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All proofs in the paper and this appendix are formalized in Coq. The address
is: https://github.com/QinxiangCao/UnifySL.

A Proof of Semantic Equivalence

Here, we recall the definition of downwards closure and upwards closure.

Definition 1 (Upwards closure and downwards closure). Given a sep-
aration algebra (M ,≤,⊕), its upwards closure is the triple (M ,≤,⊕⇑) where
⊕⇑(m1,m2,m) iff there is m ′ such that m ′ ≤ m and ⊕(m1,m2,m

′).

Given a separation algebra (M ,≤,⊕), its downwards closure is the triple
(M ,≤,⊕⇓) where ⊕⇓(m1,m2,m) iff there are m ′1 and m ′2 such that m1 ≤ m ′1,
m2 ≤ m ′2 and ⊕(m ′1,m

′
2,m).

We first prove that both upwards closures of downwards-closed algebra and
downwards closures of upwards-closed algebra are upwards-closed and downwards-
closed at the same time. We then prove that the flat semantics on the closures
are equivalent with downwards (resp. upwards) semantics in the original algebra.

Lemma 1. Given an ordered separation algebra (M ,≤,⊕): If (M ,≤,⊕) is down-
wards closed, (M ,≤,⊕⇑) is an upwards closed and downwards closed ordered
separation algebra. If (M ,≤,⊕) is upwards closed, (M ,≤,⊕⇓) is an upwards
closed and downwards closed ordered separation algebra.

Proof. 1. If (M ,≤,⊕) is upwards-closed, (M ,≤,⊕⇓) is downwards-closed: Ob-
vious because ≤ is transitive.

2. If (M ,≤,⊕) is upwards-closed, (M ,≤,⊕⇓) is upwards-closed: Suppose m1,
m2, m and n satisfy ⊕⇓(m1,m2,m) and m ≤ n. According to the definition
of ⊕⇓, there exist m ′1 and m ′2 s.t.

m1 ≤ m ′1

m2 ≤ m ′2

⊕ (m ′1,m
′
2,m)

Since (M ,≤,⊕) is upwards-closed, there must exist n1 and n2 s.t.

m ′1 ≤ n1

m ′2 ≤ n2

⊕ (n1,n2,n)

So we know that m1 ≤ n1, m2 ≤ n2 and ⊕⇓(n1,n2,n). In other words,
(M ,≤,⊕⇓) is upwards-closed.

3. If (M ,≤,⊕) is downwards-closed, (M ,≤,⊕⇑) is upwards-closed: Obvious
because ≤ is transitive.
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4. If (M ,≤,⊕) is downwards-closed, (M ,≤,⊕⇑) is downwards-closed: Suppose
m1, m2, m, n1 and n2 satisfy ⊕⇑(m1,m2,m), n1 ≤ m1 and n2 ≤ m2. Ac-
cording to the definition of ⊕⇑, there exist m ′ s.t.

m ′ ≤ m

⊕ (m1,m2,m
′)

Since (M ,≤,⊕) is downwards-closed, there exist n s.t.

n ≤ m ′

⊕ (n1,n2,n)

So we know that n ≤ m and ⊕⇑(n1,n2,n). In other words, (M ,≤,⊕⇑) is
downwards-closed.

ut

Theorem 1. thm:updownflat Given an extended Kripke model M =
(M ,≤,⊕, J )

1. if it is downwards closed, then the flat semantics on M⇑ is equivalent to the
downwards semantics on M, i.e. for any ϕ and m, m �=M⇑ ϕ iff m �⇓M ϕ

2. if it is upwards closed, then the flat semantics on M⇓ is equivalent to the
upwards semantics on M, i.e. for any ϕ and m, m �=M⇓ ϕ iff m �⇑M ϕ

Proof. We prove it by induction on the syntax of assertions. The only interesting
cases are the following:

1. If (M ,≤,⊕) is downwards-closed and for any m:

m �=M⇑ ϕ iff m �⇓M ϕ

m �=M⇑ ψ iff m �⇓M ψ
(IH)

then for any m:

m �=M⇑ ϕ ∗ ψ iff m �⇓M ϕ ∗ ψ

Obvious by IH and the definition of⊕⇑, flat semantics, downwards semantics.
2. If (M ,≤,⊕) is downwards-closed and for any m:

m �=M⇑ ϕ iff m �⇓M ϕ

m �=M⇑ ψ iff m �⇓M ψ
(IH)

then for any m:

m �=M⇑ ϕ−∗ψ iff m �⇓M ϕ−∗ψ

Left to right is obvious because ⊕⇑ ⊇ ⊕. We only prove the other direction
here. Suppose m �⇓M ϕ−∗ψ (left side), ⊕⇑(m,m1,m2) and m1 �=M⇑ ϕ (the
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assumption of right side). Then by the definition of ⊕⇑, we know there exists
n2, s.t.

n2 ≤ m2

⊕ (m,m1,n2)

And by IH, we know that
m1 �

⇓
M ϕ

From the fact that m �⇓M ϕ−∗ψ, we know

n2 �
⇓
M ψ

Since the denotation of all assertions are monotonic, m2 �
⇓
M ψ, i.e. by IH:

m2 �=M⇑ ψ
3. If (M ,≤,⊕) is upwards-closed and for any m:

m �=M⇓ ϕ iff m �⇑M ϕ

m �=M⇓ ψ iff m �⇑M ψ
(IH)

then for any m:
m �=M⇓ ϕ ∗ ψ iff m �⇑M ϕ ∗ ψ

Right to left is obvious, because ⊕ ⊆ ⊕⇓. We only prove the other direction
here. Suppose m �=M⇓ ϕ, then there exist m1 and m2 s.t.

⊕⇓ (m1,m2,m)

m1 �
=
M⇓ ϕ

m2 �
=
M⇓ ψ

By the definition of ⊕⇓, there exist n1 and n2 s.t.

m1 ≤ n1

m2 ≤ n2

⊕ (n1,n2,m)

By the monotonicity of ϕ and ψ’s denotation and IH, we know that

n1 �
⇑
M ϕ

n2 �
⇑
M ψ

So, m �⇑M ϕ ∗ ψ.
4. If (M ,≤,⊕) is upwards-closed and for any m:

m �=M⇓ ϕ iff m �⇑M ϕ

m �=M⇓ ψ iff m �⇑M ψ
(IH)

then for any m:
m �=M⇓ ϕ−∗ψ iff m �⇑M ϕ−∗ψ

Obvious by IH and the definition of ⊕⇓, flat semantics, upwards semantics.
ut
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B Proof of Completeness

Here, we always assume Σ is countable and thus so is L(Σ).
We use the standard notation Φ ` ψ to represent the existence of finite

elements ϕ1, ϕ2, ..., ϕn ∈ Φ such that

`

(
n∧

i=1

ϕi

)
→ ψ

Also, Φ ||=U ψ means that for any model m ∈ U if every assertion in Φ is
satisfied on m then ψ is satisfied on m.

Definition 2 (Soundness and completeness). A proof theory Γ is sound
w.r.t. a semantics � in a class of models U iff for any ϕ, `Γ ϕ implies ||=U ϕ.

A proof theory Γ is weakly complete w.r.t. a semantics � in a class of models
U iff for any ϕ, ||=U ϕ implies `Γ ϕ.

A proof theory Γ is strongly complete w.r.t. a semantics � in U iff for any
Φ and ϕ, Φ ||=U ϕ implies Φ `Γ ϕ.

Strong completeness clearly implies weak completeness. In the rest of this
appendix we present the soundness and strong completeness of separation logics
stated as follows:

Theorem 2 (Parametric soundness and completeness). A separation logic
Γ is sound and strongly complete w.r.t. the flat semantics in Γ ’s corresponding
class of models.

We first define DDCS and canonical model.

Definition 3 (DDCS). Given Σ, we call a set of formulas Φ ⊆ L(Σ) a derivable
closed, disjunction-witnessed, consistent set (DDCS) of proof theory Γ if

1. it is derivable closed, i.e. for any φ, if Φ `Γ φ then φ ∈ Φ
2. it is disjunction witnessed, i.e. for any φ and ψ, if φ∨ψ ∈ Φ then φ ∈ Φ or

ψ ∈ Φ
3. it is consistent, i.e. Φ 6`Γ ⊥

Definition 4. We lift separating conjunction to sets of assertions (not only DD-
CSs but any sets), as follows:

Φ ∗ Ψ , {φ ∗ ψ | Φ `Γ φ and Ψ `Γ ψ}

Definition 5 (Canonical model). Given a separation logic Γ of L(Σ), we
call Mc = (M c ,≤c ,⊕c , J c) the canonical model of Γ where

1. M c is the set of DDCSs of Γ
2. for any Φ, Ψ ∈ M c, Φ ≤c Ψ iff Φ ⊆ Ψ
3. for any Φ1, Φ2, Φ ∈ M c, ⊕c(Φ1, Φ2, Φ) iff Φ1 ∗ Φ2 ⊆ Φ
4. for any p ∈ Σ and Φ ∈ M c, Φ ∈ J c(p) iff p ∈ Φ
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It is an important fact that for any DDCS Φ of Γ and assertion ϕ, Φ `Γ ϕ
is equivalent with ϕ ∈ Φ. We will use these two concept interchangably in the
following proofs.

Here, we first prove a lemma about the lifted separating conjunction between
sets of assertions.

Lemma 2. For any Φ, Ψ and θ, if Φ ∗ Ψ ` χ then there exist ϕ1, ϕ2, .., ϕn ∈ Φ
and ψ1, ψ2, ..., ψm ∈ Ψ , s.t.

`

(
n∧

i=1

ϕi ∗
m∧
i=1

ψi

)
→ χ

Proof. By the definition of “derivable”, we know there exist

χ1, χ2, .., χk , χ′1, χ
′
2, .., χ

′
k , χ′′1 , χ

′′
2 , .., χ

′′
k

ϕ1,1, ..., ϕ1,n1
, ϕ2,1, ..., ϕ2,n2

, ..., ϕk ,1, ..., ϕk ,nk
∈ Φ

ψ1,1, ..., ψ1,m1
, ψ2,1, ..., ψ2,m2

, ..., ψk ,1, ..., ψk ,mk
∈ Ψ

such that

`

(
n1∧
j=1

ϕ1,j

)
→ χ′1, `

(
m1∧
j=1

ψ1,j

)
→ χ′′1

`

(
n2∧
j=1

ϕ2,j

)
→ χ′2, `

(
m2∧
j=1

ψ2,j

)
→ χ′′2

...

`

(
nk∧
j=1

ϕk ,j

)
→ χ′k , `

(
mk∧
j=1

ψk ,j

)
→ χ′′k

`

(
k∧

i=1

χ′i ∗ χ′′i

)
→ χ

By the fact the following assertion is a tautology in any separation logic for
any ϕ, ϕ′, ψ and ψ′:

(ϕ ∧ ϕ′) ∗ (ψ ∧ ψ′)→ (ϕ ∗ ψ) ∧ (ϕ′ ∗ ψ′)

we know that

`

(
k∧

i=1

χ′i

)
∗

(
k∧

i=1

χ′′i

)
→ χ

So, by ∗MONO, we know

`

(
k∧

i=1

nj∧
j=1

ϕi,j

)
∗

(
k∧

i=1

mj∧
j=1

ψi,j

)
→ χ (1)

ut
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One important property of DDCS’s is that we can extend consistent set of
assertions into DDCS’s. Specifically, we prove the following two existence lemma.

Lemma 3 (Existence lemma I). Given a separation logic Γ , a set of asser-
tions Φ and an assertion φ, if Φ 6`Γ φ, then there exists Φ′, which is a DDCS of
Γ , s.t. Φ ⊆ Φ′ and Φ′ 6`Γ φ.

Proof. See [1]. ut

Lemma 4 (Existence lemma II). Given a separation logic Γ , of L(Σ), and
sets of assertions Φ1, Φ2 and Φ among which Φ is a DDCS of Γ , if Φ1 ∗Φ2 ⊆ Φ,
then

1. there is a DDCS Φ′1, s.t. Φ1 ⊆ Φ′1 and Φ′1 ∗ Φ2 ⊆ Φ.
2. there is a DDCS Φ′2, s.t. Φ2 ⊆ Φ′2 and Φ1 ∗ Φ′2 ⊆ Φ.

Proof. We only prove the first half here. The second half follows in the same
way.

Because L(Σ) is countable, we can enumerate all asserts as ψ1, ψ2, .... Then
we constructor the following sets of assertions and let Φ′1 ,

⋃
k∈N Ψk :

Ψ0 = Φ1

Ψk+1 =
{Ψk ∪ {ψk+1} if (Ψk ∪ {ψk+1}) ∗ Φ2 ⊆ Φ
Ψk otherwise

Obviously, Φ1 ⊆ Φ′1 and Φ′1 ∗Φ2 ⊆ Φ, so we only need to show that Φ′1 is actually
a DDCS.

First, we prove that Φ′1 is derivable closed by contradiction. Suppose Φ′1 `Γ
ψk and ψk 6∈ Φ′1. Then ψk 6∈ Ψk , which means there exists ϕ1 and ϕ2 s.t.

Ψk−1 ∪ {ψk} `Γ ϕ1

Φ2 `Γ ϕ2

ϕ1 ∗ ϕ2 6∈ Φ (2)

At the same time, we know that Φ′1 `Γ ϕ1 because Ψk ⊆ Φ′1 and Φ′1 `Γ ψk . Since
we know Φ′1 ∗ Φ2 ⊆ Φ, we can conclude that ϕ1 ∗ ϕ2 ∈ Φ, which contradicts (2)!

Second, Φ′1 is disjunction-witnessed. We prove it by contradiction, mostly in
the same way as above. Suppose ψk ∨ ψk ′ ∈ Φ′1, ψk 6∈ Φ′1 and ψk ′ 6∈ Φ′1. Then
ψk 6∈ Ψk and ψk ′ 6∈ Ψk ′ , which means there exists ϕ1, ϕ2, ϕ′1 and ϕ′2 s.t.

Ψk−1 ∪ {ψk} `Γ ϕ1 (3)

Ψk ′−1 ∪ {ψk ′} `Γ ϕ′1 (4)

Φ2 `Γ ϕ2

Φ2 `Γ ϕ′2
ϕ1 ∗ ϕ2 6∈ Φ (5)

ϕ′1 ∗ ϕ′2 6∈ Φ (6)
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From deduction theorem and (3) (4), we know:

Ψk−1 `Γ ψk → ϕ1

Ψk ′−1 `Γ ψk ′ → ϕ′1

Then, by Φ′1 ⊇ Ψk−1 and Φ′1 ⊇ Ψk ′−1, we know

Φ′1 `Γ ψk ∨ ψk ′ → ϕ1 ∨ ϕ′1

Moreoever, since ψk ∨ ψk ′ ∈ Φ′1 is assumed, Φ′1 `Γ ϕ1 ∨ ϕ′1. At the same time,
Φ2 `Γ ϕ2 ∧ ϕ′2 and Φ′1 ∗ Φ2 ⊆ Φ is already known, so

Φ ` (ϕ1 ∨ ϕ′1) ∗ (ϕ2 ∧ ϕ′2)

Notice that the following assertion is a tautology in any separation logic,

(ϕ1 ∨ ϕ′1) ∗ (ϕ2 ∧ ϕ′2)→ (ϕ1 ∗ ϕ2 ∨ ϕ′1 ∗ ϕ′2)

Thus, we know the following fact because Φ is a DDCS:

ϕ1 ∨ ϕ′1 ∈ Φ or ϕ2 ∧ ϕ′2 ∈ Φ

which contradicts with (5) and (6)!
Third, Φ′1 is consistent. This follows the facts that Φ is consistent, Φ′1∗Φ2 ⊆ Φ

and `Γ ⊥ ∗ > → ⊥. ut

Now we can prove that a canonical model is actually well defined, i.e.we
will show that ≤c is a preorder, ⊕c is commutative and associative and J c is
monotonic. Also, it is upwards closed and downwards closed.

Lemma 5. Given a separation logic Γ of L(Σ), its canonical model (M c ,≤c

,⊕c , J c) is an extended Kripke model, which is upwards closed and downwards
closed at the same time.

Proof.

1. ≤c is a preorder because set inclusion is preordered.
2. ⊕c is commutative: suppose Φ1, Φ2 and Φ are DDCS’s and ⊕c(Φ1, Φ2, Φ). By

definition, for any ϕ1 and ϕ2, if Φ1 `Γ ϕ1 and Φ2 `Γ ϕ2 then Φ `Γ ϕ1 ∗ ϕ2.
Since Γ is a separation logic,

`Γ ϕ1 ∗ ϕ2 → ϕ2 ∗ ϕ1

and thus ⊕c(Φ2, Φ1, Φ).
3. ⊕c is associative: suppose Φx , Φy , Φz , Φxy and Φxyz are DDCS’s such that
⊕c(Φx , Φy , Φxy) and ⊕c(Φxy , Φz , Φxyz ). First we show that

Φx ∗ (Φy ∗ Φz ) ⊆ Φxyz .
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Given ϕx ∈ Φx , ϕy ∈ Φy and ϕz ∈ Φz , we know that ϕx ∗ ϕy ∈ Φxy . Thus,

(ϕx ∗ ϕy) ∗ ϕz ∈ Φxyz or Φxyz `Γ (ϕx ∗ ϕy) ∗ ϕz

From the fact that Γ is a separation logic, it follows that Φxyz `Γ ϕx ∗ (ϕy ∗
ϕz ).
Second, by existence lemma II(2), we know there exists a DDCS Φyz such
that Φx ∗Φyz ⊆ Φxyz and Φy ∗Φz ⊆ Φyz , which implies that ⊕c is associative
by definition.

4. J c is monotonic by definition.
5. Upwards-closed: trivial because Φ1 ∗Φ2 ⊆ Φ and Φ ⊆ Φ′ implies Φ1 ∗Φ2 ⊆ Φ′.
6. Downwards-closed: trivial because Φ1∗Φ2 ⊆ Φ, Φ′1 ⊆ Φ1 and Φ′2 ⊆ Φ2 implies
Φ′1 ∗ Φ′2 ⊆ Φ.

ut

Lemma 6. Given a separation logic Γ of L(Σ), its canonical model (M c ,≤c

,⊕c , J c) is a unital extended Kripke model.

Proof. Assume Φ is an arbitary DDCS. Because EMP ∈ Γ , we know that

{emp} ∗ Φ ⊆ Φ

By existence lemma II, we know there is a DDCS Ψ such that emp ∈ Ψ and
Ψ ∗ Φ ⊆ Φ. So, Ψ is Φ’s increasing residual. ut

Because a canonical model has a upwards-closed and downwards-closed sep-
aration algebra we can define the flat semantics on it. The most important
property of canonical models, formalized by the truth lemma below, is that as-
sertions in a DDCS are the assertions that are exactly the ones satisfied on the
same DDCS w.r.t. flat semantics.

Lemma 7 (Truth lemma). Given a separation logic Γ of L(Σ), for any Φ ∈
M c and ϕ ∈ L(Σ),

Φ �=Mc ϕ iff ϕ ∈ Φ

Proof. We proceed by induction on the syntax of ϕ. The cases when ϕ is an
atomic assertion, a conjunction, a disjunction or an implication, are covered
in the proof of intuitionistic logic completeness [1]. Here, we show the base
step for emp and the induction step for separating conjunction and separating
disjunction. Specifically, we need to show that

Φ �=Mc emp iff emp ∈ Φ (Cemp)

and given the induction hypothesis: for any DDCS Φ,

Φ �=Mc ϕ1 iff ϕ1 ∈ Φ
Φ �=Mc ϕ2 iff ϕ2 ∈ Φ

(IH)

we are going to show that for any DDCS Φ:

Φ �=Mc ϕ1 ∗ ϕ2 iff ϕ1 ∗ ϕ2 ∈ Φ (C∗)

Φ �=Mc ϕ1−∗ϕ2 iff ϕ1−∗ϕ2 ∈ Φ (C−∗)
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Cemp ⇒ Suppose Φ is increasing. Then we first show that Φ ∗ {emp} `Γ emp.
If not, then we know from existence lemma I that there exists a DDCS Φ2

s.t.

Φ ∗ {emp} `Γ⊆ Φ2

Φ2 6`Γ emp (7)

Then, from existence lemma II(2), we know there exists a DDCS Φ1 s.t.

Φ ∗ Φ1 `Γ⊆ Φ2

emp ∈ Φ1

Since Φ is increasing, emp ∈ Φ1 ⊆ Φ2. It contradicts with (7)!

Now that Φ ∗ {emp} `Γ emp, we know from lemma 2 that there exists ϕ s.t.

Φ `Γ ϕ
`Γ ϕ ∗ emp→ emp

By the adjoint property, we know: `Γ ϕ→ (emp−∗emp), so

Φ `Γ emp−∗emp

Consequencely,

Φ `Γ (emp−∗emp) ∗ emp

So, Φ `Γ emp, i.e. emp ∈ Φ.

Cemp ⇐ Because emp ∈ Φ. We know, if Φ ∗ Ψ ⊆ Ψ ′, then {emp} ∗ Ψ ⊆ Ψ ′. This
tells Ψ ⊆ Ψ ′ by EMP. As Ψ and Ψ ′ is arbitarily chosen, Φ is increasing. So,
Φ �=Mc emp.

C∗ ⇒ follows by definition.

C∗ ⇐ Given Φ, suppose ϕ1 ∗ ϕ2 ∈ Φ. We start by showing

{ϕ1} ∗ {ϕ2} ⊆ Φ.

For any ψ1 and ψ2, if ϕ1 `Γ ψ1 and ϕ2 `Γ ψ2, then by ∗MONO

`Γ ϕ1 ∗ ϕ2 → ψ1 ∗ ψ2.

Since ϕ1 ∗ ϕ2 ∈ Φ and Φ is a DDCS, then ψ1 ∗ ψ1 ∈ Φ.

Second, by applying existence lemma II(1) and II(2), we know that there
exists DDCS’s Φ1 and Φ2 such that ϕ1 ∈ Φ1, ϕ2 ∈ Φ2 and Φ1 ∗ Φ2 ⊆ Φ. So,
by IH and the definition of ⊕c , we know that

Φ1 �
=
Mc ϕ1, Φ2 �

=
Mc ϕ2, ⊕c (Φ1, Φ2, Φ)

which shows Φ �=Mc ϕ1 ∗ ϕ2.
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C−∗ ⇒ Given Φ, suppose Φ �=Mc ϕ1−∗ϕ2. We prove ϕ1−∗ϕ2 ∈ Φ by considering
whether

Φ ∗ {ϕ1} `Γ ϕ2

If it holds, then we know from lemma 2 that there exists ϕ such that Φ `Γ ϕ
and `Γ ϕ ∗ ϕ1 → ϕ2. By ∗ADJ, we know that `Γ ϕ → (ϕ1−∗ϕ2), thus
Φ `Γ ϕ1−∗ϕ2.
If it doesn’t hold, then we can construct a DDCS Φ2 by existence lemma I,
s.t. Φ∗{ϕ1} ⊆ Φ2 and Φ2 6`Γ ϕ2. Moreover, we can construct another DDCS
Φ1 by existence lemma II(1), s.t. Φ∗Φ1 ⊆ Φ2 and ϕ1 ∈ Φ1. So, ⊕c(Φ,Φ1, Φ2).
And by IH, Φ1 �=Mc ϕ1 and Φ2 6�=Mc ϕ2. However, this contradicts with the
assumption that Φ �=Mc ϕ1−∗ϕ2.

C−∗ ⇐ follows from the fact that

`Γ (ϕ1−∗ϕ2) ∗ ϕ1 → ϕ2

ut

Lemma 8. Given a separation logic Γ , its canonical model Mc satisfies the
canonical properties of all optional axioms in Γ .

Proof. It is well known results that

1. Mc has an identity relation as its preorder if EM ∈ Γ
2. Mc has an non-branching relation as its preorder if GD ∈ Γ
3. Mc has an always-join relation as its preorder if WEM ∈ Γ

Besides,

4. Mc is increasing separation algebra if ∗E ∈ Γ . Suppose Φ1, Φ2 and Φ are
DDCSs and ⊕c(Φ1, Φ2, Φ). Then for any ϕ1 ∈ Φ1, we know ϕ1 ∗ > ∈ Φ
(because > ∈ Φ2). Since ∗E ∈ Γ , Φ `Γ ϕ1, i.e. ϕ1 ∈ Φ. So, Φ1 ⊆ Φ.

5. Mc has increasing elements self-joining if eDup ∈ Γ . Suppose Φ is an in-
creasing DDCS. By truth lemma we know that emp ∈ Φ. Now, we only need
to show that Φ ∗Φ ⊆ Φ, i.e. for any ϕ,ψ ∈ Φ, ϕ ∗ψ ∈ Φ. Since Φ is a DDCS,
we know that emp∧(ϕ∧ψ) ∈ Φ. By eDup, (ϕ∧ψ)∗(ϕ∧ψ) ∈ Φ. By ∗MONO,
ϕ ∗ ψ ∈ Φ.

6. Mc ’s increasing elements can only be split into smaller pieces if eE ∈ Γ .
Suppose Ψ1, Ψ2 and Φ are DDCSs, Φ is increasing and Ψ1 ∗Ψ2 ⊆ Φ. By truth
lemma we know that emp ∈ Φ. Now we need to show that Ψ1 ⊆ Φ. Consider
any ϕ ∈ Ψ1, then we know ϕ∗> ∈ Φ. Thus emp∧ (ϕ∗>) ∈ Φ. By eE, ϕ ∈ Φ.
Since ϕ is arbitary, Ψ1 ⊆ Φ.

ut

Now we can prove separation logics complete.

Proof. We will prove the contrapositive of strong completeness. Suppose Γ 6`Γ ϕ,
we know from existence lemma I that there exists a DDCS Ψ such that Φ ⊆ Ψ
and Ψ 6`Γ ϕ.

By truth lemma, we know that Ψ �=M Φ and Ψ 6�=M ϕ. By lemma 8, we know
that the canonical model of Γ is indeed in the corresponding class of extended
Kripke models. ut
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