
Algorithms

Robert Sedgewick
and

Kevin Wayne

Princeton University

FOURTH EDITION

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

vi

Preface .viii

1 Fundamentals . .3

1.1 Basic Programming Model 8

1.2 Data Abstraction 64

1.3 Bags, Queues, and Stacks 120

1.4 Analysis of Algorithms 172

1.5 Case Study: Union-Find 216

2 Sorting . 243

2.1 Elementary Sorts 244

2.2 Mergesort 270

2.3 Quicksort 288

2.4 Priority Queues 308

2.5 Applications 336

3 Searching . 361

3.1 Symbol Tables 362

3.2 Binary Search Trees 396

3.3 Balanced Search Trees 424

3.4 Hash Tables 458

3.5 Applications 486

CONTENTS

vii

4 Graphs . 515

4.1 Undirected Graphs 518

4.2 Directed Graphs 566

4.3 Minimum Spanning Trees 604

4.4 Shortest Paths 638

5 Strings . 695

5.1 String Sorts 702

5.2 Tries 730

5.3 Substring Search 758

5.4 Regular Expressions 788

5.5 Data Compression 810

6 Context . 853

Index . 933

Algorithms . 954

Clients . 955

viii

This book is intended to survey the most important computer algorithms in use today,
and to teach fundamental techniques to the growing number of people in need of
knowing them. It is intended for use as a textbook for a second course in computer

science, after students have acquired basic programming skills and familiarity with computer
systems. The book also may be useful for self-study or as a reference for people engaged in
the development of computer systems or applications programs, since it contains implemen-
tations of useful algorithms and detailed information on performance characteristics and
clients. The broad perspective taken makes the book an appropriate introduction to the field.

the study of algorithms and data structures is fundamental to any computer-
science curriculum, but it is not just for programmers and computer-science students. Every-
one who uses a computer wants it to run faster or to solve larger problems. The algorithms
in this book represent a body of knowledge developed over the last 50 years that has become
indispensable. From N-body simulation problems in physics to genetic-sequencing problems
in molecular biology, the basic methods described here have become essential in scientific
research; from architectural modeling systems to aircraft simulation, they have become es-
sential tools in engineering; and from database systems to internet search engines, they have
become essential parts of modern software systems. And these are but a few examples—as the
scope of computer applications continues to grow, so grows the impact of the basic methods
covered here.

Before developing our fundamental approach to studying algorithms, we develop data
types for stacks, queues, and other low-level abstractions that we use throughout the book.
Then we survey fundamental algorithms for sorting, searching, graphs, and strings. The last
chapter is an overview placing the rest of the material in the book in a larger context.

PREFACE

ix

Distinctive features The orientation of the book is to study algorithms likely to be of
practical use. The book teaches a broad variety of algorithms and data structures and pro-
vides sufficient information about them that readers can confidently implement, debug, and
put them to work in any computational environment. The approach involves:

Algorithms. Our descriptions of algorithms are based on complete implementations and on
a discussion of the operations of these programs on a consistent set of examples. Instead of
presenting pseudo-code, we work with real code, so that the programs can quickly be put to
practical use. Our programs are written in Java, but in a style such that most of our code can
be reused to develop implementations in other modern programming languages.

Data types. We use a modern programming style based on data abstraction, so that algo-
rithms and their data structures are encapsulated together.

Applications. Each chapter has a detailed description of applications where the algorithms
described play a critical role. These range from applications in physics and molecular biology,
to engineering computers and systems, to familiar tasks such as data compression and search-
ing on the web.

A scientific approach. We emphasize developing mathematical models for describing the
performance of algorithms, using the models to develop hypotheses about performance, and
then testing the hypotheses by running the algorithms in realistic contexts.

Breadth of coverage. We cover basic abstract data types, sorting algorithms, searching al-
gorithms, graph processing, and string processing. We keep the material in algorithmic con-
text, describing data structures, algorithm design paradigms, reduction, and problem-solving
models. We cover classic methods that have been taught since the 1960s and new methods
that have been invented in recent years.

Our primary goal is to introduce the most important algorithms in use today to as wide an
audience as possible. These algorithms are generally ingenious creations that, remarkably, can
each be expressed in just a dozen or two lines of code. As a group, they represent problem-
solving power of amazing scope. They have enabled the construction of computational ar-
tifacts, the solution of scientific problems, and the development of commercial applications
that would not have been feasible without them.

x

Booksite An important feature of the book is its relationship to the booksite
algs4.cs.princeton.edu. This site is freely available and contains an extensive amount of
material about algorithms and data structures, for teachers, students, and practitioners, in-
cluding:

An online synopsis. The text is summarized in the booksite to give it the same overall struc-
ture as the book, but linked so as to provide easy navigation through the material.

Full implementations. All code in the book is available on the booksite, in a form suitable for
program development. Many other implementations are also available, including advanced
implementations and improvements described in the book, answers to selected exercises, and
client code for various applications. The emphasis is on testing algorithms in the context of
meaningful applications.

Exercises and answers. The booksite expands on the exercises in the book by adding drill
exercises (with answers available with a click), a wide variety of examples illustrating the
reach of the material, programming exercises with code solutions, and challenging problems.

Dynamic visualizations. Dynamic simulations are impossible in a printed book, but the
website is replete with implementations that use a graphics class to present compelling visual
demonstrations of algorithm applications.

Course materials. A complete set of lecture slides is tied directly to the material in the book
and on the booksite. A full selection of programming assignments, with check lists, test data,
and preparatory material, is also included.

Links to related material. Hundreds of links lead students to background information about
applications and to resources for studying algorithms.

Our goal in creating this material was to provide a complementary approach to the ideas.
Generally, you should read the book when learning specific algorithms for the first time or
when trying to get a global picture, and you should use the booksite as a reference when pro-
gramming or as a starting point when searching for more detail while online.

xi

Use in the curriculum The book is intended as a textbook in a second course in com-
puter science. It provides full coverage of core material and is an excellent vehicle for stu-
dents to gain experience and maturity in programming, quantitative reasoning, and problem-
solving. Typically, one course in computer science will suffice as a prerequisite—the book is
intended for anyone conversant with a modern programming language and with the basic
features of modern computer systems.

The algorithms and data structures are expressed in Java, but in a style accessible to
people fluent in other modern languages. We embrace modern Java abstractions (including
generics) but resist dependence upon esoteric features of the language.

Most of the mathematical material supporting the analytic results is self-contained (or
is labeled as beyond the scope of this book), so little specific preparation in mathematics is
required for the bulk of the book, although mathematical maturity is definitely helpful. Ap-
plications are drawn from introductory material in the sciences, again self-contained.

The material covered is a fundamental background for any student intending to major
in computer science, electrical engineering, or operations research, and is valuable for any
student with interests in science, mathematics, or engineering.

Context The book is intended to follow our introductory text, An Introduction to Pro-
gramming in Java: An Interdisciplinary Approach, which is a broad introduction to the field.
Together, these two books can support a two- or three-semester introduction to computer sci-
ence that will give any student the requisite background to successfully address computation
in any chosen field of study in science, engineering, or the social sciences.

The starting point for much of the material in the book was the Sedgewick series of Al-
gorithms books. In spirit, this book is closest to the first and second editions of that book, but
this text benefits from decades of experience teaching and learning that material. Sedgewick’s
current Algorithms in C/C++/Java, Third Edition is more appropriate as a reference or a text
for an advanced course; this book is specifically designed to be a textbook for a one-semester
course for first- or second-year college students and as a modern introduction to the basics
and a reference for use by working programmers.

