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Abstract

We describe a new approach for the problem of finding rigid matrices, as posed
by Valiant [Val77], by connecting it to the, seemingly unrelated, problem of proving
lower bounds for linear locally self-correctable codes. This approach, if successful,
could lead to a non-natural property (in the sense of Razborov and Rudich [RR97])
implying super-linear lower bounds for linear functions in the model of logarithmic-
depth arithmetic circuits.

Our results are based on a lemma saying that, if the generating matrix of a
locally decodable code is not rigid, then it defines a locally self-correctable code
with rate close to one. Thus, showing that such codes cannot exist will prove that
the generating matrix of any locally decodable code (and in particular Reed Muller
codes) is rigid.

1 Introduction

One of the main challenges of computational complexity is proving lower bounds for
interesting families of functions in natural models of computation and in particular circuit
lower bounds. The ‘holy grail’ is to show that there are languages in NP that cannot be
computed by polynomial size boolean circuits, thus separating P from NP . One can also
formulate this question for arithmetic circuits (circuits using basic field operations that
compute polynomials) and try to prove that there are polynomials in VNP (Valiant’s
arithmetic analog of NP [Val79]) that do not have polynomial size arithmetic circuits.
A notable obstacle for pursuing this goal (at least in the boolean setting) was given by
Razborov and Rudich [RR97] who showed that a large class of possible proof strategies,
called natural proofs, cannot separate P from NP .

A special case of the above challenge is to prove circuit lower bounds for linear func-
tions. Say A : Fn 7→ Fn is a linear mapping over a field F. A natural way to compute this
mapping on a given input is by an arithmetic circuit whose gates compute linear functions
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of two inputs. That is, we start with the inputs x1, . . . , xn and, at each gate, compute
a linear combination of two terms already computed. Eventually we would like to reach
a point in the computation where all n outputs of A have been computed. The size of
the circuit is the number of gates used and its depth is the longest path from an output
to an input (when we view the computation as a directed acyclic graph). Even though
it is easy to show that almost all linear mappings require nearly quadratic size circuits,
no explicit examples of such mappings are known. Even more surprising, after more than
three decades of attempts, there are no explicit examples of linear mappings that cannot
be computed by circuits of size O(n) and depth O(log(n)). Of particular interest are
mappings such as the discrete fourier transform which are used heavily in practice and
for which the existence of linear size circuits would have an enormous impact.

In the late 70’s Valiant [Val77] defined the notion of matrix rigidity and showed that a
linear mapping defined by a rigid matrix cannot be computed by linear size and logarith-
mic depth circuits. In this work we give a further reduction from the problem of finding
rigid matrices to the, seemingly unrelated one, of proving lower bounds for a special kind
of error correcting codes. Informally, we show that lower bounds for linear locally self-
correctable codes will imply rigidity for a large (and explicit) family of matrices. More
specifically, any matrix which is the generating matrix of a linear locally-decodable code
(with sufficiently good parameters) will be rigid. In particular, our approach (if success-
ful) can potentially lead to showing that computing constant rate Reed Muller encodings
cannot be done with a linear size and logarithmic depth circuit. Since the property of
being a good locally decodable code is not a ‘natural’ property our reduction raises the
possibility of proving ‘non-natural’ circuit lower bounds 1. The lower bounds we require
for locally self-correctable codes are for a range of parameters not considered before (large
number of queries and rate close to one) and we find them to be consistent with current
knowledge.

We start by defining matrix rigidity and locally decodable/correctable codes and then
proceed to give the formal statement of our results.

1.1 Matrix rigidity

In the following F denotes a field. We denote by Mm×n(F) the vector space of matrices
with m rows and n columns with entries in F. We call a matrix S ∈ Mm×n(F) s-sparse if
each row in S contains at most s non zero entries. All logarithms are taken in base 2.

Definition 1.1 (Matrix rigidity). Let A ∈ Mm×n(F). We say that A is (r, s)-rigid if A
cannot be written as a sum of two matrices A = L + S such that L has rank at most r
and S is s-sparse.

1The notion of natural properties and natural proofs were defined in [RR97] only for boolean functions
but one can make the analogy in the linear setting by defining a natural property of a matrix to be a
property that holds for most matrices and can be verified efficiently.
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In other words, a matrix A is (r, s)-rigid if we cannot decrease its rank to less than
r by changing at most s of its entries in every row. We refer the reader to the excellent
survey [Lok09] for a complete discussion of past work on matrix rigidity. Our definition of
rigidity is slightly non-standard since it allows m and n to be different. This formulation,
which was used also in the recent work of Alon et al [APY09], allows one to think of a rigid
m × n matrix as a set of (row) vectors such that, for any r-dimensional subspace, there
exists a vector in the set which is of Hamming distance at least s from the subspace. This
formulation allows us also to fix the sparsity parameter, s, and to try and minimize m as a
function of n (hopefully reaching m = O(n)). It is trivial to construct an (n/2,Ω(n))-rigid
matrix with m = exp(n) by taking as the rows of the matrix all vectors in Fn. The task
becomes significantly harder if one tries to get the same rigidity with m = O(n) or even
m = 2o(n).

Most of the interest in constructing explicit rigid matrices comes from the following
theorem of Valiant connecting rigidity to arithmetic circuit complexity 2.

Theorem 1.2 (Valiant [Val77]). Suppose A ∈ Mm×n(F) is (αn, nβ)-rigid for constant
α, β > 0 and m = O(n). Then a linear arithmetic circuit C : Fn 7→ Fm computing
C(x) = A · x cannot have both size O(n) and depth O(log(n)).

The best explicit upper bound on m in terms of n and s (we fix r to be n/2 for
convenience) is by Alon et al [APY09] and gives, for every s, explicit (n/2, s)-rigid matrices
with

m ≤ n · exp(s).

Non explicitly, one can easily show the existence of (n/2,Ω(n))-rigid matrices with m = n.
Over fields of characteristic zero, some constructions of ‘semi-explicit’ matrices are known
that have almost optimal rigidity. For example, the square matrix with entries

√
pij, with

pij the first n2 primes, is known to be (ϵn,Ω(n))-rigid [Lok06]. These matrices, while
having a nice compact mathematical description, are not strongly explicit in the sense
that their entries require infinite (or exponential) precision in bits.

We now formulate two open problems (stated as a strong and a weak version of the
same problem) related to the construction rigid matrices. A solution to the strong version
will result in super-linear circuit lower bounds (as was shown by Valiant). A solution to the
weak version of the problem, while not saying anything about circuits, will still signify,
in our opinion, a major breakthrough on the way to proving matrix rigidity. We will
define ‘explicit’ to be any family of matrices that can be generated in polynomial time by
a deterministic Turing machine. Since we will be mostly concerned with finite fields, we
can, for now, not worry about issues of precision and bit representations (we will discuss
infinite fields only in Section 5).

Problem 1. Give an explicit family An ∈ Mm(n)×n(F) (for infinitely many n’s) such that:

2Valiant’s proof actually allows α and β in the theorem to be slightly sub-constant.
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• (Strong version) m(n) = O(n) and An is
(
αn, nβ

)
-rigid for constants α, β > 0.

• (Weak version) m(n) = poly(n) and An is
(
αn, log1+β(n)

)
-rigid for constants α, β >

0.

Notice that if we replace log1+β(n) with O(log(n)) in the weak version, we are already
in the range of parameters obtained by [APY09] and so the weak version of Problem 1
represents the ‘barrier’ to current techniques. We now turn to discuss locally decod-
able/correctable codes and their connection to the above discussion.

1.2 Locally decodable and self-correctable codes

We will be interested only in linear codes. All of the definitions in this section can,
however, be extended also to the non linear case. For a vector v ∈ Fn we denote by
w(v) the number of non zero entries in v (i.e its Hamming weight). We start by defining
locally decodable codes. Informally, an LDC is an error correcting codes that allows one
to recover a single message symbol by reading a small number of entries in a corrupted
encoding. These codes were first formally defined in the work of Katz and Trevisan
[KT00].

Definition 1.3 (Locally decodable code (LDC)). A (q, δ, ϵ)-LDC over a field F is a linear
mapping C : Fn 7→ Fm such that there exists a probabilistic procedure D : Fm × [n] 7→ F
with the following properties:

1. For all x ∈ Fn, for all i ∈ [n] and for all v ∈ Fm with w(v) ≤ δm we have that
D (C(x) + v, i) = xi with probability at least 1− ϵ (the probability is taken only over
the internal randomness of D).

2. For every y ∈ Fm and i ∈ [n], D(y, i) reads at most q positions in y.

We refer to the m× n matrix computing the mapping C as the generating matrix of the
code.

LDC’s are very useful (both in practice and in theory) and their properties are the
subject of many works (see the survey article [Tre04] for more details). For a long time
the best constructions of LDC’s were variants of Reed Muller (RM) codes [HB98]. These
are codes based on multivariate polynomials where the queries are taken, in general, from
a random line through a point (see Section 3 for details). In recent years there have been
a number of works giving new and surprising upper bounds for constant query LDC’s
[BIKR02, Yek08, Efr09]. However, despite this progress, when the number of queries is
roughly logarithmic in n, the best upper bounds are still obtained using RM based codes.

Exponential lower bounds (i.e m ≥ exp(n)) for LDC’s were proven for two-query codes
in [GKST06, KdW04] both in the linear and the non-linear case. When q > 2 the only
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known lower bounds are slightly super-linear. The first bound for q > 2 is due to Katz
and Trevisan [KT00] and is of the form m = Ω

(
n1+1/(q−1)

)
. Notice that this bound

deteriorates rapidly when when q approaches log(n). In [KdW04, Woo07] this bound was
improved slightly, for constant q, to m = Ω

(
n1+2/(q−2)

)
.

We now define locally self-correctable codes. These codes have stronger properties
than LDC’s and one can even verify formally that an LCC implies and LDC with similar
parameters. In an LCC we want to locally decode not message symbols but rather code
word symbols. Since there are no message symbols in the definition, it is easier to think
of the code as a subspace.

Definition 1.4 (Locally self-correctable code (LCC)). A (q, δ, ϵ)-LCC is a subspace C ⊂
Fm such that there exists a probabilistic procedure D : Fm × [m] 7→ F with the following
properties:

1. For all x ∈ C, for all i ∈ [m] and for all v ∈ Fm with w(v) ≤ δm we have that
D (x+ v, i) = xi with probability at least 1− ϵ (the probability is taken only over the
internal randomness of D).

2. For every y ∈ Fm and i ∈ [m], D(y, i) reads at most q positions in y.

The dimension of an LCC is simply its dimension as a subspace of Fm.

LCC’s originated in works on program checking [BK95, Lip90] and, as LDC’s, have
found many applications. Unlike LDC’s, the known techniques for constructing LCC’s
amount to basically using RM codes. The more ‘modern’ LDC techniques that beat RM
do not seem to give LCC’s. In fact, at our current state of knowledge, it is certainly
possible that RM codes give the best parameters for LCC’s (at least asymptotically).
One work that addresses this issue and connects it to well-studied conjectures in design
theory is [BIW07].

Even though LCC’s are stronger objects than LDC’s, the lower bounds known for
them are the same ones known for LDC’s. In particular, there are no non trivial bounds
when q > log(n).

1.3 Our results

Our main theorem, stated below, shows that certain lower bounds on the encoding length
of LCC’s will imply a solution to the rigidity problem (Problem 1). Since we believe these
lower bounds to be true we state them in the form of a conjecture.

Conjecture 1. There exist constants α, β, γ, ϵ, > 0 such that, for sufficiently large n:

• (Strong version) There does not exist an
(
nα, 1/nβ, ϵ

)
-LCC C ⊂ Fn with dimension

(1− γ)n.
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• (Weak version) There does not exist a
(
log2+α(n), 1/ log1+β(n), ϵ

)
-LCC C ⊂ Fn with

dimension (1− γ)n.

Theorem 1. A proof of the strong (weak) version of Conjecture 1 over a finite field F will
solve the strong (weak) version of Problem 1 over the same field. Moreover, the required
rigid matrices can be taken to be the generating matrices of any LDC which matches the
parameters of Reed Muller codes.

The proof of the theorem will rely on one main lemma (proved in Section 2) that shows
that, if the generating matrix of an LDC is not rigid, then one can construct an LCC from
it, with rate close to one and with similar query complexity. The main degeneration is in
the error parameter δ, which explains the need for sub-constant δ in the two variants of
Conjecture 1. Notice, however, that formulating the conjectures with constant δ makes
them trivially true, since a code (LCC or not) that can correct a constant fraction of errors
cannot have rate arbitrarily close to one. So our conjecture can be rephrased as saying
that the restriction of being locally correctable prevents the code from having optimal
rate/distance dependency.

This brings us to the question of whether we should believe Conjecture 1 to be true or
not (in any of its variants). It is quite easy to be convinced that known constructions of
LCC’s, based on low degree polynomials, do not contradict the conjecture. To go deeper
we recall the lower bound for LCC’s with q > 2 (in fact for LDC’s) given by Katz and
Trevisan. Their theorem was stated originally only for binary codes, but their techniques
extend also for any constant size field (at least for linear codes).

Theorem 1.5 (Rephrased from [KT00]). Let C ⊂ Fn be a (q, δ, ϵ)-LCC. Then

dim(C) ≤ O
(
(ϵ · δ)−

1
q · n1− 1

q

)
.

Notice that setting q = α·log(n) and δ = n−0.99 (and thinking of ϵ as a constant) we still
get an upper bound of c(α)·n with c(α) 7→ 0 as α 7→ 0. Thus, in the range of q = Ω(log(n))
we have a sufficiently good (for our purposes) upper bound on the dimension of LCC’s,
even for extremely small values of δ. If we consider the weak version of Conjecture 1 we
see that there δ can be taken to be much larger (inverse of poly-log instead of inverse
polynomial) at the cost of increasing q from logarithmic to poly-logarithmic3. This seems
to indicate that the value of δ, be it constant or sub constant, might not play as important
of a role as does the query complexity.

Since the range of parameters appearing in Conjecture 1 is one that was not looked at
before, it could be that there is some undiscovered construction of LCC’s that disproves

3It would have been nice to have q = log1+α(n) instead of q = log2+α(n) in the weak version of our
conjecture. This would have paralleled the situation in Problem 1 where the weak version represents the
‘barrier’ to current techniques.
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the conjecture. If true, we would find that to be very interesting since the only construc-
tion of LCC’s we know of are based on RM codes and these do not seems to come close
to achieving rate one (for any δ).

The rest of the paper is organized as follows: In Section 2 we prove our main lemma
mentioned above. We proceed in Section 3 to establish some (well known) upper bounds
on LDC’s based on RM codes. We prove Theorem 1 in Section 4 and conclude in Section 5
with a discussion and some directions for future work.

2 The main lemma

The main ingredient in the proof of Theorem 1 is the following lemma which shows that,
if the generating matrix of an LDC is not rigid, then there exists an LCC with rate close
to one, and with certain bounds on its query complexity and error parameter.

Lemma 2.1 (Main Lemma). For every real ρ > 0 the following holds: Let C : Fn 7→ Fm

be a (q, δ, ϵ)-LDC and let AC ∈ Mm×n(F) be its generating matrix. If AC is not (r, s)-rigid
then there exists a (qs, (ρδ)/s, ϵ)-LCC C ′ ⊂ Fn of dimension at least n(1− ρ)− r.

The outline of the proof is as follows: Suppose AC is not rigid. Then, the mapping C
can be ‘approximated’ by a sparse mapping S (a mapping in which each output depends
on a small number of inputs) in the sense that there exists a large subspace on which
C agrees with S. Next, we observe that this subspace is an LCC, since we can correct
each coordinate in a corrupted code-word y by invoking the local decoder for C(y) and
simulating each query to C(y) using s queries to the original string y. A detailed proof
follows.

2.1 Proof of Lemma 2.1

Preprocessing: Suppose AC is not (r, s)-rigid. Then it can be written as a sum

AC = L+ S (1)

with rank(L) ≤ r and such that S is s-sparse (S has at most s non zeros in every row).
We would like S to have the additional property of being sparse also in each column. We
can get this by ‘moving’ all the columns with too many elements to L. Since there cannot
be too many ‘heavy’ columns, we will need to modify L in a small number of columns,
thus increasing its rank by a small factor. More formally: The total number of non zeros
in S is at most s ·m. This means that the average number of non zeros in a column of S
is at most (s ·m)/n. By Markov’s inequality, we have that there are at most ρ ·n columns
with more than (s ·m)/(n · ρ) non zeros. In view of Eq. 1, We can replace these columns
with zero columns in S and move them to L, increasing its rank by at most ρ · n. Thus,
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after this modification we have
AC = L′ + S ′ (2)

with rank(L′) ≤ r + ρ · n and such that S ′ has at most s non zeros in every row and at
most (s ·m)/(ρ · n) non zeros in every column.

Defining the code C ′: We let

C ′ , ker(L′) ⊂ Fn.

Notice that C ′ satisfies
∀x ∈ C ′, C(x) = S ′ · x. (3)

we now turn to showing that C ′ is a (qs, (ρδ)/s, ϵ)-LCC. This will prove the lemma since
we already know that

dim(C ′) = n− rank(L′) ≥ n(1− ρ)− r.

Local correction procedure for C ′: Let

D : Fm × [n] 7→ F

be a decoding procedure for the code C satisfying the two conditions of Definition 1.3.
We need to describe a local correcting procedure

D′ : Fn × [n] 7→ F

for C ′. Let

δ′ , ρ · δ
s

.

Let x ∈ C ′ and let v ∈ Fn be such that w(v) ≤ δ′n. Given i ∈ [n] and query access to
x + v, D′ will need to recover xi ∈ F by looking at at most q · s positions of x + v. We
start with a simple claim

Claim 2.2. Let v′ = S ′ · v. Then

w(v′) ≤ δ ·m

.

Proof. We know that the matrix S ′ has at most (s ·m)/(ρ ·n) non zeros in every column.
This means that every index in v can influence at most (s ·m)/(ρ · n) positions in S ′ · v.
Therefore, since w(v) ≤ δ′ · n we have that

w(v′) ≤ (δ′ · n) · s ·m
ρ · n

=

(
ρ · δ
s

· n
)
· s ·m
ρ · n

= δ ·m.
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From Claim 2.2 we see that, given query access to C(x) + v′, D can recover xi (w.p
1 − ϵ) using at most q queries. The crucial observation is that we can simulate a single
query to C(x) + v′ using at most s queries to x+ v. This is because, by Eq. 3,

C(x) + v′ = S ′ · x+ S ′ · v = S ′ · (x+ v)

and since computing the j’th coordinate of the product of S ′ with a vector can be done
by looking at at most s positions (since S ′ has at most s non zero entries in every row).
Therefore, D′ can simulate D on the input (C(x) + v′, i) using q · s queries to x + v and
we already know that, on this input, D will return xi with probability at least 1− ϵ.

3 LDC’s using low degree extensions

In order to use Lemma 2.1 to prove Theorem 1 we need to use certain (well known)
constructions of LDC’s. Since the parameters we require are quite specific, and for the
sake of completeness, we sketch below the way to get these upper bounds. These are
simple low degree extension codes concatenated with good linear error correcting codes.
Readers familiar with these constructions can safely skip to the next section.

Lemma 3.1 (Low-degree-extension codes). Let F be a finite field of size t. For every
ϵ > 0 there exists δ = δ(ϵ) > 0 such that for every sufficiently large integers d and k there
exists a (q, δ, ϵ)-LDC

C : Kn 7→ Km

with n = dk, m ≤ (2tdk)k, q ≤ 2tdk and with K being an extension field of F of size
tℓ with ℓ ≤ log(q). Moreover, the generating matrices of these codes can be generated
(deterministically) in time polynomial in m given d, k and ϵ.

Proof. Let ℓ be the smallest integer such that tℓ ≥ 2dk and let K be the (unique) extension
field of F of size tℓ. We will set

m = |K|k =
(
tℓ
)k ≤ (2dtk)k.

Notice that, since |K| ≤ m, we can construct the fieldK in (deterministic) time poly(|K|) ≤
poly(m).

The code C is defined as follows: Let H ⊂ K be some fixed set of size d. Since

n = dk = |H|k,

we can view each message x ∈ Kn as a function Fx : Hk 7→ K. It is well known that for
each such Fx there is a unique polynomial gx ∈ K[u1, . . . , uk] with individual degrees at
most d − 1 such that gx(u) = Fx(u) for all u ∈ Hk. The encoding C(x) ∈ Km is the list
of evaluations of this polynomial gx on the entire space Kk. The encoding matrix can be
generated efficiently using standard results on multivariate polynomial interpolation.
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To decode a message symbol xi = Fx(u), u ∈ Hk from a corrupted encoding C(x) + v
with w(v) ≤ δm we first pass a random line through u ∈ Kk and consider the restriction
of gx to this line. This restriction is a univariate polynomial of degree at most k(d − 1)
and so, since |K| ≥ 2dk, we can use the Berlekamp-Welch algorithm [MS77] to correct the
values on the line (and so recover gx(u) = Fx(u)) as long as their number is smaller than,
say dk/4. Since the line was random, this will happen with probability at least 1 − ϵ as
long as we take δ to be sufficiently small (say δ < ϵ/8).

The number of queries done by the decoder is at most |K| ≤ 2tdk as was required.
The bound ℓ ≤ log(q) follows from the inequality tℓ ≤ 2tdk = q.

The next lemma shows that we can replace the extension field K from Lemma 3.1 with
the original field F at a small additional cost.

Lemma 3.2. Let C : Kn 7→ Km be a (q, δ, ϵ)-LDC and let F be a subfield of K such
that |K| = |F|ℓ. Then there exists a (qℓ,Ω(δ), ϵ)-LDC C ′ : Fn′ 7→ Fm′

with n′ = nℓ and
m′ = O(mℓ). Moreover, the generating matrix of C ′ can be generated in deterministic
polynomial time from the generating matrix of C.

Proof sketch. We can view C as an F-linear code mapping Fnℓ to Fmℓ (this is possible
because F is a sub-field of K). Now, concatenate C with any good linear error correcting
code E : Fℓ 7→ FO(ℓ) which can correct a constant fraction of errors (such codes can be
constructed explicitly). Call the concatenated code C ′. To decode a message symbol in
C ′ we will recover the entire ‘block’ (in Fℓ) to which it belongs. This is done by invoking
the decoder for C, and for each one of its queries (over K = Fℓ) correcting this query
using the decoding for E (we omit the details since this is standard). The bound on the
success probability is obtained using Markov’s inequality which implies that at most a
δ fraction of the blocks of the encoding (each of size 2ℓ) will have more errors than the
inner code E can handle.

Combining the two previous lemmas we obtain the following two corollaries which
gives us the parameters we will require.

Corollary 3.3 (LDC with q = nα). Let F be a finite field. For every α, ϵ > 0 there exists
δ = δ(ϵ) > 0 and an explicit family of (nα, δ, ϵ)-LDC’s Cn : Fn 7→ Fm with m = O(n),
where n ranges over an infinite set of integers.

Proof. Start by applying Lemma 3.1 with

k = ⌈4/α⌉

to get a (q′, δ, ϵ)-LDC C ′ : Kn′ 7→ Km′
such that n′ = dk, m′ ≤ (2tdk)k ≤ O(n′) and with

q′ ≤ 2tdk ≤ (n′)(α/2) (notice that t = |F| can be viewed as a constant). The field K is
an extension of F of degree ℓ ≤ log(q). Now, using Lemma 3.2, we replace K with F and
get a code C : Fn 7→ Fm with n = ℓn′ and m = ℓm′. Therefore, we still have m = O(n).
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The number of queries grew from q = (n′)(α/2) to qℓ ≤ q · log(q) which is at most nα for
sufficiently large n.

Corollary 3.4 (LDC with q = log1+α(n)). Let F be a finite field. For every α, ϵ > 0 there
exists δ = δ(ϵ) > 0 and an explicit family of

(
log1+α(n), δ, ϵ

)
-LDC’s Cn : Fn 7→ Fm with

m = poly(n), where n ranges over an infinite set of integers.

Proof. Start by applying Lemma 3.1 with

k =
⌈
d4/α

⌉
to get a (q′, δ, ϵ)-LDC C ′ : Kn′ 7→ Km′

such that n′ = dk, m′ ≤ (2tdk)k ≤ poly(n′) and
with q′ ≤ 2tdk ≤ log(n′)1+α/2. The field K is an extension of F of degree ℓ ≤ log(q).
Now, using Lemma 3.2, we replace K with F and get a code C : Fn 7→ Fm with n = ℓn′

and m = ℓm′. Therefore, we still have m = poly(n). The number of queries grew from
q = log(n′)1+α/2 to qℓ ≤ q · log(q) which is at most log(n)1+α for sufficiently large n.

4 Proof of Theorem 1

The proof of Theorem 1 will follow by combining Lemma 2.1 with the upper bounds given
in Section 3 (Corollaries 3.3 and 3.4).

We start by showing that the strong version of Conjecture 1 implies the solution of
the strong version of Problem 1. Suppose the strong version of Conjecture 1 holds. That
is, there exists α, β, γ, ϵ > 0 such that there are no

(
nα, n−β, ϵ

)
-LCC’s in Fn of dimension

at least (1− γ)n. Set
λ , min {α/2, β/2} .

Let C : Fn 7→ Fm be given by Corollary 3.3 such that C is an (nα/2, δ, ϵ)-LDC with
m = O(n), δ = δ(ϵ) and with an explicit generating matrix AC ∈ Mm×n(F). We claim
that

AC is
(
(γ/2) · n, nλ

)
-rigid.

Suppose not, then we can apply Lemma 2.1 with the parameter ρ = γ/2 to get that there
exists a (q, δ′, ϵ)-LCC C ′ ⊂ Fn with

q ≤ nα/2 · nλ ≤ nα,

δ′ =
γ · δ
2 · nλ

≥ 1

nβ

and dimension at least
n(1− γ/2)− (γ/2)n = (1− γ)n.

contradicting our assumption. Therefore, AC is an explicit rigid matrix as is required by
the strong version of Problem 1.
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The proof of the weak case goes along the same lines, replacing Corollary 3.3 with
Corollary 3.4. Suppose the weak version of Conjecture 1 holds. That is, there exists
α, β, γ, ϵ > 0 such that there are no

(
log2+α(n), 1/ log1+β(n), ϵ

)
-LCC’s in Fn of dimension

at least (1 − γ)n. As before, set λ , min {α/2, β/2} . Let C : Fn 7→ Fm be given by

Corollary 3.4 such that C is a
(
log1+α/2(n), δ, ϵ

)
-LDC with m = poly(n), δ = δ(ϵ) and

with an explicit generating matrix AC . We claim that

AC is
(
(γ/2) · n, log1+λ(n)

)
-rigid.

Suppose not, then we can apply Lemma 2.1 with the parameter ρ = γ/2 to get that there
exists a (q, δ′, ϵ)-LCC C ′ ⊂ Fn with

q ≤ log1+α/2(n) · log1+λ(n) ≤ log2+α(n),

δ′ =
γ · δ

2 · log1+λ(n)
≥ 1

log1+β(n)

and dimension at least (1−γ)n, contradicting our assumption. Therefore, AC is an explicit
rigid matrix as is required by the weak version of Problem 1.

5 Discussion and directions for future work

The main contribution of this work is a conceptual one - we show a connection between
two well studied and seemingly unrelated problems. We hope this connection will lead
to a better understanding of both problems. Another contribution is the formulation of
Conjecture 1, which deals with a range of parameters not considered before for locally
self-correctable codes.

We now turn to discuss the meaning of our results over fields of characteristic zero. We
then conclude with a short section concerning the possibility of approaching Conjecture 1
by considering the special case of cyclic codes.

5.1 Fields of zero characteristic

Even though the notion of ‘explicitness’ is slightly ill defined over infinite fields, one can
still try to come up with ‘interesting’ families of rigid matrices. Say we are working over
the complex numbers. We could try to use Lemma 2.1 in conjunction with LDC upper
bounds and LCC lower bounds to show that the generating matrices of sufficiently good
LDC’s (over the complex numbers) are rigid. The task of proving LCC lower bounds
certainly seems easier when the characteristic is zero. This advantage, however, becomes
a disadvantage when we try to find LDC upper bounds. To the best of our knowledge,
LDC’s that match the parameters of RM codes (as they appear, say, in the two corollaries
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of Section 3) are not known to exist over fields of characteristic zero. Recently, it was
shown in [Gop09, DGY10] that LDC’s emerging from earlier works of [Yek08, Efr09] can
be made to work also over the complex (or real) numbers. Even though these codes
have an encoding length which is super-polynomial in n, they could still be used (in
conjunction with suitable LCC lower bounds) to get interesting results on the rigidity of
their generating matrices. We note that we do not know of any non trivial LCC’s over
the complex numbers. We believe that trying to prove bounds on LCC’s over the complex
(or the real) field is a good starting point for approaching Conjecture 1.

5.2 Lower bounds for cyclic LCC’s

A cyclic code C ⊂ Fn is a subspace which is invariant under cyclic shifts of the coordinates.
That is, if we denote by π : Fn 7→ Fn the map which cyclically permutes the coordinates
of vectors, we have that for all x ∈ C, π(x) ∈ C. Cyclic codes have many applications
and many of the codes used in practice (including Reed Muller codes) are cyclic. The
question of whether there are good families of cyclic codes is still open. In [BSS05] it
was shown that cyclic codes cannot be both good (having constant rate and relative
distance) and locally testable. The notion of local testability bears some resemblance to
local decodability and requires the existence of a local procedure that can distinguish
(w.h.p) between code words and vectors which are far (in Hamming distance) from the
code. A possible line of attack towards proving Conjecture 1 is to prove it first for cyclic
LCC’s. Since the LCC constructions we know of are all cyclic this type of result will
certainly be of interest.
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