All proofs in the paper and this appendix are formalized in Coq. The address is: https://github.com/QinxiangCao/UnifySL.

A Proof of Semantic Equivalence

Here, we recall the definition of downwards closure and upwards closure.

Definition 1 (Upwards closure and downwards closure). Given a separation algebra (M, \leq, \oplus) , its upwards closure is the triple $(M, \leq, \oplus^{\uparrow})$ where $\oplus^{\uparrow}(m_1, m_2, m)$ iff there is m' such that $m' \leq m$ and $\oplus(m_1, m_2, m')$.

Given a separation algebra (M, \leq, \oplus) , its downwards closure is the triple $(M, \leq, \oplus^{\downarrow})$ where $\oplus^{\downarrow}(m_1, m_2, m)$ iff there are m'_1 and m'_2 such that $m_1 \leq m'_1$, $m_2 \leq m'_2$ and $\oplus(m'_1, m'_2, m)$.

We first prove that both upwards closures of downwards-closed algebra and downwards closures of upwards-closed algebra are upwards-closed and downwardsclosed at the same time. We then prove that the flat semantics on the closures are equivalent with downwards (resp. upwards) semantics in the original algebra.

Lemma 1. Given an ordered separation algebra (M, \leq, \oplus) : If (M, \leq, \oplus) is downwards closed, $(M, \leq, \oplus^{\uparrow})$ is an upwards closed and downwards closed ordered separation algebra. If (M, \leq, \oplus) is upwards closed, $(M, \leq, \oplus^{\downarrow})$ is an upwards closed and downwards closed ordered separation algebra.

- *Proof.* 1. If (M, \leq, \oplus) is upwards-closed, $(M, \leq, \oplus^{\downarrow})$ is downwards-closed: Obvious because \leq is transitive.
- 2. If (M, \leq, \oplus) is upwards-closed, $(M, \leq, \oplus^{\downarrow})$ is upwards-closed: Suppose m_1 , m_2 , m and n satisfy $\oplus^{\downarrow}(m_1, m_2, m)$ and $m \leq n$. According to the definition of \oplus^{\downarrow} , there exist m'_1 and m'_2 s.t.

$$egin{array}{ll} m_1 &\leq m_1' \ m_2 &\leq m_2' \ \oplus (m_1', m_2', m) \end{array}$$

Since (M, \leq, \oplus) is upwards-closed, there must exist n_1 and n_2 s.t.

$$m_1' \le n_1$$

$$m_2' \le n_2$$

$$\oplus (n_1, n_2, n)$$

So we know that $m_1 \leq n_1, m_2 \leq n_2$ and $\oplus^{\downarrow}(n_1, n_2, n)$. In other words, $(M, \leq, \oplus^{\downarrow})$ is upwards-closed.

3. If (M, \leq, \oplus) is downwards-closed, $(M, \leq, \oplus^{\uparrow})$ is upwards-closed: Obvious because \leq is transitive.

4. If (M, \leq, \oplus) is downwards-closed, $(M, \leq, \oplus^{\uparrow})$ is downwards-closed: Suppose m_1, m_2, m, n_1 and n_2 satisfy $\oplus^{\uparrow}(m_1, m_2, m), n_1 \leq m_1$ and $n_2 \leq m_2$. According to the definition of \oplus^{\uparrow} , there exist m' s.t.

$$m' \le m$$

$$\oplus (m_1, m_2, m')$$

Since (M, \leq, \oplus) is downwards-closed, there exist n s.t.

$$egin{array}{l} n \leq m' \ \oplus (n_1, n_2, n) \end{array}$$

So we know that $n \leq m$ and $\oplus^{\uparrow}(n_1, n_2, n)$. In other words, $(M, \leq, \oplus^{\uparrow})$ is downwards-closed.

Theorem 1. thm:updownflat Given an extended Kripke model $\mathcal{M} =$ (M, \leq, \oplus, J)

- 1. if it is downwards closed, then the flat semantics on \mathcal{M}^{\uparrow} is equivalent to the
- downwards semantics on \mathcal{M} , i.e. for any φ and m, $m \models_{\mathcal{M}^{\uparrow}}^{=} \varphi$ iff $m \models_{\mathcal{M}}^{\Downarrow} \varphi$ 2. if it is upwards closed, then the flat semantics on \mathcal{M}^{\Downarrow} is equivalent to the upwards semantics on \mathcal{M} , i.e. for any φ and m, $m \models_{\mathcal{M}^{\Downarrow}}^{=} \varphi$ iff $m \models_{\mathcal{M}}^{\uparrow} \varphi$

Proof. We prove it by induction on the syntax of assertions. The only interesting cases are the following:

1. If (M, \leq, \oplus) is downwards-closed and for any m:

$$m \models_{\mathcal{M}^{\uparrow}}^{=} \varphi \text{ iff } m \models_{\mathcal{M}}^{\downarrow} \varphi$$

$$m \models_{\mathcal{M}^{\uparrow}}^{=} \psi \text{ iff } m \models_{\mathcal{M}}^{\downarrow} \psi$$
 (IH)

then for any m:

$$m \vDash_{\mathcal{M}^{\Uparrow}}^{=} \varphi \ast \psi \text{ iff } m \vDash_{\mathcal{M}}^{\Downarrow} \varphi \ast \psi$$

Obvious by IH and the definition of \oplus^{\uparrow} , flat semantics, downwards semantics. 2. If (M, \leq, \oplus) is downwards-closed and for any m:

$$m \models_{\mathcal{M}^{\uparrow}}^{=} \varphi \text{ iff } m \models_{\mathcal{M}}^{\Downarrow} \varphi$$

$$m \models_{\mathcal{M}^{\uparrow}}^{=} \psi \text{ iff } m \models_{\mathcal{M}}^{\Downarrow} \psi$$

$$(IH)$$

then for any m:

$$m \models_{\mathcal{M}^{\uparrow}}^{=} \varphi \twoheadrightarrow \psi \text{ iff } m \models_{\mathcal{M}}^{\Downarrow} \varphi \twoheadrightarrow \psi$$

Left to right is obvious because $\oplus^{\uparrow} \supseteq \oplus$. We only prove the other direction here. Suppose $m \vDash^{\Downarrow}_{\mathcal{M}} \varphi \twoheadrightarrow \psi$ (left side), $\oplus^{\uparrow}(m, m_1, m_2)$ and $m_1 \vDash^{=}_{\mathcal{M}^{\uparrow}} \varphi$ (the

$$egin{array}{l} m_2 \leq m_2 \ \oplus (m,m_1,n_2) \end{array}$$

And by IH, we know that

$$m_1 \models^{\Downarrow}_{\mathcal{M}} \varphi$$

From the fact that $m \vDash^{\Downarrow}_{\mathcal{M}} \varphi \twoheadrightarrow \psi$, we know

$$n_2 \models^{\Downarrow}_{\mathcal{M}} \psi$$

Since the denotation of all assertions are monotonic, $m_2 \models^{\Downarrow}_{\mathcal{M}} \psi$, i.e. by IH: $m_2 \models_{\mathcal{M}^{\uparrow}}^{=} \psi$ 3. If (M, \leq, \oplus) is upwards-closed and for any m:

$$m \vDash_{\mathcal{M}^{\Downarrow}}^{=} \varphi \text{ iff } m \vDash_{\mathcal{M}}^{\uparrow} \varphi$$
$$m \succeq_{\mathcal{M}^{\Downarrow}}^{=} \psi \text{ iff } m \vDash_{\mathcal{M}}^{\uparrow} \psi$$
(IH)

then for any m:

$$m \models_{\mathcal{M}^{\Downarrow}}^{=} \varphi * \psi \text{ iff } m \models_{\mathcal{M}}^{\Uparrow} \varphi * \psi$$

Right to left is obvious, because $\oplus \subseteq \oplus^{\Downarrow}$. We only prove the other direction here. Suppose $m \models_{\mathcal{M}^{\Downarrow}}^{=} \varphi$, then there exist m_1 and m_2 s.t.

By the definition of \oplus^{\downarrow} , there exist n_1 and n_2 s.t.

$$egin{aligned} m_1 &\leq n_1 \ m_2 &\leq n_2 \ \oplus (n_1, n_2, m) \end{aligned}$$

By the monotonicity of φ and ψ 's denotation and IH, we know that

$$n_1 \vDash^{\scriptscriptstyle \parallel}_{\mathcal{M}} \varphi$$
$$n_2 \vDash^{\scriptscriptstyle \uparrow}_{\mathcal{M}} \psi$$

So, $m \models^{\uparrow}_{\mathcal{M}} \varphi * \psi$. 4. If (M, \leq, \oplus) is upwards-closed and for any m:

$$m \models_{\mathcal{M}^{\Downarrow}}^{=} \varphi \text{ iff } m \models_{\mathcal{M}}^{\uparrow} \varphi$$
$$m \models_{\mathcal{M}^{\Downarrow}}^{=} \psi \text{ iff } m \models_{\mathcal{M}}^{\uparrow} \psi$$
(IH)

then for any m:

$$m \models_{\mathcal{M}^{\Downarrow}}^{=} \varphi \twoheadrightarrow \psi \text{ iff } m \models_{\mathcal{M}}^{\Uparrow} \varphi \twoheadrightarrow \psi$$

Obvious by IH and the definition of \oplus^{\downarrow} , flat semantics, upwards semantics.

B Proof of Completeness

Here, we always assume Σ is countable and thus so is $\mathcal{L}(\Sigma)$.

We use the standard notation $\Phi \vdash \psi$ to represent the existence of finite elements $\varphi_1, \varphi_2, ..., \varphi_n \in \Phi$ such that

$$\vdash \left(\bigwedge_{i=1}^{n} \varphi_i\right) \to \psi$$

Also, $\Phi \models_U \psi$ means that for any model $m \in U$ if every assertion in Φ is satisfied on m then ψ is satisfied on m.

Definition 2 (Soundness and completeness). A proof theory Γ is sound w.r.t. a semantics \vDash in a class of models U iff for any φ , $\vdash^{\Gamma} \varphi$ implies $\models_{U} \varphi$.

A proof theory Γ is weakly complete w.r.t. a semantics \vDash in a class of models U iff for any φ , $\models_U \varphi$ implies $\vdash^{\Gamma} \varphi$.

A proof theory Γ is strongly complete w.r.t. a semantics \vDash in U iff for any Φ and φ , $\Phi \models_U \varphi$ implies $\Phi \vdash^{\Gamma} \varphi$.

Strong completeness clearly implies weak completeness. In the rest of this appendix we present the soundness and strong completeness of separation logics stated as follows:

Theorem 2 (Parametric soundness and completeness). A separation logic Γ is sound and strongly complete w.r.t. the flat semantics in Γ 's corresponding class of models.

We first define DDCS and canonical model.

Definition 3 (DDCS). Given Σ , we call a set of formulas $\Phi \subseteq \mathcal{L}(\Sigma)$ a derivable closed, disjunction-witnessed, consistent set (DDCS) of proof theory Γ if

- 1. it is derivable closed, i.e. for any ϕ , if $\Phi \vdash^{\Gamma} \phi$ then $\phi \in \Phi$
- 2. it is disjunction witnessed, i.e. for any ϕ and ψ , if $\phi \lor \psi \in \Phi$ then $\phi \in \Phi$ or $\psi \in \Phi$
- 3. it is consistent, i.e. $\Phi \not\vdash^{\Gamma} \bot$

Definition 4. We lift separating conjunction to sets of assertions (not only DD-CSs but any sets), as follows:

$$\Phi * \Psi \triangleq \{ \phi * \psi \mid \Phi \vdash^{\Gamma} \phi \text{ and } \Psi \vdash^{\Gamma} \psi \}$$

Definition 5 (Canonical model). Given a separation logic Γ of $\mathcal{L}(\Sigma)$, we call $\mathcal{M}^c = (M^c, \leq^c, \oplus^c, J^c)$ the canonical model of Γ where

- 1. M^c is the set of DDCSs of Γ
- 2. for any $\Phi, \Psi \in M^c$, $\Phi \leq^c \Psi$ iff $\Phi \subseteq \Psi$
- 3. for any $\Phi_1, \Phi_2, \Phi \in M^c$, $\oplus^c(\Phi_1, \Phi_2, \Phi)$ iff $\Phi_1 * \Phi_2 \subseteq \Phi$
- 4. for any $p \in \Sigma$ and $\Phi \in M^c$, $\Phi \in J^c(p)$ iff $p \in \Phi$

It is an important fact that for any DDCS Φ of Γ and assertion φ , $\Phi \vdash^{\Gamma} \varphi$ is equivalent with $\varphi \in \Phi$. We will use these two concept interchangably in the following proofs.

Here, we first prove a lemma about the lifted separating conjunction between sets of assertions.

Lemma 2. For any Φ , Ψ and θ , if $\Phi * \Psi \vdash \chi$ then there exist $\varphi_1, \varphi_2, ..., \varphi_n \in \Phi$ and $\psi_1, \psi_2, ..., \psi_m \in \Psi$, s.t.

$$\vdash \left(\bigwedge_{i=1}^{n} \varphi_i * \bigwedge_{i=1}^{m} \psi_i\right) \to \chi$$

Proof. By the definition of "derivable", we know there exist

$$\begin{aligned} \chi_1, \chi_2, ..., \chi_k, \quad \chi_1', \chi_2', ..., \chi_k', \quad \chi_1'', \chi_2'', ..., \chi_k'' \\ \varphi_{1,1}, ..., \varphi_{1,n_1}, \varphi_{2,1}, ..., \varphi_{2,n_2}, ..., \varphi_{k,1}, ..., \varphi_{k,n_k} \in \varPhi \\ \psi_{1,1}, ..., \psi_{1,m_1}, \psi_{2,1}, ..., \psi_{2,m_2}, ..., \psi_{k,1}, ..., \psi_{k,m_k} \in \varPsi \end{aligned}$$

such that

$$\vdash \left(\bigwedge_{j=1}^{n_1} \varphi_{1,j}\right) \to \chi'_1, \quad \vdash \left(\bigwedge_{j=1}^{m_1} \psi_{1,j}\right) \to \chi''_1 \\ \vdash \left(\bigwedge_{j=1}^{n_2} \varphi_{2,j}\right) \to \chi'_2, \quad \vdash \left(\bigwedge_{j=1}^{m_2} \psi_{2,j}\right) \to \chi''_2 \\ \dots \\ \vdash \left(\bigwedge_{j=1}^{n_k} \varphi_{k,j}\right) \to \chi'_k, \quad \vdash \left(\bigwedge_{j=1}^{m_k} \psi_{k,j}\right) \to \chi''_k \\ \vdash \left(\bigwedge_{i=1}^k \chi'_i * \chi''_i\right) \to \chi$$

By the fact the following assertion is a tautology in any separation logic for any φ , φ' , ψ and ψ' :

$$(\varphi \land \varphi') \ast (\psi \land \psi') \to (\varphi \ast \psi) \land (\varphi' \ast \psi')$$

we know that

$$\vdash \left(\bigwedge_{i=1}^{k} \chi_{i}'\right) * \left(\bigwedge_{i=1}^{k} \chi_{i}''\right) \to \chi$$

So, by *MONO, we know

$$\vdash \left(\bigwedge_{i=1}^{k}\bigwedge_{j=1}^{n_{j}}\varphi_{i,j}\right) * \left(\bigwedge_{i=1}^{k}\bigwedge_{j=1}^{m_{j}}\psi_{i,j}\right) \to \chi$$
(1)

One important property of DDCS's is that we can extend consistent set of assertions into DDCS's. Specifically, we prove the following two existence lemma.

Lemma 3 (Existence lemma I). Given a separation logic Γ , a set of assertions Φ and an assertion ϕ , if $\Phi \not\vdash^{\Gamma} \phi$, then there exists Φ' , which is a DDCS of Γ , s.t. $\Phi \subseteq \Phi'$ and $\Phi' \not\vdash^{\Gamma} \phi$.

Proof. See
$$[1]$$
.

Lemma 4 (Existence lemma II). Given a separation logic Γ , of $\mathcal{L}(\Sigma)$, and sets of assertions Φ_1 , Φ_2 and Φ among which Φ is a DDCS of Γ , if $\Phi_1 * \Phi_2 \subseteq \Phi$, then

there is a DDCS Φ'₁, s.t. Φ₁ ⊆ Φ'₁ and Φ'₁ * Φ₂ ⊆ Φ.
 there is a DDCS Φ'₂, s.t. Φ₂ ⊆ Φ'₂ and Φ₁ * Φ'₂ ⊆ Φ.

Proof. We only prove the first half here. The second half follows in the same way.

Because $\mathcal{L}(\Sigma)$ is countable, we can enumerate all asserts as ψ_1, ψ_2, \dots Then we constructor the following sets of assertions and let $\Phi'_1 \triangleq \bigcup_{k \in \mathbb{N}} \Psi_k$:

$$\begin{split} \Psi_0 &= \Phi_1 \\ \Psi_{k+1} &= \begin{pmatrix} \Psi_k \cup \{\psi_{k+1}\} & \text{ if } (\Psi_k \cup \{\psi_{k+1}\}) * \Phi_2 \subseteq \Phi \\ \Psi_k & \text{ otherwise } \end{cases} \end{split}$$

Obviously, $\Phi_1 \subseteq \Phi'_1$ and $\Phi'_1 * \Phi_2 \subseteq \Phi$, so we only need to show that Φ'_1 is actually a DDCS.

First, we prove that Φ'_1 is derivable closed by contradiction. Suppose $\Phi'_1 \vdash^{\Gamma} \psi_k$ and $\psi_k \notin \Phi'_1$. Then $\psi_k \notin \Psi_k$, which means there exists φ_1 and φ_2 s.t.

$$\Psi_{k-1} \cup \{\psi_k\} \vdash^{\Gamma} \varphi_1
\Phi_2 \vdash^{\Gamma} \varphi_2
\varphi_1 * \varphi_2 \notin \Phi$$
(2)

At the same time, we know that $\Phi'_1 \vdash^{\Gamma} \varphi_1$ because $\Psi_k \subseteq \Phi'_1$ and $\Phi'_1 \vdash^{\Gamma} \psi_k$. Since we know $\Phi'_1 * \Phi_2 \subseteq \Phi$, we can conclude that $\varphi_1 * \varphi_2 \in \Phi$, which contradicts (2)!

Second, Φ'_1 is disjunction-witnessed. We prove it by contradiction, mostly in the same way as above. Suppose $\psi_k \vee \psi_{k'} \in \Phi'_1$, $\psi_k \notin \Phi'_1$ and $\psi_{k'} \notin \Phi'_1$. Then $\psi_k \notin \Psi_k$ and $\psi_{k'} \notin \Psi_{k'}$, which means there exists φ_1 , φ_2 , φ'_1 and φ'_2 s.t.

$$\Psi_{k-1} \cup \{\psi_k\} \vdash^{\Gamma} \varphi_1 \tag{3}$$

$$\Psi_{k'-1} \cup \{\psi_{k'}\} \vdash^{\Gamma} \varphi_1' \tag{4}$$

$$\begin{aligned}
\Phi_2 \vdash^{\Gamma} \varphi_2 \\
\Phi_2 \vdash^{\Gamma} \varphi'_2 \\
\varphi_1 * \varphi_2 \notin \Phi
\end{aligned}$$
(5)

$$\varphi_1' \ast \varphi_2' \not\in \Phi \tag{6}$$

From deduction theorem and (3) (4), we know:

$$\Psi_{k-1} \vdash^{\Gamma} \psi_k \to \varphi_1 \\
\Psi_{k'-1} \vdash^{\Gamma} \psi_{k'} \to \varphi_1'$$

Then, by $\Phi'_1 \supseteq \Psi_{k-1}$ and $\Phi'_1 \supseteq \Psi_{k'-1}$, we know

$$\Phi_1' \vdash^{\Gamma} \psi_k \lor \psi_{k'} \to \varphi_1 \lor \varphi_1'$$

Moreoever, since $\psi_k \vee \psi_{k'} \in \Phi'_1$ is assumed, $\Phi'_1 \vdash^{\Gamma} \varphi_1 \vee \varphi'_1$. At the same time, $\Phi_2 \vdash^{\Gamma} \varphi_2 \wedge \varphi'_2$ and $\Phi'_1 * \Phi_2 \subseteq \Phi$ is already known, so

$$\Phi \vdash (\varphi_1 \lor \varphi_1') \ast (\varphi_2 \land \varphi_2')$$

Notice that the following assertion is a tautology in any separation logic,

$$(\varphi_1 \lor \varphi_1') \ast (\varphi_2 \land \varphi_2') \to (\varphi_1 \ast \varphi_2 \lor \varphi_1' \ast \varphi_2')$$

Thus, we know the following fact because Φ is a DDCS:

$$\varphi_1 \lor \varphi_1' \in \Phi \text{ or } \varphi_2 \land \varphi_2' \in \Phi$$

which contradicts with (5) and (6)!

Third, Φ'_1 is consistent. This follows the facts that Φ is consistent, $\Phi'_1 * \Phi_2 \subseteq \Phi$ and $\vdash^{\Gamma} \bot * \top \to \bot$. \Box

Now we can prove that a canonical model is actually well defined, i.e.we will show that \leq^c is a preorder, \oplus^c is commutative and associative and J^c is monotonic. Also, it is upwards closed and downwards closed.

Lemma 5. Given a separation logic Γ of $\mathcal{L}(\Sigma)$, its canonical model $(M^c, \leq^c, \oplus^c, J^c)$ is an extended Kripke model, which is upwards closed and downwards closed at the same time.

Proof.

- 1. \leq^c is a preorder because set inclusion is preordered.
- 2. \oplus^c is commutative: suppose Φ_1, Φ_2 and Φ are DDCS's and $\oplus^c(\Phi_1, \Phi_2, \Phi)$. By definition, for any φ_1 and φ_2 , if $\Phi_1 \vdash^{\Gamma} \varphi_1$ and $\Phi_2 \vdash^{\Gamma} \varphi_2$ then $\Phi \vdash^{\Gamma} \varphi_1 * \varphi_2$. Since Γ is a separation logic,

$$\vdash^{\Gamma} \varphi_1 * \varphi_2 \to \varphi_2 * \varphi_1$$

and thus $\oplus^c(\Phi_2, \Phi_1, \Phi)$.

3. \oplus^c is associative: suppose $\Phi_x, \Phi_y, \Phi_z, \Phi_{xy}$ and Φ_{xyz} are DDCS's such that $\oplus^c(\Phi_x, \Phi_y, \Phi_{xy})$ and $\oplus^c(\Phi_{xy}, \Phi_z, \Phi_{xyz})$. First we show that

$$\Phi_x * (\Phi_y * \Phi_z) \subseteq \Phi_{xyz}.$$

Given $\varphi_x \in \Phi_x$, $\varphi_y \in \Phi_y$ and $\varphi_z \in \Phi_z$, we know that $\varphi_x * \varphi_y \in \Phi_{xy}$. Thus,

$$(\varphi_x * \varphi_y) * \varphi_z \in \Phi_{xyz} \text{ or } \Phi_{xyz} \vdash^{\Gamma} (\varphi_x * \varphi_y) * \varphi_z$$

From the fact that Γ is a separation logic, it follows that $\Phi_{xyz} \vdash^{\Gamma} \varphi_x * (\varphi_y * \varphi_z)$.

Second, by existence lemma II(2), we know there exists a DDCS Φ_{yz} such that $\Phi_x * \Phi_{yz} \subseteq \Phi_{xyz}$ and $\Phi_y * \Phi_z \subseteq \Phi_{yz}$, which implies that \oplus^c is associative by definition.

- 4. J^c is monotonic by definition.
- 5. Upwards-closed: trivial because $\Phi_1 * \Phi_2 \subseteq \Phi$ and $\Phi \subseteq \Phi'$ implies $\Phi_1 * \Phi_2 \subseteq \Phi'$.
- 6. Downwards-closed: trivial because $\Phi_1 * \Phi_2 \subseteq \Phi$, $\Phi'_1 \subseteq \Phi_1$ and $\Phi'_2 \subseteq \Phi_2$ implies $\Phi'_1 * \Phi'_2 \subseteq \Phi$.

Lemma 6. Given a separation logic Γ of $\mathcal{L}(\Sigma)$, its canonical model $(M^c, \leq^c, \oplus^c, J^c)$ is a unital extended Kripke model.

Proof. Assume Φ is an arbitrary DDCS. Because EMP $\in \Gamma$, we know that

 $\{\mathsf{emp}\} * \Phi \subseteq \Phi$

By existence lemma II, we know there is a DDCS Ψ such that $\mathsf{emp} \in \Psi$ and $\Psi * \Phi \subseteq \Phi$. So, Ψ is Φ 's increasing residual.

Because a canonical model has a upwards-closed and downwards-closed separation algebra we can define the flat semantics on it. The most important property of canonical models, formalized by the truth lemma below, is that assertions in a DDCS are the assertions that are exactly the ones satisfied on the same DDCS w.r.t. flat semantics.

Lemma 7 (Truth lemma). Given a separation logic Γ of $\mathcal{L}(\Sigma)$, for any $\Phi \in M^c$ and $\varphi \in \mathcal{L}(\Sigma)$,

 $\Phi \vDash_{\mathcal{M}^c}^{=} \varphi \quad iff \quad \varphi \in \Phi$

Proof. We proceed by induction on the syntax of φ . The cases when φ is an atomic assertion, a conjunction, a disjunction or an implication, are covered in the proof of intuitionistic logic completeness [1]. Here, we show the base step for **emp** and the induction step for separating conjunction and separating disjunction. Specifically, we need to show that

$$\Phi \models_{\mathcal{M}^c}^= \mathsf{emp} \quad \text{iff} \quad \mathsf{emp} \in \Phi \tag{Cemp}$$

and given the induction hypothesis: for any DDCS Φ ,

$$\Phi \models_{\mathcal{M}^c}^{=} \varphi_1 \quad \text{iff} \quad \varphi_1 \in \Phi \\
\Phi \models_{\mathcal{M}^c}^{=} \varphi_2 \quad \text{iff} \quad \varphi_2 \in \Phi$$
(IH)

we are going to show that for any DDCS Φ :

 $\Phi \models_{\mathcal{M}^c}^{=} \varphi_1 * \varphi_2 \quad \text{iff} \quad \varphi_1 * \varphi_2 \in \Phi \tag{C*}$

$$\Phi \vDash_{\mathcal{M}^c}^= \varphi_1 \twoheadrightarrow \varphi_2 \quad \text{iff} \quad \varphi_1 \twoheadrightarrow \varphi_2 \in \Phi \tag{C-*}$$

Cemp \Rightarrow Suppose Φ is increasing. Then we first show that $\Phi * \{emp\} \vdash^{\Gamma} emp$. If not, then we know from existence lemma I that there exists a DDCS Φ_2 s.t.

Then, from existence lemma II(2), we know there exists a DDCS Φ_1 s.t.

$$egin{array}{ll} \Phi st \Phi_1 dash^T \subseteq \Phi_2 \ \ \, ext{emp} \in \Phi_1 \end{array}$$

Since Φ is increasing, $\mathsf{emp} \in \Phi_1 \subseteq \Phi_2$. It contradicts with (7)! Now that $\Phi * \{\mathsf{emp}\} \vdash^{\Gamma} \mathsf{emp}$, we know from lemma 2 that there exists φ s.t.

$$egin{array}{ll} \Phi dash^{\Gamma} \ arphi \ arphi^{\Gamma} \ arphi st ext{emp}
ightarrow ext{emp}
ightarrow ext{emp}
ightarrow ext{emp}
ightarrow ext{emp}$$

By the adjoint property, we know: $\vdash^{\Gamma} \varphi \to (\mathsf{emp} \mathsf{-\!\!\!*emp})$, so

$$\Phi \vdash^{\Gamma} emp \rightarrow emp$$

Consequencely,

$$\Phi \vdash^{\Gamma} (\mathsf{emp} \twoheadrightarrow \mathsf{emp}) \ast \mathsf{emp}$$

So, $\Phi \vdash^{\Gamma} emp$, i.e. $emp \in \Phi$.

Cemp \Leftarrow Because emp $\in \Phi$. We know, if $\Phi * \Psi \subseteq \Psi'$, then $\{emp\} * \Psi \subseteq \Psi'$. This tells $\Psi \subseteq \Psi'$ by EMP. As Ψ and Ψ' is arbitarily chosen, Φ is increasing. So, $\Phi \models_{\mathcal{M}^c}^=$ emp.

 $\mathbf{C}* \Rightarrow$ follows by definition.

 $\mathbf{C}^* \Leftarrow$ Given Φ , suppose $\varphi_1 * \varphi_2 \in \Phi$. We start by showing

$$\{\varphi_1\} * \{\varphi_2\} \subseteq \Phi.$$

For any ψ_1 and ψ_2 , if $\varphi_1 \vdash^{\Gamma} \psi_1$ and $\varphi_2 \vdash^{\Gamma} \psi_2$, then by *MONO

$$\vdash^{\Gamma} \varphi_1 * \varphi_2 \to \psi_1 * \psi_2$$

Since $\varphi_1 * \varphi_2 \in \Phi$ and Φ is a DDCS, then $\psi_1 * \psi_1 \in \Phi$. Second, by applying existence lemma II(1) and II(2), we know that there exists DDCS's Φ_1 and Φ_2 such that $\varphi_1 \in \Phi_1$, $\varphi_2 \in \Phi_2$ and $\Phi_1 * \Phi_2 \subseteq \Phi$. So, by IH and the definition of \oplus^c , we know that

$$\Phi_1 \models_{\mathcal{M}^c}^{=} \varphi_1, \ \Phi_2 \models_{\mathcal{M}^c}^{=} \varphi_2, \ \oplus^c (\Phi_1, \Phi_2, \Phi)$$

which shows $\Phi \models_{\mathcal{M}^c}^= \varphi_1 * \varphi_2$.

 $\mathbf{C} \twoheadrightarrow \mathbf{A}$ Given Φ , suppose $\Phi \models_{\mathcal{M}^c}^= \varphi_1 \twoheadrightarrow \varphi_2$. We prove $\varphi_1 \twoheadrightarrow \varphi_2 \in \Phi$ by considering whether

$$\Phi * \{\varphi_1\} \vdash^{I'} \varphi_2$$

If it holds, then we know from lemma 2 that there exists φ such that $\Phi \vdash^{\Gamma} \varphi$ and $\vdash^{\Gamma} \varphi * \varphi_1 \to \varphi_2$. By *ADJ, we know that $\vdash^{\Gamma} \varphi \to (\varphi_1 - *\varphi_2)$, thus $\Phi \vdash^{\Gamma} \varphi_1 - *\varphi_2$. If it doesn't hold, then we can construct a DDCS Φ_2 by existence lemma I,

s.t. $\Phi * \{\varphi_1\} \subseteq \Phi_2$ and $\Phi_2 \not\models^{\Gamma} \varphi_2$. Moreover, we can construct another DDCS Φ_1 by existence lemma II(1), s.t. $\Phi * \Phi_1 \subseteq \Phi_2$ and $\varphi_1 \in \Phi_1$. So, $\oplus^c(\Phi, \Phi_1, \Phi_2)$. And by IH, $\Phi_1 \models_{\mathcal{M}^c}^= \varphi_1$ and $\Phi_2 \not\models_{\mathcal{M}^c}^= \varphi_2$. However, this contradicts with the assumption that $\Phi \models_{\mathcal{M}^c}^= \varphi_1 - *\varphi_2$.

 $\mathbf{C} \twoheadrightarrow \leftarrow$ follows from the fact that

$$\vdash^{\Gamma} (\varphi_1 \twoheadrightarrow \varphi_2) \ast \varphi_1 \to \varphi_2$$

Lemma 8. Given a separation logic Γ , its canonical model \mathcal{M}^c satisfies the canonical properties of all optional axioms in Γ .

Proof. It is well known results that

- 1. \mathcal{M}^c has an identity relation as its preorder if $\mathrm{EM} \in \Gamma$
- 2. \mathcal{M}^c has an non-branching relation as its preorder if $GD \in \Gamma$
- 3. \mathcal{M}^c has an always-join relation as its preorder if WEM $\in \Gamma$

Besides,

- 4. \mathcal{M}^c is increasing separation algebra if $*\mathbf{E} \in \Gamma$. Suppose Φ_1, Φ_2 and Φ are DDCSs and $\oplus^c(\Phi_1, \Phi_2, \Phi)$. Then for any $\varphi_1 \in \Phi_1$, we know $\varphi_1 * \top \in \Phi$ (because $\top \in \Phi_2$). Since $*\mathbf{E} \in \Gamma, \Phi \vdash^{\Gamma} \varphi_1$, i.e. $\varphi_1 \in \Phi$. So, $\Phi_1 \subseteq \Phi$.
- 5. \mathcal{M}^c has increasing elements self-joining if $eDup \in \Gamma$. Suppose Φ is an increasing DDCS. By truth lemma we know that $emp \in \Phi$. Now, we only need to show that $\Phi * \Phi \subseteq \Phi$, i.e. for any $\varphi, \psi \in \Phi, \varphi * \psi \in \Phi$. Since Φ is a DDCS, we know that $emp \land (\varphi \land \psi) \in \Phi$. By eDup, $(\varphi \land \psi) * (\varphi \land \psi) \in \Phi$. By *MONO, $\varphi * \psi \in \Phi$.
- 6. \mathcal{M}^{c} 's increasing elements can only be split into smaller pieces if $e \in \Gamma$. Suppose Ψ_1, Ψ_2 and Φ are DDCSs, Φ is increasing and $\Psi_1 * \Psi_2 \subseteq \Phi$. By truth lemma we know that $emp \in \Phi$. Now we need to show that $\Psi_1 \subseteq \Phi$. Consider any $\varphi \in \Psi_1$, then we know $\varphi * \top \in \Phi$. Thus $emp \land (\varphi * \top) \in \Phi$. By $e \in \Phi$, Since φ is arbitrary, $\Psi_1 \subseteq \Phi$.

Now we can prove separation logics complete.

Proof. We will prove the contrapositive of strong completeness. Suppose $\Gamma \not\models^{\Gamma} \varphi$, we know from existence lemma I that there exists a DDCS Ψ such that $\Phi \subseteq \Psi$ and $\Psi \not\models^{\Gamma} \varphi$.

By truth lemma, we know that $\Psi \models_{\mathcal{M}}^{=} \Phi$ and $\Psi \not\models_{\mathcal{M}}^{=} \varphi$. By lemma 8, we know that the canonical model of Γ is indeed in the corresponding class of extended Kripke models.

References

1. Saul A. Kripke. Semantical analysis of intuitionistic logic i. In *Studies in Logic and the Foundations of Mathematics 50*, pages 92–130, 1965.