
Tactics for Separation Logic
early draft

Andrew W. Appel

INRIA Rocquencourt & Princeton University

January 13, 2006

Abstract

Separation logic is a Hoare logic for programs that
alter pointer data structures. One can do machine-
checked separation-logic proofs of interesting pro-
grams by a semantic embedding of separation logic
in a higher-order logic such as Coq or Isabelle/HOL.
However, since separation is a linear logic—actually,
a mixture of linear and nonlinear logic—the usual
methods that Coq or Isabelle use to manipulate hy-
potheses don’t work well. On the other hand, one
does not want to duplicate in linear logic the entire
libraries of lemmas and tactics that are an impor-
tant strength of the Coq and Isabelle systems. Here
I demonstrate a set of tactics for moving cleanly be-
tween classical natural deduction and linear implica-
tion.

1 Introduction

In proving correctness properties of imperative pro-
grams, Hoare logic is useful. And if these programs
manipulate (allocate, free, initialize update) pointers
into the heap, separation logic is expressive and con-
venient. Separation logic [4, 5] is a form of Hoare
logic whose operators reason about the domains of
memory regions, and in particular the disjointness of
those domains; this is useful for proving that a store
through one pointer will not affect a load through
another pointer.

In this logic, a separating conjunction P ∗Q holds
on a heap when the assertion P holds on one portion
of the heap, Q holds on another portion, these two

portions are disjoint, and their union forms the entire
heap reasoned about by P ∗ Q. This is therefore a
linear logic, in that in general P ∗ Q does not entail
P ∗ P ∗Q or vice versa.

When doing machine-checked proofs of impera-
tive programs, one faces a choice: one could imple-
ment Hoare logic (or separation logic) directly (or
directly in a logical framework such as Twelf or Is-
abelle); or one could define the operators of the Hoare
or separation logic inside a higher-order logic (such
as Coq or Isabelle/HOL). Although the former ap-
proach appears to enjoy a nice purity and simplicity,
I will advocate the two-level approach. Even when
proving an imperative program, much of the reason-
ing is not about memory cells but concerns the ab-
stract mathematical objects that the program’s data
structures represent. Lemmas about those objects
are most conveniently proved in a general-purpose
higher-order logic, especially when there are large and
well-documented libraries of lemmas and tactics.

In this two-level approach, the “upper level” is
Hoare (or separation) logic, and the “lower level” is
higher-order logic (or the calculus of constructions,
etc.; from now on I will use HOL to indicate either
of these logics). Affeldt and Marti have defined just
such an embedding [2] and have used it to prove the
correctness of a memory manager [3].

In the two-level approach one needs to define lem-
mas and tactics to conveniently move between the
levels. I will show that, in a tactical prover such as
Coq or Isabelle/HOL, a simple style of proof that
works well for Hoare logic does not work well for sep-
aration logic, and that a new approach is desirable.

1

2 Embedding Hoare logic in

HOL

The cleverest, most beautiful, and ultimately the
most misleading aspect of Hoare’s notation is his pun

which confuses program expressions with logical for-
mulas. In the triple {P}C{Q} with precondition P ,
command C, and postcondition Q, the same boolean
expressions and integer variables can appear in P or
Q as a logical formula and in C as a part of the pro-
gram. For example,

{a = b · 2 + 1} b← b · 2 {a = b + 1}

the expression b · 2 is used both ways. When giving
a semantics of Hoare logic, one must undo the confu-
sion: it is more straightforward to say that there is a
set of program variables, a state maps from program
variables to values, a command C relates a before

state to an after state.
I’ll assume here a simple presentation where values

are just integers and program variables are also rep-
resented as integers. The language of commands has
a syntax including integer expressions Expr, boolean
expressions Exprb, and commands Cmd with the
usual operators. Then we define, by syntactic in-
duction, evaluation functions on program fragments:

eval : Expr → State → Value

evalb : Exprb → State → Bool

exec : State → Cmd → State → Bool

In this paper I’ll confuse the boolean values with the
logical propositions to simplify the presentation; all
the underlying results are implemented more formally
in Coq.

Are the assertions such as P and Q simply boolean
expressions from the programming language? If so,
we can define the Hoare triple

{P}C{Q} ≡
∀s : State. evalbP s ⇒ ∃s′. exec s C s′ ∧ evalb Q s′

This is a naive definition: it doesn’t account for
the possible nondeterminism or nontermination of
the command C; but what I will say in this paper
is largely independent of the exact form of the ax-
iomatic semantics.

The real problem with assertions-as-boolean-
expressions is that, to prove properties of nontrivial
programs, the assertion language must be fairly pow-
erful; it must include quantifiers, which don’t usually
appear in the boolean-expression language of pro-
gramming languages.

While we could augment the syntax of the pro-
gramming language, it is more straightforward to ac-
cept the fact that the logic for reasoning about a
program should be more expressive than the pro-
gramming language. Then we should consider asser-
tions not as boolean expressions but as predicates on
states, that is, functions from states to truth values.
Now our Hoare triple is,

{P}C{Q} ≡ ∀s : State. P s ⇒ ∃s′. exec s C s′ ∧ Q s′

But now when we write the triple for b ← b · 2 we
have,

{λs. sa = 2(sb) + 1}b← b · 2{λs. sa = sb + 1}

or perhaps

{evalb(a = b · 2 + 1)}b← b · 2{evalb(a = b + 1)}

In the first of these formulations we have lost the
identification of logical formulas with program ex-
pressions; in the second we find that we cannot easily
quantify values such as a, which are buried inside a
syntactic expression, not a logical formula.

Either way, with assertions-as-predicates, we have
the expressive power to write quantified formulas; we
can use the values of variables and we can evaluate
programming-language expressions:

{λs. ∃y. y = 2(sa) ∧ sb = y + 1}
b← b · 2
{λs.∃z.evalb(b = a + 1)s}

This seems clumsier than Hoare’s pun; but what
happens when we embed it in a higher-order-logic
tactical prover?

2

singleton e1 7→ e2 ≡ λsh.dom h = {eval e1 s} ∧ h(eval e1 s) = eval e2 s

empty emp ≡ λsh.dom h = { }
conjunction P ∗ P ≡ λsh.∃h1h2.h = h1 ∪ h2 ∧ dom h1 ∩ dom h2 = { } ∧ Psh1 ∧Qsh2

Figure 1: Primitives of separation logic

3 Tactical manipulation of

Hoare logic

In a tactical prover such as Coq or Isabelle/HOL, one
manipulates proof goals of the form,

x1 : t1
...
xm : tm
H1 : e1

...
Hn : en

e

where the xi are assumed variables, ti are the types of
these variables, ei are hypotheses, Hi are the names
of the hypotheses, and e is the conclusion.

When manipulating Hoare-logic assertions, a typ-
ical situation (arising, for example, from the while

rule or the strenghtening-precondition rule) is that
we need to prove ∀s.Ps⇒ Qs. Suppose P is the con-
junction of several terms Pi, and Q is the conjuction
of Qj . It’s a simple matter to make lemmas and tac-
tics that break up the goal ∀s.Ps⇒ Qs into subgoals
such as

s : State

H1 : P1

...
Hn : Pn

Q1

Such subgoals can be proved using the normal lem-
mas and tactics in the theorem-prover’s library. That
is, the embedding of ordinary Hoare logic in HOL
does not necessarily require specialized tactics.

4 Embedding separation logic

Separation logic [4, 5] is a form of Hoare logic that
treats local variables differently from memory. It can
be modeled by dividing the state into two parts, the
store (a mapping from local variable names to values)
and the heap (a mapping from locations to values).

We will follow Affeldt and Marti’s embedding of
separation logic in Coq [2], which in turn follows
Reynolds’s presentation [5]. We will use s to range
over stores and h to range over heaps. But since the
heap is addressable by pointers with address arith-
metic, we might as well just admit that locations are
just integer values, i.e. locations=values.

We assume the programming language has expres-

sions1 that involve only the values of local variables
(i.e., the store) but not the heap; and commands that
can fetch/store heap locations to/from local vari-
ables. Thus eval e s evaluates an expression (in a
store) to an integer, but exec (s1, h1) c (s2, h2) is the
execution of a command relating an old state to a
new state.

For separation logic we emphasize that each heap
is a finite mapping with a particular domain. We say
two heaps are disjoint if their domains are disjoint,
and we can form the union of two (disjoint) heaps to
form a new heap.

Each assertion of separation logic is a predicate
on a store and a heap. The primitives are shown in
Figure 1.

In addition to assertions about the heap, we can
make arbitrary pure assertions about the store, such

1A semiformal mathematical presentation of expression

syntax would have productions such as e::=v|n|e+e etc., while

a formal theorem-prover embedding would have explicit coer-

cions e::=var e v |int e n | e1 +e e2. In this paper I will use

the semiformal style; that is, I will leave out coercions var e

and int e that actually appear in the machine-checked proofs.

3

as λsh.∃y. y = 2(sa)∧sb = y+1. We can use ordinary
conjuction A ∧ B, to combine pure assumptions (or
pure with impure), but impure assuptions should be
combined only with separating conjunction P ∗Q.

What happens when we apply a natural-deduction
tactical prover to this semantic embedding of separa-
tion logic? Let us take a goal such as

∀sh. λsh.As ∧ (P ∗Q ∗R)sh ⇒ (Bs ∧ Ush) ∗ V sh

and apply routine tactics to expand the definitions
and introduce the quantified variables:

s : Store h : Heap

H1 : As

hp : Heap hq : Heap hr : Heap hpq : Heap

Hpq : hpq = hp ∪ hq

Hh : h = hpq ∪ hr

Hpq′ : hp ∩ hq = { }
Hh′ : hpq ∩ hr = { }
H2 : Pshp H3 : Qshq H4 : Rshr

Bs ∧
∃huhv. h = hu ∪ hv ∧ hu ∩ hv = { } ∧ Ushu ∧ V shv

It’s easy to separate this into two subgoals Bs and
∃huhv . h = hu∪hv∧hu∩hv = { }∧Ushu∧V shv, but
it is not easy to automatically break up the existen-
tial conjunction. In contrast to ordinary Hoare logic
with nonlinear conjuction, the nonlinear conjunction
of separation logic is not well suited to the assump-
tions of tactical provers for higher-order logics: that
the hypotheses of each goal can be broken into sepa-
rate named assumptions, and the conclusion can be
split to separate subgoals. The proliferation of hy-
potheses hp, hq, hr, hpq , Hpq, Hh, Hpq′ , Hh′ makes this
approach unattractive.

In fact, the whole purpose of separation logic is
to encapsulate and hide propositions about disjoint-
ness of heap fragments. Any proof in “separation
logic” that explicitly manipulates such hypotheses
manifests in some sense a failure of the abstraction.

5 An assertion language for

separation logic

Comfortable theorem-proving in separation logic
should have these characteristics: (1) Hoare-triple

reasoning should proceed naturally, as Reynolds does
in his semiformal proofs, and should avoid explicit
reasoning about heaps except through the separating
conjuction operator. (2) Purely mathematical rea-
soning should proceed naturally, as it does in ordi-
nary proofs in higher-order logic, and take advantage
of existing libraries of lemmas and tactics. (3) There
should be natural transitions between the two levels.

In Figure 2 I introduce some operators to support
such a style of proof. Given a boolean expression e

of the programming language, the assertion !e rep-
resents that e evaluates to true on the store and the

heap is empty. Given a formula e of logic (indepen-
dent of the store or heap), !!e represents that e is true
and the heap is empty. Finally, given a separation-
logic assertion P , existential ∃x : τ.P indicates that,
given a store and heap, there exists an x such that
Px holds on that store and heap. The type τ may
be any type that the underlying logic can ordinarily
quantify over.

These operators come equipped with certain tactics
and lemmas, which I will explain in the course of two
two running examples: first, a program that swaps
the contents of two memory locations in the heap;
second, the obligatory (for separation logic papers)
in-place list-reversal algorithm.

Each tactic is supported by a collection of lem-
mas that are proved with respect to the Affeldt-Marti
specification of separation logic; that is, the tactics
are sound.

5.1 Swap

1 ∀uvijxy,

2 var.set[u, v] ⇒
3 {i 7→ x ∗ j 7→ y}
4 u← [i]; v ← [j]; [i]← v; [j]← u

5 {i 7→ y ∗ j 7→ x}

Line 1 quantifies over program variables and heap
locations. Line 2 asserts that u and v are different
variables. Line 3 is the precondition: that the heap
contains exactly two locations i, j containing values
x, y respectively. Line 4 is the program, where u← [i]
is a load instruction from location i, and [i]← v is a
store instruction. Line 5 is the postcondition.

4

singleton e1 7→ e2 ≡ λsh.domh = {eval e1 s} ∧ h(eval e1 s) = eval e2 s

empty emp ≡ λsh.domh = { }
conjunction P ∗ P ≡ λsh.∃h1h2.h = h1 ∪ h2 ∧ dom h1 ∩ dom h2 = { } ∧ Psh1 ∧Qsh2

eval !e ≡ λsh.domh = { } ∧ evalb e s

prop !!e ≡ λsh.domh = { } ∧ e

exists ∃x : τ. P ≡ λsh.∃x : τ. Psh

Figure 2: New primitives of separation logic. (Primitives above the line are unchanged.)

The proof takes exactly 8 lines:

1 intros.

2 Forward.

3 Forward.

4 Forward.

5 Forward.

6 assert_subst (var_e u == int_e x).

7 assert_rewrite (var_e v == int_e y)

(fun z => int_e i |-> z).

8 sep_trivial.

Line 1 uses the usual Coq intros tactic to introduce
the variables uvijxy and hypothesis var.set.

Line 2 applies the (new) Forward tactic to move
forward through atomic statement (i.e., load, store,
or heap-independent assignment). Forward is appli-
cable in these conditions:

• to {P}v ← e; C{Q} when v is not free in P

or e; the remaining proof obligation (subgoal)
is {P∗!(v = e)}C{Q}.

• to {P1 ∗ (e1 7→ e2) ∗ P2}v ← [e1]; C{Q} when
v is not free in e1, e2, P1, P2; the subgoal is
{P1 ∗ (e1 7→ e2)∗!(v = e2) ∗ P2}C{Q}

• to {P1 ∗ (e1 7→ e′) ∗ P2}[e1] ← e2; C{Q}; the
subgoal is {P1 ∗ (e1 7→ e2) ∗ P2}C{Q}.

In all cases, if ; C is not present, then the subgoal is
of the form {P ′}skip{Q} or equivalently P ′ =⇒ Q.
In all cases, P1 ∗ P ∗ P2 is shorthand for any tree of
separating conjuctions containing the conjunct P .

Thus, after line 2 the proof obligation is

u, v : Variable i, j, x, y : Integer

H : var.set[u, v]
{i 7→ x ∗ !(u = x) ∗ j 7→ y}
v ← [j]; [i]← v; [j]← u

{i 7→ y ∗ j 7→ x}

After another Forward (line 3) we have

{i 7→ x ∗ !(u = x) ∗ j 7→ y ∗ !(v = y)}
[i]← v; [j]← u

{i 7→ y ∗ j 7→ x}

and after two more, we have

i 7→ v ∗ !(u = x) ∗ j 7→ u ∗ !(v = y) =⇒ i 7→ y ∗ j 7→ x

Line 6 applies the (new) assert_subst tactic,
named by analogy with Coq’s subst tactic. Given
a hypothesis H : v = e, subst will replace all occur-
rences of (logic) variable v with the (logic) expression
e, and will delete H . Similarly, given any one of the
following goals,

{P1∗!(e1 = e2) ∗ P2}C{Q}
{P1∗!(e2 = e1) ∗ P2}C{Q}
P1∗!(e1 = e2) ∗ P2 =⇒ Q

P1∗!(e2 = e1) ∗ P2 =⇒ Q

the application of assert_subst(e1 = e2) will pro-
duce a goal where all occurrences of e1 in P1, P2 are
replaced by e2, and the equation !(e1 = e2) is deleted.
No change is made to Q.

After line 6 we have,

i 7→ v ∗ j 7→ x ∗ !(v = y) =⇒ i 7→ y ∗ j 7→ x

5

Now assert_subst could be used again, but I will
illustrate assert_rewrite instead. Like the Coq
rewrite tactic, assert_rewrite makes one replace-
ment rather than every possible replacement. The
first argument is the (programming-language) equal-
ity to be used as the rewrite rule; the second de-
scribes a context in which to perform the rewrite.
Like rewrite, it does not remove the equation from
the hypotheses. The result in this case is,

i 7→ y ∗ j 7→ x ∗ !(v = y) =⇒ i 7→ y ∗ j 7→ x

Line 8 applies the sep_trivial tactic. The goal
follows trivially from dropping the pure conjunct
!(v = y) from the left-hand-side. Unlike impure asser-
tions containing e 7→ e′ which cannot just be dropped
or duplicated, any assertion of the form !e or !!e is
(formally) about the empty heap, so we have the
lemma P∗!e =⇒ P . Sep trivial is able to accommo-
date any rearrangement of atomic impure assertions,
any dropping or duplication of impure tactics, and
the construction (on the right) of trivial pure asser-
tions such as !!(x = x).

5.2 In-place list reverse

We can choose to represent a list cell (h, t) in sepa-
ration logic as x 7→ h ∗ x + 1 7→ t at address x 6= 0,
and we can use 0 to represent the empty list. Given
a list whose root is in variable v, the following pro-
gram reverses all the tail-pointers in place, leaving a
pointer to the reversed list in variable w:

w ← 0;
while v 6= 0

do (t← [v + 1]; [v + 1]← w; w ← v; v ← t)

To describe the precondition and postcondition,
we make an inductive assertion (contents l x) mean-
ing that the sequence of integers l : list(Integer) is
represented in memory as a list with root address
x : Integer .

contents nil : ∀l, x.

!!(l = 0) ∗ !!(x = 0) =⇒ contents l x

contents cons : ∀l, x.

∃h. ∃t. ∃p.

!!(l = h::t) ∗ !!(x 6= 0) ∗ (x 7→ h) ∗ (x + 1 7→ p)
∗ contents t p

=⇒ contents l x

Now we can state the precondition and postcondi-
tion of the program:

var.set[w, v, t] ⇒
{contents l v}
w ← 0;
while v 6= 0

do (t← [v + 1]; [v + 1]← w; w ← v; v ← t)
{contents (rev l) w}

We will make use of the loop invariant,

Inv =
∃l1∃l2.contents l2 v ∗ contents (rev l1) w ∗ !!(l = l1 + l2)

where l1 + l2 is list concatentation.
The proof relies on some auxiliary lemmas:

Lemma sep list 0 nil.

contents l 0 =⇒ !!(l = 0)

Lemma inde contents. If x is an integer constant,
then the contents l x has no free variables (evaluates
the same in any store).
Lemma begin while.

contents l v ∗ !(w = 0) =⇒ Inv

Lemma end while.

Inv ∗ !¬(v 6= 0) =⇒ contents (rev l) w

Lemma list cons lemma.

w 7→ h ∗ (w + 1) 7→ n ∗ !(w 6= 0) ∗ contents l n

=⇒ contents (h::l) w

Lemma list fetchable.

contents l e ∗ !(e 6= 0) =⇒
∃h ∃t ∃p

!(l = h::t) ∗ contents t p ∗
e 7→ h ∗ (e + 1) 7→ p

6

None of these lemmas is particularly novel; similar
lemmas could be proved (and have been proved [1])
in another separation-logic-in-HOL system. What is
new is that they can be proved smoothly, without
directly manipulating heap-disjointness hypotheses;
also that they can be written without λsh.

We will show more of the new tactics in the proof of
the main theorem. After applying Forward we have
the proof obligation,

{contents l v ∗ !(w = 0)}
while v 6= 0

do (t← [v + 1]; [v + 1]← w; w ← v; v ← t)
{contents (rev l) w}

The traditional while-loop axiom is inconvenient for
our tactics to manipulate, because it uses a mixture
of ordinary conjuction ∧ with separating conjunction
∗. The purpose of our assertion-forms !e and !!e is to
make assertions that can be meaningfully combined
using ∗. Thus we apply a (new) while-loop lemma,

P =⇒ I

{I∗!B}C{I}
I∗!¬B =⇒ Q

{P}while B do C{Q}

using our loop-invariant Inv , and we obtain three
subgoals. The first and third are exactly the lemmas
begin while and end while; the remaining subgoal is,

{(∃l1∃l2.contents l2 v ∗ contents (rev l1) w ∗
!!(l = l1 + l2)) ∗ !(v 6= 0)}
t← [v + 1]; [v + 1]← w; w ← v; v ← t

{Inv}

We have a lemma,

∃x : τ. {P}C{Q}
{∃x : τ.P}C{Q}

which is almost applicable here, except that the ∃l1
in our current precondition is on the left side of a
conjunction. No matter: the Exists_left tactic
pulls the leftmost existential out of any separating-
conjunctions and out of the precondition (or out of
the left-hand side of a =⇒ entailment):
Exists_left l_1; Exists_left l_2.

Now within the precondition we have the assertion
!!(l = l1 + l2); and the lemma,

e ⇒ {P}C{Q}
{!!e ∗ P}C{Q}

The tactic extract_prop uses this lemma with
associative-commutative laws to extract the leftmost
pure proposition from the precondition (or l.h.s of
=⇒); we apply it here to leave the goal,

{(contents l2 v ∗ contents (rev l1) w ∗ !(v 6= 0)}
t← [v + 1]; [v + 1]← w; w ← v; v ← t

{Inv}

At this point two of the left-hand conjuncts match
the left-hand-side of the list fetchable lemma. We
should be able to use a rule of the form (P =⇒ Q)⇒
(Q ∗ R =⇒ S) ⇒ (P ∗ R =⇒ S), along with appro-
priate associate-commutative rearrangements of ∗, to
apply this lemma; that’s precisely what the next tac-
tic does:
assert_apply (list_fetchable l2 v).

The resulting subgoal has three existentials and
one proposition on the left-hand side; we use
Exists_left and extract_prop to obtain the goal,

H0 : l = l1 + l2 H1 : l2 = h::t0
{contents t0 p ∗ v 7→ h ∗ (v + 1) 7→ p ∗
contents (rev l1) w ∗ !(v 6= 0)}

t← [v + 1]; [v + 1]← w; w ← v; v ← t

{Inv}

Now the left-hand side has the conjuncts necessary
to move Forward twice, leaving

H0 : l = l1 + l2 H1 : l2 = h::t0
{contents t0 p ∗ v 7→ h ∗ (v + 1) 7→ w ∗
!(t = p) ∗ contents (rev l1) w ∗ !(v 6= 0)}

w ← v; v ← t

{Inv}

We cannot move Forward again, because that tactic
requires that the l.h.s. variable of the assignment (w)
must not appear free in the precondition. We would
like to replace w in the precondition by its integer
value; first we use a lemma that any expression has

7

a value in any store:

∀n. {!(e == n) ∗ P}C{Q}
{P}C{Q}

The tactic looks like this:
apply(expr_has_value w); intro n.

and now we have the conjunct !(w = n) in the pre-
condition. We apply
assert_subst(w=n) to obtain,

H0 : l = l1 + l2 H1 : l2 = h::t0
{contents t0 p ∗ v 7→ h ∗ (v + 1) 7→ n ∗
!(t = p) ∗ contents (rev l1) n ∗ !(v 6= 0)}

w ← v; v ← t

{Inv}

and since w is no longer free in the precondition, we
can move Forward.

H0 : l = l1 + l2 H1 : l2 = h::t0
{contents t0 p ∗ v 7→ h ∗ (v + 1) 7→ n ∗
!(t = p) ∗ contents (rev l1) n ∗ !(v 6= 0) ∗ !(w = v)}
v ← t

{Inv}

Now we can apply
assert_subst(v=w); Forward.

to obtain

contents t0 p ∗ w 7→ h ∗ (w + 1) 7→ n ∗ !(t = p) ∗
contents (rev l1) n ∗ !(w 6= 0) ∗ !(v = t)

=⇒ Inv

Using assert_subst we substitute v for t and then
v for p, then unfold Inv to get,

H0 : l = l1 + l2 H1 : l2 = h::t0
contents t0 v ∗ w 7→ h ∗ (w + 1) 7→ n ∗
contents (rev l1) n ∗ !(w 6= 0)
=⇒
∃l3∃l4.contents l4 v ∗ contents (rev l3) w ∗

!!(l = l3 + l4)

By analogy with the Coq exists tactic, we can use
Exists_right to instantiate an existential in the
r.h.s. of a sequent; we use it twice:

Exists_right (l1+(h::nil)).

Exists_right t0.

Now we can use the standard Coq subst l2

to apply the hypothesis H1; and we can
replace (rev(h::l1)) with (rev l1 + (h::nil))

which Coq can verify using its tauto tactic. This
leaves,

H0 : l = l1 + (h::t0)
contents t0 v ∗ w 7→ h ∗ (w + 1) 7→ n ∗
contents (rev l1) n ∗ !(w 6= 0)
=⇒

contents t0 v ∗ contents (rev (l1 + (h::nil))) w ∗
!!(l = l1 + (h::nil) + t0)

Using standard Coq lemmas and tactics, l1+(h::nil)+
t0 can be rewritten in two lines to l1 + (h::t0).

H0 : l = l1 + (h::t0)
contents t0 v ∗ w 7→ h ∗ (w + 1) 7→ n ∗
contents (rev l1) n ∗ !(w 6= 0)
=⇒

contents t0 v ∗ contents (h::(rev l1)) w ∗
!!(l = l1 + (h::t0))

At this point, the following two lines would finish
the proof:
assert_apply(list_cons_lemma n (rev l1) w h).

sep_trivial.

but instead I will illustrate a different approach. The
tactic sep_trivial can perform any associative-
commutative rearrangement of the impure terms,
plus any trivial deletion, insertion, or duplication of
the pure terms. In our current situation, only some
parts of the goal are trivial; that is, !!(l = l1 +(h::t0))
appears as a hypothesis H0 and on the right; and
contents t0 v appears on both sides. If we apply
sep_trivial now, all the trivial parts are removed,
leaving just,

H0 : l = l1 + (h::t0)
w 7→ h ∗ (w + 1) 7→ n ∗
contents (rev l1) n ∗ !(w 6= 0)
=⇒

contents (h::(rev l1)) w

Once again, assert_apply followed by sep_trivial

will finish the proof. In this case, the early applica-
tion of sep_trivial serves merely to make the proof
goal more readable.

8

5.3 Induction

The contents predicate is inductive; in Coq it is writ-
ten as,

Inductive contents: list Z -> Z -> assert :=

| contents_nil: forall l x,

!!(l = nil) ** !! (x = 0)

==> contents l x

| contents_cons: forall l x,

(Exists h, Exists t, Exists ptr,

!! (l = h::t) **

(int_e x +e int_e data |-> int_e h) **

(int_e x +e int_e next |-> int_e ptr) **

!! (x <> 0%Z)

** contents t ptr)

==> contents l x.

With inductive predicates in Coq, one normally uses
tactics such as induction and inversion. It is useful
to define a new tactic sep_inversion, as I will show.

When we define a new predicate such as contents
it is usually necessary to prove a lemma about its
free variables, so that we can apply Forward when
contents appears in a precondition. In this case, we
prove that for any integer literal n and any set of vari-
ables vars , the assertion contents l n is independent
of vars .

Such proofs make use of a lemma inde_intro,

∀xn, x ∈ vars ⇒ {P}x← n{P}
inde vars P

Lemma inde contents:

∀vars l n. inde vars(contents l n).
The proof starts by the standard Coq induction

tactic followed by various introduction tactics:
induction l; intros; apply inde intro;

intros v i H. This leaves two subgoals,

H : v ∈ vars

{contents nil n} v ← i {contents nil n}

H : v ∈ vars

{contents (a::l) n} v ← i {contents (a::l) n}

Consider the first case. We can strengthen the pre-
condition to !!(nil = nil) ∗ !!(n = 0), leaving as one of
the subgoals, contents nil n =⇒ !!(nil = nil) ∗ !!(n =

0). The (new) tactic sep_inversion applied to this
goal leaves,

H2 : l = nil H3 : x = n

!!(l = nil) ∗ !!(x = 0) =⇒ !!(nil = nil) ∗ !!(n = 0)

Then the standard Coq subst l x leads to the
sep trivially solvable goal !!(nil = nil) ∗ !!(n =
0) =⇒ !!(nil = nil) ∗ !!(n = 0).

6 Benchmark

The same reverse list program has been proved twice
with respect to identical axioms: once by Affeldt and
Marti [1] using the style of unfolding the ∗ operator
into its underlying semantics, and once as I have de-
scribed in this paper. A rough comparison of their
sizes (obtained from wc, not including comments or
the definition of the reverse program itself and not
including the general-purpose lemmas and tactics de-
scribed in this paper) is,

Lines Words
unfolding 475 1,636
new tactics 200 795

That is, preserving the abstractions of separation
logic using tactics adapted for that purpose makes
proofs about half as large.

7 Conclusion

Separation logic uses Hoare triples {P}C{Q} and se-
quents P =⇒ Q which have a mixture of linear and
classical conjuncts. While it is permissible to expand
the linear conjunctions into their (classical) seman-
tic meaning, proofs done this way are burdened with
a tangle of heap-disjointness conditions. Therefore
it is desirable to have lemmas and tactics that can
manipulate the linear entailments directly.

On the other hand, one does not want to duplicate
in linear logic all the lemma and tactic libraries that
already exist (in Coq or Isabelle/HOL) for classical
logic. One wants to prove the linear portions (in-
volving memory access) one way, and the nonlinear
portions (involving logic variables and local variables)
another way.

9

What I have demonstrated is that a small set of
lemmas will translate the nonlinear portions of the
sequents into the native natural-deduction style of
Coq or Isabelle/HOL. Each of these tactics is the
analogue of a similar natural-deduction tactic in the
underlying logic:

sep trivial Associative-commutative ∗-rearrange-
ment of impure conjuncts; drop, duplicate, and
reconstruct pure conjuncts.

Forward Move past an assignment, load, or store,
provided that the assigned variable does not ap-
pear free in the precondition.

assert subst Perform a substitution using an equa-
tion appearing in the precondition.

assert rewrite Perform a single rewrite using an
equation appearing in the precondition.

Exists left Eliminate an existential in the precon-
dition.

Exists right Instantiate an existential in the the
r.h.s. of a sequent.

extract prop Move a !!proposition from the precon-
dition to the natural-deduction hypotheses.

assert apply Apply a (semi)linear lemma to a se-
quent.

sep inversion Apply syntactic inversion to an in-
ductive predicate found in the precondition.

One can then relate a data structure (such as a
list cell) to a mathematical object (such as a list);
build sequent-logic proofs about the data structure
and natural-deduction proofs about the mathemati-
cal object; and use the new tactics to move between
the two systems with a minimum of difficulty.

Acknowledgments. Sandrine Blazy, Damien
Doligez, Xavier Leroy, and Francesco Zappa-Nardelli
proved in Coq many of the lemmas that support the
tactics described in this paper.

References

[1] Reynald Affeldt and Nicolas Marti. http:
//web.yl.is.s.u-tokyo.ac.jp/~affeldt/seplog/
example reverse list.v, 2005.

[2] Reynald Affeldt and Nicolas Marti. Towards
formal verification of memory properties using
separation logic. http://web.yl.is.s.u-tokyo.ac.jp/
~affeldt/seplog, 2005.

[3] Nicolas Marti, Reynald Affeldt, and Akinori
Yonezawa. Verification of the heap manager of
an operating system using separation logic. In
SPACE 06: Third workshop on Semantics, Pro-

gram Analysis, and Computing Environments for

Memory Management, January 2006.

[4] Peter O’Hearn, John Reynolds, and Hongseok
Yang. Local reasoning about programs that alter
data structures. In CSL’01: Annual Conference

of the European Association for Computer Sci-

ence Logic, pages 1–19, September 2001. LNCS
2142.

[5] John Reynolds. Separation logic: A logic for
shared mutable data structures. In LICS 2002:

IEEE Symposium on Logic in Computer Science,
pages 55–74, July 2002.

Appendix

The inductive contents predicate given in section 5.3
was defined so that (a) it has no free variables and
(b) it uses as much as possible the connectives of the
separation logic. However, the tactical framework de-
scribed in this paper is robust enough to accommo-
date other choices. For example, the predicate con-
tentsA relates a list l to an expression rather than an
integer literal; the predicate contentsB uses “native
Coq” for quantifications over h, t, ptr and the l = h::t
hypothesis. With either one, the proof of reverse list
can be completed without too much difficulty.

10

Inductive contentsA: list Z -> expr -> assert :=

| contentsA_nil: forall l x,

!!(l = nil) ** !(x == int_e 0)

==> contentsA l x

| contentsA_cons: forall l x,

(Exists h, Exists t, Exists ptr,

!! (l = h::t) **

(x +e int_e data|-> int_e h) **

(x +e int_e next |-> ptr) **

! (x =/= int_e 0) **

contentsA t ptr)

==> contentsA l x.

Inductive contentsB: list Z -> expr -> assert :=

| contentsB_nil: forall l x,

l = nil ->

!(x == int_e 0) ==> contentsB l x

| contentsB_cons: forall l x h t ptr,

l = h::t ->

((x +e int_e data|-> int_e h) **

(x +e int_e next |-> ptr) **

! (x =/= int_e 0) **

contentsB t ptr

==> contentsB l x).

Valid predicates. The tactics for separation logic
work over valid predicates, that is, those that are
extensional over equivalent expressions. All of the
primitive predicates are valid, and proofs of their va-
lidity are entered in a Coq “hint database” for use by
the tactics. The contents relation on lists and inte-
gers is not a predicate on expressions and therefore
doesn’t need to be proved extensional. But relations
such as contentsA and contentsB are predicates on
expressions, and therefore one must prove the follow-
ing theorem by induction on l and then enter it in
the hint database for use by the various tactics.

∀le1e2. contentsA l e1 ∗ !(e1 = e2) =⇒ contentsA l e2.

11

