal CPU cycles and memory re-
sources, we have used sketch construction techniques based
on dimension-reduction ideas recently developed in the the-
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Figure 1: Object representation and distance computation.

ory community. Sketches are tiny data structures that can
be used to estimate properties of the original data.

To help system builders quickly construct a content-based
similarity search system, the Ferret toolkit provides several
other software components, including a metadata manager,
an attribute-based search tool, a command-line query inter-
face, a data acquisition system, a web interface, and a perfor-
mance evaluation tool. The toolkit provides system builders
with an API to “plug in” data-type specific segmentation,
feature extraction, and distance function modules.

We have designed and implemented the Ferret toolkit, and
report user experiences as well as performance evaluation
results. Recently, the toolkit has been used to construct
content-based similarity search systems for four feature-rich
data types including digital images, audio recordings, 3D
shape models, and genomic microarray data. Our initial
experience has been very positive. Our initial users were
able to construct a search system including a web client in-
terface in a few hours. Our experiments show that these
search systems can indeed achieve high-quality and high-
speed content-based similarity search with modest memory
requirements. The sketch technique implemented in the core
search engine is quite effective, reducing the storage require-
ment of feature-vector metadata by an order of magnitude
while achieving high speed and high quality.

2. THE SIMILARITY SEARCH PROBLEM
Similarity search refers to searching for objects similar to

a query object, i.e. containing similar features. Usually,
objects are represented by feature vectors and a distance
function is used to measure the similarity/dissimilarity be-
tween pairs of objects. Given a query object X, the goal
is to find all objects Y in the collection such that the dis-
tance d(X, Y ) is within an allowed range, or to find k objects
that are closest to the query object (also referred to as the k
nearest neighbor problem). The complexity of the similarity
search problem depends on how complicated the data repre-
sentation and distance function are. We designed the Ferret
toolkit to support a fairly flexible data representation which
we now explain.

A simple representation for objects with D numeric at-
tributes is to represent them by points in D-dimensional
space. One particular class of distance functions commonly
used with such a representation are the `p norms, where the
distance between points X(X1, . . . , XD) and Y (Y1, . . . , YD)
is given by

d(X, Y ) =

0@ X
1≤i≤D

(Xi − Yi)p

1A1/p

In some practical settings, feature-rich data is more com-
plex than the simple description above. In many cases of

interest, objects are better represented by a set of feature
vectors, each a point in some high dimensional space with
an associated weight. The general mathematical representa-
tion for a feature-rich data object is:

X = {< X1, w(X1) > . . . , < Xk, w(Xk) >}

where Xi = (Xi1, . . . , XiD), w(Xi) is the weight of Xi, and
k is variable. Since k may vary from object to object, this
representation is flexible and applicable to most feature-rich
data types.

Figure 1 shows an example where an image is decomposed
into a set of segments. Each segment is represented by a D-
dimensional feature vector with associated weight to describe
color, shape, area, and coordinates.

With the general representation, there are now two dis-
tance functions. The first is the distance between two seg-
ments, i.e. the distance between two feature vectors in the
D-dimensional space. We refer to it as the segment distance
function. The commonly used segment distance functions
are lp norms.

The second is the distance between two objects X and Y ,
which is now quite different from the distance function for
the simple representation. Since each object is now repre-
sented by a set of vectors and the number of vectors can
vary from object to object, we now need to define d(X, Y )
between two sets of vectors, by matching up the weighted
vectors of X with the weighted vectors of Y in the best pos-
sible way. We call such a distance function an object distance
function. The object distance function is defined using the
segment distance function.

An example of an object distance function is the Earth
Mover’s Distance (EMD) [33], which has been used success-
fully in both image and audio similarity search. EMD cal-
culates the minimal amount of work needed to transform
one distribution into another by moving distribution “mass”.
This is a natural distance measure for weighted sets of fea-
tures and is applicable to image, audio and scientific data.
For example, two sound files that exhibit similar segments,
but in different order, would be judged similar by the EMD
method.

As discussed in the introduction, similarity search in high
dimensions is a notoriously difficult problem. Our approach
to solving this problem for feature-rich data is to develop
approximation techniques. Inspired by recent theoretical re-
sults on dimension reduction, we have developed two novel
methods for the toolkit. The first is to construct sketches
from feature vectors and use sketches to estimate segment
distances with simple calculations such as Hamming distance
(i.e. how many bits are different between two bit vectors).
Since sketches are typically an order of magnitude smaller
than the original feature vectors, this approach dramatically
reduces the CPU and memory resource requirements.



The second method is to decompose the similarity search
process into two steps: filtering and ranking. The goal of
the filtering phase is to quickly filter out most objects that
are unlikely to be similar to the query object, resulting in
a small candidate set. The ranking step performs the more
time-consuming but more accurate distance computations
for each object in the candidate set and returns the objects
that are similar to the query object.

3. TOOLKIT ARCHITECTURE
The main goal of the Ferret toolkit is to allow systems

builders to construct efficient content-based similarity search
systems for various feature-rich data types.

To accomplish this goal, we set several design require-
ments:

• The toolkit should include a generic core search engine
with an interface that allows domain experts to plug in
data-type specific modules.

• The core search engine should achieve high-speed, high-
quality searches with minimal CPU and memory resources,
even with high-dimensional feature vectors.

• The toolkit infrastructure should solve a set of common
implementation issues such as persistence, crash recovery,
concurrency, and I/O performance.

• The toolkit should include a set of reusable components
that can be customized to build new similarity search sys-
tems.

Based on the design requirements, we have designed a
toolkit that exports two interfaces. The first is an inter-
face for data-type specific algorithms. This interface allows
users to parameterize the toolkit by specifying the imple-
mentation of segmentation, feature extraction, and distance
functions. As a result, the toolkit provides a platform for do-
main experts to build new search systems without having to
implement the core search engine components from scratch.
The ability to parameterize the toolkit by choices for data-
type specific algorithms also facilitates algorithm design and
implementation since it simplifies the comparison and eval-
uation of new algorithms on a common infrastructure.

Second, the toolkit exposes a similarity search API to
client programs for data acquisition and search. Typical
clients of this API include the web interface client, a perfor-
mance evaluation tool, and automated tools for adding new
data to the system. Although we provide default implemen-
tations of each of these modules, we expect that users of the
toolkit will customize them for their particular applications.
For instance, the current web interface to an audio search
system that we have built displays file names, text anno-
tations, wave form diagrams, and benchmark performance
data, in addition to serving the audio files themselves. De-
pending on the data type supported by a search system, a
richer interface may be necessary.

The toolkit itself provides a core similarity search engine,
a simple attribute-based search engine, metadata manage-
ment, persistence, and crash recovery. These infrastructure
components are data type agnostic, but critical to the perfor-
mance and reliability of a search system. By taking a toolkit
approach, we can relieve users of the burden of implement-
ing, maintaining, and improving these generic components.

Figure 2 is a functional block diagram of the toolkit that
shows the relationship between the various components. Users
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Figure 2: The Ferret Toolkit Architecture

of the toolkit construct search systems by selecting compo-
nents from the toolkit, supplying a small number of data-
type specific routines that adhere to the construction inter-
face, and customizing the user interface, performance, and
data acquisition components as necessary. The core com-
ponents and the data-type specific algorithm implementa-
tions are linked into a single, concurrent program, while the
data acquisition and user interface modules interact with the
search engine either through the function-call level API or
remotely via a simple network protocol.

The toolkit consists of the following software components:

• Core similarity search engine implements the general pur-
pose similarity search capability for high-dimensional data
objects. It constructs highly compact data structures -
sketches - for feature vectors and performs filtering and
ranking.

• Attribute-based search engine implements the search capa-
bility by attributes of file objects. Attribute-based search
can be used to “bootstrap” similarity search or to further
refine an existing query.

• Metadata management provides a transaction-protected
storage facility for annotations, feature vectors, sketches,
and the mapping from data objects to file objects. The
metadata store is also responsible for providing persistence
across system shutdown and restart.

• Command-line query interface processes query commands
sent in a command format. This interface supports query
processing for web clients and scripting languages.

• Data acquisition implements a customizable component
that collects new data and inputs data into the similarity
search system.

• Web interface The toolkit provides a customizable web-
based interface for accessing the similarity search engine
via the command-line interface.

• Performance evaluation tool is a customizable tool that
allows domain experts and toolkit authors to run batch
queries to evaluate search quality and performance against
data-type specific benchmarks. The batch-oriented tools
enable an iterative approach to developing data-type spe-
cific feature extraction algorithms and distance functions.

To construct a similarity search system, the users of the
toolkit need to plug in several modules including segmenta-
tion, feature extraction, and distance functions.



4. IMPLEMENTATION DETAILS
This section presents the detailed design and implementa-

tion of the components in the Ferret toolkit. There are three
kinds of components: core components, plug-in components
and customizable components.

4.1 Core Components
Core components are the key elements of the toolkit that

are data type independent. There are three components:
similarity search engine, attribute-based search tool, and
metadata management.

4.1.1 Core Similarity Search Engine
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Figure 3: Core Similarity Search Engine

Figure 3 shows the architecture of the core similarity search
engine. There are two main operations: data input and
query processing. As shown in Figure 3, an input data ob-
ject is passed to a data specific segmentation and feature
extraction unit, which is provided by the programmer via
the Plug-in interface of the toolkit. This unit will segment
the input data object and generate a feature vector for each
segment. Each data object is now represented by a set of fea-
ture vectors which are then passed to the sketch construction
unit. The sketch construction component converts each fea-
ture vector into a compact bit vector (sketch). The sketches
will then be passed to the sketch database which is managed
by the metadata management component.

When a query is presented to the similarity search engine
via the similarity search API, the query data is first passed to
the same segmentation and feature extraction unit. Similar
to processing the input data, the unit will segment the query
data into segments and generate a set of feature vectors.
The feature vectors will be passed to the sketch construction
component to convert them into a set of sketches for the
filtering unit and similarity ranking unit.

The filtering unit filters the dataset according to the query
data object, either by comparing the sketches against the
sketch database or by computing the user-supplied segment
distance function directly against all feature vector meta-
data. It will filter out the objects whose distances to the
query object are beyond a certain threshold. The result is
a candidate set of data objects. The candidate set may in-
clude objects that are not similar to the query object, but
by design it misses very few objects that are similar.

The similarity ranking component will then be invoked
to rank the objects in the candidate set by computing the
object distance function plugged in by the user. The ranked
results will be returned.

Algorithm 1 Generate N × K Random (i, t) Pairs
input: N, K, D, min[D], max[D], w[D]
output: p[D], rnd i[N ][K], rnd t[N ][K]
pi = wi × (maxi − mini); for i = 0, . . . , D − 1
normalize pi s.t. Σd−1

i=0 pi = 1.0
for (n = 0; n < N ; n + +) do

for (k = 0; k < K; k + +) do
pick random number r ∈ [0, 1)
find i s.t. Σi−1

j=0 pi <= r < Σi
j=0 pi

rnd i[n][k] = i
pick random number t ∈ [mini, maxi]
rnd t[n][k] = t

end for
end for

Algorithm 2 Convert Feature Vector to N -Bit Vector
input: v[D], N, K, rnd i[N ][K], rnd t[N ][K]
output: b[N ]
for (n = 0; n < N ; n + +) do

x = 0
for (k = 0; k < K; k + +) do

i = rnd i[n][k]; t = rnd t[n][k]
y = (vi < t) ? 0 : 1
x = x

L
y

end for
bn = x

end for

Sketch Construction. Sketch construction is the key com-
ponent to achieve high-speed similarity search and to re-
duce metadata space requirement. The goal is to convert
high-dimensional data into sketches - compact data repre-
sentations via which one can accurately and efficiently esti-
mate the distance function without using the original high-
dimensional data. The challenge is to devise a highly com-
pact sketch which provides accurate estimates.

The sketch construction unit constructs a bit vector (sketch)
for each high-dimensional feature vector, such that the `1
distance of two high-dimensional feature vectors can be es-
timated by computing Hamming distance between sketches,
via XOR operations. The algorithms were first used for im-
age similarity search [27]. To initialize the sketch construc-
tion unit, one needs to specify:
• N : sketch size in bits,

• min[D]: min values of the D dimensions,

• max[D]: max values of the D dimensions,

• w[D] (optional): the weight of each dimension, and

• K (optional): threshold control whose default value is 1.
When K is greater than 1, the sketch construction unit pro-
duces sketches approximating a transformed version of the
segment distance (akin to applying a threshold) to reduce
the effect of outliers.

We briefly explain the intuition behind the sketch con-
struction procedure and refer the reader to [27] for technical
details and proofs. Algorithm 1 shows the initializing pro-
cess, where N × K random (i, t) pairs are generated. Then,
for every high dimensional feature vector, Algorithm 2 con-
structs N × K bits using the (i, t) pairs generated by Algo-
rithm 1. This procedure is designed such that the expected
distance between any pair of such N ×K bits is proportional



to the `1 distance between the corresponding high dimen-
sional feature vectors. Further, every group of K bits are
XORed to produce the final N -bit sketch. The Hamming
distances between these final bit vectors are proportional to
a transformed version of the `1 distances between the fea-
ture vectors. For feature vectors that are close, the distance
between the final bit vectors produced is proportional to the
original distance. However for feature vectors that are far
apart, the distance between the final bit vectors produced
is proportional to a dampened version of the original dis-
tance. Further this dampening effect increases with K. As
explained in [27], the precise values of large distances are
not important for the purpose of matching feature vectors.
This dampening (or thresholding) transformation is useful
in limiting the effect of such large distances.

To speedup similarity search and reduce the storage re-
quirement, users have the option to use compact sketches
as the only internal data structures. Our experience shows
that the sketch construction can typically reduce the space
requirement by an order of magnitude (i.e. the bit vectors
produced are an order of magnitude smaller than the feature
vectors) with minimal impacts on similarity search qualities.

Filtering for Similarity Search. Although it is possible
to perform a similarity search by computing the distances
from the query object to all data objects in the entire sys-
tem, this is very time consuming for massive amounts of
feature-rich data, due to the fact that most object distance
functions are complicated and relatively inefficient to com-
pute. To speedup the query process, the similarity search en-
gine performs a similarity search in two steps: the first step
quickly generates a small candidate set of similar objects and
the second step ranks the data objects in the candidate set.

The challenge is to find a small candidate set by filter-
ing out most of the data objects which are dissimilar to
the query data object, while retaining most of the similar
data objects. Our filtering approach is to stream through all
sketches of the dataset which is typically an order of magni-
tude smaller than the feature vector metadata and uses an
extremely fast distance function such as Hamming distance
to approximate user-defined segment distance function. Our
experience shows that the filtering technique approximates
`1 and `2 distance functions quite well in practice.

Since the toolkit uses a generic, multi-feature data object
representation, a generic filtering method needs to filter data
objects, each of which is represented by a set of weighted
feature vectors or a set of weighted sketches. Given a query
data object Q, our filtering algorithm selects r segments of
Q with the highest weights. Next, we identify objects in
the dataset with at least one of their segments close to one
of these high weight segments. A segment Tj is determined
to be close to a high-weight segment Qi if it is one of the
k nearest (most similar) segments to Qi and provided its
distance from Qi is within a certain threshold, which is a
decreasing function of w(Qi).

By using the Hamming distance on segment sketches (eas-
ily computed by XOR operations), the filtering step can ef-
ficiently filter out objects that are unlikely to be similar to
the query object, resulting in a much smaller candidate set.

The ranking step then computes the (more accurate) ob-
ject distance between the query object and each object in
the candidate set, thus refining the final answers to the
query. In the evaluation section, our performance results
show that filtering can greatly speedup query processing,

even for datasets with hundreds of thousands of objects.

4.1.2 Attribute-Based Search
Similarity search often needs to work together with at-

tribute or annotation based search. When per-file object
attributes or annotations exist, they provide a straightfor-
ward way either to “bootstrap” similarity search or to refine
a similarity based search. By definition, similarity search
requires a “seed” or initial query object. In some cases, this
initial object may be readily available, but in other cases the
user may wish to identify the seed object on the basis of ex-
isting attributes. These attributes may take several forms:
generic attributes such as creation time, automatically col-
lected annotations such as GPS coordinates stored with digi-
tal photographs, or manual annotations such as notes from a
meeting attached to a presentation. What’s more, attribute
searches can reduce the set of candidates for similarity search
and thus improve performance.

Our implementation incorporates a simple keyword at-
tribute search component built on top of Berkeley DB [31].
A separate database table is used to maintain keyword at-
tributes and user-defined annotations for the objects in the
dataset. A user can issue an attribute-only query to locate
objects of interest and then use those objects as the input
to subsequent similarity search queries. The user can also
issue queries with both attribute-based search and similarity-
based search criteria. When attribute-based criteria are avail-
able, the similarity search is performed only on objects that
match the query attributes.

4.1.3 Metadata management and crash recovery
The Ferret toolkit also includes metadata management,

which provides scalable and consistent storage. From a ro-
bustness and performance perspective, it is highly desirable
to tolerate power failures or software faults without rebuild-
ing internal metadata.

The metadata management is built on top of Berkeley DB
and it keeps the metadata such as feature vectors, sketches,
attributes in different tables. All the updates to the meta-
data associated with the same object are protected by database
transactions. This guarantees database consistency in case
of system failure. We use the B-tree index provided by
Berkeley DB to get efficient keyed access to the metadata.

In the interest of performance, we relax somewhat the
ACID guarantees made by Berkeley DB. In particular, we
assume that periodic checkpointing of the write-ahead log
is sufficient to reduce the window of vulnerability during a
crash: updates may not become durable for several seconds
or even minutes under high load. However, after a crash,
the metadata is guaranteed to be consistent and lost up-
dates can be recomputed by re-acquiring metadata since last
checkpoint with substantially less effort than reconstructing
the metadata in full.

4.1.4 Command-Line Query Interface
The rationale for a command line query interface is to

conveniently support web search interfaces and script lan-
guages. When the core components of the toolkit run as a
server, we found it very convenient to allow clients to issue
queries.

The command-line query interface is designed to process
client queries with various parameters including the number
of results to return, filter parameters, and attributes as well
as data-type specific parameters including adjusted weights



for feature vectors. The command-line query interface allows
users to use scripts to quickly experiment with different pa-
rameters without restarting the server. The command-line
query interface is also used to interface with the web inter-
face and performance evaluation tool.

4.2 Plug-in Components
Plug-in components are provided by system builders to

construct a similarity search system for a specific data type.
There are two components: the segmentation and feature ex-
traction component and the distance functions component.

4.2.1 Segmentation and Feature Extraction
Segmentation and feature extraction is the key process to

“digest” feature-rich data. Since this process is data depen-
dent, the Ferret toolkit must provide a convenient interface
such that programmers can “plug-in” new segmentation and
feature extraction units easily. In order to work with the
general-purpose similarity search engine, the job of a spe-
cific segmentation and feature extraction unit is to segment
the input data and extract feature vectors. The challenge
is to derive a small set of features that characterize the im-
portant attributes of the data and to define an effective,
general-purpose similarity measure for the feature vectors.

When a new data object is presented to the system, it calls
the client-implemented segmentation and feature extraction
unit. The interface is defined as following:
ObjectT seg_extract_func(const char *filename);

The input to this function is the file name of the newly added
object. Within this function, the data object is segmented
into k segments, and for each segment, a D-dimensional (D
is data type specific) feature vector is extracted. There is
also a weight wi associated with each segment, to describe
the “importance” of that segment. For instance, in an image
of a house and some flowers, the segment corresponding to
the house may be considered more important than a small
flower segment. The weights for the different segments of an
object are normalized so that they add up to 1.

After segmentation and feature extraction, the object X
is now represented by a data structure of type ObjectT:
ObjectT {

int k; // number of segments
float* weights // segment weights
FeatureT* features; // segment features

}

4.2.2 Distance Functions
The Ferret toolkit uses two distance functions for simi-

larity search: segment distance function and object distance
function. The user can either use built-in default functions
or define herself.
float seg_distance(FeatureT segA, FeatureT segB);

float obj_distance(ObjectT objA, ObjectT objB);

When processing a query, seg distance() is used by the
filtering unit to quickly filter out unlikely answers, while
obj distance() is used by the ranking unit to produce a final
ranking of the query results (see details in Section 4.1.1).

The Ferret toolkit has a built-in default object distance
function to measure the similarity between two data ob-
jects. This distance is based on Earth Mover’s Distance
(EMD) [33], which has been used successfully in both im-
age and audio similarity searches [33, 23, 18]. EMD is a

flexible metric for distributions on high dimensional points,
represented by weighted sets of high dimensional vectors.
Given two distributions represented by sets of weighted fea-
ture vectors and a distance function between pairs of vec-
tors (ground distance function), EMD reflects the minimal
amount of work needed to transform one distribution into
another by moving distribution “mass” (weights) around.
The physical analogy EMD refers to is the process of moving
piles of earth spread around one set of locations to another
set.

Given a data object X with m segments, and an data
object Y with n segments, EMD(X, Y ) is defined as:

EMD(X, Y ) = minΣiΣjfij · d(Xi, Yj)

subject to the following constraints:

fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n

Σn
j=1fij = w(Xi) 1 ≤ i ≤ m

Σm
i=1fij = w(Yj) 1 ≤ j ≤ n

where fij is the extent to which vector Xi is matched to Yj .
This is a natural distance measure for weighted sets of

feature vectors and is applicable to many data types. For
example, two sound files that exhibit similar segments, but in
different order, would be judged similar by the EMD method.

A recent study on image similarity search [27] proposes an
improved version of EMD which uses a square-root weighting
function and thresholding to adjust the importance of dif-
ferent segments. A programmer using the Ferret toolkit can
conveniently define her own weighting function and thresh-
olding function.

4.3 Customizable Components
The Ferret toolkit provides a set of customizable compo-

nents that are commonly used in building a similarity search
system, including data acquisition, Web interface and per-
formance evaluation tool.

Data Acquisition. The default data acquisition method is
via periodical scan of a designated directory in the file sys-
tem. Each newly added file in that directory will be imported
into the system. This provides a convenient way of continu-
ously importing data if each data object can be stored in an
individual data file. For data stored in other formats (e.g. in
an external database), the data acquisition module will need
to be customized to retrieve data from the source properly
and input into the system.

Web Interface. The web interface provides users with a
simple, yet platform independent way to issue query and
present search results. We implemented it by using the
Python scripting language to construct a stand-alone web
server and connecting it with the Ferret server using the
command line interface. Since the basic operation is the
same across different application types, we can share the
majority of the code for the web interface.

The application-specific presentation part is isolated and
can be easily constructed when a new application type is
added. The typical use of the web interface is to use attribute-
based query to bootstrap search process and to issue similarity-
based queries to find relevant content. In our experiments,
we find it very useful to be able to visualize search results.

Performance Evaluation Tool. One important common
task for building a similarity search engine is to determine



parameters and to experiment and evaluate the system per-
formance and search quality. The Ferret toolkit contains a
performance evaluation tool which can drive various perfor-
mance tests. The input we take is a formatted benchmark
file containing the performance benchmark suite which de-
scribes the ground truth for similarity search result. Once
the benchmark file is given, we are able to drive the test and
provide statistics like average precision and time spent for
the query.

5. USING THE FERRET TOOLKIT
We have built similarity search systems with the Ferret

toolkit for four different data types: image data, audio data,
3D shape data, and genomic microarray data. The first three
systems were built by the authors of this paper, and the last
one was built by an external research group.

To build a similarity search system using the Ferret toolkit,
a programmer needs to provide the following:

• A segmentation and feature extraction module.

• A segment distance function to compute distance between
two segments, and an object distance function between
two data objects.

• Parameters for sketching, filtering and ranking, including
sketch size, number of query segments to use in filtering,
number of filtered candidates to get for each query seg-
ment, and number of similar objects to return after rank-
ing.

The performance evaluation tool and the web interface in
the toolkit can be used for tuning parameters.

The following describes each use case including its segmen-
tation and feature extraction module, distance functions,
and possible user applications. We will comment on our
initial experience integrating these data types at the end of
this section, and provide some insights for programmers who
may be interested in building their own similarity search sys-
tem with the Ferret toolkit.

5.1 Image Data
For image data, we chose the Region-Based Image Re-

trieval (RBIR) approach as the base method to construct an
content-based image similarity search system. RBIR meth-
ods segment an image into multiple homogeneous regions
based on color and texture. A region is then represented
using a combination of color, texture, shape, and spatial in-
formation. It has been shown that RBIR methods provide
better search quality than the traditional Content-Based Im-
age Retrieval (CBIR) methods which uses global features
such as the color and texture of the whole image [40].

Segmentation.We chose to use the publicly available JSEG
segmentation tool [12] to segment images into segments. Fig-
ure 1 shows two images segmented using the segmentation
tool. The segmentation tool reads in an image and outputs
a matrix mapping each pixel to one of the segments. A user
can easily replace this tool with a new image segmentation
tool she has.

Feature Extraction. The feature extraction method is
proposed in our recent study on image similarity search [27].
In this method, each image segment is represented by a 14-
dimensional feature vector: 9 dimensions for color moments
and 5 dimensions for bounding box information. Color mo-
ments is a compact representation of color distribution and

our experiment’s positive outcome was unexpected
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Figure 4: Audio Segmentation

it has been shown in [29] that the performance of color mo-
ments is only slightly worse than high-dimensional color his-
tograms. The bounding box is the minimum rectangle cov-
ering a segment. We use 5 features to characterize it: aspect
ratio (width/height), bounding box size, area ratio (segment
size/bounding box size), and segment centroids.

The weight of each segment is proportional to the square
root of that segment’s size. The weights are normalized such
that the sum of all region weights is 1.

Distance Functions.The segment distance function we
use is weighted `1 distance on the 14-dimensional feature
vectors. We use the built-in sketching functionality of the
toolkit to filter images before ranking with the object dis-
tance function.

The object distance function is a thresholded EMD func-
tion. Segment distances are thresholded before EMD com-
putation to reduce the impact of segment “outliers” on the
overall object distance.

5.2 Audio Data
Although speech recognition has been well-studied in the

audio processing community, little work has been done on
generic audio similarity search. Some previous work has
considered the problem of music genre classification [42], but
there has been relatively little work on speaker-independent
similarity search for speech data. One possible approach us-
ing existing tools is to use speaker-independent speech recog-
nition to obtain a text transcript of the speech audio data,
and use the transcript as the basis for similarity search. How-
ever, due to the generally low accuracy of large vocabulary
speaker-independent recognition systems (60% at best un-
der optimal acoustical conditions) [37], and given that our
goal is to rapidly search audio data of all types, we have
opted to take a non-speech, non-text approach to construct
a similarity search system for audio speech recording data.

Segmentation.We segment audio data in two steps. The
first is to create data objects from a piece of audio data
by using an utterance-level segmenter that finds pauses in-
dicating the boundaries between statements. These bound-
aries are identified by considering the audio signal over 20ms
windows and computing both the number of zero crossings
and the root mean square (RMS) energy of the signal. The
presence of ten or more windows with RMS energy below a
certain threshold is taken to indicate an utterance boundary
unless there are a large number of zero crossings, which typ-
ically indicate the presence of unvoiced consonants [32]. The
next step is to break utterances (data objects) into smaller
segments that can be compared with one another. For the
evaluation of audio data, we use the human marked word
boundary in the TIMIT database [16] to segment the sen-
tence.
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Figure 5: 3D Shape Model Segmentation

Feature Extraction. For each audio segment, we use the
Marsyas library [41] to extract feature vectors. We use a
512 sample sliding window with variable stride to obtain
32 windows for each segment. We then extract the first
six MFCC parameters from each window to obtain a 192
dimensional feature vector for each segment. The weight of
each segment is proportional to the length of that segment,
and normalized so that the sum of all segment weights in
one data object equals to one.

Distance Functions.We have chosen to use `1 distance
as the segment distance function and use the built-in sketch
construction and filtering mechanisms to filter out most of
the sentences.

EMD is used as the object distance function. Using EMD
has the advantage that it does not respect order and hence
allows us to find similar sentences with the same words spo-
ken in a different order.

5.3 3D Shape Models
Shape-based matching and retrieval from databases of 3D

polygonal models is useful in computer vision, mechanical
CAD, archaeology, molecular biology, paleontology, medicine,
computer graphics, and several other fields. Various shape
matching algorithms for 3D models have been proposed in
the literature [25]. Usually, complicated shape descriptors
(with hundreds of or even thousands of dimensions) are com-
puted and a distance function such as `2 is used to determine
the similarity between two models.

To construct a 3-D shape similarity search system, we col-
laborate with the Princeton Shape Retrieval and Analysis
group. One of the authors modified their segmentation, fea-
ture extraction, and distance function modules based on the
Ferret toolkit’s Plug-in API and was able to construct a
search system in a few hours.

Segmentation.Each 3D model is represented by an Ob-
ject File Format file with the polygonal surface geometry of
the model. Each model is first normalized, then placed on a
64 × 64 × 64 axial grid. 32 spheres of different diameters are
used to decompose the model, and there is one spherical de-
scriptor representing the intersection of the voxel grid with
each concentric spherical shell. See Figure 5.

Feature Extraction. The shape descriptor used in our
system is called Spherical Harmonic Descriptor (SHD) [25],
which is rotation invariant. Values within each of the 32
spherical shells obtained in the segmentation phase are scaled
by the square-root of the corresponding area and represented
by their spherical harmonic coefficients up to order 16.

When comparing two 3D models (represented by two sets
of spherical descriptors), we only compare spherical descrip-
tors corresponding to the same spherical shell at the same
scale. Thus, we can “concatenate” all the spherical descrip-
tors of a 3D model in a predefined order, resulting in a
32 × 17 = 544-dimensional shape descriptor for each 3D
model.

Genes

Experiments

Figure 6: Gene Expression Microarray Data

Distance Function. Since each object has only one fea-
ture vector. Only one distance function is needed; the seg-
ment distance function is the object function. Although the
original search system by the Princeton Shape Retrieval and
Analysis Group used `2 distance, we chose to use `1 distance
and use the sketching mechanism to estimate the distance
between two shape descriptors.

5.4 Genomic Data
Research group at the Princeton Bioinformatics and Func-

tional Genomics Lab used the Ferret toolkit to construct
search tools for their data analysis. Since searching genes
with similar functionality is crucial in the study of gene
functions, they use the toolkit to construct search tools to
analyze gene expression microarray data in the context of
gene function prediction. Specifically, they want to evaluate
which types of features and feature selection techniques are
most effective for identifying similarly expressed (behaving)
sets of genes.

Segmentation.The genomic data are represented as ma-
trices of real valued or binary measurements, where a value
in row i and column j is the expression level of gene i in
experiment j (in case of microarrays) or the representation
of whether genes i and j interact. Each data object is the
expression of a gene. Figure 6 shows some example microar-
ray expression data, in which different colors mean different
expression levels. Here, segmentation only requires segment-
ing the big matrix row by row to get the information for each
gene.

Feature Extraction. The expression data for each gene is
used directly as the feature vector (a row in the microarray
genomic dataset). For a given dataset, each gene has only
one feature vector.

Distance Function. Since each gene only has one feature
vector (segment), the same distance function is used for both
segment distance and object distance. The research group
has been experimenting with three different distance func-
tions to compute the distance between two genes, including
Pearson correlation, Spearman correlation, and `1 distance.

5.5 Summary
Our initial experience with using the Ferret toolkit has

been positive. The general-purpose design of our toolkit
has made it convenient to build similarity search systems
for different types of data. Given domain-specific segmen-
tation and feature extraction routines and appropriate dis-
tance functions, it is straightforward to plug in modules and
to set parameters for a new type of data.

To construct the similarity search system for 3D shape
data, one of the authors was able to complete a working
system with a web interface up and running in less than



two hours. This process included writing wrapper code for
the Plug-in Interface of the toolkit and customizing the web
interface code to work with 3D models. The main reason
for the fast system construction is that we reused the seg-
mentation, feature extraction, and distance function codes
written by our collaborators. The performance evaluation
section shows that the resulting 3D shape similarity search
engine provides similar quality search results as existing sys-
tems with metadata only 1/30 of that used by previously
reported systems [36].

The researcher at the Princeton Bioinformatics and Func-
tional Genomics Lab reported that the Ferret toolkit is fairly
easy to use and that the system is fast and efficient.

6. PERFORMANCE EVALUATION
As described in the previous section, it is possible and

fairly easy to build content-based similarity search systems
using the Ferret toolkit. This section reports our investiga-
tion on performance issues of the Ferret toolkit, namely:
• Can the systems built with Ferret toolkit achieve high-

quality similarity search results at a high speed?

• How small can the sketches be as the metadata of the
similarity search systems?

• How much benefit can we get by using the sketching and
filtering techniques?
To answer these questions, we have conducted experiments

with three of the systems built with Ferret: image search,
audio search and 3D shape model search.

6.1 Benchmarks
We have used two benchmark suites in our evaluation: a

search-quality benchmark suite and a search-speed bench-
mark suite. Each of the benchmarks in the search-quality
suite has a number of predefined similarity sets of unordered
data objects as the gold standard. Ideally, using any object
in a similarity set as the query item should retrieve the other
objects in the similarity set as highly ranked search results.
To test search quality, we use one of the data objects in a
similarity set as the query data object in a similarity search.
We will then use the search-quality metrics mentioned below
to evaluate the quality of this particular search.

There are three benchmark datasets in the search-quality
benchmark suite:
• VARY Image Benchmark is an image collection with

about 10,000 general-purpose images [21]. A group of re-
searchers manually defined 32 similarity image sets for
this collection [38]. These sets are in different image cate-
gories. Our experiments use these 32 similarity image sets
for search quality evaluation.

• TIMIT Audio Benchmark is an audio collection from
the DARPA TIMIT speech database that contains 6,300
English sentences spoken by 630 speakers [16]. We de-
fine 450 speech similarity sets, where each set contains 7
utterances of the same sentence spoken by 7 different peo-
ple. Our experiments use the 450 speech similarity sets
for search quality evaluation.

• PSB Shape Benchmark[36] is a collection of 1,814 3D
shape models. The original benchmark designates 907
models as its training set and the rest as test set. The
training set is classified into 90 classes, and the test set
has 92 classes. Our experiments use the 92 classes of the
test set for the search quality evaluation, and each of the
907 models in the test set is used as a query.

There are three benchmark datasets in the search-speed
benchmark suite:

• Mixed Image Dataset contains about 600,000 images,
mostly crawled from the Web. This dataset also includes
about 60,000 images from the Corel image collection.

• TIMIT Audio Dataset is the same TIMIT audio bench-
mark collection. We reuse it to do the search speed test.

• Mixed Shape Dataset [5] has about 40,000 3D polyg-
onal models, including about 36,000 free models down-
loaded from the Web, about 2,000 commercial viewpoint
models, about 1,000 commercial De Espona Models, and
about 2,000 commercial Cacheforce models.

6.2 Evaluation Metrics
We have used three measures as the metrics to answer the

questions above: speed, space requirement, and search qual-
ity. To measure search speed, we use the average running
time of all the queries on our benchmark datasets. To mea-
sure the space requirement, we use different sketch sizes and
show the corresponding search quality and search speed. To
measure similarity search quality, we use three commonly
used search-quality metrics: first-tier, second-tier and aver-
age precision:

• First-tier is the percentage of data objects in the query
similarity set that appear within the top k search results,
where k depends on the size of the query similarity set.
Specifically, for a query similarity set Q, k = |Q| − 1. The
first-tier statistic indicates the recall for the smallest k
that could include 100% of the data objects in the query
similarity set. Suppose Q = {q1, q2, q3} and the query is
q1. If the top 2 search results are r1 and q2, the first-tier
score is 50%.

• Second-tier is similar to the first tier except that k =
2 · (|Q| − 1). The second-tier is less stringent since k is
twice as large. The ideal result is still 100% and higher
values mean better similarity search results. Suppose Q =
{q1, q2, q3} and the query is q1. If the top 4 search results
are r1, q2, q3, and r4, the second-tier score is 100%.

• Average precision considers where data objects of a
query similarity set appear in the search results. Con-
sider a query q with an unordered gold standard set Q
and k = |Q| − 1. Let ranki be the rank of the i-th data
object of Q in the ordering returned by the search oper-
ation. For evaluation purposes, we will assume that any
data item not returned in the result set by the search pro-
cedure has a default rank equal to the size of the dataset.
Then average precision is defined as follows:

Average precision =
1
k

kX
i=1

i

ranki

Suppose Q = {q1, q2, q3} and the query is q1. If the search
results are r1, q2, q3, and r4, the average precision is 1/2 ·
(1/2 + 2/3) = 0.583.

6.3 Results
The evaluation is done on a PC system with a single Intel

Pentium-4 3.0GHz CPU with 512KB L2 cache. The PC
system has 2GB of DRAM and a 60GB 7,200RPM Maxtor
disk. It runs Linux with a 2.4.20 kernel.

All results reported in this paper are average numbers ob-
tained by running experiments multiple times.



Methods Average 1st Tier 2nd Tier Feature Vector Sketch Size
Precision Size(bits) Size(bits) ratio

VARY Image Ferret 0.59 0.54 0.63 448 96 4.7:1
SIMPLIcity 0.41 0.41 0.47 264 n/a n/a

TIMIT Audio Ferret 0.72 0.68 0.74 6,144 600 10.2:1
PSB 3D Shape Ferret 0.32 0.30 0.41 17,472 800 21.8:1

SHD 0.33 0.32 0.43 17,472 n/a n/a

Table 1: Results from the search-quality benchmark suite. SIMPLIcity and SHD are domain specific tools for image and 3D
shape search respectively.
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Figure 7: Average precisions of VARY image dataset, TIMIT audio dataset, and PSB 3D Shape dataset, varying the size of
sketch (in bits) per feature vector. The solid line in the plots indicate the average precisions using the original feature vectors.

6.3.1 Search Quality and Speed
To answer this question, we ran experiments with the

search-quality benchmark suite. For each benchmark dataset,
we used the first data object in each “gold standard” simi-
larity set as the query data object to obtain result. We also
compared our results with the best known domain specific
search tools. Table 1 reports our results.

The results show that all three systems achieve good search
quality for the benchmarks. For the VARY image bench-
mark, our image search system achieves much better search
quality (average precision of 0.59) than the SIMPLIcity sys-
tem [45] (average precision of 0.41), which is one of the best
reported image search systems in terms of metadata size and
search quality. For the TIMIT audio benchmark, our system
achieves average precision 0.72. We are not aware of other
content-based similarity search systems for speech audio to
make a direct comparison of performance on the TIMIT au-
dio benchmark. For the PSB 3D shape models, our system
achieves almost the same search quality numbers but saves
storage by a factor of 22, as compared to SHD [25], which has
been reported to have compact metadata and good search
quality [36].

Table 2 shows the results from the search-speed bench-
mark suite.

Number Avg. # Avg.
Benchmark of Data Segments Search

Objects /Object Time (s)
Mixed image 660,000 10.8 2.0
TIMIT Audio 6,300 8.6 0.09

Mixed 3D shape 40,000 1 0.01

Table 2: Results from the search-speed benchmark suite.

These results were obtained from the three similarity search
systems with the sketching and filtering mechanism turned
on. The search time for the Mixed 3D shape dataset is much
faster since it has only one feature vector per data object.

Ideally, we would like to evaluate whether the Ferret sys-

tems can maintain the search quality and speed with much
larger datasets. These are challenging questions to answer,
because there is no large-scale search-quality benchmark for
similarity searches. One of the main reasons is that there is
no universally agreed definition of similarity. Current bench-
marks are created by human subjects based on human per-
ception of similarity. The creation of large-scale similarity
search benchmarks remains an open problem.

6.3.2 Search Quality vs. Sketch Sizes
The core similarity search engine in the toolkit uses sketches

as its internal data structures. The smaller the sketches, the
more storage space it saves and the faster the system runs.
However, smaller sketches tend to lower search quality. We
are interested in determining the appropriate sketch sizes for
different data types.

To answer the question, we ran the search-quality bench-
mark suite with different sketch sizes. For each benchmark,
we measure the average precision for each sketch size. Fil-
tering is turned off in all these experiments.

Figure 7 plots the average precisions of different sketches
sizes. The data suggests that each curve has two “knee”
points: low and high. The low knee point indicates the
point below which (if the sketches are smaller than the low
knee point), search qualities will degrade quickly. The low
knee points in the data are 64-bit sketch for the VARY image
benchmark, 250-bit sketch for the audio TIMIT benchmark,
and 200-bit sketch for the 3D shape benchmark. The high
knee point indicates the point above which (if the sketches
are larger than the high knee point), search qualities will not
improve much. The high knee points in the data are 88-bit
sketch for the VARY image benchmark, 600-bit sketch for
the audio TIMIT benchmark, and 600-bit sketch for the 3D
shape benchmark.

The sketch sizes between the low and high knee points are
candidates to use for each data type. In other words, the
two knee points define a good sketch to original metadata
size ratio range. In the VARY image benchmark case, the
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Figure 8: Query Performance for Various Search Methods

ratio range is 5:1 to 7:1. In the audio TIMIT benchmark
case, the ratio range is 10:1 to 31:1. In the 3D shape bench-
mark, the ratio range is 29:1 to 87:1. Within the ranges,
the search quality degradations are within a few percentages
from those of their original metadata. This means that us-
ing sketches can reduce the metadata storage requirements
by one or two orders of magnitude with small degradations
of search quality.

6.3.3 Brute-Force, Sketching, Filtering
The Ferret toolkit allows users to select one of the three

approaches to perform similarity searches:

• BruteForceOriginal This approach computes the distances
between the query data object and every data object in
the system, using the original feature vectors.

• BruteForceSketch This approach computes the distances
between the query data object and every data object in
the system, using the sketches.

• Filtering This approach uses the segment sketch to filter
out very dissimilar data objects to create a candidate set
and then ranks the data objects in the candidate set by
computing their distances from the query data object.

We conducted our experiments with the search-speed bench-
mark suite. Figure 8 shows the performance trend for each
benchmark by varying the size of each dataset. Our obser-
vations on the results are as follows.

The first is that the search speed of the brute-force ap-
proach is proportional to the dataset sizes, as expected.
Most of the time spent on data object distance calculations.
Thus, the performance is sensitive to the average number
of feature vectors per data object. The average number of
feature vectors per data object of the image dataset is 11,
whereas that of the Mixed 3D shape models is 1. For 40,000
data objects, the search time of the brute-force approach
without sketches for the Mixed image dataset is about 2 sec-
onds, whereas that for the Mixed 3D shape dataset is only
about 50 milliseconds.

The second is that using sketches not only reduces meta-
data size, but also improves search performance, as expected.
The performance impact of using sketches is sensitive to the
ratio of original data size to sketch size. The higher the
ratio, the greater the impact it makes. In the Mixed image
dataset case, the ratio is 5:1. There is almost no performance
improvement in the results (but we do reduce the metadata
size). In the Mixed shape dataset, the performance improve-
ment is about factor of 4 since the ratio is 22:1.

The third observation is that filtering substantially im-
proves the performance over the brute-force approach using

sketches, but as expected, its search time increases propor-
tional to the number of data objects in a dataset. Overall,
filtering works well with modest dataset sizes. We believe
filtering can be very useful when a user performs a simi-
larity search in conjunction with an attribute-based search.
Since the result of an attribute-based search is likely to be a
smaller subset, it is natural to apply the filtering method on
the attribute-based search results as a way to combine the
two types of searches.

7. RELATED WORK
Although information retrieval has been extensively stud-

ied, no previous work has built a generic content-based sim-
ilarity search engine for very large-scale feature-rich data.
Most popular search engines such as Google, AltaVista, and
Yahoo! rely on keyword based search, manual annotations,
and the graph structure of hypertext documents [7, 1]. Sev-
eral recent systems have focused on building a unified index
for content in a personal file system which is searchable with
keywords, attributes, and annotations. Apple’s Spotlight [2]
is an example of one such system which uses per data-type
plugins to extract metadata and keywords as text suitable for
indexing. MyLifeBits is another such system that manages
personal information with rich annotations, both manually
and automatically generated [17]. The Stuff I’ve Seen focuses
on retrieved web pages [13]. Several desktop search tools
have been released recently by Google, Yahoo!, MSN, and
others. None of these systems has addressed how to perform
content-based similarity search for noisy, high-dimensional,
feature-rich data.

Domain-specific methods for content-based similarity search
have also been studied extensively. For image similarity
search, low-level features such as color, texture, and shape
are usually used[14, 34, 39, 44, 35]. Recent work has shown
that an effective approach is to first segment images and
extract features on a per-region basis. Our recent work on
image similarity search studied sketching methods as well as
improved EMD distance measure for image retrieval [27], but
this work did not study how to build a toolkit for large-scale
and multiple kinds of feature-rich data.

Previous work on audio similarity has tended to focus on
similarity search either for music [42, 6] or the spoken word.
For speech audio, traditional systems use speaker indepen-
dent automatic speech recognition system to generate a tran-
script and then apply text based search [20]. Some recent
systems [30] have instead used “phone”-based approaches.

Previous work on 3D shape search has focused on the con-
struction of shape descriptors (fixed-dimensional feature vec-
tors) describing 3D shapes, and distance functions on shape
descriptors to estimate similarity. Surveys of shape descrip-



tors and their distance functions can be found in [43, 10, 24].
Recent 3D shape search engines include [3, 4, 5].

Our similarity search engine draws on a number of re-
cent advances in the theory community in the construction
of compact data structures (“sketches”) and in general di-
mension reduction techniques. It is often possible to pro-
duce sketches such that a particular distance function on the
original data may be quickly estimated from the correspond-
ing sketches with provable bounds on the error. Early work
on sketches include the min-wise independent permutation
sketches for filtering near-duplicate documents that Broder
et al. developed for the AltaVista search engine [9, 8]. Sub-
sequent work by Indyk and Motwani [22] introduced the no-
tion of locality-sensitive hash functions selected so that the
collision probability is higher for pairs of objects that are
closer in some suitable sense. Such families are useful for
constructing compact data structures for nearest-neighbor
search. Kushilevitz, Ostrovsky and Rabani [26] developed
a hashing scheme to distinguish between pairs of objects
with `1 distances above and below a given threshold – we
adapt their ideas in our sketch construction. Charikar [11]
as well as Indyk and Thaper [23] developed compact rep-
resentations suitable for approximating the Earth Mover’s
Distance. Such schemes were recently used by Grauman and
Darrell [18] for efficient matching of contours and images.
For an overview of dimension reduction techniques, please
see Imola Fodor’s survey [15]. A natural question that comes
to mind is how our sketching scheme compares with locality
sensitive hashing [22]. Such a comparison is not well defined
since locality sensitive hash functions are designed for an in-
dexing approach, instead of the filtering approach we take.
Our use of sketches is to construct a compact representation
for accurate estimation of feature distances rather than for
indexing. Further, constructions of locality sensitive hash
functions depend on the underlying metric of interest and
have been devised for normed spaces such as `1 and `2. We
use a more complicated distance function on feature vectors
and use Earth Mover’s Distance to compute the distance be-
tween sets of feature vectors, so these results are not directly
applicable to our setting.

8. CONCLUSION AND FUTURE WORK
In this paper, we present the design and implementation

of the Ferret content-based similarity search toolkit. Using
this toolkit, we have built similarity search systems for im-
age, audio, and 3D shape model data. An external research
group has also used the toolkit for genomic data analysis.
Our experience has shown that it is straightforward to use
the toolkit for a variety of feature-rich data. Furthermore,
our experimental results show that the systems built with
the Ferret toolkit can achieve high-quality similarity search
at reasonably high-speed on common domain-specific bench-
mark datasets.

We have shown that using sketches can reduce metadata
storage requirements significantly with minimal degradation
of similarity search quality. For the VARY image bench-
mark, using a 96-bit sketch per feature vector (or about 94
bytes per image) reduces average precision by about 11%,
but uses only 1/5 of the original metadata size. For the
TIMIT audio benchmark, using a 600-bit sketch per word re-
duces average precision by about 4%, but uses about 1/10 of
the original metadata size. For the 3D shape model bench-
mark, using an 800-bit sketch per descriptor degrades the
average precision by about 3%, but uses only 1/22 of the

Figure 9: A screen shot of the web interface of the 3D
shape similarity search system constructed by using the Fer-
ret toolkit. It shows the query results of the first model
(shown in yellow). Each result includes name of the model
file, and its distance to the query model.

original metadata size.
The current implementation of the Ferret toolkit repre-

sents a first step toward building high-performance content-
based similarity search engine. Outstanding research prob-
lems include the design and implementation of improved in-
dexing data structures for similarity search, more effective
and efficient distance functions, and the design of sketching
algorithms for these functions. For instance, the improved
EMD distance function is an effective distance measure for
image and audio data, but it is relatively inefficient to com-
pute. We plan to explore more efficiently computable dis-
tance functions and to develop appropriate sketch algorithms
for them.

The current version of the toolkit uses filtering on sketches
to produce a small candidate set for subsequent ranking.
Although the use of sketches provides a substantial perfor-
mance benefit, we expect to investigate more efficient out-of-
core indexing data structures for similarity search to further
improve support for very large data sets. We also expect
to continue expanding the usage of Ferret toolkit to include
video and other sensor data and to release the toolkit to the
public domain.
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Figure 10: The image similarity search web interface show-
ing the result of an attribute-based search for the keyword
“dog” in the “Corel” image collection.

Figure 11: The result of image similarity search using
the second dog photo in the top row of the attribute-based
search results in the figure above.

Figure 12: The audio similarity search web interface showing the results of a sample search. Each row shows a similar audio
file, a link to listen to the audio file, transcribed text, as well as the curves of its first three MFCC parameters.

Figure 13: The genomic similarity search of the web interface showing the results of a search for the gene YJL190C. Each
row shows one similar gene, its gene/ORF names, a link to the gene’s information, its distance to the query gene, and its
colored expression visualization.


