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1. Introduction

Expander graphs are widely used in Theoretical Computer Science, in areas

ranging from parallel computation ] to complexity theory and cryptography.z

Given an undirected k-regular graph G = (V, E) and a subset X of V, the

expansion of X is defined to be the ratio lN(X)l/l Xl, where N(X) = {w ~ V

3 LI G X, (~1,w) E E} is the set of neighbors of X, An (a, ~, k, n)-expander is a

k-regular graph on n nodes such that every subset of size at most an has

expansion at least f?.

It is known that random regular graphs are good expanders. In particular, for

any ~ < k – 1,there exists a constant a such that, with high probability, all

the subsets of a random k-regular graph of size at most an have expansion at

least ~. The explicit construction of expander graphs is much more difficult,

however. The first explicit construction of an infinite family of expanders was

discovered by Margulis [1973], and improved in Gabber and Galil [1981], Alon

et al. [1987], and Jimbo and Maruoka [1987].

The best currently known method to calculate lower bounds on the expan-

sion in polynomial time relies on analyzing the second eigenvalue of the graph.

Since the adjacency matrix A is symmetric, all its eigenvalues are real and

will be denoted by & > Al > ““” > A,l. ~. We have AO = k, and A =
max( Al, IA,, _ ~1) < k. Tanner [1984] proved that for any subset X of V,

k21Xl
IN(X) I >

AZ + (kz – A2)l X1/n “
(1)

Therefore, in order to get high expansion, we need A to be as small as possible.

However, for any sequence G,,, ~ of k-regular graphs on n vertices,

lim inf A(G,,, ~) > 2v’~ as n goes to infinity [Alon 1986: Lubotzky et al.

1988; Nilli 1991]. Therefore, the best expansion coefficient we can obtain by

applying Tanner’s result is approximately k/4. This bound is achieved by

Ramanujan graphs, which have been explicitly constructed [Lubotzky et al.

1988; Margulis 1988] for many pairs (k, n). By definition, a Ramanujan graph is

a connected k-regular graph whose eigenvalues + + k are at most 2v”~ in

absolute value. The relationship between the eigenvalues of the adjacency

matrix and the expansion coefficient has also been investigated in Alon [1986],

Alon et al. [1987], Alon and Milman [1985], and Buck [1986], but the bound

they get, when applied to nonbipartite Ramanujan graphs and for sufficiently

large k, is no better than Tanner’s bound. Other results about expanders are

contained in Bien [19891, Lubotzky [to appear]. and Samak [1990].
Some applications, such as the construction of nonblocking networks in

Arora et al. [1990], required an expansion greater than k/2 for linear-sized

subsets. Indeed, if the expansion of a subset X is greater than k/2, a constant

fraction of its nodes have unique neighbors, that is, neighbors adjacent to only

one node in X. This allows the construction of a matching between X and

N(X) in a logarithmic number of steps and using only local computations.

Recently, Pippenger [1993] showed that weak expanders are sufficient in

applications where an expansion greater than k\2 was required.

~ See Ajtai et al. [1983], Arora et al. [1990], Pippenger [1993], and Upfal [1989].
- See Ajtai et al. [1987], Bellare et al. [1990], Goldreich et al. [1990], and Valiant [ 1976].
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We define the linear expansion of a family of graphs G,, on n vertices to be

the best lower bound on the expansion of subsets of size up to an, where a is

an arbitrary small positive constant, that is,

sup inf inf ‘~~)’,
a>o n ~

where X ranges over the subsets of G,l of size at most an. We show that

if (G. ) is a family of k-regular graphs whose second largest eigenvalue is upper

bounded by ~, the linear expansion of (G,, ) is at least (k/2)

(1 – ~1 – (4k – 4)/~z ). In particular, the expansion of linear-sized subsets
of Ramanujan graphs is lower bounded by a factor arbitrary close to k/2. On

the other hand, for any integer k such that k – 1 is a prime congruent to 1

modulo 4, and for any function m of n such that m = o(n), we explicitly

construct an infinite family of k-regular graphs G. on n vertices such that

A(G~) s (2 + o(l))v(~ and G,l contains a subset of size 2m with expansion

k/2. Since such a family has asymptotically optimal second eigenvalue, this

shows that k/2 is essentially the best lower bound on the linear expansion one

can obtain by the second eigenvalue method. The techniques used in this

construction can be applied to prove tightness of relationships between eigen-

values and diameter [Kahale 1993]. Clur results provide an efficient way to test

that the expansion of linear-sized subsets of random graphs is at least k/2 –

0(k3/410g]/zk), We also show that the average degree of the induced sub-

graphs on linear-sized subsets of a k-regular graph G is upper bounded by a

factor arbitra~ close to 1 + ~/2 + ~z/4 – (k – 1), where ~ = max(~,

2~~). This bound is equal to 1 + ~~ in the case of Ramanujan

graphs, improving upon the previous known bound [Alon and Chung 1988] of

2JF=i.
Sections 3–5 contain our main results. III Section 6, we apply our techniques

to obtain improved results on random walks on expanders. Random walks are

often used in complexity theory and cryptography, and our bound improves

upon previous results in Ajtai et al. [1987] and Goldreich et al. [1990].

Applications to selection networks and extrovert graphs are described in

Section 7. We conclude with some remarks in Section 8.

Some of the results in this paper have appeared in an extended abstract form

in Kahale [1991; 1993a], and in a more detailed form in Kahale [1993b].

2. Notation, Definitions, and Background

Throughout the paper, G = (V, E) will denote an undirected graph on a set V

of vertices. Let L2( V ) denote the set of real-valued functions on V and

L~)(v) = {f e L’(v); x ,,~ ~f(~’) = O}. As usual, we define the scalar product of
two vectors f and g of LZ(V) by

and the euclidean norm of a vector f by IIf II = ~. We denote the

adjacency matrix of G by A~, or simply by A if there is no risk of confusion.

The matrix A is the O-1 n X n matrix whose (i, j) entry is equal to 1 if and only
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if (i, ~) = E. It defines a linear operator in L2(V ) that maps every vector
~ = L2(V) to the vector A~ defined by

(Af)(u) = ~ f(w). (2)
((.w)eE

This operator is selfadjoint since V~, g e LZ(V),

(Y4f)”g=f”(Ag) = x f(u)g(w). (3)
(1’,w’)6E

For any matrix or operator M with real eigenvalues, we denote by A,(M) the

(i + l)st largest eigenvalue of M, Al(A~) by A,(G), and max(Al(G), IA._ ,(G)I)

by A(G). For any subset W of V, we denote by XW the characteristic vector of

W xw(~)) = 1, if ~) = W, and O otherwise. We denote the adjacency matrix of

the graph induced on W by ALV, the real number A,(AL,, ) by A,(W), and the set

of nodes at distance at most 1 from W by Bl(W). For the rest of this section,

we assume that G is k-regular.

Fact 2.1 [,S&ang 1988]. If B is a selfadjoint operator in a vector space L,

then

g.Bg
AO(B) = max —

g= L-{o} llg112 “

Clearly, the vector ,yJ is an eigenvector of A with eigenvalue k. The vector

space L~(V) is invariant under A, and the eigenvalues of the restriction of A

to L:(V) are AI(G),..., &_ I(G). Therefore,

Fact 2.2. For any g ● L:(V), we have g Ag < A1(G)llgll’.

For two column vectors g and h., we say that g s h if every coordinate of g

is at most its corresponding coordinate in h.

Fact 2.3 [Seneta 1981, page 28, ex. 1.12]. If a real symmetric matrix has only

nonnegative entries, its largest eigenvalue is nonnegative and has a correspond-

ing eigenvector with nonnegative components. This eigenvalue is largest in

absolute value.

Fact 2.4. If a real symmetric matrix B has only nonnegative entries, and s

is a vector with positive components such that Bs < ys, then the largest

eigenvalue of B is at most y. This property still holds if only the off-diagonal

entries of B are assumed to be nonnegative [Friedman 1991].

Given a graph H, the ccuer graph H’ of H is the graph defined on

V’ = V X {O, 1} and where ((u, 1), (~’, nz)) e V’ X V’ is an edge if and only if

(U, LI) c E and 1 # m.

Fact 2.5. The eigenvalues of H’ consist of the eigenvalues of I/ and their

negated values.

3. Main Lemma

In this section, we prove the main lemma (Theorem 3.6) that we will use later

to derive lower bounds on the expansion.
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LEMMA 3.1. If G = (V, E) is k-regular on n Lertices, then for any f = L2(V),

we hale

fAf< Al(G) llf112 + k - :’(G) (,;:())2.

PROOF. We decompose f as the sum of a constant vector and a vector in

L;(V). Let f = (f” Xb,/n)Xv be the orthogonal projectio~ of f on the sub-

space spanned by the constant vector ZP. Then fO = f – f is the orthogonal

projection of f on L;(V). By linearity, Af = A~ + Afo = kf + Afo, and so

f“Af = kllf112 + f, .Af,, since ~AfO =A~”fo = k~.f, = O. By Fact 2.2 and the
Pythagorean theorem, we have

f,, Af,, s MGMf,,112 = W3(llf112 - Iljll’).

Therefore, f .Afs A1(G)llf 112+ (k – A1(G))Nf112.We conclude the proof by

noting that

ll~l\s = %:f(L’))z . ❑

LEMMA 3.2. For any subset W of a k-regular graph G, we haLe Af)(W) <

AI(G) + (k – A1(G))lW1/n.

PROOF. Let g be any element of Lz( W). Consider the vector f G L?(V)

that coincides with g on I,Z(W) andl is null on V – W. By eq. (3), we see that

g” A ~g = f. A~ f. By applying Lemma 3.1 to f, we have

g“Awg < A,(G)llg112 + k- :l(G)(LJ’w)’

(<AI(G) + )k - ywl Ilgll’.

inequality. We con-The second equation follows from the Cauchy–Schwartz

elude using Fact 2.1. ❑

A similar relation [Kahale 1993b; Sect. 4.1] holds between A{(W) and

Al+ I(G), for 1 s i < IWI – 1. Lemrna 3.2 already gives a restriction on the

structure of induced subgraphs. Fo:r example, since the average degree of a

graph is upper bounded by its largest eigenvalue, it implies that the average

degree of the induced subgraph on W is at most AI(G) + (k – Al(G)) lW1/n,

which is roughly Al(G) for small linear-sized subsets. To obtain a stronger

restriction on the induced subgraph on a linear-sized subset X, we will apply

Lemma 3.2 to the set B,(X), We start by comparing the largest eigenvalue of

the subgraph induced on B,(X) to the matrix of a weighted graph associated

with X.
Let A ~ be the diagonal matrix indexed by the vertices of X and whose entry

(L’, LI) is equal to the degree of L) in the subgraph induced on X. We will simply
denote by Ax(z) the diagonal entry A,Y(L’, L). For f3’ >0 and integer 1, Id

1 sinh(16’)
&f;’, [ =A,y +

fi~ sinh((l + ~)0,) (~~ - Ax).
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The matrix A’fj” [ can be regarded as the matrix of the weighted graph that

is induced on X and has in addition a loop of weight (k – 1)-1 ‘2(sinh( 10’ )/

sinh((l + 1)0’))(k – Ax(~l)) on each node l’ of X.

LEMMA 3.3. Suppose G = (V, E) is k-regular. Let 1 be a positive integer, X a

nonemp~ subset of V, 8‘ a positive real number, and h’ = 2]~cosh 0‘. If

AO(B,(X)) s A’, then AO(A4f”~) < A’.

PROOF. Let W’= BI(X). The idea behind the proof is as follows: Let
f = LZ(X) be an eigenvector of ~~’ ~ corresponding to its largest eigenvalue.

We will extend f to W so that it becomes roughly an eigenvector of A ~. If the

largest eigenvalue of ~~’1 were too big, we would get a large eigenvalue for

A ~, contradicting the fact that AO(LV) < A’.

We define the sequence r, as follows:

sinh((l + 1 – i)tl’)(k – l)-”Z
r, =

sinh((l + 1)6’) “

The sequence r, is strictly positive and decreasing for O s i <1, and

A’rl = r,_l + (k – l)r, +l (4)

A’rl = rl-l. (5)

By Fact 2.3, we can assume that all the entries of f are nonnegative. We

extend the vector f to W by setting

for LI G W – X, where d( ZI, U) denote the distance in G between u and u. Note

that f is nonnegative on W since every node in W is at distance at most 1 from

some node in X.

CLAIM 3.4. For any LI = W –

PROOF. Let u = X be such

can be assumed to be at most 1

node on a shortest path from 1)

i – 1, we have l], G W and

X, we haue (Awf)(u) 2 A’f(L’).
that f(u) = f(u)r~[,,,,,l. Note that i = d(u, 14)

since r, s O for j >1 + 1. Let 01 be the first

to u. Since the distance between L’, and u is

f(~,) >f(u)r, _l. (6)

We now distinguish two cases:

Case 1. i = 1. Combining eqs, (6) and (5), we get in this case

(Awf)(u) >f(ul) >f(u)r,-, = A’f(u)r, = A’f(L’),

as required.

Case 2. i <1. In this case, the k neighbors of v are at distance at most

i + 1 s 1 from 14. By monotonicity of the sequence r, it follows that the value

of f on each of these neighbors is at least f(u)r, + ~. Using again eq. (6), we

have

(~wf)(~) >f(u, ) + (k – l) f(u)r,+,

2f(u)(r[_, + (k – 1)1”,+,)

= A’f ( 14) r,

= /irf ( L ) .
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CLAIM 3.5. For any L =X, we haLle (A ~ f )(LI) > Ao(M,~’ ‘)f(l’).

PROOF. For any L) e X, the value of f on each of the k – Ax( L’) neighbors

of L’ in ~ – X is at least f( L’)r(l).Therefore,

(Awf)(u) 2 (Axf)(u) + (k - Ax(L’))f(u)i’(l)
= (M~’’f)(L) = ~O(M$’’)f(L). c!

Since AO(W) < A’, we have (Awf) “fs A’llf Ilz, by Fact 2.1. Assume for

contradiction that A’ < AO(M,~’ ~), By Claim 3.4 and Claim 3.5, this implies that

(Awf) . f > A’llf Ilz, leading to a contradiction. ❑

For 9>0, define

1
A4$=Ax+–

v(~e’
(kI- Ax).

The matrix M$ can be regarded as the matrix of the weighted graph that is

induced on X and has in addition a loop of weight (k – 1)-1/2 exp( – O)(k –

~x(LI)) on each node u of X.

THEOREM 3.6. Suppose G = (V, E) is k-regular, and let ~ =

rnax( AI(G), 2v’~) = 24~cosh 9, where /3 z O. For any nonempty subset

X of V of size at most k-1 \’/VI, we hat,’e

A,(M; ) :< i(l -t o(e)),

where the constant behind the O is a small absolute constant.

PROOF. Let 1 = [1/2 e] and let W be the set of nodes at distance at most 1

from X. A simple calculation shows that IWI s 3k1 IX I s 3k - ] /(z’ ‘n. It follows

from Lemma 3.2 that &(W) s A’, where A’ = ~ + 3k1 - ll~z’) = 2~~

cosh 0’, with & > 0>0. A straightforward calculation shows that 1 = I( 1 +

O(6)) and cosh %’ – cosh O = 0(k*f2- l/(z’)) = 0(~2). We will use the follow-

ing inequalities to show that the mal:rix kl~” is approximated by M~,.

CLAIM 3.7. Forx > y >0, we hale (x – y)z s 2(coshx – coshy).

PROOF. This follows immediately from Taylor’s expansion formula. ❑

CLAIM 3.8.

1 sinh(l(3’)
—exp(– ~’) < -
1+1

S exp(– O’).
smh((l + 1)6’)

PROOF. Since sinh((l + 1) f)’) > (1 + l)sinh 6’, we have

sinh(ld’)
exp( – O’) –

sinh((l + 1)0’)

exp(–10’) – exp(–(1 + 2)0’)
—

exp((l + 1)0’) – exp(–(1 + 1)0’)

sinh %’
= exp(–(1 + 1)6’) -

sinh((l + 1)6’) <

exp(– d’)

1+1 ‘
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It follows from Claim 3.7 that 0’ – 0 = 0(~). On the other hand, Claim 3.8

implies that

sinh(ltl’)
= exp(–tl’)(1 + 0(1/1)) = exp(– 0)(1 + O(e)).

sinh((l + 1)6’)

Therefore, all entries of the diagonal matrix M: – M!’ [ are 0(~ e ), and

so its largest eigenvalue is O(v”~ ● ). But, as a consequence of Fact 2.1, the

function that associates to a symmetric matrix its largest eigenvalue is subaddi-

tive. Therefore,

~o(~:) ~ A“(M.:’l) + o(vk-=-TE)
< A’ + O(XE)
= X(I + O(E)),

where the second inequality follows from Lemma 3.3. ❑

Remark 3.9. The only place where we used in the proof the fact that AI(G)

is the second eigenvalue of G was in conjunction with Lemma 3.2 to the upper

bound AO(W). In particular, if A* is a real number such that for any subset W

of V, we have AO(W) < A* + 2kl W1/l Vl, then Theorem 3.6 remains valid if

AI(G) is replaced by 1*.

4. Lower Bounds on the Expansion and on the Allerage Degree

We will derive lower bounds on the expansion by applying Theorem 3.6 to the

union of X and- Al X), after reducing to the case where the graph is bipartite

and X is on one side of the partition. The idea is that if the expansion of X is

small, a node in IV(X) will be adjacent to many nodes in X, in average. This

implies that the largest eigenvalue of the weighted matrix associated to the

subgraph induced on X U N(X) is large, contradicting with Theorem 3.6. We

also use Theorem 3.6 to derive upper bounds on the average degree of induced

subgraphs.

THEOREM 4.1. If G = (V, E) is k-regular and ~ = max(A,(G), 2-),

then for any nonemph subset X of V of size at most k-1 I‘ IV 1,

where the constant behind the O is a small absolute constant.

PROOF. We first show how to reduce the problem to the case where the

graph G is bipartite and X is on one side of the partition. Consider the cover

graph G’ of G, as defined in Section 2. We show that Remark 3.9 applies to

the graph G’ and A* = AI(G). Indeed, let W be a subset of V’, ~, c V the set

of nodes u of V such that (u, O) c W or (u, 1) = W, and W* = WP X {O, 1}.

Since the largest eigenvalue of a graph is no less than the largest eigenvalue of

any induced subgraph [Bollob& 1990, page 156], &(W) s A{)(W* ). (We re-

mind the reader that Ao( W) (respectively, Afl( W* )) is the largest eigenvalue of

the subgraph of G’ induced on W (respectively, W*), and AO(WP) is the largest
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eigenvalue of the subgraph of G induced on WP.) On the other hand, it follows

from Fact 2.5 and Fact 2.3 that A[J(W’* ) = AO(WP). Using Lemma 3.2, we get

Iwpl Iwl
AO(W) < AO(WP) < AI(G) + k—

Ivl = “(G) + 2klv’1’

as required by Remark 3.9. Note that we cannot apply directly Theorem 3.6

because, by Fact 2.5, we have AI(G) = A(G), which may be different from

AI(G).

Let Y be the subset of V’ equal to X X {O}. Denote the adjacency matrix of

G’ by xl’, and the set of neighbors of Yin G’ by N’(Y). Let ~ = 2v’’=-cosh O,

with 0> 0. By applying Remark 3.9, to the graph G, the set of vertices

Y U N’(Y), and E’ = 2 e, we see that the largest eigenvalue of the matrix

~’ = ~! u N’(Y) iS at most A(1 + .~( E)). NOW> consider the function f = Lz(y
u N’(Y)) defined by f = kxy + ~x~fy). BY Fact 2.1,

M’f.f s x(] + o(6)) llf112. (7)

The left-hand side is the sum of two terms. The first is equal to A’f. f, and the

se~ond corresponds to the weighted self-loops. By eq. (3), we have A’f. f =

2 Ak 2IY 1. On the other hand, since the loops have no weight on Y and have

average weight exp( – tl)(k – l)-ltz(k – klY]/l N’(Y)l) on N’(Y), the second

term is equal to exp(– d)(k – 1)-]/2 (klN’(Y)l – klYl)~z. Thus, eq. (7) re-

duces to

-,
A’

2ik21Yl + —k(/N’(Y)l – \Yl)
v’CTexp( 6)

< i(l + 0(~)) (k21Yl + i21N’(Y)l),

By replacing IY \ by IX 1,\N’( Y)l by IN(X )1, we get after simplifications

klXl(k – 2exp(–6)cosh 0)

s lN(X)l(~ – 2kexp(– O)cosh 6)(1 + O(c)). (8)

Noting that X2 – 2k exp( – O)cosh O =: 2(k exp( 9 ) – 2 cosh 6) cosh 0, eq. 8 re-

duces to:

IN(X) I k

[xl 2
(1 – O(E)).

2 exp( O)cosh O

We conclude the proof using the formula

1 r=1– l–
exp( 6 )cosh $ == ’-- “cosh-O

THEOREM 4.2. If G = (V, E) is it-regular and ~ = max( AI(G), 2-),

then for any nonemp~ subset X of V of size at most k- 1i’ IV 1,the al’erage degree u

of the subgraph of G induced on X is at most

(l+i+~(k-l))(l+o(~))

where the constant behind the O is a small absolute constant.
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PROOF. We use the same notations as in Theorem 3.6. As noted before, the

matrix M~ can be regarded as the matrix of the weighted graph on X that is

induced on X and has in addition a loop of weight (k – 1)-1/z exp( – /3)(k –
Ax(~I)) on each node u of X. By Fact 2.1, we have xx oM$ Xx < AO(M!)IXI,

which translates into

k–u

o + JCTexp(6)
s 2~k~(l + O(~))cosh 6,

This implies

2(k – l)exp(0)cosh O – k
CT<

=exp(6) -1
(1 + 0(6))

= (v’Z_TCexp(6) + 1)(1 + O(e)).

We conclude by noting that exp( O) = cosh 8 + ~. ❑

5. A Fami~ of Almost Ramanujan Graphs with Expansion k/2

In this section, we construct explicitly a family of k-regular graphs G,, contain-

ing subsets of sublinear size having expansion k/2, and such that A(G. ) =

(2 + o(l))-. For this, we need the following lemma.

LEMMA 5.1. Consider a graph on a uer%ex set W, a subset X of W, a positile

intege~ h, ands G Lz( W ). Let Xi be the set of nodes at distance i from X. Assume

the following conditions hold:

(1) For h – 1< i, j < h, all nodes in X, haue the same number of neighbors in
x,.

(2) The vectors is constant on Xj, _ ~ and on X~.

(3) s has positive components and As s ps on B,, _ l(X), where p is a posi~iLe
real number.

Then for any g e L2(W) such that lAg(u)l = ~lg(u)l for u = B~,. l(X), we ha[le

PROOF. Let P, Pl, _, and P,, be the projections on the sets Bl, _ I(X), X,l ~

and X~,, respectively, We need to show that llP~gllz/llP,lsllz > 11P,,_, g112\

I/Plz_ ~sllz. Let Ah = (P + PI,)A( P + P},). The operator A,, corresponds in

some sense to the adjacency matrix of the subgraph induced on B,,(X), but it
acts on L,Q(W ). By the conditions of the lemma, there exist positive coefficients

a, /3, and y such that P,ZA)lS = yP~s and A,, P,, s = aP,ls + flP,l_, s. By
hypothesis, we have A), s < pPs + yPl, s. Premultiplying both sides of this
equation by P and Ah yields successively

= /4s – pP~s,

5 p2Ps + p(y – a)Phs – ppP,l_ls,
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But the matrix A~, I’A~ – VZP – W( y – a )P}, + p~Pk _ ~ has only nonnegative

entries off its diagonal, and so its largest eigenvalue is O since s is positive (Fact

2.4). The quadratic form associated to this matrix is therefore negative semi-

definite (Fact 2.1), and so

Since both Al, and P are selfadjoint and since Pz = P, the left-hand side of

eq. (9) is equal to IIPA~ g II2. We can rewrite eq. (9) as follows:

llPAhg112< p211Pg112+ W(:P a)llPllgll’ - p~llP,z_,g112.

But llPAhgll = pllPgll by hypothesis, and so

(y- a)llp~gll’ 2 EllP,, _,gll’. (lo)

On the other hand, since A,, and JDI, are selfadjqint, we have A,, P,, s .s =

P,, AIIS .s, and so allPllsllz + pll P},_,sllz = yll Pksll-. Comparing this with eq.

(10) concludes the proof. ❑

THEOREM 5.2. For any integer k such that k – 1 is prime, we can explicitly

construct an infinite family of k-regular graphs G,, on n Lertices whose linear

expansion is k/2 and such that Al(G,,) L 2Y’’~(l + 2 log ‘log n /log~ n ).

PROOF. We construct the family (G. ) by altering the known constructions

of explicit Ramanujan graphs, so that the expansion of (G,, ) is k/2. From

Lubotzky et al. [1988] and Margulis [1988], we know that we can explicitly

construct an infinite family of bipartite Ramanujan graphs (F,, ) on n vertices

whose girth c(F~) is (4/3 + o(l)) log~_ ~n. Let F,, = (V, E) be an element of

the family, L{ e V a vertex of F,, and 1 = [c(F,, )/21 – 2. Let u,, .,., LL,, be the

neighbors of u and let LI,, . . . . L’k be k vertices at distance two from LL such that

(u,, vi) = E. The subgraph of F. induced on B ~+,({u}) is a tree since it contains

no cycles. Let u’ and [)’ be two elements not belonging to V. Consider the

k-regular graph G,z+ z = (V’, E’), where V’ = V U {u’, L“} and E’ = E U

U $= ,{(u’, Ui), (u,, u’), (~)’, ~~,),(~,, ~’)} – U ~=~{(u,, ~,), (L’,, u,)}. Figure 1 shows
the graph G.+ ~ in the neighborhood of u in the case k = 3. For shorthand, we
denote AF,, W A> ‘G,,+, by A’ and AI(A’ ) by A’. We need to show that

A’ < (2 + o(l))~~. Assume that A’ > 2v’~ (otherwise, we are done),

and let A’ = 2~k~cosh 0’, with (3’ > 0. Let g 6 L~,(V’) be an eigenvector

corresponding to A’.

We outline informally the basic ideas of the proof. Roughly speaking, we will

show that the values that g takes on the nodes u’, L’, u,, 1~1are small compared

to Ilg 11.This implies that g is close in /z-norm to its r~estriction f on V. Lemma

3.1 then implies that f “Af < (2 + o(l))~~llgll-. But since g(u’), g(~i’~,

g(ui), and g(L’i) are small, the scalar product f ~Af is close to g . A’g = A’ Ilgll-,

and so A’ < (2 + o(l))~~”.

Since u and LL’ have the same neighbors in G,,. ~ and A’ # O, we have

g(u) = g(u’). By eq. (3), we have

A’1/g112 == g.A’g

=fAf -2 fig + 2 fg(L1’)g(Lt,) + 2 &L’’)@. (11)
~=1 1=1 [=1
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We upper bound –2g(~i)g(~i) by g(ui)2 + g(~,)2. On the other hand, the
equality (A’g)(u’) = A’g(u’) implies that

A similar relation holds for ~’. Combining this with eq. (11), we get

()/illg112 sf”flf+ 1 + ; ; [g(u, )2 +g(L’, )2)<
i=l

(12)

We use Lemma 3.1 to bound the term ~” A~. Note that ZW,. ~~(w) = –g(u’)

– g(u’) since g E L:( V’), and so

f“flfs A,(A) llf112+ :(g(u’) +g(u’))’

s 2J=(llg112 – g(L02 – g(L’’)2) + ;(g(u’)~ + g(L’’)2)

< 2JFmlg112,

for sufficiently large n. Combining this with eq. (12) and noting that 1 +

2k/i s 44=, we obtain

We now compare g(ul) and g(~i) to \lgll. Let s be the function on V’ defined

by s(u) = s(u’) = k and, for LI = V’ – {u, 14’} at distance i from 14, s(L’) =

2(k – 1)] -‘ /zcosh i 9’. An easy calculation shows that the function s verifies

the conditions of Lemma 5.1 for the graph G’, with X = {u, u’}, w = A’, and for
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any integer h between 1 and 1 + 1. Hence

llgll’ 2 ~ g(v)’
r=x, +,

1103

k – 2 coshz(l -t 1)0’ k
.— . zg(u,)’

k–1 cosh& 1=1

k

z +cosh2(M’) ~g(u,)z.
ial

SimilarlY, Ilgll” > 1/2 cosh~(l(l’)x~=, g(ul)z. Combining this with eq. (13), we

get

8
cosh 6’ < 1 +

coshzlo’ “

Solving eq. (14) yields /3’ s (log 1)/1 for sufficiently large n, and so

L ‘7)(1 logs log n
A’=2JF71+; O+ O(1)) <24=1+2

log~n

Theorem 4.1 implies that the linear expansion of the family (G. ) is at

k/2. Since the subset {u, 14’} has k neighbors, this bound is tight. ❑

If k – 1 is a Drime conmuent to 1 modulo 4, we know from Lubotzky

(14)

least

et al.

[1988] that ther~ exists an-infinite family of nonbipartite k-regular Ram”anujan

graphs with girth at least (2/3 + o(l))log~ _, n. By repeating the construction in

Theorem 5.2, we obtain k-regular graphs whose second largest eigenvalue i~z

absolute value is (2 + o(l))~~ and linear expansion k/2. Moreover, by

adjoining nodes at regions of the graph at sufficiently large distance from each

other, we can construct for any m = m(n) = o(n) a family of k-regular graphs

whose second largest eigenvalue in absolute value is (2 + O( l))v’~ and

containing a subset of size 2m with expansion k/2. This can be shown by a

proof similar to Theorem 5.2.

6. Random Walks

We show that the probability that a walk stays inside a given set has an

exponential decay in the length of the walk. Our bound improves upon

previous results in Ajtia et al. [1987] and Goldreich et al. [1990] and is shown to

be optimal for many values of the parameters.

COROLLARY 6.1. If G = (V, E) is k-regular a?ld W a subset of V, the ji-action

of walks in G of length 1 whose all vertices belong to W is at most P( a + p – a I.L)1,

where a = Al/k and w = IW1/iz.

PROOF. The number of walks of length 1 in W is equal to the sum of entries

of A~V, and so the fraction of walks of length 1 in W is equal to ((~ JL)’xIi”

xiv )/(k~n). On the other hand, since &,( A ~ ) is the largest eigenvalue of A ,t
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in absoiute Llalue, the largest eigenvalue of AL. is ( AO(A ~ ))’. Using Lemma 3.2

and Fact 2.1, we conclude that

as desired. ❑

Define the density of a subset of vertices to be the ratio of its size to the

total number of vertices. Corollary 6.1 is optimal in the following sense: for any

rational a = [1/2, 1] and any rational w = [0, 1], there exists an arbitrary large

k-regular graph G and a subset W of G of density w such that AI(G) = ak

and, for any integer 1, the fraction of walks in W of length 1 is equal to

w(a + p – ap)’. Indeed, let G = K.,2 x K~, where b = a(l – a)/a and

K ~+z x K~ is the graph on V= {1,..., a + 2} X {l,..., b}, with ((i, j), (if, j’))

e E if and only if i = i’ XOR j = j’. The graph G is regular of degree a + b;
its eigenvalues are a + b, a, b – 2 and –2, and A,(G) = a = a(a + b). Let

W={l,..., a+2}X {l,..., pb}. The set W has density ~ in V, and the

fraction of walks in W of length 1 is p(a + ~b)~\(a + b)’, which is equal to the

value given by Corollary 6.1.

7. Other Applications

We list three applications of Theorems 4.1 and 4.2.

(1) Random Regular Graphs. It was shown in Friedman [1991] that, if k is even,

then for a random k-regular graphs G, we have AI(G) s 2v’~ +

O(log k) with high probability. Using Theorem 4.1, we deduce that for a

random regular graph, we can prove with high probability in polynomial

time that linear-sized subsets (of density at most k- l”, where e = k- l’J)

have expansion at least

k
— 0(k3/Jlog*izk).

r

(2) Selection Networks. We can use Theorem 4.1 to build explicit selection

networks of small size. A selection network is a network of comparators

that classifies a set of n numbers, where n is even, into two subsets of n\2

numbers such that any element in the first subset is smaller than any
element in the second subset. In Pippenger [1991], a probabilistic construc-

tion of a selection network is given using an asymptotic upper bound of

2n log’ n comparators. Also, an upper bound slightly less than 6n log ~n is

shown by a deterministic construction. Using Theorem 4.1, we can con-

struct selection networks of asymptotic size (3 + o(1 ))n log ~n. Indeed, it is

shown in Pippenger [1991] how to construct selection networks of size

(2 + O( 1))n 10g2 ?z from expanders of degree 4 having linear expansion at
least 3. The construction can be easily generalized to build selection

networks of size k( 1/2 + o(l))n log ~n from expanders of degree k having

linear expansion at least 3. Theorem 4.1 then shows that we can build
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explicit selection networks of size (3 + O( 1))n logz n using 6-regular Ra-

manujan graphs.

(3) Extrovert Graphs. Given a graph G = (V, E) and a subset X of V, an

element of X is said to be extrovert if at least half of its neighbors are

outside X. A family of graphs is called extrovert if all linear-sized subsets

contain a constant fraction of extrovert nodes. Such graphs have been used

[Broder et al. 1992] to solve the token distribution problem. Theorem 4.2

shows that the average degree of the nodes of a linear-sized induced

subgra h of a k-regular Ramanujan graph is upper bounded by roughly

+1 + k – 1, which is less than k/2 for k >7. This shows that Ramanujan

graphs of degree at least 7 are extrovert graphs. Classical results [Alon and

Chung 1989] require the degree to be at least 15.

8. Concluding Remarks and Further Work

(1) Let H be a graph of maximum degree at most k, and ~ a real number no

smaller than 2~~. Theorem 3.6 implies that, if there exists an infinite

family G. of k-regular graphs ccmtaining H as an induced subgraph and

such that A(G,, ) < (1 + o(l))~, then Atl(lffi) s j. (M: can be defined

similarly to M:.) If k – 1 is al prime congruent to 1 modulo 4, this

condition can be shown to be sufficient [Kahale 1993b].

(2) It is still an open question whether there exists a family of Ramanujan
graphs with linear expansion at most k/2.

(3) It would be interesting to calculate the exact value of the linear expansion
of the known explicit constructions of Ramanujan graphs [Lubotzky et al.

1988; Margulis 1988]. Theorem 4.1 shows that it is at least k/2. On the

other hand, an easy combinatorial argument shows that the linear expan-

sion of any family of k-regular graphs is at most k – 1. Besides being

Ramanujan, the graphs constructed in Lubotzky et al. [1988] and Margulis

[1988] have other interesting combinatorial properties. For example, they

are Cayley graphs and have high girth, unlike the graphs that we con-

structed in Section 5. This leads us to conjecture that their linear expansion

is strictly greater than k/2. Any explicit construction of k-regular graphs

with provable linear expansion strictly greater than k/2 would also be

interesting.
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