
Wyatt Lloyd
Computer Science Department
35 Olden St.
Princeton, NJ 08540
(814) 880-1392
wlloyd@cs.princeton.edu

December 14, 2012

To Whom It May Concern:

I am seeking a tenure-track position as an assistant professor in your department. I am a Ph.D.
candidate in the Computer Science Department at Princeton University, and I expect to graduate
this year. My research interests include the distributed systems and networking problems that
underlie the architecture of large-scale websites, cloud computing, and big data.

I have enclosed my curriculum vitae with a list of references, research statement, teaching
statement, and four representative papers. The most up-to-date version of these materials is
available online at http://www.cs.princeton.edu/~wlloyd/application/.

I look forward to discussing my application with you.

Sincerely,

Wyatt Lloyd

encl: • Curriculum Vitae (including name of references)
• Research Statement
• Teaching Statement
• “Stronger Semantics for Low-Latency Geo-Replicated Storage”

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, David G. Andersen
to appear in NSDI 2013, 14 pages (preprint)

• “Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS”
Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, David G. Andersen
from SOSP 2011, 16 pages

• “Coercing Clients into Facilitating Failover for Object Delivery”
Wyatt Lloyd, Michael J. Freedman
from DSN 2011, 12 pages

• “Prophecy: Using History for High-Throughput Fault Tolerance”
Siddhartha Sen, Wyatt Lloyd, Michael J. Freedman
from NSDI 2010, 16 pages

http://www.cs.princeton.edu/~wlloyd/application/

Wyatt Lloyd
http://www.cs.princeton.edu/~wlloyd

205 Hudson St., Apt 601 wlloyd@cs.princeton.edu
Hoboken, N.J. 07030 (814) 880-1392

Education

Princeton University . Princeton, NJ
Ph.D. in Computer Science . Expected June 2013
M.A. in Computer Science . 2009
Advisor: Michael J. Freedman

Pennsylvania State University, University Park State College, PA
B.S. in Computer Science with distinction . 2007
Schreyer Honors College
Advisor: Thomas F. La Porta

Research Interests

The distributed systems and networking problems that underlie the architecture of
large-scale websites, cloud computing, and big data.

Dissertation

2010– Stronger Consistency and Semantics for Geo-Replicated Storage. Geo-replicated
storage systems provide the backend for massive-scale websites such as Twitter and
Facebook, storing data that includes your profile, friends lists, and status updates.
These storage systems seek to provide an “always-on” experience where operations
always complete quickly, because of a widely demonstrated link between page load
times, user engagement, and revenue. We term systems that can handle data of this
scale and provide the always-on experience ALPS systems, because they provide
four key properties—availability, low latency, partition tolerance, and scalability.

Our COPS [2] system is the first distributed data store to guarantee the ALPS prop-
erties and achieve consistency stronger than eventual. Eventual consistency spec-
ifies only that writes in one datacenter eventually show up in the others. Causal
consistency, which is what COPS provides, maintains the partial order over op-
erations establish by potential causality. Under causal consistency, all of a user’s
operations appear in the order they are issued and interactions between users, e.g.,
conversations in comments, appear in their correct order as well. This improve-
ment in consistency gives users a better experience and makes the data store easier
for programmers to reason about. A key technical contribution of the COPS work
is its fully distributed and scalable architecture that uses explicit metadata and off-
path dependency checks to enforce ordering instead of relying on any single point
of coordination.

Our Eiger [1] system further pushes on the semantics an ALPS data store can
provide. Eiger provides high-performance, guaranteed low-latency read-only and

1 / 5

http://www.cs.princeton.edu/~wlloyd

write-only transactions across the thousands of machines in a cluster. Read-only
transactions allow a client to observe a consistent snapshot of an entire cluster.
Write-only transactions allow clients to atomically write many values spread across
many servers at a single point in time. One important use case for write-only
transaction is maintaining symmetrical relationships, e.g., Alice “isAFriendOf” Bob
and Bob “isAFriendOf” Alice should both appear or disappear at the same time.
Eiger also improves the semantics of ALPS data stores by providing the column-
family data model—which is used in BigTable and Cassandra, and can be used to
built real applications like Facebook—instead of the key-value data model provided
by COPS—which is useful mainly as an opaque cache.

My dissertation research shows that ALPS systems do not need to settle for even-
tual consistency and weak semantics. Taken together, Eiger and COPS show that
causal consistency and stronger semantics are possible for low-latency geo-replicated
storage.

Other Research Experience

2009–2011 Low-Overhead Transparent Recovery for Static Content. Client connections to
web services break when the particular server they are connected to fails or is
taken down for maintenance. We designed and built TRODS [3], a system that
transparently recovers connections to web services that delivers static content, e.g.,
photos or videos. TRODS is implemented as a server-side kernel module for imme-
diate deployability, it works with unmodified services and clients. The key insight
in TRODS is its use of cross-layer visibility and control: It derives reliable storage
for application-level state from the mechanics of the transport layer. In contrast
with more general recovery techniques, the overhead of TRODS is minimal. It pro-
vides throughput-per-server competitive with unmodified HTTP services, enabling
recovery without additional capital expenditures.

2007–2010 Using History for High-Throughput Fault Tolerance. Byzantine fault-tolerant
(BFT) replication provides protection against arbitrary and malicious faults, but its
performance does not scale with cluster size. We designed and built Prophecy [4],
a system that interposes itself between clients and any replicated service to scale
throughput for read-mostly workloads. Prophecy relaxes consistency to delay-once
linearizability so it can perform fast, load-balanced reads when results are histori-
cally consistent, and slow, replicated reads otherwise. This dramatically increases
the throughput of replicated services, e.g., the throughput of a 4 node Prophecy
web service is ~4X the throughput of a 4 node PBFT web service.

2007 IP Address Passing for VANETs. In Vehicular Ad-hoc Networks (VANETs), ve-
hicles have short connection times when moving past wireless access points. The
time required for acquiring IP addresses via DHCP consumes a significant portion
of each connection. We reduce the connection time to under a tenth of a second
by passing IP addresses between vehicles. Our implementation improves efficiency,
reduces latency, and increases vehicle connectivity without modifying either DHCP
or AP software [5].

2 / 5

2006–2007 Multi-Class Overload Controls for SIP Servers. When SIP servers that are used
for signaling in VoIP network are overloaded, call-setup latency increases signifi-
cantly and critical calls—e.g., 911 calls—can be denied. My undergraduate thesis
on multi-class overload controls [6] reduces call latency by suppressing retransmis-
sions and prioritizes critical calls so they always connect.

Professional Experience

9/07– Research Assistant. Princeton University, Princeton, NJ
Major projects include providing stronger consistency for scalable storage systems
(COPS), providing stronger semantics for scalable storage systems (Eiger), enabling
transparent connection recovery for web services (TRODS), and using history for
high-throughput fault tolerance (Prophecy).

5/12–8/12 Ph.D. Intern. Facebook, New York, NY
Worked on a distributed-storage-systems team on a project to improve caching for
static content. Was the first intern at the new New York office.

6/10–9/10 Summer Research Fellow. Intel Labs Pittsburgh / CMU, Pittsburgh, PA
Began leading the COPS project, a collaborative effort between Princeton Univer-
sity, Intel Labs, and Carnegie Mellon University.

6/07–9/07 Intern-Student Engineer. The Boeing Company, Anaheim, CA
Worked on an internal research and development project on routing in multi-tier
wireless networks as part of the Network Systems group.

5/06–9/06 Intern-Student Engineer. The Boeing Company, Anaheim, CA
Worked on an internal research and development project that utilized DHCP for
intra-domain mobility management as part of the Network Systems group.

Teaching Experience

11/29/12 Guest Lecturer. Distributed Systems, (CMU) 15-440
Lectured on COPS to introduce cutting-edge research to undergraduates.

10/4/12 Guest Lecturer. Advanced Computer Networks, COS-561
Lectured on inter-domain routing with BGP and led a discussion of research papers
on network isolation and software-defined networking.

2/09–6/09 Teaching Assistant. Computer Networks, COS-461
Graded, held office hours, helped design exams, and taught exam-review sessions.

9/08–1/09 Teaching Assistant. General Computer Science, COS-126
Graded, held office hours, helped design exams, and taught twice-weekly recita-
tions.

Service

11/9/12 Panelist. Princeton Women in Computer Science Graduate School Panel
Shared experiences and advice about graduate school.

3 / 5

10/11– Regional Lead. Siebel Scholars Foundation
Organized events for Princeton region and served on the advisory board.

6/11–8/11 Student Advisor. Princeton Summer Programming Experience
Advised novice undergraduate programmers on 6-week-long projects.6/09–8/09

2/06–5/07 Student Representative. Penn State CSE Curriculum Committee
Helped shape undergraduate Computer Science curriculum.

Honors

2012 Wu Prize for Excellence (Princeton)
2012 Facebook Fellowship Finalist
2012 Siebel Scholar
2007 Princeton University Graduate Fellowship
2003-2007 Dean’s List (Penn State)
2003-2007 Schreyer Honors College Scholar (Penn State)
2006 College of Engineering General Scholarship (Penn State)
2003 Maryland State Distinguished Scholar
2002 National Merit Scholarship Honorable Mention
2000 Eagle Scout

Refereed Conference Publications

[1] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Stronger Semantics for Low-Latency Geo-Replicated Storage. To appear in Proc.
10th Symposium on Networked Systems Design and Implementation (NSDI 13), April
2013. 14 pages.

[2] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. In Proc. 23rd ACM Symposium on Operating Systems Principles (SOSP 11),
October 2011. 16 pages.

[3] Wyatt Lloyd and Michael J. Freedman. Coercing Clients into Facilitating Failover
for Object Delivery. In Proc. 41st IEEE/IFIP International Conference on Dependable
Systems and Networks, Dependable Computing and Communication Symposium (DCCS)
track (DSN 11), June 2011. 12 pages.

[4] Siddhartha Sen, Wyatt Lloyd, and Michael J. Freedman. Prophecy: Using History
for High-Throughput Fault Tolerance. In Proc. 7th Symposium on Networked Systems
Design and Implementation (NSDI 10), April 2010. 16 pages.

[5] Todd Arnold, Wyatt Lloyd, Jing Zhao, and Guohong Cao. IP Address Passing
for VANETs. In Proc. 6th IEEE International Conference on Pervasive Computing and
Communications (PERCOM 08), March 2008. 10 pages.

4 / 5

Theses

[6] Wyatt Lloyd. Multi Class Overload Controls for SIP Servers. Honors Thesis, The
Pennsylvania State University, May 2007.

Refereed Conference Presentations

[7] Stronger Semantics for Low-Latency Geo-Replicated Storage. To appear at 10th
Symposium on Networked Systems Design and Implementation (NSDI 13), April 2013.

[8] Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. In 23rd ACM Symposium on Operating Systems Principles (SOSP 11), October
2011.

[9] Coercing Clients into Facilitating Failover for Object Delivery. In 41st IEEE/IFIP
International Conference on Dependable Systems and Networks, Dependable Computing
and Communication Symposium (DCCS) track (DSN 11), June 2011.

Other Presentations

[10] Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. Facebook Ph.D. Intern and Distributed Systems Reading Group Talk, Au-
gust 2012.

[11] Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. Berkeley, Cloud Seminar, April 2012.

[12] Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. Intel Science and Technology Center on Cloud Computing Retreat, Research
Talk, December 2011.

[13] Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. University of Maryland, SysChat Group Talk, October 2011.

[14] Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with
COPS. Johns Hopkins University, Computer Science Seminar, October 2011.

References
Prof. Michael J. Freedman Prof. David G. Andersen
Assistant Professor Associate Professor
Computer Science Department Computer Science Department
Princeton University Carnegie Mellon University
mfreed@cs.princeton.edu dga@cs.cmu.edu

Dr. Michael Kaminsky Prof. Mike Dahlin
Senior Research Scientist Professor
ISTC for Cloud Computing Computer Science Department
Intel Labs The University of Texas at Austin
michael.e.kaminksy@intel.com dahlin@cs.utexas.edu

5 / 5

Research Statement
Wyatt Lloyd

Vision

My research addresses emerging problems in the massive-scale distributed systems that support
big data. The recent and dramatic growth in the demands on these systems—on their ability
to store, process, and manage large data volumes—makes this area ripe for new research. This
new scale, e.g., all of Twitter’s tweets, requires massively distributed systems with hundreds or
thousands or more machines cooperating to provide the necessary capacity and throughput.

To handle the magnitude of this data, recent systems from industry and academia have stressed
performance and scalability at the cost of strong semantic properties, e.g., linearizability and
transactions, yet these same properties make systems easier to use and understand. My research
questions whether such sacrifices are necessary and seeks to identify properties that make these
systems easier to program to and reason about that are compatible with massive scale. I pursue
properties that are rigorously defined for the clarity they bring to programmers using the systems,
e.g., causal consistency instead of eventual, or guaranteeing low latency for all operations.

Looking at my research from another direction, it reexamines conventional design decisions
and approaches given the new reality of big data. Centralized approaches that were simple,
straightforward, and effective in the small systems of the past quickly hit bottlenecks that prevent
scaling to the large systems of today. In contrast, I design systems that provide strong properties
while keeping all operations distributed, so they can scale to the even larger systems of tomorrow.

My focus on scalability is maintained throughout the research process; I include it as a primary
design requirement and then build prototypes that are tested with real data at scale. While
building and experimentally verifying that a design is scalable is useful and necessary in itself, I
have also found that doing so often exposes unanticipated bottlenecks and can reveal important
new research topics, as discussed in my future directions. This focus on designing and building
massive-scale systems that provide strong, rigorous properties defines my niche as a researcher.

Dissertation Research

Geo-replicated storage systems provide the backend for massive-scale websites like Facebook,
storing data that includes your profile, friends list, and status updates. These storage systems
seek to provide an “always-on” experience where operations always complete quickly, because
of a widely demonstrated link between page load times, user engagement, and revenue. We
term systems that can handle such data at scale and provide an always-on experience as ALPS
systems, because they provide four key properties: Availability, Low latency, Partition tolerance,
and Scalability.

Previous ALPS systems such as Amazon’s Dynamo, LinkedIn’s Project Voldemort, and
Facebook’s Cassandra (in some configurations) all made large usability sacrifices in pursuit of
their scale and performance goals. These sacrifices—such as providing only eventual consistency,
which gives no ordering guarantees about operations—make it hard for programmers to reason
about the system and result in an end-user experience that is far from ideal. My dissertation
research shows that these sacrifices are not fundamental; stronger consistency and semantics are
achievable for ALPS storage systems.

1 / 4

Yet, known theoretical results show that low latency and the strongest types of consistency are
incompatible.1 Knowing this, the recent spate of low-latency geo-replicated systems settled for
the weakest semantic property, eventual consistency. The first part of my dissertation research,
COPS, shows that this sacrifice is not necessary. COPS is the first ALPS system to provide causal
consistency, a middle ground between the two extremes where operations always appear in an
order consistent with potential causality, e.g., all of a user’s operations and all conversations be-
tween users appear in their original order. This improvement in consistency makes the distributed
storage more intuitive for programmers to use and gives end users more of the experience they
expect.

One key technical contribution in COPS is a design focused on the scalability of clusters
where the keyspace is partitioned across nodes, replication is done in parallel from all nodes
in each cluster, and then nodes use dependency metadata associated with the updates to issue
distributed checks that ensure operations are always applied in the correct causal order. Naively,
dependency metadata grows exponentially and throttles performance. COPS avoids this problem
using multiple types of garbage collection and by exploiting the transitive structure inherent in
the graph of potential causality.

COPS’s use of distributed metadata runs counter to the traditional wisdom for enforcing
causal consistency, which was to exchange logs of operations and then replay them at other
locations. The log-exchange approach works well and admits a simple implementation when all
data can reside on a single machine. With the new realities of massive scale where data is spread
across many machines, however, the log-exchange approach breaks down as logging updates to
all machines in a cluster into one place becomes a bottleneck. In contrast, because of COPS’s
distributed design, it is the first scalable and causally consistent system.

The big data in ALPS systems is spread across thousands of nodes, yet previous systems provided
only inconsistent batch operations to read and write data across multiple nodes. Eiger, the second
part of my dissertation research, shows that much stronger semantics are possible. These stronger
semantics include read-only and write-only transactions that consistently read or write data
spread across all the nodes in a cluster. Eiger’s semantics also include counter columns and the
hierarchical column-family data model used in BigTable and Cassandra, which makes building
applications atop it much simpler. The limited transactions and rich data model in Eiger do not
come at the expense of high scalability or performance, and designing the system to ensure this
was one of Eiger’s main challenges.

In particular, to guarantee low latency Eiger must eschew locks and blocking, the typical
techniques used for transactions. And to enable scaling it must avoid the centralization that is
also typical for transactions. Eiger overcomes both these challenges using distributed algorithms
that utilize logical-time-validity metadata and temporarily maintaining multiple versions of the
data. In addition, its algorithms for read-only and write-only transactions are designed to work
together using indirection to ensure that clients obtain a consistent, up-to-date view of the system
and can atomically update data spread across many nodes.

My dissertation research shows that ALPS systems do not need to settle for eventual consistency
and weak semantics. Taken together, Eiger and COPS show that causal consistency and stronger
semantics are possible for low-latency geo-replicated storage.

1This incompatibility is an implication of Brewer’s famed CAP theorem from 2000, which was formalized shortly
after by Gilbert and Lynch. Its first proof, however, was a lesser-known result from 1988 by Lipton and Sandberg.

2 / 4

Future Directions

Fully-Distributed General Transactions

While working on transactional algorithms for the low-latency geo-replicated setting of COPS and
Eiger, I began to design algorithms for fully-distributed general transactions. General transactions
are widely recognized as easy for programmers to reason about and necessary for certain scenarios,
e.g., banking. Due to the fundamental trade-off between strong consistency and low latency, they
are hard to reason about in—and perhaps incompatible with—the geo-replicated and low-latency
setting of COPS and Eiger. They are, however, compatible with a low-latency single-datacenter
setting or with a non-low-latency geo-replicated setting.

Currently, transactions are either scalable or general, but not both. My research and Google’s
recent work on Spanner, which provides read-once-then-write transactions, are examples of the
former. On the other hand, examples of the latter include traditional databases with general
transactions that are restricted to a small subset (shard) of the data and/or are scheduled by a
master node. Developing and verifying fully-distributed transactions across large numbers of
nodes will bridge this divide and provide scalability for general transactions.

Scalable Transport for Massively-Distributed Systems

Current transport-layer protocols, e.g., TCP and UDP, are ill-suited for massive-scale distributed
systems. TCP was designed to provide a reliable stream of data between two machines; UDP was
designed to provide unreliable datagrams in the same setting. In contrast, the communication pat-
terns of massive-scale distributed systems typically have large numbers of parallel, asynchronous
RPCs between many machines.

One example of this mismatch is that while running experiments for Eiger with hundreds of
nodes, I found I could not achieve perfect linear scaling of throughput as cluster size increased due
to the overhead from the increasing number of TCP connections on each node. As another example,
I’ve learned from industrial colleagues that it is common practice to aggregate connections from
multiple processes on the same machine to reduce connection overhead and to increase batching.
Yet another example is Facebook’s modification to memcached that uses TCP for writes, but uses
UDP for reads so they can build their own retransmission protocol atop it that is aware of how
they batch reads (multigets).

All of these issues stem from a mismatch between what current transport layers provide and
how massive-scale distributed systems communicate. While there has been much recent work on
improving TCP for datacenter usage—e.g., DCTCP that improves congestion control, or the entire
“Data Centers: Latency” session at SIGCOMM 2012 that improved flow completion times—a more
fundamental approach is necessary and possible. Datacenter services provide a rare opportunity
to deploy a clean-slate transport layer because they are in a single administrative domain and can
be upgraded en masse. Along with networking colleagues, I am interested in exploring what new
transport layer properties, abstractions, and mechanisms can better match the performance or
programmability requirements of massive-scale distributed systems.

Making Programming Distributed Storage Make Sense

Strong consistency and general transactions, while incompatible with low-latency geo-replication,
are well understood by programmers and easier for them to reason about than weaker consistency
and limited transactions. My dissertation research starts to bridge this gap, but there is still much
to do before programming massive-scale distributed storage truly “makes sense.”

This introduces two exciting avenues of research. One is, how can we make it easier for

3 / 4

programmers to reason about and use low-latency primitives? My current approach has been to
make the primitives as strong as possible and I believe this direction will bear more fruit. But, we
will also need ways to make it easier for programmers to express themselves. Perhaps a query
language will help? Or, a compiler that will deconstruct general transactions into limited ones?

The other avenue of research is, how can we present a single interface that is simple for
programmers to reason about that provides access to strong-but-slow general transactions and
fast-but-weaker limited transactions? Should transactions and their results be typed so we can
reason about their use throughout a program? Would a domain-specific language help? Can we
allow programmers to write the simplest code initially and then only specialize it if dictated by
performance?

Each of these avenues provides an interesting mix of programming languages and distributed
systems problems. I look forward to collaborating on them with PL colleagues and I believe
solving them will have a large and lasting impact on the way web services are built and the way
programmers interact with big data.

In the last 20 years the field of distributed systems has changed dramatically. The field moved
from systems on the order of 10s of nodes in one administrative domain, to peer-to-peer systems
with 1000s of nodes in many administrative domains, to datacenter services with a small number
of datacenters each with 1000s of nodes within it that are back in a single administrative domain.
With billions of edge devices that are increasingly capable, I am intrigued to see how they fit into
the distributed systems of the future.

Increasingly, distributed systems problems have connections to networking, databases, pro-
gramming languages, algorithms, and security. I look forward to working with colleagues in these
areas in my future research career, as I believe that many of the most productive types of research
come from inter-area collaboration.

4 / 4

Teaching Statement
Wyatt Lloyd

Teaching is an important and exciting part of being a faculty member. I look forward to
being involved in teaching at all levels, from sparking student interest in Computer Science in
introductory courses to advising students pursuing their own research. I am qualified to teach
introductory CS classes and particularly qualified to teach classes on systems and networking at
the undergraduate level, the advanced/graduate level, and in seminars on more focused topics
like distributed storage systems or datacenter networking.

I first gained teaching experience as a TA for Princeton’s introductory course (COS 126).
My favorite part of the course was teaching a twice-weekly precept to my section of about a
dozen students. I focused on being enthusiastic about the material and keeping the class highly
interactive. I believe the more you involve students and show them the interesting facets of a
subject, the more they will be motivated to learn.

I also served as a TA for Princeton’s networking course at the advanced undergraduate level
(COS 461). The course had a strong focus on projects where the students built what we were
learning about in class, e.g., a lightweight TCP implementation. This focus on building helped
students understand the material more deeply, actively engaged them in the subject, and provided
them with practical system building experience. The core parts of course were supplemented with
discussions of recent research advancements, showing students our field is still evolving and that
they can have an impact. This inspired several students to do research with our group, some of
whom ultimately went to graduate school in systems and networking. The effectiveness of the
class greatly impressed me, and I will incorporate a focus on building and discussion of research
results into any advanced systems or networking course I teach.

Graduate courses offer an in-depth look at a topic and are an excellent vehicle for initiating
research. I have found the format of lectures on a topic, followed by reading related papers, and
then finally working on a research project to be a successful strategy. Lectures ensure a basic level
of knowledge so that papers are accessible and framed by current and historical practices. Paper
readings and discussions allow much more depth in exploring a topic as well as help students
learn how to best focus their work and its exposition for maximum impact. This fall I had the
privilege to guest teach the graduate level advanced networking class (COS 561) where I delivered
a lecture with my enthusiastic and interactive style, followed by a discussion of two papers the
students had read. This experience, combined with my earlier experience as a TA, confirmed that
I enjoy and excel at teaching all levels of courses.

Research projects are an essential part of graduate courses because they give students the
opportunity to explore a topic in greater depth, enabling them to make a potentially publishable
contribution of their own. This is, in fact, how I published my first paper. An aspect of student
projects that I will emphasize is building a prototype and experimentally verifying its design. I
consider this an essential component of research in systems as it grounds their work in reality,
gives them system-building experience, helps them focus on what is novel about their design, and
can lead them to new areas of research.

I have advised one undergraduate on a semester-long research project and three other under-
graduates on six-week summer projects. In each case, the experience was rewarding and I look
forward to longer-term advisement of graduate students. I view advisement as a tremendous
opportunity, and responsibility, to guide students down worthwhile paths without stifling their
individuality or creativity. I am particularly excited to see how long-term collaboration will merge
my ideas with those of my students into new research directions.

1 / 1

Preprint of our paper to appear in NSDI ’13

This version is from Dec 14, 2012

Find the most up-to-date version at:

http://www.cs.princeton.edu/

~wlloyd/papers/eiger-nsdi13.pdf

Stronger Semantics for Low-Latency Geo-Replicated Storage

Wyatt Lloyd

?
, Michael J. Freedman

?
, Michael Kaminsky

†
, and David G. Andersen

‡

?
Princeton University,

†
Intel Labs,

‡
Carnegie Mellon University

Abstract
We present the first scalable, geo-replicated storage sys-
tem that guarantees low latency, offers a rich data model,
and provides “stronger” semantics. Namely, all clients
requests are satisfied in the local datacenter in which
they arise; the system efficiently supports useful data
model abstractions such as column families and counter
columns; and clients can access data in a causally-
consistent fashion with read-only and write-only transac-
tional support, even for keys spread across many servers.

The primary contributions of this work are enabling
scalable causal consistency for the complex column-
family data model, as well as novel, non-blocking al-
gorithms for both read-only and write-only transactions.
Our evaluation shows that our system, Eiger, achieves
low (single-ms) latency and has throughput competitive
with eventually-consistent and non-transactional Cassan-
dra, upon which it is built. Despite Eiger’s stronger
semantics, its throughput is within 15% of Cassandra’s
for a large variety of workloads and within 7% for one
of Facebook’s real-world workloads.

1 Introduction
Large-scale data stores are a critical infrastructure com-
ponent of many Internet services. In this paper, we
address the problem of building a geo-replicated data
store targeted at applications that demand fast response
times. Such applications are now common: Amazon,
EBay, and Google all claim that a slight increase in
user-perceived latency translates into concrete revenue
loss [20, 21, 36, 44].

Providing low latency to the end-user requires two
properties from the underlying storage system. First, stor-
age nodes must be near the user to avoid long-distance
round trip times; thus, data must be replicated geographi-
cally to handle users from diverse locations. Second, the
storage layer itself must be fast: client reads and writes
must be local to that nearby datacenter and not traverse
the wide area. Geo-replicated storage also provides the
important benefits of availability and fault tolerance.

Beyond low latency, many services benefit from a
rich data model. Key-value storage—perhaps the sim-
plest data model provided by data stores—is used by a

number of services today [3, 24]. The simplicity of this
data model, however, makes building a number of in-
teresting services overly arduous, particularly compared
to the column-family data models offered by systems
like BigTable [15] and Cassandra [32]. These rich data
models provide hierarchical sorted column-families and
numerical counters. Column-families are well-matched
to services such as Facebook, while counter columns are
particularly useful for numerical statistics, as used by
collaborative filtering (Digg, Reddit), likes (Facebook),
or re-tweets (Twitter).

Unfortunately, to our knowledge, no existing geo-
replicated data store provides guaranteed low latency,
a rich column-family data model, and stronger consis-
tency semantics: consistency guarantees stronger than
the weakest choice—eventual consistency—and support
for atomic updates and transactions. This paper presents
Eiger, a system that achieves all three properties.

The consistency model Eiger provides is tempered by
impossibility results: the strongest forms of consistency—
such as linearizability, sequential, and serializability—
are impossible to achieve with low latency [6, 37] (that is,
latency less than the network delay between datacenters).
Yet, some forms of stronger-than-eventual consistency
are still possible and useful, e.g., causal consistency [2],
and they can benefit system developers and users. In addi-
tion, read-only and write-only transactions that execute a
batch of read or write operations at the same logical time
can strengthen the semantics provided to a programmer.

Many previous systems satisfy two of our three design
goals. Traditional databases, as well as the more re-
cent Walter [46], MDCC [30], Megastore [7], and some
Cassandra configurations, provide stronger semantics
and a rich data model, but cannot guarantee low latency.
Redis [42], CouchDB [18], and other Cassandra config-
urations provide low latency and a rich data model, but
not stronger semantics. Our prior work on COPS [38]
supports low latency, causal consistency, and read-only
transactions, but not a richer data model or write-only
transactions (see §6.8 and §7 for a detailed comparison).

A key challenge of this work is to meet these three
goals while scaling to a large numbers of nodes in a
single datacenter, which acts as a single logical replica.
Traditional solutions in this space [8, 10, 31], such as

1

http://www.cs.princeton.edu/~wlloyd/papers/eiger-nsdi13.pdf
http://www.cs.princeton.edu/~wlloyd/papers/eiger-nsdi13.pdf

Bayou [39], assume a single node per replica and rely on
techniques such as log exchange to provide consistency.
Log exchange, however, requires serialization through a
single node, which does not scale to multi-node replicas.

This paper presents Eiger, a scalable geo-replicated
data store that achieves our three goals. Like COPS,
Eiger tracks dependencies to ensure consistency; instead
of COPS’ dependencies on versions of keys, however,
Eiger tracks dependencies on operations. Yet, its mecha-
nisms do not simply harken back to the transaction logs
common to databases. Unlike those logs, Eiger’s oper-
ations may depend on those executed on other nodes,
and an operation may correspond to a transaction that
involves keys stored on different nodes.

Eiger’s read-only and write-only transaction algo-
rithms each represent an advance in the state-of-the-art.
COPS introduced a read-only transaction algorithm that
normally completes in one round of local reads, and two
rounds in the worst case. Eiger’s read-only transaction
algorithm has the same properties, but achieves them
using logical time instead of explicit dependencies. Not
storing explicit dependencies not only improves Eiger’s
efficiency, it allows Eiger to tolerate long partitions be-
tween datacenters, while COPS may suffer a metadata
explosion that can degrade availability.

Eiger’s write-only transaction algorithm can atomi-
cally update multiple columns of multiple keys spread
across multiple servers in a datacenter (i.e., they are
atomic within a datacenter, but not globally). It was de-
signed to coexist with Eiger’s read-only transactions, so
that both can guarantee low-latency by (1) remaining in
the local datacenter, (2) taking a small and bounded num-
ber of local messages to complete, and (3) never blocking
on any other operation. In addition, both transaction algo-
rithms are general in that they can be applied to systems
with stronger consistency, e.g., linearizability [28].

The contributions of this paper are as follows:

• The design of a low-latency, causally-consistent data
store based on a column-family data model, including
all the intricacies necessary to offer abstractions such
as column families and counter columns.

• A novel non-blocking read-only transaction algo-
rithm that is both performant and partition tolerant.

• A novel write-only transaction algorithm that atomi-
cally writes a set of keys, is lock-free (low latency),
and does not block concurrent read transactions.

• An evaluation that shows Eiger has performance com-
petitive to eventually-consistent Cassandra.

2 Background
This section reviews background information related to
Eiger: web service architectures, the column-family data
model, and causal consistency.

Alice

Bob

1337

2664

ID

NYC

LA

Town

-

3/2/11

Alice

3/2/11

-

Bob

9/2/12

-

Carol

9/1/12

-

NSDI

-

-

SOSP

Friends Likes

User Data Associations

Figure 1: An example use of the column-family data
model for a social network setting.

2.1 Web Service Architecture
Eiger targets large geo-replicated web services. These
services run in multiple datacenters world-wide, where
each datacenter stores a full replica of the data. For
example, Facebook stores all user profiles, comments,
friends lists, and likes at each of its datacenters [22].
Users connect to a nearby datacenter, and applications
strive to handle requests entirely within that datacenter.

Inside the datacenter, client requests are served by
a front-end web server. Front-ends serve requests by
reading and writing data to and from storage tier nodes.
Writes are asynchronously replicated to storage tiers in
other datacenters to keep the replicas loosely up-to-date.

In order to scale, the storage cluster in each datacen-
ter is typically partitioned across 10s to 1000s of ma-
chines. As a primitive example, Machine 1 might store
and serve user profiles for people whose names start with
‘A’, Server 2 for ‘B’, and so on.

As a storage system, Eiger’s clients are the front-end
web servers that issue read and write operations on behalf
of the human users. When we say, “a client writes a
value,” we mean that an application running on a web or
application server writes into the storage system.

2.2 Column-Family Data Model
Eiger uses the column-family data model, which provides
a rich structure that allows programmers to naturally ex-
press complex data and then efficiently query it. This
data model was pioneered by Google’s BigTable [15].
It is now available in the open-source Cassandra sys-
tem [32], which is used by many large web services
including EBay, Netflix, and Reddit.

Our implementation of Eiger is built upon Cassandra
and so our description adheres to its specific data model
where it and BigTable differ. Our description of the data
model and API are simplified, when possible, for clarity.

Basic Data Model. The column-family data model is
a “map of maps of maps” of named columns. The first-
level map associates a key with a set of named column
families. The second level of maps associates the column
family with a set comprised exclusively of either columns
or super columns. If present, the third and final level of

2

bool � batch_mutate ({key!mutation})
bool � atomic_mutate ({key!mutation})

{key!columns} � multiget_slice ({key, column_parent, slice_predicate})

Table 1: Core API functions in Eiger’s column family data model. Eiger introduces atomic_mutate and con-
verts multiget_slice into a read-only transaction. All calls also have an actor_id.

maps associates each super column with a set of columns.
This model is illustrated in Figure 1: “Associations” are a
column family, “Likes” are a super column, and “NSDI”
is a column.

Within a column family, each location is repre-
sented as a compound key and a single value, i.e., “Al-
ice:Assocs:Friends:Bob” with value “3/2/11”. These
pairs are stored in a simple ordered key-value store. All
data for a single row must reside on the same server.

Clients use the API shown in Table 1. Clients can
insert, update, or delete columns for multiple keys with
a batch_mutate operation; each mutation is either an
insert or a delete. (If a column exists, an insert
updates the value.) Similarly, clients can read many
columns for multiple keys with the multiget_slice
operation. The client provides a list of tuples, each in-
volving a key, a column family name and optionally a
super column name, and a slice predicate. The slice pred-
icate can be a (start,stop,count) three-tuple, which
matches the first count columns with names between
start and stop. Names may be any comparable type,
e.g., strings or integers. Alternatively, the predicate can
also be a list of column names. In either case, a slice is a
subset of the stored columns for a given key.

Given the example data model in Figure 1 for a social
network, the following function calls show three typical
API calls: updating Alice’s hometown when she moves,
removing Carol from her friends’ lists when she quits the
social network, and retrieving up to 10 of Alice’s friends
with names starting with B to Z.

batch_mutate (Alice!insert(UserData:Town=Rome))

batch_mutate (Alice!delete(Assocs:Friends:Carol),
Bob!delete(Assocs:Friends:Carol))

multiget_slice ({Alice, Assocs:Friends, (B, Z, 10)})

Counter Columns. Standard columns are updated by
insert operations that overwrite the old value. Counter
columns, in contrast, can be commutatively updated us-
ing an add operation. They are useful for maintaining
numerical statistics, e.g., a “liked_by_count” for NSDI
(not shown in figure), without the need to carefully read-
modify-write the object.

2.3 Causal Consistency
A rich data model alone does not provide an intuitive and
useful storage system. The storage system’s consistency
guarantees can restrict the possible ordering and timing

User Op ID Operation

Alice w1 insert(Alice, “-,Town”, NYC)
Bob r2 get(Alice, “-,Town”)
Bob w3 insert(Bob, “-,Town”, LA)
Alice r4 get(Bob, “-,Town”))
Carol w5 insert(Carol, “Likes, NSDI”, 8/31/12)
Alice w6 insert(Alice, “Likes, NSDI”, 9/1/12)
Alice r7 get(Carol, “Likes, NSDI”)
Alice w8 insert(Alice, “Friends, Carol”, 9/2/12)

(a)

w3

w6

w5

w8

w1

Logical Tim
e

r4

r7

r2

A
lice

B
ob

C
arol

(b)

w3

w6

w5

w8

w1

Logical Tim
e

A
lice

B
ob

C
arol

(c)

Op Dependencies

w1 -
w3 w1
w5 -
w6 w3 w1
w8 w6 w5 w3 w1

(d)

Figure 2: (a) A set of example operations; (b) the
graph of causality between them; (c) the correspond-
ing dependency graph; and (d) a table listing nearest
(bold), one-hop (underlined), and all dependencies.

of operations throughout the system, helping to simplify
the possible behaviors that a programmer must reason
about and the anomalies that clients may see.

The strongest forms of consistency (linearizability, se-
rializability, and sequential consistency) are provably in-
compatible with our low-latency requirement [6, 37], and
the weakest (eventual consistency) allows many possible
orderings and anomalies. For example, under eventual
consistency, after Alice updates her profile, she might not
see that update after a refresh. Or, if Alice and Bob are
commenting back-and-forth on a blog post, Carol might
see a random non-contiguous subset of that conversation.

Fortunately, causal consistency can avoid many such
inconvenient orderings, while guaranteeing low latency.
Causal consistency provides a partial order over opera-
tions in the system according to the notion of potential
causality [2, 33], which is defined by three rules:

• Thread-of-Execution. An operation performed by a
thread is causally after all of its previous ones.

• Reads-From. An operation that reads a value is
causally after the operation that wrote the value.

• Transitive-Closure. If operation a is causally after
b, and b is causally after c, then a is causally after c.

3

Figure 2 shows several example operations and illustrates
their causal relationships. Arrows indicate the sink is
causally after the source.

Write operations have dependencies on all other write
operations that they are causally after. Eiger uses these
dependencies to enforce causal consistency: It does not
apply (commit) a write in a cluster until verifying that
the operation’s dependencies are satisfied, meaning those
writes have already been applied in the cluster.

While the number of dependencies for a write grows
with a client’s lifetime, the system does not need to track
every dependency. Rather, only a small subset of these,
the nearest dependencies, are necessary for ensuring
causal consistency. These dependencies, which have a
longest path of one hop to the current operation, tran-
sitively capture all of the ordering constraints on this
operation. In particular, because all non-nearest depen-
dencies are depended upon by at least one of the nearest,
if this current operation occurs after the nearest depen-
dencies, then it will occur after all non-nearest as well (by
transitivity). Eiger actually tracks one-hop dependencies,
a slightly larger superset of nearest dependencies, which
have a shortest path of one hop to the current operation.
The motivation behind tracking one-hop dependencies is
discussed in Section 3.2. Figure 2(d) illustrates the types
of dependencies, e.g., w6’s dependency on w1 is one-hop
but not nearest.

3 Eiger System Design
In our design and discussion of Eiger, we make three
simplifying assumptions. First, we assume each datacen-
ter’s keyspace is partitioned across the servers [4, 25, 29].
Second, we assume that datacenters may fail, but if a
datacenter is available, then so are all “logical” servers
within it. Within a datacenter, each key is stored on one
“logical” server, implemented using a replicated state
machine protocol between a set of servers (e.g., chain
replication [50] or Paxos [34]). Finally, we assume that
operations within each datacenter are linearizable, which
is amenable to sufficiently low latency because it is in
the local area.

3.1 Achieving Causal Consistency
Eiger provides causal consistency by explicitly check-
ing that an operation’s nearest dependencies have been
applied before applying the operation. This approach is
similar to the mechanism used by COPS [38], although
COPS places dependencies on values, while Eiger uses
dependencies on operations.

Tracking dependencies on operations significantly im-
proves Eiger’s efficiency. In the column family data
model, it is not uncommon to simultaneously read or
write many columns for a single key. With dependen-
cies on values, a separate dependency and dependency

check must be used for each column’s value and thus
would check |column| dependencies; Eiger could check
as few as one. In the worst case, when all columns were
written by different operations, the number of required
dependency checks degrades to one per value.

Dependencies in Eiger consist of a locator and a
unique id. The locator is used to ensure that any other
operation that depends on this operation knows which
node to check with to determine if the operation has been
committed. For mutations of individual keys, the locator
is simply the key itself. Within an atomic write group,
the locator can be any key in the set; all that matters
is that each “sub-operation” within an atomic write be
labeled with the same locator.

The unique id allows dependencies to precisely map
to operations. A node in Eiger checks dependencies by
sending a dep_check operation to the node in its local
datacenter that owns the locator. The node that owns the
locator checks local data structures to see if has applied
the operation identified by its unique id. If it has, it
responds immediately. If not, it blocks the dep_check
until it applies the operation. Thus, once all dep_checks
return, a server knows all causally previous operations
have been applied and it can safely apply this operation.

3.2 Client Library
Clients access their local Eiger datacenter using a client
library that: (1) mediates access to nodes in the local
datacenter; (2) executes the read and write transaction
algorithms, and, most importantly; (3) tracks causality
so it can attach dependencies to write operations.1

The client library mediates access to the local data-
center by maintaining a view of its live servers and the
partitioning of its keyspace. The library uses this infor-
mation to send operations to the appropriate servers and
sometimes to split operations that span multiple servers.

The client library tracks causality by observing a
client’s operations and their results. The API exposed by
the client library matches that shown earlier in Table 1
with the addition of a actor_id field. The actor_id
field allows the library to distinguish between operations
issued on behalf of different application-level actors (e.g.,
operations issued on behalf of Alice are not entangled
with operations issued on behalf of Bob).

When a client issues a write, the library attaches de-
pendencies on its previous write and on all the writes
that wrote a value this client has observed through reads
since then. This one-hop set of dependencies is the set of

1Our implementation of Eiger, like COPS before it, places the client
library with the storage system client—typically a web server. Alterna-
tive implementations might store the dependencies on a unique node per
client, or even push dependency tracking to a rich javascript application
running in the client web browser itself, in order to successfully track
web accesses through different servers. Such a design is compatible
with Eiger, and we view it as worthwhile future work.

4

operations that have a path of length one to the current
operation in the causality graph. The one-hop dependen-
cies are a superset of the nearest dependencies (which
have a longest path of length one) and thus attaching and
checking them suffices for providing causal consistency.

We elect to track one-hop dependencies because we
can do so without storing any dependency information
at the servers. Using one-hop dependencies slightly in-
creases both the amount of memory needed at the client
nodes and the data sent to servers on writes.2

3.3 Basic Operations
Eiger’s basic operations closely resemble Cassandra,
upon which it is built. The main differences involve
the use of server-supplied logical timestamps instead of
client-supplied real-time timestamps and, as described
above, the use of dependencies and dep_checks.

Logical Time. Clients and servers in Eiger maintain a
logical clock [33] and messages include a logical times-
tamp that updates these clocks. The clocks and times-
tamps provide a progressing logical time throughout the
entire system. The low-order bits in each timestamps are
set to the stamping server’s unique identifier, so each is
globally distinct. Servers use these logical timestamps to
uniquely identify and order operations.

Local Write Operations. All three write operations in
Eiger—insert, add, and delete—operate by replac-
ing the current (potentially non-existent) column in a
location. insert overwrites the current value with a
new column, e.g., update Alice’s home town from NYC
to MIA. add merges the current column with the update,
e.g., increment a liked-by count from 8 to 9. delete
overwrites the current column with a tombstone, e.g.,
Carol is no longer friends with Alice. When each new
column is written, it is timestamped with the current
logical time at the server applying the write.

Cassandra atomically applies updates to a single row
using snap trees [11], so all updates to a single key in
a batch_mutate have the same timestamp. Updates to
different rows on the same server in a batch_mutate
will have different timestamps because they are applied
at different logical times.

Read Operations. Read operations return the current
column for each requested location. Normal columns
return binary data. Deleted columns return an empty
column with a deleted bit set. The client library
strips deleted columns out of the returned results, but
records dependencies on them as required for correct-
ness. Counter columns return a 64-bit integer.

2In contrast, our alternative design for tracking the (slightly smaller
set of) nearest dependencies put the dependency storage burden on the
servers, a trade-off we did not believe generally worthwhile.

Replication. Servers replicate write operations to their
equivalent servers in other datacenters. These are the
servers that own the same portions of the keyspace as the
local server. Because the keyspace partitioning may vary
from datacenter to datacenter, the replicating server must
sometimes split batch_mutate operations.

When a remote server receives a replicated add opera-
tion it applies it normally, merging its update with the cur-
rent value. When a server receives a replicated insert
or delete operation, it compares the timestamps for
each included column against the current column for
each location. If the replicated column is logically newer,
it overwrites the current column in the same way a local
write would, except it keeps the original timestamp that
uniquely identifies the operation that wrote the value. If
the replicated column is older, it is discarded. This sim-
ple procedure ensures causal consistency: If one column
is causally after the other, it will have a later timestamp
and thus overwrite the other.

The overwrite procedure also implicitly handles con-
flicting operations that concurrently update a location. It
applies the last-writer-wins rule [48] to deterministically
allow the later of the updates to overwrite the other. This
ensures that all datacenters converge to the same value for
each column. Eiger could detect conflicts using previous
pointers and then resolve them with application-specific
functions similar to COPS, but we did not implement
such conflict handling and omit details for brevity.

Counter Columns. The commutative nature of
counter columns complicates tracking dependencies. In
normal columns with overwrite semantics, each value
was written by exactly one operation. In counter columns,
each value was affected by many operations. Consider
a counter with value 7 from +1, +2, and +4 operations.
Each operation contributed to the final value, so a read of
the counter incurs dependencies on all three. Eiger stores
these dependencies with the counter and returns them to
the client, so they can be attached to its next write.

Naively, every update of a counter column would in-
crement the number of dependencies contained by that
column ad infinitum. To bound the number of contained
dependencies, Eiger structures the add operations occur-
ring within a datacenter. Recall that all locally originating
add operations within a datacenter are already ordered
because the datacenter is linearizable. Eiger explicitly
tracks this ordering in a new add by adding an extra
dependency on the previously accepted add operation
from the datacenter. This creates a single dependency
chain that transitively covers all previous updates from
the datacenter. As a result, each counter column contains
at most one dependency per datacenter. Due to space
constraints, we omit the description of an optimization
that further reduces the number of dependencies to the
nearest dependencies within that counter column.

5

Logical Time

Location 1

Location 2

Location 3

A B C

J K L

X Y

1

2

3

11

12

15

21

19

Figure 3: Validity periods for values written to differ-
ent locations. Crossbars (and the specified numeric
times) correspond to the earliest and latest valid time
for values, which are represented by letters.

4 Read-Only Transactions
Read-only transactions—the only read operations in
Eiger—enable clients to see a consistent view of mul-
tiple keys that may be spread across many servers in
the local datacenter. Eiger’s algorithm guarantees low
latency because it takes at most two rounds of parallel
non-blocking reads in the local datacenter, plus at most
one additional round of local non-blocking checks dur-
ing concurrent write transactions, detailed in §5.4. We
make the same assumptions about reliability in the local
datacenter as before, namely, “logical” servers do not fail
due to linearizable state machine replication.

Why read-only transactions? Even though Eiger
tracks dependencies to update each datacenter consis-
tently, non-transactional reads can still return an incon-
sistent set of values. For example, consider a scenario
where two items were written in a causal order, but read
via two separate, parallel reads. The two reads could
bridge the write operations (one occurring before either
write, the other occurring after both), and thus return
values that never actually occurred together, e.g., a “new”
object and its “old” access control metadata.

4.1 Read-only Transaction Algorithm
The key insight in the algorithm is that there exists a
consistent result for every query at every logical time.
Figure 3 illustrates this: As operations are applied in
a consistent causal order, every data location (key and
column) has a consistent value at each logical time.

At a high level, our new read transaction algorithm
marks each data location with validity metadata, and uses
that metadata to determine if a first round of optimistic
reads is consistent. If the first round results are not con-
sistent, the algorithm issues a second round of reads that
are guaranteed to return consistent results.

More specifically, each data location is marked with
an earliest valid time (EVT). The EVT is set to the
server’s logical time when it locally applies an opera-
tion that writes a value. Thus, in an operation’s accepting
datacenter—the one at which the operation originated—
the EVT is the same as its timestamp. In other datacen-
ters, the EVT is later than its timestamp. In both cases,

Logical Time

A

J

X

1

2

3

7

9

8

Loc 1

Loc 2

Loc 3

(a) One Round Sufficient

Logical Time

A B

K

1 10

12

15

16

X
3

(b) Two Rounds Needed

Figure 4: Examples of read-only transactions. The
effective time of each transaction is shown with a
gray line; this is the time requested for location 1 in
the second round in (b).

the EVT is the exact logical time when the value became
visible in the local datacenter.

A server responds to a read with its currently visible
value, the corresponding EVT, and its current logical
time, which we call the latest valid time (LVT). Because
this value is still visible, we know it is valid for at least
the interval between the EVT and LVT. Once all first-
round reads return, the client library compares their times
to check for consistency. In particular, it knows all values
were valid at the same logical time (i.e., correspond to a
consistent snapshot) iff the maximum EVT the mini-
mum LVT. If so, the client library returns these results;
otherwise, it proceeds to a second round. Figure 4(a)
shows a scenario that completes in one round.

The effective time of the transaction is the minimum
LVT � the maximum EVT. It corresponds both to a logi-
cal time in which all retrieved values are consistent, as
well as the current logical time (as of its response) at
a server. As such, it ensures freshness—necessary in
causal consistency so that clients always see a progress-
ing datacenter that reflects their own updates.

For brevity, we only sketch a proof that read transac-
tions return the set of results that were visible in their
local datacenter at the transaction’s effective time, EffT.
By construction, assume a value is visible at logical time
t iff val.EVT t val.LVT. For each returned value,
if it is returned from the first round, then val.EVT
maxEVT EffT by definition of maxEVT and EffT, and
val.LVT � EffT because it is not being requested in the
second round. Thus, val.EVT EffT val.LVT, and
by our assumption, the value was visible at EffT. If a
result is from the second round, then it was obtained by
a second-round read that explicitly returns the visible
value at time EffT, described next.

4.2 Two-Round Read Protocol
A read transaction requires a second round if there does
not exist a single logical time for which all values read
in the first round are valid. This can only occur when
there are concurrent updates being applied locally to the
requested locations. The example in Figure 4(b) requires
a second round because location 2 is updated to value K

6

function read_only_trans(requests):

Send first round requests in parallel

for r in requests

val[r] = multiget_slice(r)

Calculate the maximum EVT

maxEVT = 0

for r in requests

maxEVT = max(maxEVT, val[r].EVT)

Calculate effective time

EffT = •
for r in requests

if val[r].LVT � maxEVT
EffT = min(EffT, val[r].LVT)

Send second round requests in parallel

for r in requests

if val[r].LVT < EffT

val[r] = multiget_slice_by_time(r, EffT)

Return only the requested data

return extract_keys_to_columns(res)

Figure 5: Pseudocode for read-only transactions.

at time 12, which is not before time 10 when location 1’s
server returns value A.

During the second round, the client library issues
multiget_slice_by_time requests, specifying a read
at the transaction’s effective time. These reads are sent
only to those locations for which it does not have a valid
result, i.e., their LVT is earlier than the effective time.

Servers respond to multiget_slice_by_time reads
with the value that was valid at the requested logical time.
Because that result may be different than the currently
visible one, servers sometimes must store old values for
each location. Fortunately, the extent of such additional
storage can be significantly limited.

4.3 Limiting Old Value Storage
Eiger limits the need to store old values in two ways.
First, read transactions have a timeout that specifies
its maximum real-time duration. If this timeout fires—
which happens only when server queues grow pathologi-
cally long due to prolonged overload—the client library
restarts a fresh read transaction. Thus, servers only need
to store old values that have been overwritten within this
timeout’s duration.

Second, Eiger only retains old values that could be re-
quested by a multiget_slice_by_time. Thus, servers
store old values only for keys that had been read within
the timeout duration, and only those values that are newer
than those returned in a first round. For this optimization,
Eiger stores the last access time of each value.

4.4 Read Transactions for Linearizability
Linearizability (strong consistency) is attractive to pro-
grammers when low latency and availability are not strict

requirements. Simply being linearizable, however, does
not mean that a system is transactional: There may be no
way to extract a mutually consistent set of values from
the system, much as in our earlier example for read trans-
actions. Linearizability is only defined on, and used with,
operations that read or write a single location (originally,
shared memory systems) [28].

Interestingly, our algorithm for read-only transactions
works for fully linearizable systems, without modifica-
tion. In Eiger, in fact, if all writes that are concurrent with
a read-only transaction originated from the local datacen-
ter, the read-only transaction provides a consistent view
of that linearizable system (the local datacenter).

5 Write-Only Transactions
Eiger’s write-only transactions allow a client to atomi-
cally write many columns spread across many keys in the
local datacenter. These values also appear atomically in
remote datacenters upon replication. As we will see, the
algorithm guarantees low latency because it takes at most
2.5 message RTTs in the local datacenter to complete,
no operations acquire locks, and all phases wait on only
the previous round of messages before continuing.

Write-only transactions have many uses. When a user
presses a save button, the system can ensure that all of
her five profile updates appear simultaneously. Similarly,
they help maintain symmetric relationships in social net-
works: When Alice accepts Bob’s friendship request,
both friend associations appear at the same time.

5.1 Write-Only Transaction Algorithm
To execute an atomic_mutate request—which has iden-
tical arguments to batch_mutate—the client library
splits the operation into one sub-request per local server
across which the transaction is spread. The library ran-
domly chooses one key in the transaction as the coor-
dinator key. It then transmits each sub-request to its
corresponding server, annotated with the coordinator key.

Our write transaction is a variant of two-phase com-
mit [45], which we call two-phase commit with positive
cohorts and indirection (2PC-PCI). 2PC-PCI operates
differently depending on whether it is executing in the
original (or “accepting”) datacenter, or being applied in
the remote datacenter after replication.

There are three differences between traditional 2PC
and 2PC-PCI, as shown in Figure 6. First, 2PC-PCI has
only positive cohorts; the coordinator always commits
the transaction once it receives a vote from all cohorts.3
Second, 2PC-PCI has a different pre-vote phase that
varies depending on the origin of the write transaction. In

3Eiger only has positive cohorts because it avoids all the normal
reasons to abort (vote no): It does not have general transactions that
can force each other to abort, it does not have users that can cancel
operations, and it assumes that its “logical” servers do not fail.

7

Prepare

Commit/Abort

Yes/No

Ack

Trans.

Ack

Client Coordinator Cohorts

(a) Traditional 2PC

Commit

Yes

Ack

Trans.

Ack

Client Coordinator Cohorts
Local/Accepting Datacenter

(b) Local Write-Only Txn

Commit

Yes

Ack

Trans.

Ack

Accepting
Datacenter Coordinator Cohorts

Notify

Prepare

Check&
Deps&

Remote Datacenter

(c) Replicated Write-Only Txn

Figure 6: Message flow diagrams for traditional 2PC and write-only transaction. Solid boxes denote when
cohorts block reads. Striped boxes denote when cohorts will indirect a commitment check to the coordinator.

the accepting datacenter (we discuss the remote below),
the client library sends each participant its sub-request
directly, and this transmission serves as an implicit PRE-
PARE message for each cohort. Third, 2PC-PCI cohorts
that cannot answer a query—because they have voted but
have not yet received the commit—ask the coordinator if
the transaction is committed, effectively indirecting the
request through the coordinator.

5.2 Local Write-Only Transactions
When a participant server, which is either the coordina-
tor or a cohort, receives its transaction sub-request from
the client, it prepares for the transaction by writing each
included location with a special “pending” value (retain-
ing old versions for second-round reads). It then sends a
YESVOTE to the coordinator.

When the coordinator receives a YESVOTE, it updates
its count of prepared keys. Once all keys are prepared, the
coordinator commits the transaction. The coordinator’s
current logical time serves as the (global) timestamp and
(local) EVT of the transaction and is included in the
COMMIT message.

When a cohort receives a COMMIT, it replaces the
“pending” columns with the update’s real values, and
ACKs the committed keys. Upon receiving all ACKs, the
coordinator safely cleans up its transaction state.

5.3 Replicated Write-Only Transactions
Each transaction sub-request is replicated to its “equiv-
alent” participant(s) in the remote datacenter, possibly
splitting the sub-requests to match the remote key parti-
tioning. When a cohort in a remote datacenter receives a
sub-request, it sends a NOTIFY with the key count to the
transaction coordinator in its datacenter. This coordinator
issues any necessary dep_checks upon receiving its own
sub-request (which contains the coordinator key). The co-

ordinator’s checks cover the entire transaction, so cohorts
send no checks. Once the coordinator has received all
NOTIFY messages and dep_checks responses, it sends
each cohort a PREPARE, and then proceeds normally.

For reads received during the indirection window in
which participants are uncertain about the status of a
transaction, cohorts must query the coordinator for its
state. To minimize the duration of this window, before
preparing, the coordinator waits for (1) all participants
to NOTIFY and (2) all dep_checks to return. This helps
prevent a slow replica from causing needless indirection.

Finally, replicated write-only transactions differ in that
participants do not always write pending columns. If a lo-
cation’s current value has a newer timestamp than that of
the transaction, the validity interval for the transaction’s
value is empty. Thus, no read will ever return it and it
can be safely discarded. The participant continues in the
transaction for simplicity, but does not need to indirect
reads for this location.

5.4 Reads when Transactions are Pending
If a first-round read accesses a location that could be
modified by a pending transaction, the server sends a
special empty response that only includes a LVT (i.e., its
current time). This alerts the client that it must choose
an effective time for the transaction and send the server a
second-round multiget_slice_by_time request.

When a server with pending transactions receives a
multiget_slice_by_time request, it first traverses its
old versions for each included column. If there exists a
version valid at the requested time, the server returns it.

Otherwise, there are pending transactions whose po-
tential commit window intersects the requested time and
the server must resolve their ordering. It does so by
sending a commit_check with this requested time to the
transactions’ coordinator(s). Each coordinator responds

8

whether the transaction had been committed at that (past)
time and, if so, its commit time.

Once a server has collected all commit_check re-
sponses, it updates the validity intervals of all ver-
sions of all relevant locations, up to at least the re-
quested (effective) time. Then, it can respond to the
multiget_slice_by_time message as normal.

The complementary nature of Eiger’s transactional al-
gorithms enable the atomicity of its writes. In particular,
the single commit time for a write transaction (EVT) and
the single effective time for a read transaction lead each
to appear at a single logical time, while its two-phase
commit ensures all-or-nothing semantics.

6 Evaluation
This evaluation explores the overhead of Eiger’s stronger
semantics compared to eventually-consistent Cassandra.

6.1 Implementation
Our Eiger prototype implements everything described in
the paper as 5000 lines of Java added to and modifying
the existing 75000 LoC in Cassandra 1.1 [13, 32]. All of
Eiger’s reads are transactional. We use Cassandra con-
figured for wide-area eventual consistency as a baseline
for comparison. In each local cluster, both Eiger and
Cassandra use consistent hashing to map each key to a
single server, and thus trivially provide linearizability.

In unmodified Cassandra, for a single logical request,
the client sends all of its sub-requests to a single server.
This server splits batch_mutate and multiget_slice
operations from the client that span multiple servers,
sends them to the appropriate server, and re-assembles
the responses for the client. In Eiger, the client library
handles this splitting, routing, and re-assembly directly,
allowing Eiger to save a local RTT in latency and poten-
tially many messages between servers. With this change,
Eiger outperforms unmodified Cassandra in most set-
tings. Therefore, to make our comparison to Cassandra
fair, we implemented an analogous client library that han-
dles the splitting, routing, and re-assembly for Cassandra.
The results below use this optimization.

6.2 Eiger Overheads
We first examine the overhead of Eiger’s causal consis-
tency, read-only transactions, and write-only transactions.
This section explains why each potential source of over-
head does not significantly impair throughput, latency, or
storage; the next sections confirm empirically.

Causal Consistency Overheads. Write operations
carry dependency metadata. Its impact on throughput
and latency is low because each dependency is 16B; the
number of dependencies attached to a write is limited
to its small set of one-hop dependencies; and writes are

typically less frequent. Dependencies have no storage
cost because they are not stored at the server.

Dependency check operations are issued in remote
datacenters upon receiving a replicated write. Limiting
these checks to the write’s one-hop dependencies mini-
mizes throughput degradation. They do not affect client-
perceived latency, occuring only during asynchronous
replication, nor do they add storage overhead.

Read-only Transaction Overheads. Validity-interval
metadata is stored on servers and returned to clients with
read operations. Its effect is similarly small: Only the 8B
EVT is stored, and the 16B of metadata returned to the
client is tiny compared to typical key/column/value sets.

If second-round reads were always needed, they would
roughly double latency and halve throughput. Fortu-
nately, they occur only when there are concurrent writes
to the requested columns in the local datacenter, which
is rare given the short duration of reads and writes.

Extra-version storage is needed at servers to handle
second-round reads. It has no impact on throughput or
latency, and its storage footprint is small because we
aggressively limit the number of old versions (see §4.3).

Write-only Transaction Overheads. Write transac-
tions write columns twice: once to mark them pending
and once to write the true value. This accounts for about
half of the moderate overhead of write transactions, eval-
uated in §6.5. When only some writes are transactional
and when the writes are a minority of system operations
(as found in prior studies [5, 23]), this overhead has a
small effect on overall throughput. The second write
overwrites the first, consuming no space.

Many 2PC-PCI messages are needed for the write-
only algorithm. These messages add 1.5 local RTTs to
latency, but have little effect on throughput: the messages
are small and can be handled in parallel with other steps
in different write transactions.

Indirected second-round reads add an extra local RTT
to latency and reduce read throughput vs. normal second-
round reads. They affect throughput minimally, however,
because they occur rarely: only when the second-round
read arrives when there is a not-yet-committed write-only
transaction on an overlapping set of columns that pre-
pared before the read-only transaction’s effective time.

6.3 Experimental Setup
Experiments use the shared VICCI testbed [40, 51],
which provides users with Linux VServer instances. Each
physical machine has 2x6 core Intel Xeon X5650 CPUs,
48GB RAM, 3x1TB HDDs, and 2x1GigE network ports.

All experiments are between multiple VICCI sites.
The latency micro-benchmark uses a minimal wide-area
setup with a cluster of 2 machines at the Princeton, Stan-
ford, and University of Washington (UW) VICCI sites.

9

Latency (ms)
50% 90% 95% 99%

Reads
Cassandra-Eventual 0.38 0.56 0.61 1.13
Eiger 1 Round 0.47 0.67 0.70 1.27
Eiger 2 Round 0.68 0.94 1.04 1.85
Eiger Indirected 0.78 1.11 1.18 2.28
Cassandra-Strong-A 85.21 85.72 85.96 86.77
Cassandra-Strong-B 21.89 22.28 22.39 22.92

Writes
Cassandra-Eventual 0.42 0.63 0.91 1.67Cassandra-Strong-A
Eiger Normal 0.45 0.67 0.75 1.92
Eiger Normal (2) 0.51 0.79 1.38 4.05
Eiger Transaction (2) 0.73 2.28 2.94 4.39
Cassandra-Strong-B 21.65 21.85 21.93 22.29

Table 2: Latency micro-benchmarks.

All other experiments use 8-machine clusters in Stanford
and UW and an additional 8 machines in Stanford as
clients. These clients fully load their local cluster, which
replicates its data to the other cluster.

The inter-site latencies were 88ms between Princeton
and Stanford, 84ms between Princeton and UW, and
20ms between Stanford and UW.

Every datapoint in the evaluation represents the me-
dian of 5+ trials. Latency micro-benchmark trials are
30s, while all other trials are 60s. We elide the first and
last quarter of each trial to avoid experimental artifacts.

6.4 Latency Micro-benchmark
Eiger always satisfies client operations within a local
datacenter and thus, fundamentally, is low-latency. To
demonstrate this, verify our implementation, and com-
pare with strongly-consistent systems, we ran an experi-
ment to compare the latency of read and write operations
in Eiger vs. three Cassandra configurations: eventual
(R=1, W=1), strong-A (R=3, W=1), and strong-B (R=2,
W=2), where R and W indicate the number of datacenters
involved in reads and writes.4

The experiments were run from UW with a single
client thread to isolate latency differences. Table 2 re-
ports the median, 90%, 95%, and 99% latencies from op-
erations on a single 1B column. For comparison, two 1B
columns, stored on different servers, were also updated
together as part of transactional and non-transactional
“Eiger (2)” write operations.

All reads in Eiger—one-round, two-round, and worst-
case two-round-and-indirected reads—have median la-
tencies under 1ms and 99% latencies under 2.5ms.
atomic_mutate operations are slightly slower than
batch_mutate operations, but still have median latency

4Cassandra single-key writes are not atomic across different nodes,
so its strong consistency requires read repair (write-back) and R>N/2.

Figure 7: Throughput of an 8-server cluster for write
transactions spread across 1 to 8 servers, with 1, 5,
or 10 keys written per server. The dot above each
bar shows the throughput of a similarly-structured
eventually-consistent Cassandra write.

under 1ms and 99% under 5ms. Cassandra’s strongly
consistent operations fared much worse. Configuration
“A” achieved fast writes, but reads had to access all dat-
acenters (including the ~84ms RTT between UW and
Princeton); “B” suffered wide-area latency for both reads
and writes (as the second datacenter needed for a quorum
involved a ~20ms RTT between UW and Stanford).

6.5 Write Transaction Cost
Figure 7 shows the throughput of write-only transactions,
and Cassandra’s non-atomic batch mutates, when the
keys they touch are spread across 1 to 8 servers. The ex-
periment used the default parameter settings from Table 3
with 100% writes and 100% write transactions.

Eiger’s throughput remains competitive with batch
mutates as the transaction is spread across more servers.
Additional servers only increase 2PC-PCI costs, which
account for less than 10% of Eiger’s overhead. About
half of the overhead of write-only transactions comes
from double-writing columns; most of the remainder is
due to extra metadata. Both absolute and Cassandra-
relative throughput increase with the number of keys
written per server, as the coordination overhead remains
independent of the number of columns.

6.6 Dynamic Workloads
We created a dynamic workload generator to explore the
space of possible workloads. Table 3 shows the range and
default value of the generator’s parameters. The results
from varying each parameter while the others remain at
their defaults are shown in Figure 8.

Space constraints permit only a brief review of these
results. Overhead decreases with increasing value size,
because metadata represents a smaller portion of message
size. Overhead is relatively constant with increases in the
columns/read, columns/write, keys/read, and keys/write
ratios because while the amount of metadata increases,

10

Parameter Range Default Facebook
50% 90% 99%

Value Size (B) 1-4K 128 16 32 4K
Cols/Key for Reads 1-32 5 1 2 128
Cols/Key for Writes 1-32 5 1 2 128
Keys/Read 1-32 5 1 16 128
Keys/Write 1-32 5 1
Write Fraction 0-1.0 .1 .002
Write Txn Fraction 0-1.0 .5 0 or 1.0
Read Txn Fraction 1.0 1.0 1.0

Table 3: Dynamic workload generator parameters.
Range is the space covered in the experiments; Face-
book describes the distribution for that workload.

Figure 8: Results from exploring our dynamic-
workload generator’s parameter space. Each exper-
iment varies one parameter while keeping all others
at their default value (indicated by the vertical line).
Eiger’s throughput is normalized against eventually-
consistent Cassandra.

Ops/sec Keys/sec Columns/sec

Cassandra 23,657 94,502 49,8239
Eiger 22,088 88,238 46,6844
Eiger All Txns 22,891 91,439 48,0904
Max Overhead 6.6% 6.6% 6.3%

Table 4: Throughput for the Facebook workload.

it remains in proportion to message size. Higher frac-
tions of write transactions (within an overall 10% write
workload) do not increase overhead.

Eiger’s throughput is overall competitive with the
eventually-consistent Cassandra baseline. With the de-
fault parameters, its overhead is 15%. When they are
varied, its overhead ranges from 0.5% to 25%.

6.7 Facebook Workload
For one realistic view of Eiger’s overhead, we param-
eterized a synthetic workload based upon Facebook’s
production TAO system [47]. Parameters for value sizes,
columns/key, and keys/operation are chosen from dis-
crete distributions measured by the TAO team. We show
results with a 0% write transaction fraction (the actual
workload, because TAO lacks transactions), and with
100% write transactions. Table 3 shows the heavy-tailed
distributions’ 50th, 90th, and 99th percentiles.

Table 4 shows that the throughput for Eiger is within
7% of eventually-consistent Cassandra. The results for
0% and 100% write transactions are effectively identical
because writes are such a small part of the workload. For
this real-world workload, Eiger’s causal consistency and
stronger semantics do not impose significant overhead.

6.8 Performance vs. COPS
COPS and Eiger provide different data models and are
implemented in different languages, so a direct empirical
comparison is not meaningful. We can, however, intuit
how Eiger’s algorithms perform in the COPS setting.

Both COPS and Eiger achieve low latency around
1ms. Second-round reads would occur in COPS and
Eiger equally often, because both are triggered by the
same scenario: concurrent writes in the local datacenter
to the same keys. Eiger experiences some additional
latency when second-round reads are indirected, but this
is rare (and the total latency remains low). Write-only
transactions in Eiger would have higher latency than
their non-atomic counterparts in COPS, but we have also
shown their latency to be very low.

Beyond having write transactions, which COPS did
not, the most significant difference between Eiger and
COPS is the efficiency of read transactions. COPS’s read
transactions ("COPS-GT") add significant dependency-
tracking overhead vs. the COPS baseline under certain
conditions. In contrast, by tracking only one-hop de-
pendencies, Eiger avoids the metadata explosion that

11

COPS COPS-GT Eiger

Data Model Key Value Key Value Column Fam
Consistency Causal Causal Causal

Read-Only Txn No Yes Yes
Write-Only Txn No No Yes

Txn Algos Use - Deps Logic. Time
Deps On Values Values Operations

Transmitted Deps One-Hop All-GarbageC One-Hop
Checked Deps One-Hop Nearest One-Hop

Stored Deps None All-GarbageC None
GarbageC Deps Unneeded Yes Unneeded
Versions Stored One Few Fewer

Table 5: Comparing COPS and Eiger.

COPS’ read-only transactions can suffer. We expect
that Eiger’s read transactions would operate roughly as
quickly as COPS’ non-transactional reads, and the sys-
tem as a whole would outperform COPS-GT despite
offering both read- and write-only transactions and sup-
porting a much more rich data model.

7 Related Work
A large body of research exists about stronger consis-
tency in the wide area. This includes classical research
about two-phase commit protocols [45] and distributed
consensus (e.g., Paxos [34]). As noted earlier, protocols
and systems that provide the strongest forms of consis-
tency are provably incompatible with low latency [6, 37].
Recent examples includes Megastore [7], Spanner [17],
and Scatter [26], which use Paxos in the wide-area;
PNUTS [16], which provides sequential consistency on
a per-key basis and must execute in a key’s specified
primary datacenter; and Gemini [35], which provides
RedBlue consistency with low latency for its blue op-
erations, but high latency for its globally-serialized red
operations. In contrast, Eiger guarantees low latency.

Many previous system designs have recognized the
utility of causal consistency, including Bayou [39], lazy
replication [31], ISIS [10], causal memory [2], and
PRACTI [8]. All of these systems require single-machine
replicas (datacenters) and thus are not scalable.

Our previous work, COPS [38], bears the closest sim-
ilarity to Eiger, as it also uses dependencies to provide
causal consistency, and targets low-latency and scalable
settings. As we show by comparing these systems in
Table 5, however, Eiger represents a large step forward
from COPS. In particular, Eiger supports a richer data
model, has more powerful transaction support (whose al-
gorithms also work with other consistency models), trans-
mits and stores fewer dependencies, eliminates the need
for garbage collection, stores fewer old versions, and is
not susceptible to availability problems from metadata
explosion when datacenters either fail, are partitioned, or
suffer meaningful slow-down for long periods of time.

The database community has long supported consis-
tency across multiple keys through general transactions.

In many commercial database systems, a single primary
executes transactions across keys, then lazily sends its
transaction log to other replicas, potentially over the
wide-area. In scale-out designs involving data partition-
ing (or “sharding”), these transactions are typically lim-
ited to keys residing on the same server. Eiger does not
have this restriction. More fundamentally, the single pri-
mary approach inhibits low-latency, as write operations
must be executed in the primary’s datacenter.

Several recent systems reduce the inter-datacenter
communication needed to provide general transactions.
These include Calvin [49], Granola [19], MDCC [30],
Orleans [12], and Walter [46]. In their pursuit of general
transactions, however, these systems all choose consis-
tency models that cannot guarantee low-latency opera-
tions. MDCC and Orleans acknowledge this with options
to receive fast-but-potentially-incorrect responses.

The implementers of Sinfonia [1], TxCache [41],
HBase [27], and Spanner [17], also recognized the im-
portance of limited transactions. Sinfonia provides “mini”
transactions to distributed shared memory and TXCache
provides a consistent but potentially stale cache for a rela-
tional database, but both only considers operations within
a single datacenter. HBase includes read- and write-only
transactions within a single “region,” which is a subset of
the capacity of a single node. Spanner’s read-only trans-
actions are similar to the original distributed read-only
transactions [14], in that they always take at least two
rounds and block until all involved servers can guarantee
they have applied all transactions that committed before
the read-only transaction started. In comparison, Eiger is
designed for geo-replicated storage and its transactions
can execute across large cluster of nodes, normally only
take one round, and never block.

The widely used MVCC algorithm [9, 43] and Eiger
maintain multiple versions of objects so they can provide
clients with a consistent view of a system. MVCC pro-
vides full snapshot isolation, sometimes rejects writes,
has state linear in the number of recent reads and writes,
and has a sweeping process that removes old versions.
Eiger, in contrast, provides only read-only transactions,
never rejects writes, has at worst state linear in the num-
ber of recent writes, and avoids storing most old versions
while using fast timeouts for cleaning the rest.

8 Conclusion
Eiger is a new step forward in the design of low-latency
geo-replicated storage systems. It is the first system to
combine a rich data model capable of supporting today’s
large online services with stronger semantics, including
causal consistency with read-only and write-only transac-
tions. Our evaluation demonstrates that despite these new
capabilities, Eiger provides competitive performance to
its eventually consistent counterparts.

12

References
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch,

and C. Karamanolis. Sinfonia: A new paradigm for
building scalable distributed systems. ACM TOCS,
27(3), 2009.

[2] M. Ahamad, G. Neiger, P. Kohli, J. Burns, and
P. Hutto. Causal memory: Definitions, implementa-
tion, and programming. Distributed Computing, 9
(1), 1995.

[3] Amazon. Simple storage service. http://aws.
amazon.com/s3/, 2012.

[4] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.
Patterson, D. S. Roselli, and R. Y. Wang. Serverless
network file systems. ACM TOCS, 14(1), 1996.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In SIGMETRICS, 2012.

[6] H. Attiya and J. L. Welch. Sequential consistency
versus linearizability. ACM TOCS, 12(2), 1994.

[7] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khor-
lin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and
V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In
CIDR, Jan. 2011.

[8] N. Belaramani, M. Dahlin, L. Gao, A. Nayate,
A. Venkataramani, P. Yalagandula, and J. Zheng.
PRACTI replication. In NSDI, May 2006.

[9] P. A. Bernstein and N. Goodman. Concurrency
control in distributed database systems. ACM Com-
puter Surveys, 13(2), June 1981.

[10] K. P. Birman and R. V. Renesse. Reliable Dis-
tributed Computing with the ISIS Toolkit. IEEE
Comp. Soc. Press, 1994.

[11] N. G. Bronson, J. Casper, H. Chafi, and K. Oluko-
tun. A practical concurrent binary search tree. In
PPoPP, Jan. 2010.

[12] S. Bykov, A. Geller, G. Kliot, J. R. Larus,
R. Pandya, and J. Thelin. Orleans: cloud com-
puting for everyone. In SOCC, 2011.

[13] Cassandra. http://cassandra.apache.org/,
2012.

[14] A. Chan and R. Gray. Implementing distributed
read-only transactions. IEEE Trans. Info. Theory,
11(2), 1985.

[15] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage sys-
tem for structured data. ACM TOCS, 26(2), 2008.

[16] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen,
N. Puz, D. Weaver, and R. Yerneni. PNUTS: Ya-

hoo!’s hosted data serving platform. In VLDB, Aug.
2008.

[17] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,
C. Frost, J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Wood-
ford. Spanner: Google’s globally-distributed
database. In OSDI, Oct 2012.

[18] CouchDB. http://couchdb.apache.org/,
2012.

[19] J. Cowling and B. Liskov. Granola: low-overhead
distributed transaction coordination. In USENIX
ATC, Jun 2012.

[20] P. Dixon. Shopzilla site redesign: We get what we
measure. Velocity Conference Talk, 2009.

[21] eBay. Personal communication, 2012.
[22] Facebook. Personal communication, 2011.
[23] J. Ferris. The TAO graph database. CMU PDL

Talk, April 2012.
[24] B. Fitzpatrick. Memcached: a distributed mem-

ory object caching system. http://memcached.
org/, 2011.

[25] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In SOSP, Oct. 2003.

[26] L. Glendenning, I. Beschastnikh, A. Krishnamurthy,
and T. Anderson. Scalable consistency in Scatter.
In SOSP, Oct. 2011.

[27] HBase. http://hbase.apache.org/, 2012.
[28] M. P. Herlihy and J. M. Wing. Linearizability: A

correctness condition for concurrent objects. ACM
TOPLAS, 12(3), 1990.

[29] D. Karger, E. Lehman, F. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing
and random trees: Distributed caching protocols
for relieving hot spots on the World Wide Web. In
STOC, May 1997.

[30] T. Kraska, G. Pang, M. J. Franklin, and S. Mad-
den. MDCC: Multi-data center consistency. CoRR,
abs/1203.6049, 2012.

[31] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat.
Providing high availability using lazy replication.
ACM TOCS, 10(4), 1992.

[32] A. Lakshman and P. Malik. Cassandra – a decen-
tralized structured storage system. In LADIS, Oct.
2009.

[33] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Comm. ACM, 21(7),
1978.

[34] L. Lamport. The part-time parliament. ACM TOCS,

13

http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://cassandra.apache.org/
http://couchdb.apache.org/
http://memcached.org/
http://memcached.org/
http://hbase.apache.org/

16(2), 1998.
[35] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça,

and R. Rodrigues. Making geo-replicated systems
fast as possible, consistent when necessary. In
OSDI, Oct 2012.

[36] G. Linden. Make data useful. Stanford CS345 Talk,
2006.

[37] R. J. Lipton and J. S. Sandberg. PRAM: A scal-
able shared memory. Technical Report TR-180-88,
Princeton Univ., Dept. Comp. Sci., 1988.

[38] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. In
SOSP, Oct. 2011.

[39] K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and A. Demers. Flexible update propagation for
weakly consistent replication. In SOSP, Oct. 1997.

[40] L. Peterson, A. Bavier, and S. Bhatia. VICCI: A
programmable cloud-computing research testbed.
Technical Report TR-912-11, Princeton Univ., Dept.
Comp. Sci., 2011.

[41] D. R. Ports, A. T. Clements, I. Zhang, S. Madden,
and B. Liskov. Transactional consistency and auto-
matic management in an application data cache. In
OSDI, Oct. 2010.

[42] Redis. http://redis.io/, 2012.
[43] D. P. Reed. Naming and Synchronization in a De-

centralized Computer Systems. PhD thesis, Mass.
Inst. of Tech., 1978.

[44] E. Schurman and J. Brutlag. The user and business
impact of server delays, additional bytes, and http
chunking in web search. Velocity Conference Talk,
2009.

[45] D. Skeen. A formal model of crash recovery in a
distributed system. IEEE Trans. Info. Theory, 9(3),
May 1983.

[46] Y. Sovran, R. Power, M. K. Aguilera, and J. Li.
Transactional storage for geo-replicated systems.
In SOSP, Oct. 2011.

[47] TAO. A read-optimized globally distributed store
for social graph data. Under Submission, 2012.

[48] R. H. Thomas. A majority consensus approach to
concurrency control for multiple copy databases.
ACM Trans. Database Sys., 4(2), 1979.

[49] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: fast distributed
transactions for partitioned database systems. In
SIGMOD, May 2012.

[50] R. van Renesse and F. B. Schneider. Chain replica-
tion for supporting high throughput and availability.
In OSDI, Dec. 2004.

[51] VICCI. http://vicci.org/, 2012.

14

http://redis.io/
http://vicci.org/

Appeared in Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP’11)

Don’t Settle for Eventual:
Scalable Causal Consistency for Wide-Area Storage with COPS

Wyatt Lloyd?, Michael J. Freedman?, Michael Kaminsky†, and David G. Andersen‡
?Princeton University, †Intel Labs, ‡Carnegie Mellon University

ABSTRACT

Geo-replicated, distributed data stores that support complex online
applications, such as social networks, must provide an “always-
on” experience where operations always complete with low latency.
Today’s systems often sacrifice strong consistency to achieve these
goals, exposing inconsistencies to their clients and necessitating
complex application logic. In this paper, we identify and define
a consistency model—causal consistency with convergent conflict
handling, or causal+—that is the strongest achieved under these
constraints.

We present the design and implementation of COPS, a key-value
store that delivers this consistency model across the wide-area. A
key contribution of COPS is its scalability, which can enforce causal
dependencies between keys stored across an entire cluster, rather
than a single server like previous systems. The central approach in
COPS is tracking and explicitly checking whether causal dependen-
cies between keys are satisfied in the local cluster before exposing
writes. Further, in COPS-GT, we introduce get transactions in or-
der to obtain a consistent view of multiple keys without locking or
blocking. Our evaluation shows that COPS completes operations
in less than a millisecond, provides throughput similar to previous
systems when using one server per cluster, and scales well as we
increase the number of servers in each cluster. It also shows that
COPS-GT provides similar latency, throughput, and scaling to COPS
for common workloads.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Distributed Systems

General Terms
Design, Experimentation, Performance

Keywords
Key-value storage, causal+ consistency, scalable wide-area replica-
tion, ALPS systems, read transactions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP ’11, October 23–26, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0977-6/11/10 . . . $10.00.

1. INTRODUCTION

Distributed data stores are a fundamental building block of modern
Internet services. Ideally, these data stores would be strongly con-
sistent, always available for reads and writes, and able to continue
operating during network partitions. The CAP Theorem, unfor-
tunately, proves it impossible to create a system that achieves all
three [13, 23]. Instead, modern web services have chosen over-
whelmingly to embrace availability and partition tolerance at the
cost of strong consistency [16, 20, 30]. This is perhaps not surpris-
ing, given that this choice also enables these systems to provide low
latency for client operations and high scalability. Further, many of
the earlier high-scale Internet services, typically focusing on web
search, saw little reason for stronger consistency, although this posi-
tion is changing with the rise of interactive services such as social
networking applications [46]. We refer to systems with these four
properties—Availability, low Latency, Partition-tolerance, and high
Scalability—as ALPS systems.

Given that ALPS systems must sacrifice strong consistency (i.e.,
linearizability), we seek the strongest consistency model that is
achievable under these constraints. Stronger consistency is desirable
because it makes systems easier for a programmer to reason about. In
this paper, we consider causal consistency with convergent conflict
handling, which we refer to as causal+ consistency. Many previous
systems believed to implement the weaker causal consistency [10,
41] actually implement the more useful causal+ consistency, though
none do so in a scalable manner.

The causal component of causal+ consistency ensures that the
data store respects the causal dependencies between operations [31].
Consider a scenario where a user uploads a picture to a web site,
the picture is saved, and then a reference to it is added to that
user’s album. The reference “depends on” the picture being saved.
Under causal+ consistency, these dependencies are always satisfied.
Programmers never have to deal with the situation where they can
get the reference to the picture but not the picture itself, unlike in
systems with weaker guarantees, such as eventual consistency.

The convergent conflict handling component of causal+ consis-
tency ensures that replicas never permanently diverge and that con-
flicting updates to the same key are dealt with identically at all
sites. When combined with causal consistency, this property en-
sures that clients see only progressively newer versions of keys. In
comparison, eventually consistent systems may expose versions out
of order. By combining causal consistency and convergent conflict
handling, causal+ consistency ensures clients see a causally-correct,
conflict-free, and always-progressing data store.

Our COPS system (Clusters of Order-Preserving Servers) pro-
vides causal+ consistency and is designed to support complex online
applications that are hosted from a small number of large-scale data-
centers, each of which is composed of front-end servers (clients of

1

COPS) and back-end key-value data stores. COPS executes all put
and get operations in the local datacenter in a linearizable fashion,
and it then replicates data across datacenters in a causal+ consistent
order in the background.

We detail two versions of our COPS system. The regular version,
COPS, provides scalable causal+ consistency between individual
items in the data store, even if their causal dependencies are spread
across many di↵erent machines in the local datacenter. These con-
sistency properties come at low cost: The performance and overhead
of COPS is similar to prior systems, such as those based on log
exchange [10, 41], even while providing much greater scalability.

We also detail an extended version of the system, COPS-GT,
which also provides get transactions that give clients a consistent
view of multiple keys. Get transactions are needed to obtain a
consistent view of multiple keys, even in a fully-linearizable system.
Our get transactions require no locks, are non-blocking, and take at
most two parallel rounds of intra-datacenter requests. To the best
of our knowledge, COPS-GT is the first ALPS system to achieve
non-blocking scalable get transactions. These transactions do come
at some cost: compared to the regular version of COPS, COPS-GT
is less e�cient for certain workloads (e.g., write-heavy) and is less
robust to long network partitions and datacenter failures.

The scalability requirements for ALPS systems creates the largest
distinction between COPS and prior causal+ consistent systems.
Previous systems required that all data fit on a single machine [2,
12, 41] or that all data that potentially could be accessed together fit
on a single machine [10]. In comparison, data stored in COPS can
be spread across an arbitrary-sized datacenter, and dependencies (or
get transactions) can stretch across many servers in the datacenter.
To the best of our knowledge, COPS is the first scalable system to
implement causal+ (and thus causal) consistency.

The contributions in this paper include:

• We explicitly identify four important properties of distributed
data stores and use them to define ALPS systems.

• We name and formally define causal+ consistency.
• We present the design and implementation of COPS, a scalable

system that e�ciently realizes the causal+ consistency model.
• We present a non-blocking, lock-free get transaction algorithm

in COPS-GT that provides clients with a consistent view of
multiple keys in at most two rounds of local operations.

• We show through evaluation that COPS has low latency, high
throughput, and scales well for all tested workloads; and that
COPS-GT has similar properties for common workloads.

2. ALPS SYSTEMS AND TRADE-OFFS

We are interested in infrastructure that can support many of to-
day’s largest Internet services. In contrast with classical distributed
storage systems that focused on local-area operation in the small,
these services are typically characterized by wide-area deployments
across a few to tens of datacenters, as illustrated in Figure 1. Each
datacenter includes a set of application-level clients, as well as a
back-end data store to which these clients read and write. For many
applications—and the setting considered in the paper—data written
in one datacenter is replicated to others.

Often, these clients are actually webservers that run code on behalf
of remote browsers. Although this paper considers consistency from
the perspective of the application client (i.e., the webserver), if the
browser accesses a service through a single datacenter, as we expect,
it will enjoy similar consistency guarantees.

Clients  Data Store Cluster 

Wide‐Area 

Replica6on 

Datacenter 

Datacenter 

Datacenter 

Figure 1: The general architecture of modern web services.
Multiple geographically distributed datacenters each have ap-
plication clients that read and write state from a data store that
is distributed across all of the datacenters.

Such a distributed storage system has multiple, sometimes com-
peting, goals: availability, low latency, and partition tolerance to
provide an “always on” user experience [16]; scalability to adapt
to increasing load and storage demands; and a su�ciently strong
consistency model to simplify programming and provide users with
the system behavior that they expect. In slightly more depth, the
desirable properties include:

1. Availability. All operations issued to the data store complete
successfully. No operation can block indefinitely or return an error
signifying that data is unavailable.

2. Low Latency. Client operations complete “quickly.” Commer-
cial service-level objectives suggest average performance of a few
milliseconds and worse-case performance (i.e., 99.9th percentile) of
10s or 100s of milliseconds [16].

3. Partition Tolerance. The data store continues to operate under
network partitions, e.g., one separating datacenters in Asia from the
United States.

4. High Scalability. The data store scales out linearly. Adding N
resources to the system increases aggregate throughput and storage
capacity by O(N).

5. Stronger Consistency. An ideal data store would provide
linearizability—sometimes informally called strong consistency—
which dictates that operations appear to take e↵ect across the en-
tire system at a single instance in time between the invocation and
completion of the operation [26]. In a data store that provides lin-
earizability, as soon as a client completes a write operation to an
object in one datacenter, read operations to the same object in all
other datacenters will reflect its newly written state. Linearizability
simplifies programming—the distributed system provides a single,
consistent image—and users experience the storage behavior they
expect. Weaker, eventual consistency models, common in many
large distributed systems, are less intuitive: Not only might subse-
quent reads not reflect the latest value, reads across multiple objects
might reflect an incoherent mix of old and new values.

The CAP Theorem proves that a shared-data system that has
availability and partition tolerance cannot achieve linearizability [13,

2

put(y,2) put(x,3) put(x,1) Client 1

put(x,4) get(y)=2 Client 2

put(z,5) get(x)=4 Client 3

Time

Figure 2: Graph showing the causal relationship between oper-
ations at a replica. An edge from a to b indicates that a ; b, or
b depends on a.

23]. Low latency—defined as latency less than the maximum wide-
area delay between replicas—has also been proven incompatible
with linearizability [34] and sequential consistency [8]. To balance
between the requirements of ALPS systems and programmability,
we define an intermediate consistency model in the next section.

3. CAUSAL+ CONSISTENCY
To define causal consistency with convergent conflict handling
(causal+ consistency), we first describe the abstract model over
which it operates. We restrict our consideration to a key-value data
store, with two basic operations: put(key,val) and get(key)=val.
These are equivalent to write and read operations in a shared-memory
system. Values are stored and retrieved from logical replicas, each
of which hosts the entire key space. In our COPS system, a single
logical replica corresponds to an entire local cluster of nodes.

An important concept in our model is the notion of potential
causality [2, 31] between operations. Three rules define potential
causality, denoted ; :

1. Execution Thread. If a and b are two operations in a single
thread of execution, then a ; b if operation a happens before
operation b.

2. Gets From. If a is a put operation and b is a get operation
that returns the value written by a, then a ; b.

3. Transitivity. For operations a, b, and c, if a ; b and b ; c,
then a ; c.

These rules establish potential causality between operations within
the same execution thread and between operations whose execution
threads interacted through the data store. Our model, like many,
does not allow threads to communicate directly, requiring instead
that all communication occur through the data store.

The example execution in Figure 2 demonstrates all three rules.
The execution thread rule gives get(y)=2 ; put(x,4); the gets
from rule gives put(y,2) ; get(y)=2; and the transitivity rule
gives put(y,2) ; put(x,4). Even though some operations follow
put(x,3) in real time, no other operations depend on it, as none read
the value it wrote nor follow it in the same thread of execution.

3.1 Definition
We define causal+ consistency as a combination of two properties:
causal consistency and convergent conflict handling. We present
intuitive definitions here and the formal definitions in Appendix A.

Causal consistency requires that values returned from get op-
erations at a replica are consistent with the order defined by ;

(causality) [2]. In other words, it must appear the operation that
writes a value occurs after all operations that causally precede it.

For example, in Figure 2, it must appear put(y,2) happened before
put(x,4), which in turn happened before put(z,5). If client 2 saw
get(x)=4 and then get(x)=1, causal consistency would be violated.

Causal consistency does not order concurrent operations. If a 6; b
and b 6; a, then a and b are concurrent. Normally, this allows
increased e�ciency in an implementation: Two unrelated put op-
erations can be replicated in any order, avoiding the need for a
serialization point between them. If, however, a and b are both puts
to the same key, then they are in conflict.

Conflicts are undesirable for two reasons. First, because they are
unordered by causal consistency, conflicts allow replicas to diverge
forever [2]. For instance, if a is put(x,1) and b is put(x,2), then
causal consistency allows one replica to forever return 1 for x and
another replica to forever return 2 for x. Second, conflicts may
represent an exceptional condition that requires special handling.
For example, in a shopping cart application, if two people logged in
to the same account concurrently add items to their cart, the desired
result is to end up with both items in the cart.

Convergent conflict handling requires that all conflicting puts be
handled in the same manner at all replicas, using a handler function
h. This handler function h must be associative and commutative, so
that replicas can handle conflicting writes in the order they receive
them and that the results of these handlings will converge (e.g., one
replica’s h(a, h(b, c)) and another’s h(c, h(b, a)) agree).

One common way to handle conflicting writes in a convergent
fashion is the last-writer-wins rule (also called Thomas’s write
rule [50]), which declares one of the conflicting writes as having
occurred later and has it overwrite the “earlier” write. Another com-
mon way to handle conflicting writes is to mark them as conflicting
and require their resolution by some other means, e.g., through di-
rect user intervention as in Coda [28], or through a programmed
procedure as in Bayou [41] and Dynamo [16].

All potential forms of convergent conflict handling avoid the
first issue—conflicting updates may continually diverge—by ensur-
ing that replicas reach the same result after exchanging operations.
On the other hand, the second issue with conflicts—applications
may want special handling of conflicts—is only avoided by the
use of more explicit conflict resolution procedures. These explicit
procedures provide greater flexibility for applications, but require
additional programmer complexity and/or performance overhead.
Although COPS can be configured to detect conflicting updates ex-
plicitly and apply some application-defined resolution, the default
version of COPS uses the last-writer-wins rule.

3.2 Causal+ vs. Other Consistency Models
The distributed systems literature defines several popular consis-
tency models. In decreasing strength, they include: linearizability
(or strong consistency) [26], which maintains a global, real-time
ordering; sequential consistency [32], which ensures at least a global
ordering; causal consistency [2], which ensures partial orderings be-
tween dependent operations; FIFO (PRAM) consistency [34], which
only preserves the partial ordering of an execution thread, not be-
tween threads; per-key sequential consistency [15], which ensures
that, for each individual key, all operations have a global order;
and eventual consistency, a “catch-all” term used today suggesting
eventual convergence to some type of agreement.

The causal+ consistency we introduce falls between sequential
and causal consistency, as shown in Figure 3. It is weaker than
sequential consistency, but sequential consistency is provably not
achievable in an ALPS system. It is stronger than causal consistency

3

Linearizability > Sequential > Causal+
> Causal > FIFO
> Per-Key Sequential > Eventual

Figure 3: A spectrum of consistency models, with stronger mod-
els on the left. Bolded models are provably incompatible with
ALPS systems.

and per-key sequential consistency, however, and it is achievable
for ALPS systems. Mahajan et al. [35] have concurrently defined a
similar strengthening of causal consistency; see Section 7 for details.

To illustrate the utility of the causal+ model, consider two exam-
ples. First, let Alice try to share a photo with Bob. Alice uploads
the photo and then adds the photo to her album. Bob then checks
Alice’s album expecting to see her photo. Under causal and thus
causal+ consistency, if the album has a reference to the photo, then
Bob must be able to view the photo. Under per-key sequential and
eventual consistency, it is possible for the album to have a reference
to a photo that has not been written yet.

Second, consider an example where Carol and Dan both update
the starting time for an event. The time was originally set for 9pm,
Carol changed it to 8pm, and Dan concurrently changed it to 10pm.
Regular causal consistency would allow two di↵erent replicas to for-
ever return di↵erent times, even after receiving both put operations.
Causal+ consistency requires that replicas handle this conflict in a
convergent manner. If a last-writer-wins policy is used, then either
Dan’s 10pm or Carol’s 8pm would win. If a more explicit conflict
resolution policy is used, the key could be marked as in conflict and
future gets on it could return both 8pm and 10pm with instructions
to resolve the conflict.

If the data store was sequentially consistent or linearizable, it
would still be possible for there to be two simultaneous updates to a
key. In these stronger models, however, it is possible to implement
mutual exclusion algorithms—such as the one suggested by Lamport
in the original sequential consistency paper [32]—that can be used
to avoid creating a conflict altogether.

3.3 Causal+ in COPS
We use two abstractions in the COPS system, versions and depen-
dencies, to help us reason about causal+ consistency. We refer to the
di↵erent values a key has as the versions of a key, which we denote
keyversion. In COPS, versions are assigned in a manner that ensures
that if xi ; y j then i < j. Once a replica in COPS returns version
i of a key, xi, causal+ consistency ensures it will then only return
that version or a causally later version (note that the handling of a
conflict is causally later than the conflicting puts it resolves).1 Thus,
each replica in COPS always returns non-decreasing versions of a
key. We refer to this as causal+ consistency’s progressing property.

Causal consistency dictates that all operations that causally pre-
cede a given operations must appear to take e↵ect before it. In other
words, if xi ; y j, then xi must be written before y j. We call these
preceding values dependencies. More formally, we say y j depends
on xi if and only if put(xi) ; put(y j). These dependencies are in
essence the reverse of the causal ordering of writes. COPS provides
causal+ consistency during replication by writing a version only
after writing all of its dependencies.

1To see this, consider by contradiction the following scenario: assume
a replica first returns xi and then xk, where i , k and xi 6;xk. Causal
consistency ensures that if xk is returned after xi, then xk 6;xi, and so xi
and xk conflict. But, if xi and xk conflict, then convergent conflict handling
ensures that as soon as both are present at a replica, their handling h(xi,xk),
which is causally after both, will be returned instead of either xi or xk , which
contradicts our assumption.

3.4 Scalable Causality
To our knowledge, this paper is the first to name and formally define
causal+ consistency. Interestingly, several previous systems [10, 41]
believed to achieve causal consistency in fact achieved the stronger
guarantees of causal+ consistency.

These systems were not designed to and do not provide scalable
causal (or causal+) consistency, however, as they all use a form of
log serialization and exchange. All operations at a logical replica
are written to a single log in serialized order, commonly marked
with a version vector [40]. Di↵erent replicas then exchange these
logs, using version vectors to establish potential causality and detect
concurrency between operations at di↵erent replicas.

Log-exchange-based serialization inhibits replica scalability, as
it relies on a single serialization point in each replica to establish
ordering. Thus, either causal dependencies between keys are limited
to the set of keys that can be stored on one node [10, 15, 30, 41], or
a single node (or replicated state machine) must provide a commit
ordering and log for all operations across a cluster.

As we show below, COPS achieves scalability by taking a di↵er-
ent approach. Nodes in each datacenter are responsible for di↵erent
partitions of the keyspace, but the system can track and enforce
dependencies between keys stored on di↵erent nodes. COPS explic-
itly encodes dependencies in metadata associated with each key’s
version. When keys are replicated remotely, the receiving datacen-
ter performs dependency checks before committing the incoming
version.

4. SYSTEM DESIGN OF COPS

COPS is a distributed storage system that realizes causal+ consis-
tency and possesses the desired ALPS properties. There are two
distinct versions of the system. The first, which we refer to simply as
COPS, provides a data store that is causal+ consistent. The second,
called COPS-GT, provides a superset of this functionality by also in-
troducing support for get transactions. With get transactions, clients
request a set of keys and the data store replies with a consistent snap-
shot of corresponding values. Because of the additional metadata
needed to enforce the consistency properties of get transactions, a
given deployment must run exclusively as COPS or COPS-GT.

4.1 Overview of COPS
COPS is a key-value storage system designed to run across a small
number of datacenters, as illustrated in Figure 4. Each datacenter
has a local COPS cluster with a complete replica of the stored data.2
A client of COPS is an application that uses the COPS client library
to call directly into the COPS key-value store. Clients communicate
only with their local COPS cluster running in the same datacenter.

Each local COPS cluster is set up as a linearizable (strongly
consistent) key-value store [5, 48]. Linearizable systems can be im-
plemented scalably by partitioning the keyspace into N linearizable
partitions (each of which can reside on a single node or a single
chain of nodes) and having clients access each partition indepen-
dently. The composability of linearizability [26] ensures that the
resulting system as a whole remains linearizable. Linearizability
is acceptable locally because we expect very low latency and no

2The assumption of full replication simplifies our presentation, though
one could imagine clusters that replicate only part of the total data store and
sacrifice low latency for the rest (according to configuration rules).

4

!"#$%&'
!(%&$)&'

put!

get_trans!

!"#$%&*' !"#$%&'+#,-.-/'

!"#$

!"#$

0"1(-#&23*'

4$/'5'6$-*' 6."7$' 8$9*'

4$/:';'<=:>6>8?>=@>6>8?A'
4$/@';'<=@>6>8?A'
4$/B';'<=:>6>8?>=B>6>8?A'

C$9"'D7$7$'
put_a

fter!

put_after!

get_by_vers!

dep_check!

E#F$G0-$.'
C$9"#H.I(%'

put_after!

8.&.'J&(-$'K(F$'

get OR!

Figure 4: The COPS architecture. A client library exposes a put/get interface to its clients and ensures operations are properly labeled
with causal dependencies. A key-value store replicates data between clusters, ensures writes are committed in their local cluster only
after their dependencies have been satisfied, and in COPS-GT, stores multiple versions of each key along with dependency metadata.

partitions within a cluster—especially with the trend towards redun-
dant paths in modern datacenter networks [3, 24]—unlike in the
wide-area. On the other hand, replication between COPS clusters
happens asynchronously to ensure low latency for client operations
and availability in the face of external partitions.

System Components. COPS is composed of two main software
components:

• Key-value store. The basic building block in COPS is a standard
key-value store that provides linearizable operations on keys.
COPS extends the standard key-value store in two ways, and
COPS-GT adds a third extension.

1. Each key-value pair has associated metadata. In COPS,
this metadata is a version number. In COPS-GT, it is both
a version number and a list of dependencies (other keys
and their respective versions).

2. The key-value store exports three additional operations
as part of its key-value interface: get by version,
put after, and dep check, each described below.
These operations enable the COPS client library and an
asynchronous replication process that supports causal+
consistency and get transactions.

3. For COPS-GT, the system keeps around old versions of
key-value pairs, not just the most recent put, to ensure
that it can provide get transactions. Maintaining old ver-
sions is discussed further in Section 4.3.

• Client library. The client library exports two main operations
to applications: reads via get (in COPS) or get trans (in
COPS-GT), and writes via put.3 The client library also main-
tains state about a client’s current dependencies through a con-
text parameter in the client library API.

Goals. The COPS design strives to provide causal+ consistency
with resource and performance overhead similar to existing eventu-
ally consistent systems. COPS and COPS-GT must therefore:

• Minimize overhead of consistency-preserving replication.
COPS must ensure that values are replicated between clus-
ters in a causal+ consistent manner. A naive implementation,
however, would require checks on all of a value’s dependencies.
We present a mechanism that requires only a small number
of such checks by leveraging the graph structure inherent to
causal dependencies.

3This paper uses di↵erent fixed-width fonts for client-facing API calls
(e.g., get) and data store API calls (e.g., get by version).

• (COPS-GT) Minimize space requirements. COPS-GT stores
(potentially) multiple versions of each key, along with their
associated dependency metadata. COPS-GT uses aggressive
garbage collection to prune old state (see Section 5.1).

• (COPS-GT) Ensure fast get trans operations. The get trans-
actions in COPS-GT ensure that the set of returned values are
causal+ consistent (all dependencies are satisfied). A naive
algorithm could block and/or take an unbounded number of get
rounds to complete. Both situations are incompatible with the
availability and low latency goals of ALPS systems; we present
an algorithm for get trans that completes in at most two
rounds of local get by version operations.

4.2 The COPS Key-Value Store
Unlike traditional hkey, vali–tuple stores, COPS must track the
versions of written values, as well as their dependencies in the case
of COPS-GT. In COPS, the system stores the most recent version
number and value for each key. In COPS-GT, the system maps
each key to a list of version entries, each consisting of hversion,
value, depsi. The deps field is a list of the version’s zero or more
dependencies; each dependency is a hkey, versioni pair.

Each COPS cluster maintains its own copy of the key-value store.
For scalability, our implementation partitions the keyspace across
a cluster’s nodes using consistent hashing [27], through other tech-
niques (e.g., directory-based approaches [6, 21]) are also possible.
For fault tolerance, each key is replicated across a small number
of nodes using chain replication [5, 48, 51]. Gets and puts are lin-
earizable across the nodes in the cluster. Operations return to the
client library as soon as they execute in the local cluster; operations
between clusters occur asynchronously.

Every key stored in COPS has one primary node in each cluster.
We term the set of primary nodes for a key across all clusters as
the equivalent nodes for that key. In practice, COPS’s consistent
hashing assigns each node responsibility for a few di↵erent key
ranges. Key ranges may have di↵erent sizes and node mappings in
di↵erent datacenters, but the total number of equivalent nodes with
which a given node needs to communicate is proportional to the
number of datacenters (i.e., communication is not all-to-all between
nodes in di↵erent datacenters).

After a write completes locally, the primary node places it in a
replication queue, from which it is sent asynchronously to remote
equivalent nodes. Those nodes, in turn, wait until the value’s depen-
dencies are satisfied in their local cluster before locally committing

5

Alice’s Photo Upload

ctx_id = createContext() // Alice logs in

put(Photo, "Portuguese Coast", ctx_id)

put(Album, "add &Photo", ctx_id)

deleteContext(ctx_id) // Alice logs out

Bob’s Photo View

ctx_id = createContext() // Bob logs in

"&Photo" get(Album, ctx_id)

"Portuguese Coast" get(Photo, ctx_id)

deleteContext(ctx_id) // Bob logs out

Figure 5: Snippets of pseudocode using the COPS programmer
interface for the photo upload scenario from Section 3.2. When
using COPS-GT, each get would instead be a get trans on
a single key.

the value. This dependency checking mechanism ensures writes
happen in a causally consistent order and reads never block.

4.3 Client Library and Interface
The COPS client library provides a simple and intuitive program-
ming interface. Figure 5 illustrates the use of this interface for the
photo upload scenario. The client API consists of four operations:

1. ctx id createContext()
2. bool deleteContext(ctx id)
3. bool put (key, value, ctx id)
4. value get (key, ctx id) [In COPS]
or

4. hvaluesi get trans (hkeysi, ctx id) [In COPS-GT]

The client API di↵ers from a traditional key-value interface in two
ways. First, COPS-GT provides get trans, which returns a con-
sistent view of multiple key-value pairs in a single call. Second, all
functions take a context argument, which the library uses internally
to track causal dependencies across each client’s operations [49].
The context defines the causal+ “thread of execution.” A single
process may contain many separate threads of execution (e.g., a
web server concurrently serving 1000s of independent connections).
By separating di↵erent threads of execution, COPS avoids false
dependencies that would result from intermixing them.

We next describe the state kept by the client library in COPS-GT
to enforce consistency in get transactions. We then show how COPS
can store significantly less dependency state.

COPS-GT Client Library. The client library in COPS-GT stores
the client’s context in a table of hkey, version, depsi entries. Clients
reference their context using a context ID (ctx id) in the API.4 When
a client gets a key from the data store, the library adds this key and
its causal dependencies to the context. When a client puts a value,
the library sets the put’s dependencies to the most recent version
of each key in the current context. A successful put into the data
store returns the version number v assigned to the written value. The
client library then adds this new entry, hkey, v, Di, to the context.

The context therefore includes all values previously read or writ-
ten in the client’s session, as well as all of those dependencies’
dependencies, as illustrated in Figure 6. This raises two concerns
about the potential size of this causality graph: (i) state requirements
for storing these dependencies, both in the client library and in the

4Maintaining state in the library and passing in an ID was a design
choice; one could also encode the entire context table as an opaque blob and
pass it between client and library so that the library is stateless.

x3

y1

t2

v6

u1

z4

w1
Val Nearest Deps All Deps
t2 - -
u1 - -
v6 t2,u1 t2,u1
w1 - -
x3 w1 w1
y1 x3 x3,w1
z4 y1,v6 t2,u1,v6,w1,x3,y1

Figure 6: A sample graph of causal dependencies for a client
context. Arrows indicate causal relationships (e.g., x3 depends
on w1). The table lists all dependencies for each value and the
“nearest” dependencies used to minimize dependency checks.

data store, and (ii) the number of potential checks that must occur
when replicating writes between clusters, in order to ensure causal
consistency. To mitigate the client and data-store state required
to track dependencies, COPS-GT provides garbage collection, de-
scribed in Section 5.1, that removes dependencies once they are
committed to all COPS replicas.

To reduce the number of dependency checks during replication,
the client library identifies several potential optimizations for servers
to use. Consider the graph in Figure 6. y1 depends on x3 and, by
transitivity, on w1. If the storage node committing y1 determines
that x3 has been committed, then it can infer that w1 has also been
committed, and thus, need not check for it explicitly. Similarly,
while z4 depends directly on t2 and v6, the committing node needs
only check v6, because v6 itself depends on t2.

We term dependencies that must be checked the nearest dependen-
cies, listed in the table in Figure 6.5 To enable servers to use these
optimizations, the client library first computes the nearest dependen-
cies within the write’s dependency list and marks them accordingly
when issuing the write.

The nearest dependencies are su�cient for the key-value store to
provide causal+ consistency; the full dependency list is only needed
to provide get trans operations in COPS-GT.

COPS Client Library. The client library in COPS requires sig-
nificantly less state and complexity because it only needs to learn
the nearest, rather than all, dependencies. Accordingly, it does not
store or even retrieve the dependencies of any value it gets: The
retrieved value is nearer than any of its dependencies, rendering
them unnecessary.

Thus, the COPS client library stores only hkey, versioni entries.
For a get operation, the retrieved hkey, versioni is added to the
context. For a put operation, the library uses the current context as
the nearest dependencies, clears the context, and then repopulates
it with only this put. This put depends on all previous key-version
pairs and thus is nearer than them.

4.4 Writing Values in COPS and COPS-GT
Building on our description of the client library and key-value store,
we now walk through the steps involved in writing a value to COPS.
All writes in COPS first go to the client’s local cluster and then
propagate asynchronously to remote clusters. The key-value store
exports a single API call to provide both operations:

hbool,versi put after (key, val, [deps], nearest, vers=;)

5In graph-theoretic terms, the nearest dependencies of a value are those
in the causality graph with a longest path to the value of length one.

6

Writes to the local cluster. When a client calls put

(key,val,ctx id), the library computes the complete set of de-
pendencies deps, and identifies some of those dependency tuples as
the value’s nearest ones. The library then calls put after without
the version argument (i.e., it sets version=;). In COPS-GT, the
library includes deps in the put after call because dependencies
must be stored with the value; in COPS, the library only needs
to include nearest and does not include deps.6 The key’s primary
storage node in the local cluster assigns the key a version number
and returns it to the client library. We restrict each client to a single
outstanding put; this is necessary because later puts must know the
version numbers of earlier puts so they may depend on them.

The put after operation ensures that val is committed to each
cluster only after all of the entries in its dependency list have been
written. In the client’s local cluster, this property holds automatically,
as the local store provides linearizability. (If y depends on x, then
put(x) must have been committed before put(y) was issued.) This
is not true in remote clusters, however, which we discuss below.

The primary storage node uses a Lamport timestamp [31] to
assign a unique version number to each update. The node sets the
version number’s high-order bits to its Lamport clock and the low-
order bits to its unique node identifier. Lamport timestamps allow
COPS to derive a single global order over all writes for each key.
This order implicitly implements the last-writer-wins convergent
conflict handling policy. COPS is also capable of explicitly detecting
and resolving conflicts, which we discuss in Section 5.3. Note
that because Lamport timestamps provide a partial ordering of all
distributed events in a way that respects potential causality, this
global ordering is compatible with COPS’s causal consistency.

Write replication between clusters. After a write commits locally,
the primary storage node asynchronously replicates that write to its
equivalent nodes in di↵erent clusters using a stream of put after
operations; here, however, the primary node includes the key’s
version number in the put after call. As with local put after
calls, the deps argument is included in COPS-GT, and not included
in COPS. This approach scales well and avoids the need for a single
serialization point, but requires the remote nodes receiving updates to
commit an update only after its dependencies have been committed
to the same cluster.

To ensure this property, a node that receives a put after request
from another cluster must determine if the value’s nearest dependen-
cies have already been satisfied locally. It does so by issuing a check
to the local nodes responsible for the those dependencies:

bool dep check (key, version)

When a node receives a dep check, it examines its local state to
determine if the dependency value has already been written. If so,
it immediately responds to the operation. If not, it blocks until the
needed version has been written.

If all dep check operations on the nearest dependencies suc-
ceed, the node handling the put after request commits the written
value, making it available to other reads and writes in its local
cluster. (If any dep check operation times out the node handling
the put after reissues it, potentially to a new node if a failure
occurred.) The way that nearest dependencies are computed en-
sures that all dependencies have been satisfied before the value is
committed, which in turn ensures causal consistency.

6We use bracket notation ([]) to indicate an argument is optional; the
optional arguments are used in COPS-GT, but not in COPS.

4.5 Reading Values in COPS
Like writes, reads are satisfied in the local cluster. Clients call the
get library function with the appropriate context; the library in turn
issues a read to the node responsible for the key in the local cluster:

hvalue, version, depsi get by version (key, version=LATEST)

This read can request either the latest version of the key or a specific
older one. Requesting the latest version is equivalent to a regular
single-key get; requesting a specific version is necessary to enable
get transactions. Accordingly, get by version operations in COPS
always request the latest version. Upon receiving a response, the
client library adds the hkey,version[,deps]i tuple to the client context,
and returns value to the calling code. The deps are stored only in
COPS-GT, not in COPS.

4.6 Get Transactions in COPS-GT
The COPS-GT client library provides a get trans interface be-
cause reading a set of dependent keys using a single-key get inter-
face cannot ensure causal+ consistency, even though the data store
itself is causal+ consistent. We demonstrate this problem by extend-
ing the photo album example to include access control, whereby
Alice first changes her album ACL to “friends only”, and then writes
a new description of her travels and adds more photos to the album.

A natural (but incorrect!) implementation of code to read Alice’s
album might (1) fetch the ACL, (2) check permissions, and (3) fetch
the album description and photos. This approach contains a straight-
forward “time-to-check-to-time-to-use” race condition: when Eve
accesses the album, her get(ACL) might return the old ACL, which
permitted anyone (including Eve) to read it, but her get(album
contents) might return the “friends only” version.

One straw-man solution is to require that clients issue single-key
get operations in the reverse order of their causal dependencies:
The above problem would not have occurred if the client executed
get(album) before get(ACL). This solution, however, is also incor-
rect. Imagine that after updating her album, Alice decided that some
photographs were too personal, so she (3) deleted those photos and
rewrote the description, and then (4) marked the ACL open again.
This straw-man has a di↵erent time-of-check-to-time-of-use error,
where get(album) retrieves the private album, and the subsequent
get(ACL) retrieves the “public” ACL. In short, there is no correct
canonical ordering of the ACL and the album entries.

Instead, a better programming interface would allow the client to
obtain a causal+ consistent view of multiple keys. The standard way
to achieve such a guarantee is to read and write all related keys in a
transaction; this, however, requires a single serialization point for all
grouped keys, which COPS avoids for greater scalability and sim-
plicity. Instead, COPS allows keys to be written independently (with
explicit dependencies in metadata), and provides a get trans

operation for retrieving a consistent view of multiple keys.

Get transactions. To retrieve multiple values in a causal+ consis-
tent manner, a client calls get trans with the desired set of keys,
e.g., get trans(hACL, albumi). Depending on when and where
it was issued, this get transaction can return di↵erent combinations
of ACL and album, but never hACLpublic, Albumpersonali.

The COPS client library implements the get transactions algo-
rithm in two rounds, shown in Figure 7. In the first round, the
library issues n concurrent get by version operations to the local
cluster, one for each key the client listed in get trans. Because

7

@param keys list of keys

@param ctx_id context id

@return values list of values

function get_trans(keys, ctx_id):

Get keys in parallel (first round)

for k in keys

results[k] = get_by_version(k, LATEST)

Calculate causally correct versions (ccv)

for k in keys

ccv[k] = max(ccv[k], results[k].vers)

for dep in results[k].deps

if dep.key in keys

ccv[dep.key] = max(ccv[dep.key], dep.vers)

Get needed ccvs in parallel (second round)

for k in keys

if ccv[k] > results[k].vers

results[k] = get_by_version(k, ccv[k])

Update the metadata stored in the context

update_context(results, ctx_id)

Return only the values to the client

return extract_values(results)

Figure 7: Pseudocode for the get trans algorithm.

COPS-GT commits writes locally, the local data store guarantees
that each of these explicitly listed keys’ dependencies are already
satisfied—that is, they have been written locally and reads on them
will immediately return. These explicitly listed, independently re-
trieved values, however, may not be consistent with one another,
as shown above. Each get by version operation returns a hvalue,
version, depsi tuple, where deps is a list of keys and versions. The
client library then examines every dependency entry hkey, versioni.
The causal dependencies for that result are satisfied if either the
client did not request the dependent key, or if it did, the version it
retrieved was � the version in the dependency list.

For all keys that are not satisfied, the library issues a second round
of concurrent get by version operations. The version requested
will be the newest version seen in any dependency list from the
first round. These versions satisfy all causal dependencies from
the first round because they are � the needed versions. In addition,
because dependencies are transitive and these second-round versions
are all depended on by versions retrieved in the first round, they do
not introduce any new dependencies that need to be satisfied. This
algorithm allows get trans to return a consistent view of the data
store as of the time of the latest timestamp retrieved in first round.

The second round happens only when the client must read newer
versions than those retrieved in the first round. This case occurs only
if keys involved in the get transaction are updated during the first
round. Thus, we expect the second round to be rare. In our example,
if Eve issues a get trans concurrent with Alice’s writes, the
algorithms first round of gets might retrieve the public ACL and the
private album. The private album, however, depends on the “friends
only” ACL, so the second round would fetch this newer version of
the ACL, allowing get trans to return a causal+ consistent set of
values to the client.

The causal+ consistency of the data store provides two important
properties for the get transaction algorithm’s second round. First,
the get by version requests will succeed immediately, as the re-
quested version must already exist in the local cluster. Second,
the new get by version requests will not introduce any new de-
pendencies, as those dependencies were already known in the first

round due to transitivity. This second property demonstrates why
the get transaction algorithm specifies an explicit version in its sec-
ond round, rather than just getting the latest: Otherwise, in the face
of concurrent writes, a newer version could introduce still newer
dependencies, which could continue indefinitely.

5. GARBAGE, FAULTS, AND CONFLICTS
This section describes three important aspects of COPS and COPS-
GT: their garbage collection subsystems, which reduce the amount
of extra state in the system; their fault tolerant design for client, node,
and datacenter failures; and their conflict detection mechanisms.

5.1 Garbage Collection Subsystem
COPS and COPS-GT clients store metadata; COPS-GT servers addi-
tionally keeps multiple versions of keys and dependencies. Without
intervention, the space footprint of the system would grow without
bound as keys are updated and inserted. The COPS garbage col-
lection subsystem deletes unneeded state, keeping the total system
size in check. Section 6 evaluates the overhead of maintaining and
transmitting this additional metadata.

Version Garbage Collection. (COPS-GT only)
What is stored: COPS-GT stores multiple versions of each key to
answer get by version requests from clients.
Why it can be cleaned: The get trans algorithm limits the num-
ber of versions needed to complete a get transaction. The algorithm’s
second round issues get by version requests only for versions
later than those returned in the first round. To enable prompt garbage
collection, COPS-GT limits the total running time of get trans

through a configurable parameter, trans time (set to 5 seconds in our
implementation). (If the timeout fires, the client library will restart
the get trans call and satisfy the transaction with newer versions
of the keys; we expect this to happen only if multiple nodes in a
cluster crash.)
When it can be cleaned: After a new version of a key is writ-
ten, COPS-GT only needs to keep the old version around for
trans time plus a small delta for clock skew. After this time, no
get by version call will subsequently request the old version, and
the garbage collector can remove it.
Space Overhead: The space overhead is bounded by the number of
old versions that can be created within the trans time. This number
is determined by the maximum write throughput that the node can
sustain. Our implementation sustains 105MB/s of write tra�c per
node, requiring (potentially) a non-prohibitive extra 525MB of bu↵er
space to hold old versions. This overhead is per-machine and does
not grow with the cluster size or the number of datacenters.

Dependency Garbage Collection. (COPS-GT only)
What is stored: Dependencies are stored to allow get transactions to
obtain a consistent view of the data store.
Why it can be cleaned: COPS-GT can garbage collect these depen-
dencies once the versions associated with old dependencies are no
longer needed for correctness in get transaction operations.

To illustrate when get transaction operations no longer need de-
pendencies, consider value z2 that depends on x2 and y2. A get
transaction of x, y, and z requires that if z2 is returned, then x�2

and y�2 must be returned as well. Causal consistency ensures that
x2 and y2 are written before z2 is written. Causal+ consistency’s
progressing property ensures that once x2 and y2 are written, then
either they or some later version will always be returned by a get

8

operation. Thus, once z2 has been written in all datacenters and the
trans time has passed, any get transaction returning z2 will return
x�2 and y�2, and thus z2’s dependencies can be garbage collected.
When it can be cleaned: After trans time seconds after a value has
been committed in all datacenters, COPS-GT can clean a value’s
dependencies. (Recall that committed enforces that its dependencies
have been satisfied.) Both COPS and COPS-GT can further set the
value’s never-depend flag, discussed below. To clean dependencies
each remote datacenter notifies the originating datacenter when the
write has committed and the timeout period has elapsed. Once
all datacenters confirm, the originating datacenter cleans its own
dependencies and informs the others to do likewise. To minimize
bandwidth devoted to cleaning dependencies, a replica only notifies
the originating datacenter if this version of a key is the newest
after trans time seconds; if it is not, there is no need to collect the
dependencies because the entire version will be collected.7

Space Overhead: Under normal operation, dependencies are garbage
collected after trans time plus a round-trip time. Dependencies are
only collected on the most recent version of the key; older versions
of keys are already garbage collected as described above.

During a partition, dependencies on the most recent versions of
keys cannot be collected. This is a limitation of COPS-GT, although
we expect long partitions to be rare. To illustrate why this concession
is necessary for get transaction correctness, consider value b2 that
depends on value a2: if b2’s dependence on a2 is prematurely col-
lected, some later value c2 that causally depends on b2—and thus on
a2—could be written without the explicit dependence on a2. Then,
if a2, b2, and c2 are all replicated to a datacenter in short order, the
first round of a get transaction could obtain a1, an earlier version of
a, with c2, and then return these two values to the client, precisely
because it did not know c2 depends on the newer a2.

Client Metadata Garbage Collection. (COPS + COPS-GT)
What is Stored: The COPS client library tracks all operations dur-
ing a client session (single thread of execution) using the ctx id
passed with all operation. In contrast to the dependency informa-
tion discussed above which resides in the key-value store itself, the
dependencies discussed here are part of the client metadata and are
store in the client library. In both systems, each get since the last
put adds another nearest dependency. Additionally in COPS-GT,
all new values and their dependencies returned in get trans oper-
ations and all put operations add normal dependencies. If a client
session lasts for a long time, the number of dependencies attached
to updates will grow large, increasing the size of the dependency
metadata that COPS needs to store.
Why it can be cleaned: As with the dependency tracking above,
clients need to track dependencies only until they are guaranteed to
be satisfied everywhere.
When it can be cleaned: COPS reduces the size of this client state
(the context) in two ways. First, as noted above, once a put after
commits successfully to all datacenters, COPS flags that key version
as never-depend, in order to indicate that clients need not express
a dependence upon it. get by version results include this flag,
and the client library will immediately remove a never-depend item
from the list of dependencies in the client context. Furthermore, this
process is transitive: Anything that a never-depend key depended
on must have been flagged never-depend, so it too can be garbage
collected from the context.

7We are currently investigating if collecting dependencies in this manner
provides a significant enough benefit over collecting them after the global
checkpoint time (discussed below) to justify its messaging cost.

Second, the COPS storage nodes remove unnecessary depen-
dencies from put after operations. When a node receives a
put after, it checks each item in the dependency list and removes
items with version numbers older than a global checkpoint time. This
checkpoint time is the newest Lamport timestamp that is satisfied
at all nodes across the entire system. The COPS key-value store
returns this checkpoint time to the client library (e.g., in response
to a put after), allowing the library to clean these dependencies
from the context.8

To compute the global checkpoint time, each storage node first de-
termines the oldest Lamport timestamp of any pending put after
in the key range for which it is primary. (In other words, it deter-
mines the timestamp of its oldest key that is not guaranteed to be
satisfied at all replicas.) It then contacts its equivalent nodes in other
datacenters (those nodes that handle the same key range). The nodes
pair-wise exchange their minimum Lamport times, remembering the
oldest observed Lamport clock of any of the replicas. At the con-
clusion of this step, all datacenters have the same information: each
node knows the globally oldest Lamport timestamp in its key range.
The nodes within a datacenter then gossip around the per-range min-
imums to find the minimum Lamport timestamp observed by any
one of them. This periodic procedure is done 10 times a second in
our implementation and has no noticeable impact on performance.

5.2 Fault Tolerance
COPS is resilient to client, node, and datacenter failures. For the
following discussion, we assume that failures are fail-stop: compo-
nents halt in response to a failure instead of operating incorrectly or
maliciously, and failures are detectable.

Client Failures. COPS’s key-value interface means that each client
request (through the library) is handled independently and atomically
by the data store. From the storage system’s perspective, if a client
fails, it simply stops issuing new requests; no recovery is necessary.
From a client’s perspective, COPS’s dependency tracking makes it
easier to handle failures of other clients, by ensuring properties such
as referential integrity. Consider the photo and album example: If a
client fails after writing the photo, but before writing a reference to
the photo, the data store will still be in a consistent state. There will
never be an instance of the reference to the photo without the photo
itself already being written.

Key-Value Node Failures. COPS can use any underlying fault-
tolerant linearizable key-value store. We built our system on top
of independent clusters of FAWN-KV [5] nodes, which use chain
replication [51] within a cluster to mask node failures. Accordingly,
we describe how COPS can use chain replication to provide tolerance
to node failures.

Similar to the design of FAWN-KV, each data item is stored in
a chain of R consecutive nodes along the consistent hashing ring.
put after operations are sent to the head of the appropriate chain,
propagate along the chain, and then commit at the tail, which then
acknowledges the operation. get by version operations are sent
to the tail, which responds directly.

Server-issued operations are slightly more involved because they
are issued from and processed by di↵erent chains of nodes. The
tail in the local cluster replicates put after operations to the head
in each remote datacenter. The remote heads then send dep check
operations, which are essentially read operations, to the appropriate

8Because of outstanding reads, clients and servers must also wait
trans time seconds before they can use a new global checkpoint time.

9

tails in their local cluster. Once these return (if the operation does
not return, a timeout will fire and the dep check will be reissued),
the remote head propagates the value down the (remote) chain to
the remote tail, which commits the value and acknowledges the
operation back to the originating datacenter.

Dependency garbage collection follows a similar pattern of inter-
locking chains, though we omit details for brevity. Version garbage
collection is done locally on each node and can operate as in the
single node case. Calculation of the global checkpoint time, for
client metadata garbage collection, operates normally with each tail
updating its corresponding key range minimums.

Datacenter Failures. The partition-tolerant design of COPS also
provides resiliency to entire datacenter failures (or partitions). In the
face of such failures, COPS continues to operate as normal, with a
few key di↵erences.

First, any put after operations that originated in the failed data-
center, but which were not yet copied out, will be lost. This is an
inevitable cost of allowing low-latency local writes that return faster
than the propagation delay between datacenters. If the datacenter is
only partitioned and has not failed, no writes will be lost. Instead,
they will only be delayed until the partition heals.9

Second, the storage required for replication queues in the active
datacenters will grow. They will be unable to send put after
operations to the failed datacenter, and thus COPS will be unable to
garbage collect those dependencies. The system administrator has
two options: allow the queues to grow if the partition is likely to heal
soon, or reconfigure COPS to no longer use the failed datacenter.

Third, in COPS-GT, dependency garbage collection cannot con-
tinue in the face of a datacenter failure, until either the partition is
healed or the system is reconfigured to exclude the failed datacenter.

5.3 Conflict Detection
Conflicts occur when there are two “simultaneous” (i.e., not in
the same context/thread of execution) writes to a given key. The
default COPS system avoids conflict detection using a last-writer-
wins strategy. The “last” write is determined by comparing version
numbers, and allows us to avoid conflict detection for increased
simplicity and e�ciency. We believe this behavior is useful for many
applications. There are other applications, however, that become
simpler to reason about and program with a more explicit conflict-
detection scheme. For these applications, COPS can be configured
to detect conflicting operations and then invoke some application-
specific convergent conflict handler.

COPS with conflict detection, which we refer to as COPS-CD,
adds three new components to the system. First, all put operations
carry with them previous version metadata, which indicates the most
recent previous version of the key that was visible at the local cluster
at the time of the write (this previous version may be null). Second,
all put operations now have an implicit dependency on that previous
version, which ensures that a new version will only be written after
its previous version. This implicit dependency entails an additional
dep check operation, though this has low overhead and always
executes on the local machine. Third, COPS-CD has an application-
specified convergent conflict handler that is invoked when a conflict
is detected.

9It remains an interesting aspect of future work to support flexibility in
the number of datacenters required for committing within the causal+ model.

System Causal+ Scalable Get Trans

LOG Yes No No
COPS Yes Yes No
COPS-GT Yes Yes Yes

Table 1: Summary of three systems under comparison.

COPS-CD follows a simple procedure to determine if a put opera-
tion new to a key (with previous version prev) is in conflict with the
key’s current visible version curr:

prev , curr if and only if new and curr conflict.

We omit a full proof, but present the intuition here. In the forward
direction, we know that prev must be written before new, prev ,
curr, and that for curr to be visible instead of prev, we must have
curr > prev by the progressing property of causal+. But because
prev is the most recent causally previous version of new, we can
conclude curr 6; new. Further, because curr was written before
new, it cannot be causally after it, so new 6; curr and thus they
conflict. In the reverse direction, if new and curr conflict, then
curr 6; new. By definition, prev ; new, and thus curr , prev.

6. EVALUATION

This section presents an evaluation of COPS and COPS-GT us-
ing microbenchmarks that establish baseline system latency and
throughput, a sensitivity analysis that explores the impact of dif-
ferent parameters that characterize a dynamic workload, and larger
end-to-end experiments that show scalable causal+ consistency.

6.1 Implementation and Experimental Setup
COPS is approximately 13,000 lines of C++ code. It is built on
top of FAWN-KV [5, 18] (⇠8500 LOC), which provides lineariz-
able key-value storage within a local cluster. COPS uses Apache
Thrift [7] for communication between all system components and
Google’s Snappy [45] for compressing dependency lists. Our current
prototype implements all features described in the paper, excluding
chain replication for local fault tolerance10 and conflict detection.

We compare three systems: LOG, COPS, and COPS-GT. LOG
uses the COPS code-base but excludes all dependency tracking,
making it simulate previous work that uses log exchange to establish
causal consistency (e.g., Bayou [41] and PRACTI [10]). Table 1
summarizes these three systems.

Each experiment is run on one cluster from the VICCI testbed [52].
The cluster’s 70 servers give users an isolated Linux VServer. Each
server has 2x6 core Intel Xeon X5650 CPUs, 48GB RAM, 3x1TB
Hard Drives, and 2x1GigE network ports.

For each experiment, we partition the cluster into multiple logical
“datacenters” as necessary. We retain full bandwidth between the
nodes in di↵erent datacenters to reflect the high-bandwidth backbone
that often exists between them. All reads and writes in FAWN-KV
go to disk, but most operations in our experiments hit the kernel
bu↵er cache.

The results presented are from 60-second trials. Data from the first
and last 15s of each trial were elided to avoid experimental artifacts,
as well as to allow garbage collection and replication mechanisms
to ramp up. We run each trial 15 times and report the median; the
minimum and maximum results are almost always within 6% of

10Chain replication was not fully functional in the version of FAWN-KV
on which our implementation is built.

10

System Operation Latency (ms) Throughput
50% 99% 99.9% (Kops/s)

Thrift ping 0.26 3.62 12.25 60

COPS get by version 0.37 3.08 11.29 52
COPS-GT get by version 0.38 3.14 9.52 52

COPS put after (1) 0.57 6.91 11.37 30
COPS-GT put after (1) 0.91 5.37 7.37 24
COPS-GT put after (130) 1.03 7.45 11.54 20

Table 2: Latency (in ms) and throughput (in Kops/s) of vari-
ous operations for 1B objects in saturated systems. put after(x)
includes metadata for x dependencies.

the median, and we attribute the few trials with larger throughput
di↵erences to the shared nature of the VICCI platform.

6.2 Microbenchmarks
We first evaluate the performance characteristics for COPS and
COPS-GT in a simple setting: two datacenters, one server per data-
center, and one colocated client machine. The client sends put and
get requests to its local server, attempting to saturate the system. The
requests are spread over 218 keys and have 1B values—we use 1B
values for consistency with later experiments, where small values
are the worst case for COPS (see Figure 11(c)). Table 2 shows the
median, 99%, and 99.9% latencies and throughput.

The design decision in COPS to handle client operations lo-
cally yields low latency for all operations. The latencies for
get by version operations in COPS and COPS-GT are similar to
an end-to-end RPC ping using Thrift. The latencies for put after
operations are slightly higher because they are more computationally
expensive; they need to update metadata and write values. Neverthe-
less, the median latency for put after operations, even those with
up to 130 dependencies, is around 1 ms.

System throughput follows a similar pattern. get by version
operations achieve high throughput, similar to that of Thrift ping op-
erations (52 vs. 60 Kops/s). A COPS server can process put after
operations at 30 Kops/s (such operations are more computationally
expensive than gets), while COPS-GT achieves 20% lower through-
put when put after operations have 1 dependency (due to the cost
of garbage collecting old versions). As the number of dependen-
cies in COP-GT put after operations increases, throughput drops
slightly due to the greater size of metadata in each operation (each
dependency is ⇠12B).

6.3 Dynamic Workloads
We model a dynamic workload with interacting clients accessing the
COPS system as follows. We set up two datacenters of S servers
each and colocate S client machines in one of the two datacenters.
The clients access storage servers in the local datacenter, which repli-
cates put after operations to the remote datacenter. We report the
sustainable throughput in our experiments, which is the maximum
throughput that both datacenters can handle. In most cases, COPS
becomes CPU-bound at the local datacenter, and that COPS-GT
becomes CPU-bound at the remote one.

To better stress the system and more accurately depict real oper-
ation, each client machine emulates multiple logical COPS clients.
Each time a client performs an operation, it randomly executes a put
or get operation, according to a specified put:get ratio. All operations
in a given experiment use fixed-size values.

Figure 8: In our experiments, clients choose keys to access by
first selecting a keygroup according to some normal distribu-
tion, then randomly selecting a key within that group according
to a uniform distribution. Figure shows such a stepped normal
distribution for di↵ering variances for client #3 (of 5).

The key for each operation is selected to control the amount of
dependence between operations (i.e., from fully isolated to fully
intermixed). Specifically, given N clients, the full keyspace consists
of N keygroups, R1 . . .RN , one per client. Each keygroup contains
K keys, which are randomly distributed (i.e., they do not all reside
on the same server). When clients issue operations, they select keys
as follows. First, they pick a keygroup by sampling from a normal
distribution defined over the N keygroups, where each keygroup has
width 1. Then, they select a key within that keygroup uniformly at
random. The result is a distribution over keys with equal likelihood
for keys within the same keygroup, and possibly varying likelihood
across groups.

Figure 8 illustrates an example, showing the keygroup distribution
for client #3 (of 5 total) for variances of 0, 1, and the limit approach-
ing 1. When the variance is 0, a client will restrict its accesses to
its “own” keygroup and never interact with other clients. In contrast,
when the variance! 1, client accesses are distributed uniformly
at random over all keys, leading to maximal inter-dependencies
between put after operations.

The parameters of the dynamic workload experiments are the
following, unless otherwise specified:

Parameter Default Parameter Default
datacenters 2 put:get ratio 1:1 or 1:4
servers / datacenter 4 variance 1
clients / server 1024 value size 1B
keys / keygroup 512

As the state space of all possible combinations of these variables is
large, the following experiments explore parameters individually.

Clients Per Server. We first characterize the system throughput as a
function of increasing delay between client operations (for two di↵er-
ent put:get ratios).11 Figure 9(a) shows that when the inter-operation
delay is low, COPS significantly outperforms COPS-GT. Conversely,
when the inter-operation delay approaches several hundred millisec-
onds, the maximum throughputs of COPS and COPS-GT converge.
Figure 9(b) helps explain this behavior: As the inter-operation de-
lay increases, the number of dependencies per operation decreases
because of the ongoing garbage collection.

11For these experiments, we do not directly control the inter-operation
delay. Rather, we increase the number of logical clients running on each of
the client machines from 1 to 218; given a fixed-size thread pool for clients in
our test framework, each logical client gets scheduled more infrequently. As
each client makes one request before yielding, this leads to higher average
inter-op delay (calculated simply as throughput

of clients). Our default setting of 1024
clients/server yields an average inter-op delay of 29 ms for COPS-GT with a
1:0 put:get ratio, 11ms for COPS with 1:0, 11ms for COPS-GT with 1:4, and
8ms for COPS with 1:4.

11

(a)

(b)

Figure 9: Maximum throughput and the resulting average de-
pendency size of COPS and COPS-GT for a given inter-put de-
lay between consecutive operations by the same logical client.
The legend gives the put:get ratio (i.e., 1:0 or 1:4).

To understand this relationship, consider the following example. If
the global-checkpoint-time is 6 seconds behind the current time and
a logical client is performing 100 puts/sec (in an all-put workload),
each put will have 100 ·6 = 600 dependencies. Figure 9(b) illustrates
this relationship. While COPS will store only the single nearest
dependency (not shown), COPS-GT must track all dependencies
that have not been garbage collected. These additional dependencies
explain the performance of COPS-GT: When the inter-put time
is small, there are a large number of dependencies that need to
be propagated with each value, and thus each operation is more
expensive.

The global-checkpoint-time typically lags ⇠6 seconds behind the
current time because it includes both the trans time delay (per Sec-
tion 5.1) and the time needed to gossip checkpoints around their
local datacenter (nodes gossip once every 100ms). Recall that an
agreed-upon trans time delay is needed to ensure that currently exe-
cuting get trans operations can complete, while storage nodes
use gossiping to determine the oldest uncommitted operation (and
thus the latest timestamp for which dependencies can be garbage
collected). Notably, round-trip-time latency between datacenters
is only a small component of the lag, and thus performance is not
significantly a↵ected by RTT (e.g., a 70ms wide-area RTT is about
1% of a 6s lag for the global-checkpoint-time).

Put:Get Ratio. We next evaluate system performance under vary-
ing put:get ratios and key-access distributions. Figure 10(a) shows
the throughput of COPS and COPS-GT for put:get ratios from 64:1
to 1:64 and three di↵erent distribution variances. We observe that
throughput increases for read-heavier workloads (put:get ratios < 1),
and that COPS-GT becomes competitive with COPS for read-mostly
workloads. While the performance of COPS is identical under di↵er-
ent variances, the throughput of COPS-GT is a↵ected by variance.
We explain both behaviors by characterizing the relationship be-

(a)

(b)

Figure 10: Maximum throughput and the resulting average de-
pendency size of COPS and COPS-GT for a given put:get ratio.
The legend gives the variance (i.e., 0, 1, or 512).

tween put:get ratio and the number of dependencies (Figure 10(b));
fewer dependencies translates to less metadata that needs to be prop-
agated and thus higher throughput.

When di↵erent clients access the same keys (variance > 0), we
observe two distinct phases in Figure 10(b). First, as the put:get
ratio decreases from 64:1 to 1:1, the number of dependencies in-
creases. This increase occurs because each get operation increases
the likelihood a client will inherit new dependencies by getting a
value that has been recently put by another client. For instance, if
client1 puts a value v1 with dependencies d and client2 reads that
value, then client2’s future put will have dependencies on both v1 and
d. Second, as the put:get ratio then decreases from 1:1 to 1:64, the
number of dependencies decreases for two reasons: (i) each client
is executing fewer put operations and thus each value depends on
fewer values previously written by this client; and (ii) because there
are fewer put operations, more of the keys have a value that is older
than the global-checkpoint-time, and thus getting them introduces
no additional dependencies.

When clients access independent keys (variance = 0), the number
of dependencies is strictly decreasing with the put:get ratio. This
result is expected because each client accesses only values in its own
keygroup that it previously wrote and already has a dependency on.
Thus, no get causes a client to inherit new dependencies.

The average dependency count for COPS (not shown) is always
low, from 1 to 4 dependencies, because COPS needs to track only
the nearest (instead of all) dependencies.

Keys Per Keygroup. Figure 11(a) shows the e↵ect of keygroup
size on the throughput of COPS and COPS-GT. Recall that clients
distribute their requests uniformly over keys in their selected key-
group. The behavior of COPS-GT is nuanced; we explain its varying
throughput by considering the likelihood that a get operation will
inherit new dependencies, which in turn reduces throughput. With
the default variance of 1 and a low number of keys/keygroup, most

12

(a)

(b)

(c)

Figure 11: Maximum system throughput (using put:get ratios of 1:4, 1:1, or 1:0) for varied keys/keygroup, variances, and value sizes.

clients access only a small number of keys. Once a value is retrieved
and its dependencies inherited, subsequent gets on that same value
do not cause a client to inherit any new dependencies. As the number
of keys/keygroup begins to increase, however, clients are less likely
to get the same value repeatedly, and they begin inheriting additional
dependencies. As this number continues to rise, however, garbage
collection can begin to have an e↵ect: Fewer gets retrieve a value
that was recently written by another client (e.g., after the global
checkpoint time), and thus fewer gets return new dependencies. The
bowed shape of COPS-GT’s performance is likely due to these two
contrasting e↵ects.

Variance. Figure 11(b) examines the e↵ect of variance on system
performance. As noted earlier, the throughput of COPS is una↵ected
by di↵erent variances: Get operations in COPS never inherit extra
dependencies, as the returned value is always “nearer,” by definition.
COPS-GT has an increased chance of inheriting dependencies as
variance increases, however, which results in decreased throughput.

Value Size. Finally, Figure 11(c) shows the e↵ect of value size on
system performance. In this experiment, we normalize the systems’
maximum throughput against that of COPS (the COPS line at exactly
1.0 is shown only for comparison). As the size of values increases,
the relative throughput of COPS-GT approaches that of COPS.

We attribute this to two reasons. First, the relative cost of pro-
cessing dependencies (which are of fixed size) decreases compared
to that of processing the actual values. Second, as processing time
per operation increases, the inter-operation delay correspondingly
increases, which in turn leads to fewer dependencies.

6.4 Scalability
To evaluate the scalability of COPS and COPS-GT, we compare
them to LOG. LOG mimics systems based on log serialization and
exchange, which can only provide causal+ consistency with single
node replicas. Our implementation of LOG uses the COPS code, but
excludes dependency tracking.

Figure 12 shows the throughput of COPS and COPS-GT (running
on 1, 2, 4, 8, or 16 servers/datacenter) normalized against LOG
(running on 1 server/datacenter). Unless specified otherwise, all
experiments use the default settings given in Section 6.3, including
a put:get ratio of 1:1. In all experiments, COPS running on a single
server/datacenter achieves performance almost identical to LOG.
(After all, compared to LOG, COPS needs to track only a small num-
ber of dependencies, typically 4, and any dep check operations
in the remote datacenter can be executed as local function calls.)
More importantly, we see that COPS and COPS-GT scale well in
all scenarios: as we double the number of servers per datacenter,
throughput almost doubles.

In the experiment with all default settings, COPS and COPS-GT
scale well relative to themselves, although COPS-GT’s throughput is
only about two-thirds that of COPS. These results demonstrate that
the default parameters were chosen to provide a non-ideal workload
for the system. However, under a number of di↵erent conditions—
and, indeed, a workload more common to Internet services—the
performance of COPS and COPS-GT is almost identical.

As one example, the relative throughput of COPS-GT is close
to that of COPS when the inter-operation delay is high (achieved
by hosting 32K clients per server, as opposed to the default 1024
clients; see Footnote 11). Similarly, a more read-heavy workload
(put:get ratio of 1:16 vs. 1:1), a smaller variance in clients’ access
distributions (1/128 vs. 1), or larger-sized values (16KB vs. 1B)—
controlling for all other parameters—all have the similar e↵ect: the
throughput of COPS-GT becomes comparable to that of COPS.

Finally, for the “expected workload” experiment, we set the pa-
rameters closer to what we might encounter in an Internet service
such as social networking. Compared to the default, this workload
has a higher inter-operation delay (32K clients/server), larger values
(1KB), and a read-heavy distribution (1:16 ratio). Under these set-
tings, the throughput of COPS and COPS-GT are very comparable,
and both scale well with the number of servers.

7. RELATED WORK
We divide related work into four categories: ALPS systems, causally
consistent systems, linearizable systems, and transactional systems.

ALPS Systems. The increasingly crowded category of ALPS sys-
tems includes eventually consistent key-value stores such as Ama-
zon’s Dynamo [16], LinkedIn’s Project Voldemort [43], and the
popular memcached [19]. Facebook’s Cassandra [30] can be config-
ured to use eventual consistency to achieve ALPS properties, or can
sacrifice ALPS properties to provide linearizability. A key influence
for our work was Yahoo!’s PNUTS [15], which provides per-key
sequential consistency (although they name this per-record timeline
consistency). PNUTS does not provide any consistency between
keys, however; achieving such consistency introduces the scalability
challenges that COPS addresses.

Causally Consistent Systems. Many previous system designers
have recognized the utility of causal consistency. Bayou [41] pro-
vides a SQL-like interface to single-machine replicas that achieves
causal+ consistency. Bayou handles all reads and writes locally; it
does not address the scalability goals we consider.

TACT [53] is a causal+ consistent system that uses order and
numeric bounding to limit the divergence of replicas in the system.
The ISIS [12] system exploits the concept of virtual synchrony [11]
to provide applications with a causal broadcast primitive (CBcast).

13

Figure 12: Throughput for LOG with 1 server/datacenter, and COPS and COPS-GT with 1, 2, 4, 8, and 16 servers/datacenter, for a
variety of scenarios. Throughput is normalized against LOG for each scenario; raw throughput (in Kops/s) is given above each bar.

CBcast could be used in a straightforward manner to provide a
causally consistent key-value store. Replicas that share information
via causal memory [2] can also provide a causally consistent ALP
key-value store. These systems, however, all require single-machine
replicas and thus do not provide scalability.

PRACTI [10] is a causal+ consistent ALP system that supports
partial replication, which allows a replica to store only a subset of
keys and thus provides some scalability. However, each replica—and
thus the set of keys over which causal+ consistency is provided—is
still limited to what a single machine can handle.

Lazy replication [29] is closest to COPS’s approach. Lazy repli-
cation explicitly marks updates with their causal dependencies and
waits for those dependencies to be satisfied before applying them
at a replica. These dependencies are maintained and attached to
updates via a front-end that is an analog to our client library. The
design of lazy replication, however, assumes that replicas are limited
to a single machine: Each replica requires a single point that can (i)
create a sequential log of all replica operations, (ii) gossip that log
to other replicas, (iii) merge the log of its operations with those of
other replicas, and finally (iv) apply these operations in causal order.

Finally, in concurrent theoretical work, Mahajan et al. [35] define
real-time causal (RTC) consistency and prove that it is the strongest
achievable in an always-available system. RTC is stronger than
causal+ because it enforces a real-time requirement: if causally-
concurrent writes do not overlap in real-time, the earlier write may
not be ordered after the later write. This real-time requirement helps
capture potential causality that is hidden from the system (e.g., out-
of-band messaging [14]). In contrast, causal+ does not have a real-
time requirement, which allows for more e�cient implementations.
Notably, COPS’s e�cient last-writer-wins rule results in a causal+
but not RTC consistent system, while a “return-them-all” conflict
handler would provide both properties.

Linearizable Systems. Linearizability can be provided using a sin-
gle commit point (as in primary-copy systems [4, 39], which may
eagerly replicate data through two-phase commit protocols [44]) or
using distributed agreement (e.g., Paxos [33]). Rather than replicate
content everywhere, quorum systems ensure that read and write sets
overlap for linearizability [22, 25].

As noted earlier, CAP states that linearizable systems cannot have
latency lower than their round-trip inter-datacenter latency; only
recently have they been used for wide-area operation, and only when
the low latency of ALPS can be sacrificed [9]. CRAQ [48] can
complete reads in the local-area when there is little write contention,
but otherwise requires wide-area operations to ensure linearizability.

Transactions. Unlike most filesystems or key-value stores, the
database community has long considered consistency across mul-
tiple keys through the use of read and write transactions. In many
commercial database systems, a single master executes transactions
across keys, then lazily sends its transaction log to other replicas,
potentially over the wide-area. Typically, these asynchronous repli-
cas are read-only, unlike COPS’s write-anywhere replicas. Today’s
large-scale databases typically partition (or shard) data over multiple
DB instances [17, 38, 42], much like in consistent hashing. Transac-
tions are applied only within a single partition, whereas COPS can
establish causal dependencies across nodes/partitions.

Several database systems support transactions across partitions
and/or datacenters (both of which have been viewed in the database
literature as independent sites). For example, the R* database [37]
uses a tree of processes and two-phase locking for multi-site transac-
tions. This two-phase locking, however, prevents the system from
guaranteeing availability, low latency, or partition tolerance. Sinfo-
nia [1] provides “mini” transactions to distributed shared memory
via a lightweight two-phase commit protocol, but only considers
operations within a single datacenter. Finally, Walter [47], a recent
key-value store for the wide-area, provides transactional consistency
across keys (including for writes, unlike COPS), and includes op-
timizations that allow transactions to execute within a single site,
under certain scenarios. But while COPS focuses on availability
and low-latency, Walter stresses transactional guarantees: ensuring
causal relationships between keys can require a two-phase commit
across the wide-area. Furthermore, in COPS, scalable datacenters
are a first-order design goal, while Walter’s sites currently consist of
single machines (as a single serialization point for transactions).

8. CONCLUSION

Today’s high-scale, wide-area systems provide “always on,” low-
latency operations for clients, at the cost of weak consistency guar-
antees and complex application logic. This paper presents COPS, a
scalable distributed storage system that provides causal+ consistency
without sacrificing ALPS properties. COPS achieves causal+ consis-
tency by tracking and explicitly checking that causal dependencies
are satisfied before exposing writes in each cluster. COPS-GT builds
upon COPS by introducing get transactions that enable clients to
obtain a consistent view of multiple keys; COPS-GT incorporates
optimizations to curtail state, minimize multi-round protocols, and
reduce replication overhead. Our evaluation demonstrates that COPS
and COPS-GT provide low latency, high throughput, and scalability.

14

Acknowledgments. We owe a particular debt both to the SOSP pro-
gram committee and to our shepherd, Mike Dahlin, for their exten-
sive comments and Mike’s thoughtful interaction that substantially
improved both the presentation of and, indeed, our own view of, this
work. Je↵ Terrace, Erik Nordström, and David Shue provided useful
comments on this work; Vijay Vasudevan o↵ered helpful assistance
with FAWN-KV; and Sapan Bhatia and Andy Bavier helped us run
experiments on the VICCI testbed. This work was supported by NSF
funding (CAREER CSR-0953197 and CCF-0964474), VICCI (NSF
Award MRI-1040123), a gift from Google, and the Intel Science and
Technology Center for Cloud Computing.

REFERENCES
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis.

Sinfonia: A new paradigm for building scalable distributed systems.
ACM TOCS, 27(3), 2009.

[2] M. Ahamad, G. Neiger, P. Kohli, J. Burns, and P. Hutto. Causal
memory: Definitions, implementation, and programming. Distributed
Computing, 9(1), 1995.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In SIGCOMM, Aug. 2008.

[4] P. Alsberg and J. Day. A principle for resilient sharing of distributed
resources. In Conf. Software Engineering, Oct. 1976.

[5] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan. FAWN: A fast array of wimpy nodes. In SOSP, Oct.
2009.

[6] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Roselli, and R. Y. Wang. Serverless network file systems. ACM TOCS,
14(1), 1996.

[7] Apache Thrift. http://thrift.apache.org/, 2011.
[8] H. Attiya and J. L. Welch. Sequential consistency versus linearizability.

ACM TOCS, 12(2), 1994.
[9] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,

J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing
scalable, highly available storage for interactive services. In CIDR, Jan.
2011.

[10] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani,
P. Yalagandula, and J. Zheng. PRACTI replication. In NSDI, May
2006.

[11] K. P. Birman and T. Joseph. Exploiting virtual synchrony in distributed
systems. In SOSP, Nov. 1987.

[12] K. P. Birman and R. V. Renesse. Reliable Distributed Computing with
the ISIS Toolkit. IEEE Comp. Soc. Press, 1994.

[13] E. Brewer. Towards robust distributed systems. PODC Keynote, July
2000.

[14] D. R. Cheriton and D. Skeen. Understanding the limitations of causally
and totally ordered communication. In SOSP, Dec. 1993.

[15] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS:
Yahoo!’s hosted data serving platform. In VLDB, Aug. 2008.

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In SOSP, Oct. 2007.

[17] D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.-I. Hsiao,
and R. Rasmussen. The gamma database machine project. Knowledge
and Data Engineering, 2(1), 1990.

[18] FAWN-KV. https://github.com/vrv/FAWN-KV, 2011.
[19] B. Fitzpatrick. Memcached: a distributed memory object caching

system. http://memcached.org/, 2011.
[20] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier.

Cluster-based scalable network services. In SOSP, Oct. 1997.
[21] S. Ghemawat, H. Gobio↵, and S.-T. Leung. The Google file system. In

SOSP, Oct. 2003.
[22] D. K. Gi↵ord. Weighted voting for replicated data. In SOSP, Dec.

1979.

[23] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT
News, 33(2), 2002.

[24] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: A scalable and flexible
data center network. In SIGCOMM, Aug. 2009.

[25] M. Herlihy. A quorum-consensus replication method for abstract data
types. ACM TOCS, 4(1), Feb. 1986.

[26] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM TOPLAS, 12(3), 1990.

[27] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R. Pan-
igrahy. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web. In STOC,
May 1997.

[28] J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda
file system. ACM TOCS, 10(3), Feb. 1992.

[29] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high
availability using lazy replication. ACM TOCS, 10(4), 1992.

[30] A. Lakshman and P. Malik. Cassandra – a decentralized structured
storage system. In LADIS, Oct. 2009.

[31] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Comm. ACM, 21(7), 1978.

[32] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Computer, 28(9), 1979.

[33] L. Lamport. The part-time parliament. ACM TOCS, 16(2), 1998.
[34] R. J. Lipton and J. S. Sandberg. PRAM: A scalable shared memory.

Technical Report TR-180-88, Princeton Univ., Dept. Comp. Sci., 1988.
[35] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability, and

convergence. Technical Report TR-11-22, Univ. Texas at Austin, Dept.
Comp. Sci., 2011.

[36] J. Misra. Axioms for memory access in asynchronous hardware sys-
tems. ACM TOPLAS, 8(1), Jan. 1986.

[37] C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in
the R* distributed database management system. ACM Trans. Database
Sys., 11(4), 1986.

[38] MySQL. http://www.mysql.com/, 2011.
[39] B. M. Oki and B. H. Liskov. Viewstamped replication: A general

primary copy. In PODC, Aug. 1988.
[40] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker,

E. Walton, J. M. Chow, D. Edwards, S. Kiser, and C. Kline. Detection
of mutual inconsistency in distributed systems. IEEE Trans. Software
Eng., 9(3), 1983.

[41] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers. Flexi-
ble update propagation for weakly consistent replication. In SOSP, Oct.
1997.

[42] PostgresSQL. http://www.postgresql.org/, 2011.
[43] Project Voldemort. http://project-voldemort.com/, 2011.
[44] D. Skeen. A formal model of crash recovery in a distributed system.

IEEE Trans. Software Engineering, 9(3), May 1983.
[45] Snappy. http://code.google.com/p/snappy/, 2011.
[46] J. Sobel. Scaling out. Engineering at Facebook blog, Aug. 20 2008.
[47] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage

for geo-replicated systems. In SOSP, Oct. 2011.
[48] J. Terrace and M. J. Freedman. Object storage on CRAQ: High-

throughput chain replication for read-mostly workloads. In USENIX
ATC, June 2009.

[49] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and
B. W. Welch. Session guarantees for weakly consistent replicated data.
In Conf. Parallel Distributed Info. Sys., Sept. 1994.

[50] R. H. Thomas. A majority consensus approach to concurrency control
for multiple copy databases. ACM Trans. Database Sys., 4(2), 1979.

[51] R. van Renesse and F. B. Schneider. Chain replication for supporting
high throughput and availability. In OSDI, Dec. 2004.

[52] VICCI. http://vicci.org/, 2011.
[53] H. Yu and A. Vahdat. Design and evaluation of a continuous consistency

model for replicated services. In OSDI, Oct. 2000.

15

http://thrift.apache.org/
https://github.com/vrv/FAWN-KV
http://memcached.org/
http://www.mysql.com/
http://www.postgresql.org/
http://project-voldemort.com/
http://code.google.com/p/snappy/
http://vicci.org/

A. FORMAL DEFINITION OF CAUSAL+
We first present causal consistency with convergent conflict handling
(causal+ consistency) for a system with only get and put operations
(reads and writes), and we then introduce get transactions. We use
a model closely derived from Ahamad et al. [2], which in turn was
derived from those used by Herlihy and Wing [26] and Misra [36].

Original Model of Causal Consistency [2] with terminology mod-
ified to match this paper’s definitions:

A system is a finite set of threads of execution, also called threads,
that interact via a key-value store that consists of a finite set of keys.
Let T = {t1, t2, . . . , tn} be the set of threads. The local history Li of
a thread i is a sequence of get and put operations. If operation �1

precedes �2 in Li, we write �1 !
i
�2. A history H = hL1, L2, . . . , Lni

is the collection of local histories for all threads of execution. A
serialization S of H is a linear sequence of all operations in H in
which each get on a key returns its most recent preceding put (or ? if
there does not exist any preceding put). The serialization S respects
an order! if, for any operation �1 and �2 in S, �1 ! �2 implies
�1 precedes �2 in S.

The puts-into order associates a put operation, put(k,v), with
each get operation, get(k)=v. Because there may be multiple puts
of a value to a key, there may be more than one puts-into order.12 A
puts-into order 7! on H is any relation with the following properties:

• If�1 7! �2, then there is a key k and value v such that operation
�1 := put(k,v) and �2 := get(k)=v.

• For any operation �2, there exists at most one �1 for which
�1 7! �2.

• If �2 := get(k)=v for some k,v and there exists no �1 such
that �1 7! �2, then v = ?. That is, a get with no preceding put
must retrieve the initial value.

Two operations, �1 and �2, are related by a causal order ; if and
only if one of the following holds:

• �1 !
i
�2 for some ti (�1 precedes �2 in Li);

• �1 7! �2 (�2 gets the value put by �1); or
• There is some other operation �0 such that �1 ; �0 ; �2.

Incorporating Convergent Conflict Handling. Two operations on
the same key, �1:=put(k,v1) and �2:=put(k,v2), are in conflict if
they are not related by causality: �1 6; �2 and �2 6; �1.

A convergent conflict handling function is an associative, com-
mutative function that operates on a set of conflicting operations on
a key to eventually produce one (possibly new) final value for that
key. The function must produce the same final value independent of
the order in which it observes the conflicting updates. In this way,
once every replica has observed the conflicting updates for a key,
they will all independently agree on the same final value.

We model convergent conflict handling as a set of handler threads
that are distinct from normal client threads. The handlers operate on
a pair of conflicting values (v1, v2) to produce a new value newval =
h(v1, v2). By commutativity, h(v1, v2) = h(v2, v1). To produce the
new value, the handler thread had to read both v1 and v2 before
putting the new value, and so newval is causally ordered after both
original values: v1 ; newval and v2 ; newval.

With more than two conflicting updates, there will be multiple
invocations of handler threads. For three values, there are several
possible orders for resolving the conflicting updates in pairs:

12The COPS system uniquely identifies values with version numbers so
there is only one puts-into order, but this is not necessarily true for causal+
consistency in general.

x3

y1

t2

v6

u1

z4

!1

!2
!1,2

!1,2

!2

!1

!3

!1,3

!1,2

!2,3

!1,2,3

The commutativity and associativity of the handler function en-
sures that regardless of the order, the final output will be identical.
Further, it will be causally ordered after all of the original conflicting
writes, as well as any intermediate values generated by the applica-
tion of the handler function. If the handler observes multiple pairs
of conflicting updates that produce the same output value (e.g., the
final output in the figure above), it must output only one value, not
multiple instances of the same value.

To prevent a client from seeing and having to reason about mul-
tiple, conflicting values, we restrict the put set for each client
thread to be conflict free, denoted pc fi . A put set is conflict free
if 8� j,�k 2 pc fi , � j and �k are not in conflict; that is, either they are
puts to di↵erent keys or causally-related puts to the same key. For
example, in the three conflicting put example, pc fi might include �1,
�1,2, and �1,2,3, but not �2, �3, �1,3, or �2,3. The conflict-free prop-
erty applies to client threads and not handler threads purposefully.
Handler threads must be able to get values from conflicting puts so
they may reason about and resolve them; client threads should not
see conflicts so they do not have to reason about them.

Adding handler threads models the new functionality that conver-
gent conflict handling provides. Restricting the put set strengthens
consistency from causal to causal+. There are causal executions that
are not causal+: for example, if �1 and �2 conflict, a client may get
the value put by �1 and then the value put by �2 in a causal, but not
causal+, system. On the other hand, there are no causal+ executions
that are not causal, because causal+ only introduces an additional
restriction (a smaller put set) to causal consistency.

If H is a history and ti is a thread, let AH
i+pc fi

comprise all operations
in the local history of ti, and a conflict-free set of puts in H, pc fi . A
history H is causally consistent with convergent conflict handling
(causal+) if it has a causal order ;, such that

Causal+: For each client thread of execution ti, there is a serial-
ization S i of AH

i+pc fi
that respects ;.

A data store is causal+ consistent if it admits only causal+ histories.

Introducing Get Transactions. To add get transactions to the
model, we redefine the puts-into order so that it associates N
put operations, put(k,v), with each get transaction of N values,
get trans([k1, . . . , kN])=[v1, . . . , vN]. Now, a puts-into order 7!
on H is any relation with the following properties:

• If �1 7! �2, then there is a k and v such that �1 := put(k,v)
and �2 := get trans([. . . ,k, . . .])=[. . . ,v, . . .]. That is, for
each component of a get transaction, there exists a preceding
put.

• For each component of a get transaction �2, there exists at most
one �1 for which �1 7! �2.

• If �2 := get trans([. . . ,k, . . .])=[. . . ,v, . . .] for some k,v and
there exists no �1 such that �1 7! �2, then v=?. That is, a get
with no preceding put must retrieve the initial value.

16

Appeared in Proc. 41st IEEE/IFIP International Conference on

Dependable Systems and Networks, Dependable Computing

and Communication Symposium (DCCS) track (DSN 11)

Coercing Clients into Facilitating Failover for Object Delivery

Wyatt Lloyd, Michael J. Freedman
Princeton University

Abstract—Application-level protocols used for object deliv-
ery, such as HTTP, are built atop TCP/IP and inherit its host-
to-host abstraction. Given that these services are replicated
for scalability, this unnecessarily exposes failures of individual
servers to their clients. While changes to both client and server
applications can be used to mask such failures, this paper
explores the feasibility of transparent recovery for unmodified

object delivery services (TRODS).
The key insight in TRODS is cross-layer visibility and con-

trol: TRODS carefully derives reliable storage for application-
level state from the mechanics of the transport layer. This
state is used to reconstruct object delivery sessions, which are
then transparently spliced into the client’s ongoing connection.
TRODS is fully backwards-compatible, requiring no changes to
the clients or server applications. Its performance is competitive
with unmodified HTTP services, providing nearly identical
throughput while enabling timely failover.

I. INTRODUCTION

Ideally, a client’s interaction with a replicated service will
fail only when the service fails. Yet most Internet services
tie the fate of a client’s connection to a single server,
because they are built using TCP and inherit its host-to-host
bindings. If this single server fails, the client’s connection
breaks, and it appears to the client that the service has
failed. However, if a new server can transparently failover
the connection—that is, interact with the client exactly as
the original server would have—the client’s connection can
continue uninterrupted and unaware of the failure.

We aim to enable failover for a large class of Internet
services, called object delivery services, that play an integral
role in users’ online experiences by giving clients read-
only access to content objects, such as webpages, images,
and videos. Object delivery services are typically replicated
for scalability and fault-tolerance, e.g., there are tens to
thousands of servers that all deliver the same set of objects.
If one such server fails while delivering an object, another
server has the potential to continue delivering it. This paper
demonstrates that such recovery can be done transparently,
effectively, and practically.

Our system, Transparent Recovery for Object Delivery
Services (TRODS), has been designed with the goal of
immediate deployability, which introduces two challenges.
Clients of the service should not be modified: They are

Copyright notice: 2011 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

often not under the service’s control and often run different
applications, browsers, and operating systems. Similarly, the
server’s application code should not be modified: Source
code may be unavailable, and application changes would
require integration effort for every service that seeks failover.
Instead, TRODS is implemented as a server-side kernel
module and requires no changes to the client or application.

At a high level, TRODS operates by ensuring that, at
failover time, a recovery server has the minimal application-
level information necessary to continue a connection. This
information is preserved in two ways. First, it can be
retransmitted by the client to its recovery server. TRODS
does not modify the client to accomplish this, instead, it
leverages its on-path position within the server’s kernel to
manipulate a connection’s TCP packets, in order to coerce
the client into retransmitting the information to the new
server. Second, the information can be saved to a persistent
store that will survive the failure of the original server.

We describe two complementary versions of TRODS
that use different resources as persistent stores. The first
version, TRODS-KV, uses a key-value store for persistence.
It improves on previous failover schemes by requiring only
a single remote operation apart from the original server—a
single save to the key-value store—to guarantee any subse-
quent connection failover. The second version, TRODS-TS,
eliminates the need for any remote operations by carefully
repurposing the TCP timestamp option that accompanies
every packet in a connection as the persistent store. These
two approaches are complementary: TRODS-KV is more
general purpose, handles more abnormal object delivery
scenarios, and avoids some additional security concerns.
On the other hand, TRODS-TS has very low overhead and
requires no additional physical resources for deployment.
Together, TRODS-TS can serve the highly-popular objects
of a service, while TRODS-KV can handle the unpopular
and exceptional cases.

This paper focuses on the use of HTTP as the canonical
and ubiquitous protocol for object delivery. However, we
believe that TRODS’ approach is similarly applicable to
other protocols for object delivery.

TRODS has significantly lower overhead than previous
transparent failover schemes. Several of these schemes re-
quire primary and backup servers to process requests in
parallel, e.g., FT-TCP (hot backup) [24] and ST-TCP [14].
This redundant processing reduces the systems’ throughput
per machine by at least 50%. Other prior schemes that

!"#$%&'
()*+'

,*"*%-$.'

/$.0$.'

/$.0$.'

/$.0$.'

1$234*"5$'
/&).$'

(#0$%$66'
7)%#&).'

/$.0#-$'

8!9'
!"#$%&

:9'

!'

!'

!'

!'

Figure 1. A typical service architecture that uses TRODS.

avoid an active backup—e.g., FT-TCP (cold backup) and
CoRAL [1]—still require many remote operations to save
state so it can be replayed at recovery time. In contrast,
TRODS-KV needs only a single remote operation and
TRODS-TS eliminates them altogether.

II. PROTOCOL

This section gives a high-level overview of how TRODS
operates. We begin by describing how TRODS fits into
the architecture of a typical Internet service. Next, we
examine the structure of a connection to an object delivery
service. Finally, we detail how TRODS can failover a client’s
connection during each of its phases.
A. Architecture

Figure 1 shows the architecture of a typical Internet
service using TRODS. Every component is standard and,
excluding the key-value store, would likely be found in a
TRODS-free version of the service. The clients are unmodi-
fied, run their normal networking stack and applications, and
connect to the service using TCP. An unmodified load bal-
ancer routes all packets in a connection to the same server. A
liveness monitor maintains the load balancer’s pool of avail-
able servers. TRODS does not need a stateful load balancer,
so any stateless flow-based hashing suffices, e.g., consistent
hashing [9] or standard mod n hashing using the flow’s 5-
tuple for server affinity. The servers terminate the clients’
connections and include a TRODS kernel module that sits
in their network stacks. This presence allows TRODS to
manipulate and control the packets bidirectionally. Figure 1
also includes a key-value store, which TRODS-KV uses as
a persistent store, as discussed later.

This figure illustrates one concrete example of a service
architecture that uses TRODS. TRODS can work for any
general object delivery service that meets three require-
ments: it is comprised of replicated servers that serve static
objects, its servers can all use the same IP address(es), and
it has an updatable load balancer.

In this paper, we do not consider the failure of the load-
balancer or the liveness monitor. Both can be supported by
standard replication and failover techniques, and their state
need be linear only in the number of servers, not the number
of flows. Further, unlike typical deployments, TRODS can
tolerate inconsistent state between load-balancers, e.g., in
their known set of live servers. If one sends the subsequent

packets of an existing connection to a new server, the
connection is dealt with as a normal case of failover. We
do consider the failure of the key-value store in §IV-A.
B. The Anatomy of an ODS Connection

To clarify how TRODS enables failover, we first identify
the two stages of a connection to an object delivery service.
The first phase is connection setup, where the client and
server negotiate what object the client is going to download.
In HTTP, for example, this constitutes the HTTP GET
request and the server’s response header. The second phase
of the connection is the object download. In HTTP, this
corresponds to the transmission of the response body.

Transparent failover requires a new server to continue a
client’s interaction with the service over its pre-existing TCP
connection. If the client is in the setup phase, the new server
should continue negotiating with the client and then start the
object delivery. If the client is in the download phase, the
new server should continue the client’s download exactly
where the old server left off.

The two phases of a connection are quite different. The
setup phase is typically short, in terms of both bytes and
packets, and application-layer data flows in both directions.
The download phase can be long, and application-layer
data only flows from the server to the client. Accordingly,
TRODS handles failover for each phase quite differently.
C. Failover

TRODS takes the following steps to failover a client’s
connection on a new server:

1) Detect a server failure.
2) Redirect the client’s connection to a new server.
3) Initiate failover on the new server.
4) Determine the connection’s current phase.

If in the setup phase:
5) Continue negotiating with the client.

If in the download phase:
5) Determine what object the client is downloading.
6) Determine the client’s current offset into the object.
7) Resume sending the object from that point.

Failure Detection. To detect server failures, we apply
standard unreliable failure detection [3]. Periodically, a live-
ness monitor sends a heartbeat packet to each server and
each server responds with their own packet. The server is
determined to have failed if the liveness monitor does not
hear from a server for longer than a threshold amount of
time (25 ms in our implementation). This scheme detects
hardware failures, but not necessarily application failures.
Our implementation uses its position in the kernel of each
host to locally detect application failures (e.g., process
crashes). It then prevents the machine from exposing those
failures to the client (e.g., the TRODS module drops RST
packets arising in such scenarios), while also triggering
failover by the liveness monitor.

Connection Redirection. Connections to the failed server
must be rerouted to new servers so that failover can begin.
Once the liveness monitor detects a server has failed or a
new one has started, it updates the load balancer’s state about
the pool of active servers and their corresponding MAC
addresses. The load balancer will then start routing packets
to the new set of servers. Now, all new connections will be
handled by a live server.1

The choice of load-balancing scheme affects how ongoing
connections are remapped to servers. If consistent hash-
ing [9] is used, only connections to the failed server will be
reassigned elsewhere. By contrast, if a less smooth hashing
function is used—such as selecting a server by randomly
hashing mod the server-pool size—then almost all ongoing
connections will be reassigned to new servers. While more
disruptive, TRODS still handles this scenario, treating such
reassignments as normal cases of failover.
Failover Initiation. After a load-balancer redirects a con-
nection, the new server will receive any packets the client
sends. The new server will recognize that these packets are
in the middle of a TCP connection that does not exist on
this server and thus must be failed over. While there will
often be outstanding packets in the network when a server
fails—especially given the large TCP window size of an
ongoing download—TRODS cannot rely on these packets
either to exist or to arrive at the new server in order to
initiate failover. Instead, TRODS ensures the client will send
a packet that reaches the new server by leaving at least one
packet from the client unacknowledged at all times, coercing
its TCP stack to continue to retransmit it. Fortunately,
this does not affect the application-layer connection, as the
TCP specification allows the client to receive the server’s
application-layer response, even when its request has not
been acknowledged at the transport layer.
Determining the Current Phase. TRODS requires some
state to be shared between a connection’s original and
recovery servers, in order to accurately determine the current
phase of the connection. TRODS accomplishes this by
blocking a connection from entering the download phase
until it has saved some information to a persistent store
that will survive the failure of the original server. When
a new server starts to failover a connection, it first looks up
the connection in the persistent store. If the connection is
not found, the new server knows the connection is still in
the setup phase; otherwise, it is in the download phase. We
discuss the corner cases of phase determination in §III.
Continuing Negotiations. If the connection is in the setup
phase, the new server must continue the negotiation with
the client. Negotiation is stateful, which might suggest that

1The handling of new connections is what load-balancer products and
high-availability software packages refer to as failover. In these systems,
unlike in TRODS, ongoing TCP connections remapped to a different server
will be unable to continue.

TRODS needs to save already-negotiated state to the per-
sistent store, in order to continue negotiation after failover.
However, TRODS exploits the short length of the setup
phase to avoid this.

Because setup differs between protocols, TRODS deals
with each uniquely. The common theme is that TRODS
uses control of the TCP layer to effectively coerce the
client into providing storage unbeknownst to it. In HTTP,
for example, TRODS does not acknowledge the client’s
request until after the client has entered the download phase.
Thus, if a server failure occurs during the setup phase, the
client’s TCP stack will timeout and retransmit the request
so a new server can handle it. Here, TRODS again exploits
the separation between application-layer data and TCP-
layer acknowledgments, which allows a client’s application
to operate normally while its transport layer attempts to
retransmit packets. We discuss further details in §III.

Determining the Object. To continue a connection in the
download phase, a new server needs to determine both the
object being downloaded and the client’s offset into that
object. We assume that each service object will have an
objectID, a unique, concise identifier of the object, such as
a filename or URL. We further assume that all objects are
immutable, we have omitted the discussion of TRODS’ use
with versioned and dynamic objects due to space constraints.
Thus, if a new server knows the objectID associated with a
connection, it knows the object the client is downloading.
TRODS makes this objectID available to the new server by
persistently storing it.

Determining the Client’s Offset. Once TRODS has
determined which object a client is downloading, it still
needs to determine how far into the download the fail-
ure occur. TRODS derives this offset by again leveraging
cross-layer information. TRODS compares the objectISN—
the TCP sequence number for the first byte of the object
download, which had been saved earlier to the persistent
store—and the most recent TCP sequence number the client
has acknowledged. The difference between these two values
gives the client’s current offset into the object; all preceding
bytes have been successfully received at the client.

Resuming Object Downloads. Once TRODS knows the
objectID and offset for a connection, it must transfer the
object, starting at this offset, from an application running on
the new server. TRODS accomplishes this by initiating a new
local connection to the application, and using the objectID to
synthesize an application-level request for the client’s object.
It quickly acknowledges and discards the downloading ob-
ject until the client’s current offset is reached, at which point
it begins transmitting the data from the server application to
the client. In many applications, this initial “discard” phase
can be avoided by requesting the client’s offset directly, e.g.,
through Range-Request headers in HTTP.

!"#$%&' ($)*$)'
+,,' -!.' -!.' +,,'

(/0'

+!1'

2$3'

+!1'

+!1'

+!1'

4506+!1'

(/06+!1'

+!1'

2$7,89'

2$7,8:'

2$7,80'

450'

+!1'

2$3'
2$3'
2$7,'

2$7,89'

2$7,8:'

2$7,80'

4;#"'
<*$)'

!"

#"

$"

%'

Figure 2. A typical client-server HTTP connection at both
the application and TCP layers. The dashed acknowledgment
for the client’s request is sent by the server’s TCP stack, but
dropped by TRODS. The right-most “failover” label indicates a
stage of the connection; we detail how TRODS handles failover
for each in §III-B.

III. TRODS FOR HTTP
While TRODS provides a general framework for per-

forming failover, it does require a mechanism for extracting
a connection’s objectID and objectISN, which typically
requires application-specific parsing. In HTTP, for example,
this objectID is commonly the request URL, while the
objectISN is the first byte of the HTTP response body. In our
TRODS prototype, this application-specific HTTP knowl-
edge constitutes about 100 lines of code. For concreteness,
this section details TRODS’ handling of HTTP connections.

We start by exploring how TRODS handles a normal
connection at a packet-by-packet level. We then show how
this behavior allows TRODS to failover that connection to
a new server for all possible connection states.

We make the these assumptions for a typical connection:
1) The request fits in a single packet.
2) The response header fits in a single packet.
3) The response body is less than 4 GB in size.
4) The object download takes less than 13 minutes.
5) Neither persistent nor pipelined connections are used.
6) HTTP chunked transfer encoding is not used.

The first four assumptions hold true for the majority of
HTTP connections, and TRODS takes advantage of them to
improve performance. The next two assumptions simplify
the basic description of TRODS. We complete our specifi-
cation by relaxing each assumption in §III-C.
A. Normal Operation

Figure 2 shows a HTTP connection at both the application
and transport layers, and Table I briefly summarizes how
TRODS interacts with this connection from its position
underneath the server’s TCP layer.

Cli Srv TRODS Operation
Syn

Syn Locally store knowledge of this connection
Ack
Req Extract and locally save objID

Ack Drop

Resp1
Extract objISN
Block until objID/objISN are persistently stored
Do not ack client’s request

Ack
Resp2 Do not ack client’s request

Ack
.

Fin Locally store sequence number of FIN
Fin/ Delete objID/objISN from persistent storage
Ack Delete connection from local storage

Ack Ack client’s request and Fin

Table I
Normal operation during a typical HTTP connection.

The connection begins with TCP’s three-way handshake.
During the handshake when the server sends a response
SYN packet, TRODS locally stores knowledge of this con-
nection by saving the client’s IP address and port into an
in-memory hashtable. This allows TRODS to distinguish
between normal packets to the server, whose connections
will be in the hashtable, and packets that should initiate
failover, whose connections will not be in the hashtable
because they originated at another server.

The connection continues with the client sending a HTTP
request that fits in a single packet. From this request,
TRODS extracts the objectID from the packet, which nor-
mally consists of the URI.2 Under normal processing, the
server’s transport layer immediately responds to receiving
this request with an ACK; TRODS instead drops this packet.
If TRODS did not drop this ACK and the server failed after
acknowledging the request, but before persistently storing
anything, the client’s requested objectID would be lost.

The application server then attempts to send the client
a response. This response is often too large to fit in a
single packet, so the TCP stack on the server distributes it
over many TCP segments. The first segment (and packet)
will include the response header and the beginning of
the response body. TRODS determines the objectISN—the
sequence number of the first byte of the response body—by
searching through the HTTP payload for the double CRLF
that delineates the end of the HTTP response header. TRODS
saves the objectISN and objectID to the persistent store,
before releasing the TCP stack to transmit the packets back
to the client. TRODS also modifies all packets that carry
the response to not acknowledge the client’s request. This
ensures that if the server fails, the client’s TCP stack will
eventually retransmit a failover-initiating packet.

2The objectID may also include some HTTP request headers, such as
cookies. If only the URI is used when other headers affect the server’s
response, the interaction can appear to be non-deterministic, which we omit
discussion of due to space constraints.

After the server’s TCP stack has transmitted the entire
response to the client, it sends a FIN packet to start tearing
down the connection. TRODS stores the TCP sequence
number for the FIN in its local hashtable, to help it later
determine if the client has received the entire response. The
client will respond to the server’s FIN with a FIN/ACK of
its own; TRODS checks that this acknowledges the server’s
FIN, and then knowing the client has received the entire
response, deletes the connection from the persistent store and
local hashtable. The connection terminates when the server
sends the client an ACK that cumulatively acknowledges the
client’s request and FIN.

Deleting connection information from the persistent store
is performed to reduce saved state, not to maintain cor-
rectness. Thus, it can be done in the background or during
periods of low-server load; it does not delay the connection.
B. Failure Recovery

Figure 2 groups the different stages of a connection into
failover cases. We now enumerate these stages, showing how
TRODS provides failover in each case.
Before Setup ¨. A server can fail after receiving a
client’s SYN but before responding with a SYN/ACK. If this
happens, the client’s TCP stack times out and retransmits
its SYN. This SYN will be routed to a new server and
the connection will proceed normally. If a server fails after
issuing a SYN/ACK but the network drops the packet, the
system’s behavior is identical. In later cases, we do not
discuss drops that are equivalent to scenarios without them.
During Setup ≠. A server can fail after the client receives
the SYN/ACK but before the server sends the response.
Because the client’s request remains unacknowledged, the
client’s TCP stack will eventually timeout and retransmit
the request. The load balancer will direct this request to a
new server, which will initiate failover.

On the new server, TRODS will lookup the client in
the persistent store. If the lookup succeeds, the connection
is currently in the download phase and is recovered as
described in Æ. If the lookup fails, the client is still in the
setup phase and has not received any part of the response
yet. TRODS will then open a TCP connection to the new
application server on the localhost and proceed with TCP’s
three-way handshake. Once the connection is established,
TRODS will splice together this new connection and the
client’s connection.3 The request will then be forwarded to
the server and the connection will proceed normally.
During Download Æ. If a server fails during the download
phase of a connection, the client’s TCP stack will eventually
timeout and retransmit the packet TRODS purposefully
did not acknowledge. This packet, or one that was in the
network when the server failed, can be combined with the

3TCP splicing joins two separate connections together so that they act
as one; it is accomplished by translating the IP addresses, port numbers,
and sequence numbers in every packet.

information in the persistent store to find the objectID and
objectISN for this connection.

The new TRODS instance that receives this packet will
start a connection with the local application instance, send-
ing a request for the object constructed from the objectID.
If supported, this request includes a Range-Request
header, indicating that the application server should start
transmitting the object at the client’s current offset. The
server will respond with a new response header and the
object starting at the specified offset. TRODS drops the
response header, and it splices together this connection with
the client’s original one.
After Download Ø. If the server fails after the client
finishes downloading the object, but before TRODS deletes
history of the connection from the persistent store, TRODS
might attempt failover as in Æ. However, the new server’s
HTTP response will be an error (status code 416), as the
range request specified an offset that is one byte past the
end of the object. TRODS will recognize that the client has
completed the download, drop the server’s response, close
the connection to the server, delete the client’s connection
from the persistent store, and, if the client’s packet was a
FIN, respond to the client with an ACK.

Some packets from a client may be delayed by the net-
work and not arrive until after the connection has completed
and TRODS has removed it from its local hashtable. If
this occurs, TRODS will attempt to failover the connection.
However, as the client has already completed its download
and closed the connection, it will respond to any new packets
from the server with a RST packet. TRODS forwards this
RST to the server, closing the newly-established connection.
While this does not affect the correctness of TRODS, it does
waste server resources. We describe how to restrict these
wasted failover attempts in §V-A, so that they only occur
when it is plausible that their original server has failed.

C. Extensions
For brevity, we omit the detailed explanations of how

TRODS handles HTTP connections that violate our assump-
tions described earlier. Instead, we briefly sketch the main
ideas for dealing with any violations. If the request is spread
across multiple packets—a rare event for GET requests—
TRODS persistently stores each packet before allowing its
corresponding acknowledgment to flow back to the client.
TRODS handles multi-packet response headers similarly, by
saving them in their entirety to the persistent store before
allowing them to flow to the client. If an object is over 4GB
the TCP sequence numbers will wrap around so TRODS
uses separate objectIDs for different sections of the object. If
an object download takes more than 13 minutes, the client’s
connection must be acknowledged to prevent its TCP stack
from resetting the connection. TRODS does acknowledge
these rare connections, and then saves them to a list in the
key-value store for special handling. TRODS handles persis-

tent and pipelined connections by splitting apart any packets
that include data for multiple objects. Chunked-encoding
may only be used if it is deterministic across replicas, as its
in-line metadata of chunk lengths prohibit TRODS’ simple
determination of the client’s application-level offset into the
response object. We have verified that lighttpd’s static file
and flash video modules are deterministic by examining their
source code and expect that most other chunking schemes
are as well.

IV. PERSISTENT STORAGE

The TRODS protocol refers opaquely to a “persistent
store” that assists with saving connection state necessary for
failover. This store is persistent in that it survives the failure
of the original server. In this section, we describe the two
persistent stores we implemented.
A. Key-Value Store

The first persistent store is a key-value storage system
(e.g., memcached [5]). The storage key that TRODS uses for
each connection is comprised of the client’s IP address and
port number. The key-value store can be used for arbitrarily-
sized objects, which is not true for TCP Timestamps. Thus, if
a large store is needed—e.g., when multiple response header
packets need to be stored before being sent to the client—
TRODS uses the key-value store.

The configuration and deployment of the key-value store
trades off efficiency and availability. Key-value storage
servers can be colocated in the same rack, cluster, or data-
center as application servers. As the key-value store moves
closer to its application servers, latency decreases but the
probability of correlated failure increases. Data in the key-
value store can be replicated for additional fault-tolerance,
but even unreplicated storage provides resilience to a single
failure: A connection fails only when its application and
key-value server fail simultaneously. For this reason, many
deployments may choose an in-memory key-value store
(e.g., memcached [5]) for low latency and high throughput.
B. TCP Timestamps

The second persistent store is the TCP timestamp op-
tion [8] that accompanies every packet in a connection.
Failover in TRODS is always initiated by a packet from
the client, which is what makes this store persistent. The
TCP timestamp option is negotiated during connection setup:
Each host attaches the TCP timestamp option to its SYN
packet. Once negotiated, each host will attach its own 4-
byte timestamp value and a 4-byte timestamp echo reply to
every packet. The timestamp echo reply effectively repeats
the last timestamp value that a host received. The use of the
TCP timestamp option is widespread: It is used by default in
modern versions of Linux, FreeBSD, OS X, and Windows.
In the rare event that a host does not use the option, TRODS
can fall back to its key-value store for persistent storage.

TCP timestamps were intended for two purposes. First,
they help improve the accuracy of RTT estimation. A host

will subtract the timestamp echo reply in an ACK packet
from the current time to obtain a new RTT. This allows
the host to accurately sample the RTT at a high rate and is
“vitally important” for large TCP window sizes [8]. Thus,
when co-opting the TCP timestamp option as persistent
storage, TRODS must ensure that it does not interfere with
accurate RTT measurement.

Second, the TCP timestamp option helps protect against
wrapping sequence numbers (PAWS). PAWS is used to
prevent old duplicate segments from a previous connection
from corrupting a current connection between the same
hosts using exactly the same ports. This will only happen
if (1) a client reconnects to the same server in a short
window of time (less than 2 maximum segment lifetimes,
or about 4 minutes); and (2) in between these connections,
the client makes some number of other connections that
is an exact multiple of its ephemeral port range.4 This
is sufficiently unlikely that TRODS does not handle this
possibility. However, because the client cannot be changed,
TRODS’ use of the timestamp must not interfere with the
client’s PAWS processing. To enforce PAWS, the client will
drop all packets with a server timestamp that is deemed
too “old”. TRODS ensures timestamps are non-decreasing
in modular 32-bit space,5 so they will be accepted.

To summarize, the TCP timestamp option provides 32 bits
that the client will echo back with two constraints: The
timestamps must be non-decreasing in modular 32-bit space
and they still must provide accurate RTT measurement.
These 32 bits cannot naively hold the objectID and objec-
tISN: The objectISN alone is 32 bits and the objectID has
been unconstrained until now. Thus, TRODS must reduce
the number of bits needed for the objectID and objectISN
to fit in the TCP timestamp, while obeying these constraints.
5 Bits for the ObjectISN. The objectISN can be derived by
summing two values: the TCP connection’s initial sequence
number (ISN) and the length of the response header. TRODS
uses this property, as well as small changes at the TCP and
HTTP levels, to store the objectISN in 5 bits rather than 32.

At the TCP level, we fix the connection’s ISN to a value
derived from the client’s IP and port. This avoids needing
any bits to store the connection’s ISN, but raises some
security concerns that we address in §V-C.

If the response header is longer than a TCP segment
size (typically 1448 bytes with the TCP Timestamp option),
then the entire response needs to be stored in the key-value
store. Consequently, we only consider response headers that
are less than 1448 bytes. Storing its length still requires
dlg 1448e = 11 bits. However, TRODS uses an HTTP-level
optimization to reduce this further: It pads the response
header to a multiple of 64 bytes, which reduces the number
of bits needed to

⌃
lg d1448/64e

⌥
= 5. TRODS pads the

4The smallest ephemeral port range we could find was 3975 [23].
5That is, tsa�tsb when 0(tsa�tsb)<231 in unsigned 32-bit math.

header by adding linear white space to the last header field,
which HTTP clients ignore [4]. Our choice to pad to 64-byte
multiples is arbitrary; we could pad to 128 bytes and then
only need 4 bits for the response length.

When TRODS pads the header, it misaligns the TCP
sequence number space between the client and server: The
client has now received more bytes that the server has sent.
TRODS modifies the sequence numbers in all subsequent
packets to correct for this difference.
7 Bits for the Timestamp. TRODS ensures accurate RTT
measurement by passing packets to the server’s TCP layer
with the appropriate timestamps replaced. When the TCP
layer passes TRODS a packet for transmission, TRODS
saves the timestamp in a per-connection 128-entry array. It
then overwrites the packet’s original timestamp with its own
value that includes a 7-bit index into that connection’s array.
When TRODS receives a packet to pass up to the local TCP
stack, it uses the 7-bit index embedded in its own timestamp
to look up the origin timestamp, which it swaps in before
sending the packet up the stack.

The use of a 7-bit index limits the number of outstanding
timestamps to 128, and TRODS blocks packets to stay under
this limit. With a normal MSS size of 1448 bytes, this means
at most 185 KB can be in flight from the server at any point
(e.g., a connection with a 50 ms RTT could download at
30 Mbps). This behavior seems reasonable for most web
services, but if this limit is too low for a particular service,
it can increase the size of the array and bit-length of the
index, at the cost of requiring either further response header
padding or supporting fewer objectIDs.
20 Bits for the ObjectID. The objectID is represented by
a long, unique string, such as a file path or full URL. This
objectID cannot be embedded in a timestamp, so TRODS
instead embeds a shorter index that selects from an array
of objectIDs. This array is normally static and replicated
on each server. With 20 bits, TRODS can uniquely identify
over one million objects. If a service has more objects than
can fit in the array, it can use the timestamp option as the
persistent store for its most popular million objects and a
key-value store for less popular objects. Given the Zipfian
nature of Web traffic [2], the million popular objects that can
use the TCP timestamp option should cover the majority of
a service’s traffic. TRODS can also consistently update this
array to account for new or newly popular objects, but we
omit a description of this behavior for brevity.
Ordering the Fields. Finally, TRODS orders its fields in the
timestamp option carefully, as shown in Figure 3, to ensure
they pass the client’s PAWS check by being non-decreasing
in modular 32-bit space. The timestamp index resides in
the highest-order bits, followed by the objectISN, while the
objectID resides in the lowest-order bits. The objectID and
objectISN field do not change once set, but the timestamp
index does: it increases and eventually wraps around. By

!"# $%"# "&'()&*#

+# ,# -.#

$/0123&04#!5*16# 7891:3!;#!5*16#

7891:3!<=#)>213#

$/0123&04#74?)5#

.#

@-+#

?0123&04.#

?0123&04@-+#

"1AB%)551:?)5#$<#$&8(1#
.#

--.B@#

)891:3!;.#

)891:3!;--.B@#

C()8&(#7891:3!;#$&8(1#

Figure 3. The relationship between a packet, its TCP timestamp
option, the fields TRODS shoehorns into that option, the per-
connection timestamp table, and the global objectID table.

placing it in the high-order bits, TRODS ensures that when it
wraps around, the numerical representation of the timestamp
itself wraps around and thus remains non-decreasing.
C. Combining KV and TS Storage

The key-value store and timestamp storage play comple-
mentary roles. TRODS-KV is more general purpose and
scalable, yet introduces higher overhead than TRODS-TS.
Thus, one could use these two variants together, and gain the
benefits of both. In fact, we evaluate such a dual deployment
in §VI. When both variants of TRODS are used together,
however, a recovery server needs to know which durable
store to access in order to find the connection’s state. If the
TCP timestamp option is not present, the TRODS module
can immediately conclude that a key-value store lookup
is required. If the option is present, TRODS stores a hint
indicating which store to access in the high-order 7 bits of
the timestamp. When the key-value store is used these bits
are set to a special reserved value that TRODS-TS does not
use as a timestamp index. For these connections, TRODS
still needs to perform translation on the timestamps.

V. SECURITY CONCERNS

The use of TRODS introduces some security concerns:
attackers can spoof packets to try to initiate TRODS failover,
they can modify TCP timestamps to attempt to gain access to
unauthorized content, and they can more readily guess TCP
sequence numbers to spoof or hijack a TCP connection. This
section describes how TRODS mitigates these concerns.
A. Denial-of-Service Attacks

Bogus ACKs and Requests. An attacker can send requests
or ACK packets to a TRODS-enabled service with spoofed,
random client addresses, attempting to cause TRODS to
failover non-existent connections. After all, TRODS’ normal
response to an unknown request or ACK packet is to
initiate failover to its local application instance, wasting both
application and persistent store resources.

TRODS can limit its vulnerability to such DoS attacks
by initiating failover only when it can verify that it received
this packet because another server recently failed. To support

this, we replicate the load balancing information to the
TRODS instance on each server, i.e., its key range in the
case of consistent hashing, or the server pool size (n)
and its assigned number in the case of mod n hashing.
If a failure-initiating packet arriving at a server is outside
its known range—i.e., it should not be selected given the
packet’s 5-tuple and its knowledge of the load balancer’s
hashing scheme and state—then the server would only
have received this packet if the load balancer’s server pool
recently changed. In this case, the server initiates failover.
Otherwise, when the packet is in the server’s known range,
it is dropped as illegitimate, as it should have been in the
server’s local hashtable.

Therefore, TRODS mitigates this failure-initiation DoS
attack, as it can be performed only temporarily on the servers
directly affected by another’s failure. TRODS can weaken
this attack further by giving normal packet processing higher
priority than failover processing. This reduces the attack
from a denial-of-service to a denial-of-failover.
Clients Forcing the Slow Path. A client can force TRODS
onto the slow path by sending requests that are longer than
two packets and thus need to be saved to the key-value store.
It can also force the slow path by sending a request that
results in a multi-packet response header, which also needs
to be saved to the key-value store. In either case, TRODS has
no way to distinguish legitimate slow-path connections from
malicious ones, so it must serve them all. However, TRODS
can limit the attacker’s damage by lowering the processing
priority of slow-path connections, as it does with failover.
Thus, slow-path attacks can still degrade the service of other
slow-path connections, but they have difficulty in degrading
the service of normal connections.
B. Accessing Unauthorized Content

When TCP timestamps are used for persistent storage, a
client can potentially download an object they do not have
permission to access, by sending an ACK packet to trigger
failover with a timestamp that indexes an unauthorized
objectID. This is partially unavoidable when timestamps
are used, but given the enhancements to TRODS in §V-A,
clients can only trigger failover after an actual failure has
occurred. Thus, this attack will only work when a server
has failed recently, and the attacker can guess the objectID
index for the object it desires. If these security measures are
not sufficient, a service should use TRODS’ key-value store
for all protected content. With TRODS-KV, the objectID of
the client’s download cannot be modified by the client.
C. TCP Sequence Number Guessing

When TRODS-TS is used, the server uses an ISN that
is generated deterministically from the client’s IP and port.
This will raise security concerns for anyone familiar with
TCP sequence number guessing attacks [15]. In these at-
tacks, an attacker spoofs a SYN packet from a client, and
then spoofs an ACK packet that acknowledges a guess of

the server’s ISN. If this guess is correct, it completes the
TCP three-way handshake and the attacker can send a data
packet that appears to be from the client.

TRODS is not vulnerable to traditional sequence number
hijacking, but its approach allows malicious clients, once
having completed a successful connection, to initiate new
downloads before fully establishing new connections.6 This
vector may be used as a denial-of-service attack. In particu-
lar, rather than randomly, TRODS generates its ISN from a
cryptographic hash of the client IP, port, time epoch, and a
private key that is known to all servers in a TRODS cluster.
Thus, an attacker learns the ISN for a given IP and port
only if it can receive traffic at that network location. This is
akin to the protections offered by normal randomized ISNs,
except that this ISN is constant across the entire epoch. After
learning the ISN, a client then can spoof connections from
other network locations during the same epoch. That said,
TRODS is used for services that are inherently read-only and
so the attack can only be used to start illegitimate downloads
and cannot modify state. If limiting the sequence number
guessing attack to a DoS attack from a limited range of
IPs and ports is unacceptable for a service, it should use
TRODS-KV instead.

VI. EVALUATION

This section demonstrates the practicality and effective-
ness of TRODS. We first quantify TRODS’ cost in terms
of decreased throughput and increased latency. We then
evaluate how TRODS handles failure in a cluster setting
and how much excess latency it incurs due to failover.
Implementation. The TRODS implementation is approxi-
mately 3,000 lines of C code. It is a loadable kernel module
for Linux 2.6.32.3 and using it does not require recompiling
the base kernel or rebooting the machine. The current
TRODS implementation handles the normal cases, where
none of our assumptions from Section §III are violated.

We also implemented ~CoRAL, a partial implementation
of CoRAL [1] in a kernel module for Linux 2.6.32.3.
CoRAL routes requests to a primary server through a backup
server and saves the entire response on the backup before
sending any of it to the client. Our implementation only
saves the response on a backup machine and thus gives a
rough upper bound on the true performance of CoRAL.
Experimental Setup. Our lighttpd throughput, hybrid
throughput, and latency experiments use a total of three
machines: one to run clients, one for a TRODS server, and
one for a key-value store. The excess-latency-due-to-failover
experiment uses those machines and an additional one for
load-balancing. The failure recovery experiment uses three
server machines, as well as one machine each for clients, a
load balancer, and the key-value store. Each machine used
in these experiments has eight 2.3GHz cores and 8 GB

6Note that clients of a TRODS service are not vulnerable to this attack,
as they use standard TCP ISNs.

 2500

 5000

 7500

 10000

 12500

 15000

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

T
P

P
S

 (
re

q
s/

s)

Web Object Size

Unmodified
TRODS-TS
TRODS-KV

~CoRAL

(a) Lighttpd web server, 1 core

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 22500

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

T
P

P
S

 (
re

q
s/

s)

Web Object Size

Unmodified
TRODS-TS
TRODS-KV

~CoRAL

(b) Lighttpd web server, 8 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

1KB 2KB 4KB 8KB 16KB 32KB 64KB

N
o
rm

a
liz

e
d
 T

P
P

S

Web Object Size

Unmodified
TRODS-TS
TRODS-KV

FT-TCP(cold)
~CoRAL

FT-TCP(hot)

(c) Apache web server

Figure 4. HTTP throughput experiments. The first experiment (a) uses lighttpd with a single server core, which becomes CPU
bound. The second (b) uses lighttpd with 8 cores and is not CPU bound. The final (c) uses Apache in order to compare TRODS
to FT-TCP. For all, the median value over 25 trials is shown; min and max values are within 5% of the median and omitted.

of memory, and is connected to a 1 Gbps switch. Our
Apache throughput experiment was run on Emulab [22]
using pc3000 nodes connected via 1 Gbps links.

We use memcached 1.4.4 [5] without expiration or evic-
tion as our key-value store and we use lighttpd 1.4.23 [12]
as our regular web server. We use a simple Click [11]
configuration run in the kernel as our load balancer.

All throughput experiments show the median value of 25
trials; the min and max values are always within 5% of
the median and are omitted. Each throughput trial consisted
of enough client processes to saturate server throughput
continuously fetching a web object. We ran the tests for
40s and exclude the first and last 5s of each trial to avoid
including experimental artifacts or non-steady-state rates.
Throughput Per Server (TPPS). We evaluate the through-
put per server of each system. This throughput metric
accounts for all the machines needed to provide failover.
For instance, in TRODS-KV, it accounts for the use of
the key-value store, while in FT-TCP, it accounts for the
use of the backup server. These “complete system costs”
allow us to more accurately evaluate each approaches’
overhead compared to an unmodified system lacking failover
capabilities; prior work largely avoided such comparisons.

We calculate TPPS by dividing the throughput of primary
servers by 1+TPP /TPS , where TPP and TPS are the pri-
mary and secondary servers’ throughputs, respectively. So,
in a “hot backup” scheme where each primary has its own
backup (TPP = TPS), the TPPS is TPP

1+(TPP /TPS) =
TPP
2 .

To calculate the TPPS for TRODS-KV, we benchmarked
its fixed size saves to our memcached key-value store
at 123,468 saves/s. Then, in Figure 4, when the primary
server for TRODS-KV achieved a throughput of TPP , we
report a TPPS of TPP

1+TPP /123468 . To calculate the TPPS
for ~CoRAL, we benchmarked its object-sized saves to our
memcached backup. For 1K objects, memcached can handle
95,037 saves/sec and the CoRAL primary can handle 9,209
requests/sec, so the 1K TPPS is 9209

(1+(9209/95037)) = 8395.

A. Throughput
We ran three sets of experiments to examine how TRODS

affects the maximum throughput of a web server.

In our first experiment, shown in Figure 4(a), we turned
off all but one of the cores on the server machine, and ran the
web server as a single process, which ended up consuming
100% of the CPU. TRODS operations in the kernel steal
cycles from the web server, leading to a larger performance
degradation that in the non-CPU-bound experiment. Using
only a single core, TRODS-TS experiences an 11% decrease
in TPPS for 1 KB web objects (from 14,608 requests/s to
12,980 reqs/s). TRODS-KV sees a 39% reduction in TPPS
(to 8,940 reqs/s). TRODS-KV’s higher overhead arose from
both its reduced throughput on the web server machine,
as well as its consumed resources on the key-value store.
However, as object sizes increase, the web server becomes
less CPU bound and, as a result, the throughput of both
TRODS variants become competitive with the unmodified
service. For example, when objects are 32 KB, TRODS-
TS’s TPPS is less than 0.01% lower than the unmodified
system, and TRODS-KV’s TPPS is only 20% lower. In
contrast, ~CoRAL sees a 43% lower throughput for 1 KB
web objects than an unmodified service, and this grows to
a 66% lower TPPS for 32 KB objects: ~CoRAL’s overhead
grows as object sizes increase, as saving the entire object
on a backup machine becomes more costly.

In our second experiment, shown in Figure 4(b), all 8
cores on the server are used by 8 server processes. The
web server is no longer CPU bound and TRODS processing
has a smaller effect on throughput. For 1 KB web objects,
TRODS-TS decreases TPPS by 7% (from 21,745 reqs/s
to 20,315 reqs/s), while TRODS-KV decreases TPPS by
38%. As with a single core, as object size increases, the
TRODS variants become more and more competitive with
the unmodified service: TRODS-TS is within 3% of the
unmodified for all objects 2 KB and larger, while TRODS-
KV is within 11% for all objects 16 KB and larger. On the
other hand, ~CoRAL again experiences a 40% decrease in
TPPS for 1 KB web object, with its relative TPPS continuing
to worsen as object size increases.

In our third experiment, shown in Figure 4(c), we eval-
uated throughput with the Apache web server included
with the FT-TCP codebase. As FT-TCP requires a Linux
2.4.20 kernel, we ran these experiments on Emulab. Fig-

ure 4(c) shows the TPPS for FT-TCP’s hot and cold backup
approaches,7 normalized against the TPPS for unmodified
Apache on a 2.4 kernel. The figure also includes the TPPS
for TRODS and ~CoRAL, normalized against unmodified
Apache on a 2.6 kernel, which is slightly more efficient
than on the older kernel. Both TRODS and ~CoRAL exhibit
behavior similar to the previous experiments. FT-TCP’s vari-
ants exhibit relatively stable normalized TPPS, as the amount
of additional work the scheme uses is a fixed percentage of
the total work that a given response requires.

In summary, when objects are 16 KB or larger, TRODS
is competitive with an unmodified service and achieves
much lower overhead than either ~CoRAL or FT-TCP. When
objects are small and the server is CPU limited, TRODS
suffers moderately decreased throughput, but it still has
lower overhead than ~CoRAL or FT-TCP.
B. Hybrid Throughput

Figure 5(a) characterize TRODS’ performance when using
our two persistent stores in varying proportions. We measure
the median throughput of 25 trials, run with the same param-
eters as our previous single-core throughput experiment. We
normalize these throughputs against that achieved when only
using the key-value store (i.e., 100% KV), to demonstrate
the relative performance gains from a hybrid deployment.
For reference, we also plot an “ideal 50/50” line that shows
the average of TRODS-KV and TRODS-TS.

The experiment demonstrates that the hybrid version of
TRODS performs well. When 50% of connections use
the KV store and the other 50% use timestamps, TRODS
throughput is within 4% of the ideal. This alleviates our
concern that requests that use the slower KV store will
unduly decrease the throughput of the hybrid system.
C. Latency

Table 5(b) shows the median and 99th percentile latencies
for different sections of 10,000 sequential fetches of a
1 byte web object. The latencies are measured by analyzing
tcpdump logs of the client’s connections.

The period between the client sending a SYN packet and
receiving a SYN/ACK experienced no additional latency
for either variant of TRODS: storing local knowledge of a
connection has no discernible overhead. Between sending an
HTTP request (Req) and receiving the first data packet in the
response (Resp.1), TRODS-KV has notably higher latency
than an unmodified service. This comes from TRODS-
KV blocking the connection until its save to the key-value
store completes. In contrast, TRODS-TS does not block the
connection and avoids any latency penalty.

Examining the latency of the entire connection (the SYN-
FIN section) reveals that TRODS-TS imposes less than 10
µs of additional latency, while TRODS-KV imposes less
than 150 µs of additional latency. Both of these increases are

7Note that we disabled system call interception for this experiment, as
it is unnecessary for deterministic services.

miniscule compared to the tens to hundreds of milliseconds
of delay between clients and servers across the wide-area.

Having shown that TRODS adds little to no overhead to
server throughput, we now demonstrate that it successfully
recovers client connections from server failures. Figure 5(c)
shows the per-second throughput of a 3-server cluster over a
time period with individual server failures. Each server runs
TRODS-TS; the resulting graph for TRODS-KV (not shown)
is similar. Web requests for 8 KB objects are concurrently
issued by 200 HTTP clients (running on the same physical
machine), who access the cluster through a single load-
balancer. The load-balancer also delays packets to create
a synthetic 20 ms RTT from clients to servers, emulating
wide-area connection latencies to nearby datacenters.

We fail server 1 during the 7th second of the experiment
by taking down its network interface. Upon detecting this
failure, the load balancer updates its server pool. Previously
established connections to server 1 are reassigned to the
remaining servers; the TRODS components of these servers
recover the reassigned connections. We further fail server
2 during the 20th second of the experiment, at which time
the load balancer directs all connections to the remaining
server. We find that the cluster’s total throughput, as shown
in the solid line at the top of Figure 5(c), remains constant
throughout the experiment; the overhead of recovering failed
connections does not have a noticeable effect.8

D. Failover Latency
While we have demonstrated that TRODS successfully

fails over connections between servers, this does not quantify
the delay experienced by clients during this process. Figure 6
shows the excess latency due to failover for a client request-
ing various object sizes. The figure shows the results for
TRODS-KV using a single server; the results for TRODS-
TS are similar and omitted. A load-balancer sits on path and
delays packets to create a 20 ms RTT. For each run, a client
requests an object of a given size for 5 minutes, while we
synthesize a failure in the every 4 seconds at the server.

We synthesize the failure in the kernel module by drop-
ping all packets during failure period and sending RST
packets to the server application for all existing connections
(we can synthesize such failures at a much higher rate than
we can induce actual ones). We simulate the use of a 25 ms
heartbeat timer by setting the failure period to a random
amount of time less than 25 ms, effectively mimicking the
behavior we observed in our previous experiment.

We measure latency as the time between the client sending
its first SYN packet and receiving the final byte of the re-
sponse. A transfer’s excess latency is defined as its increase
over the median of all non-failed connections during the run.
We graph the 95th percentile of the excess latency for non-
failed connections. A full 75% of failed-over connections

8We limit the cluster’s throughput to ~3K reqs/s to ensure that tcpdump,
which we use to record the experiment, does not drop any packets.

 1

 1.1

 1.2

 1.3

 1.4

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

N
o

rm
a

liz
e

d
 T

P
P

S

Web Object Size

100% TS
75% TS, 25% KV

Ideal 50/50
50% TS, 50% KV
25% TS, 75% KV

100% KV

(a) Hybrid throughput experiment showing the
relative performance of TRODS when both per-
sistent stores are used. We plot the throughput of
each proportion normalized against 100% KV.

!"#$"!

!"#!

$%&!

!"#!

%&'!

!"#'()*!

$%+,-.!

/0#!

()*+!,-.!

1234156!

789347:76!

512348726!

()*+!,(!!

:1341;6!

.;834516!

;9734;:56!

/0$1#2!

1234186!

.;<34.826!

;8;34;<76!

(b) Median (and 99th percentile) latency in µs
for different sections of a single HTTP connec-
tion, for both unmodified and TRODS services.
See Figure 2 for a depiction of these sections.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(r

e
q

s/
s)

Time (s)

Server 1 Fails

Server 2 Fails

Server 3
Server 2
Server 1

Total

(c) Server and cluster throughput using
TRODS-TS when undergoing failure recovery.
The cluster’s total throughput is unaffected by
these failures, and no connections are broken.

Figure 5.

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

~0

.2

20

200

3s

E
xc

e
ss

 L
a

te
n

cy
 (

m
s)

Web Object Size (KB)

Phs 1 Phs 2 Phs 3 Phs 4 95th

Figure 6. Excess latency when experiencing failover using
TRODS-KV. Overlapping data points that occur in the same
phase of the connection are combined and the size of the
shown points is proportional to the number of data points they
represent. The different failover phases are shown in Figure 2.

had excess latency above this 95th percentile, suggesting
that this excess latency is due to failover and not noise.

Each data point in Figure 6 indicates the connection phase
(as specified in §III-B) during which the failure occurred. If
data points in the same phase overlap (within 10% of each
other), we combine them and increase the plotted size of
the representative point. We find that the excess latency has
a multi-modal distribution, with distinct modes at ~0 ms,
.2 ms, 20 ms, 200 ms, and 3 s, as marked on the right y-
axis of the figure. We briefly characterize these sources of
added latency, in turn:

• ~0 ms: Phase 4 failovers occur after the client has
received the entire response and thus add no latency.

• .2 ms: This excess latency corresponds to the time
needed to perform a key-value lookup, setup a new connec-
tion to the server, and splice in the client’s connection. We
observe it when failover is triggered by an in-flight packet.

• 20 ms: Normal connections establish a large TCP
window by the time they reach the middle of the download
phase. When failover occurs at this point, it sets up a new
connection, and thus resets the window size. This increases
the number of RTTs needed to transmit the entire object and
creates a cluster of failovers around one RTT (20 ms).

• 200 ms: Our experiment uses Linux clients that have a
200 ms minimum value for their retransmit timeout. Thus,
even though the RTT of the connection is well below
200 ms, we always incur at least that latency when failover
is triggered by a retransmitted client packet.

• 3 s: When a SYN packet is lost, the client does not
have an estimate of the connection’s RTT. Thus, it waits a
conservative 3 s before retransmitting.

As object size increases, the proportion of phase 3
failovers also increases. This is not surprising: As a larger
proportion of a connection’s transfer time is spent down-
loading an object (i.e., in phase 3), the likelihood of failure
occurring during that phase similarly increases. Notice that
there are no phase 3 failovers for pages 5 KB and smaller.
This occurs because objects of this size or smaller can be
sent in a single TCP window with all packets within the
window separated by less than 15 µs. This small gap makes
it highly likely that the server will fail before (phase 2) or
after (phase 4) sending them all, and we did not observe any
contradictions to this in the course of our experiment.

In summary, most failovers in TRODS occurs with less
than 200 ms of excess latency, sufficiently low to not no-
ticeably impact a user’s experience. While some connections
experience a 3 s delay (12% of larger objects), this delay
is unavoidable due to SYN retransmission timers. In either
case, we argue it is still preferable to a broken connection.

VII. RELATED WORK

New Transport Layers. Several solutions for failure re-
covery introduce new transport layer protocols or primitives.
Trickles [16] uses a new transport layer protocol and a new
sockets API to make one end of a connection stateless.
SCTP [19] is a transport layer protocol that, among many
other things, allows a client to have connections to multiple
servers it can switch between. TCP Migrate [17] can be used
to migrate a connection from one server to another, which
can then be used with a soft-state synchronization protocol
between servers to accomplish failover [18]. M-TCP [20] is
a another TCP-like transport protocol designed to support
migration. All of these solutions modify the client’s TCP/IP
stack, TRODS does not require any client-side changes.

TCP Failover. Moving up the stack, there is a large body
of work on failover for TCP connections that do not require
changes to clients. FT-TCP [24] accomplishes TCP failover
by logging (persistently storing) every packet in a TCP con-
nection on a primary server to a backup server. Then, if the
primary server fails, the (cold) backup runs through the TCP
connection, and, once it catches up to the client’s current
position in the stream, it begins serving the client. As this
can make the time to failover a connection arbitrarily long,
they also describe a hot backup that processes all packets
upon receiving them. FT-TCP is more general than TRODS,
as it applies to all deterministic TCP services. However,
FT-TCP pays for this generality with increased overhead.
Every packet must be logged or processed in FT-TCP, while
TRODS-KV only “logs” once per object and TRODS-TS
avoids it entirely. Koch et al.describe a system [10] that is
very similar to FT-TCP’s hot backup approach. ST-TCP [14]
is another primary-backup system that avoids some logging
overhead placing the primary and backup on the same L2
network and having the backup snoop on the primary’s
traffic. Zhang et al. [25] describe a similar system that uses
a stateful load-balancer to explicitly transmit packets to both
the primary and backup. The Backdoors [21] avoids logging
by using programmable NICs to extract TCP and application
state from the server’s memory after an OS crash.
HTTP Failover. CoRAL [1] is primary-backup system
targeted at HTTP. All packets bound for the primary are
first routed through the backup who logs them. The primary
then uses application-level knowledge to identify the full
reply and persistently store it on the backup. TRODS is more
efficient that CoRAL because it avoids persistently storing
the entire reply. Luo et al. [13] describes a system for HTTP
failover where a “dispatcher” (load balancer) terminates the
client’s connections. Once a client has sent an entire request,
the load balancer stores it and forwards it onto a server.
Then if that server fails before fully responding, the load
balancer reconnects to a new server to continue. This moves
the problem of failure from the servers to the load balancer.
TCP Timestamps. We are not the first to use the TCP
timestamp option for embedding state. Giffin et al. [6] use
the low order bits of the TCP timestamp as a covert channel
for undetectable communication. In addition, starting with
version 2.6.26, the Linux kernel added support for window
scaling and SACK options in SYN cookies by encoding their
value in the lowest 9 bits of the TCP timestamp [7].

VIII. CONCLUSION

TRODS is a fully backwards-compatible system for in-
troducing transparent failover to object delivery services.
TRODS leverages cross-layer knowledge of both application
and TCP state, as well as TCP’s reliable transmission mech-
anisms, to exert control over unmodified clients. This control
allows TRODS to coerce clients into providing storage and
initiating failover when needed.

Through evaluation of a TRODS cluster, we demonstrate
that it is both practical and efficient. In failure-free scenarios,
TRODS does not significantly increase latency or decrease
server throughput. When a failure occurs, TRODS transpar-
ently restores clients’ ongoing connections, without adding
significant latency to the connections.

ACKNOWLEDGMENT

The authors would like to thank Erik Nordström, Muneeb
Ali, Anirudh Badam, Nate Foster, Prem Gopalan, Rob
Harrison, Michael Kaminsky, Wonho Kim, Steven Ko,
David Shue, Jeff Terrace, and Vijay Vasudevan for helpful
comments on earlier drafts of this paper. This work was
supported by NSF CAREER Grant #0953197 (CSR) and an
ONR Young Investigator Award.

REFERENCES
[1] N. Aghdaie and Y. Tamir. CoRAL: A transparent fault-tolerant web

service. Journal of Systems and Software, 82(1), 2009.
[2] A. Broder et al. Graph structure in the web. In Proc. World Wide

Web Conference (WWW), May 2000.
[3] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable

distributed systems. Journal of the ACM, 1996.
[4] R. Fielding et al. RFC 2616: HTTP/1.1, Jun 1999.
[5] B. Fitzpatrick. Memcached: a distributed memory object caching

system. http://memcached.org/, 2009.
[6] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts. Covert messaging

through tcp timestamps. In Proc. PET, Apr. 2002.
[7] Improving syncookies. http://lwn.net/Articles/277146/, Apr 2008.
[8] V. Jacobson, R. Braden, and D. Borman. RFC 1323: Tcp extensions

for high performance, May 1992.
[9] D. Karger et al. Consistent hashing and random trees: Distributed

caching protocols for relieving hot spots on the World Wide Web. In
Proc. Symposium on Theory of Computing (STOC), May 1997.

[10] R. R. Koch, S. Hortikar, L. E. Moser, and P. M. Melliar-Smith.
Transparent tcp connection failover. Proc. DSN, June 2003.

[11] E. Kohler et al. The click modular router. ACM TOCS, 2000.
[12] Lighttpd. http://www.lighttpd.net/, 2010.
[13] M. Luo and C. Yang. Constructing zero-loss web services. In Proc.

INFOCOM, Apr. 2001.
[14] M. Marwah, S. Mishra, and C. Fetzer. Tcp server fault tolerance using

connection migration to a backup server. In Proc. DSN, Jun 2003.
[15] R. Morris. A weakness in the 4.2bsd unix tcp/ip software. Technical

Report TR-117, Bell Labs, 1985.
[16] A. Shieh, A. C. Myers, and E. G. Sirer. A stateless approach to

connection-oriented protocols. ACM TOCS, 26, 2008.
[17] A. C. Snoeren and H. Balakrishnan. An end-to-end approach to host

mobility. In Proc. MobiCom, Aug. 2000.
[18] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan. Fine-grained

failover using connection migration. In Proc. USITS, Mar. 2001.
[19] R. Stewart. RFC 4960: SCTP, Sep 2007.
[20] F. Sultan et al. Migratory tcp: connection migration for service

continuity in the internet. In Proc. ICDCS, July 2002.
[21] F. Sultan et al. Recovering internet service sessions from operating

system failures. IEEE Internet Computing, 9(2), 2005.
[22] B. White et al. An integrated experimental environment for distributed

systems and networks. In Proc. OSDI, Dec. 2002.
[23] Windows ephemeral port range. http://support.microsoft.com/kb/

929851, 2009.
[24] D. Zagorodnov et al. Practical and low-overhead masking of failures

of tcp-based servers. ACM TOCS, 27(2), 2009.
[25] R. Zhang, T. F. Abdelzaher, and J. A. Stankovic. Efficient tcp

connection failover in web server clusters. In Proc. INFOCOM, Mar.
2004.

Appeared in 7th USENIX Symposium on Network

Design and Implementation (NSDI ’10)

Prophecy: Using History for High-Throughput Fault Tolerance
Siddhartha Sen, Wyatt Lloyd, and Michael J. Freedman

Princeton University

Abstract
Byzantine fault-tolerant (BFT) replication has enjoyed a
series of performance improvements, but remains costly
due to its replicated work. We eliminate this cost for
read-mostly workloads through Prophecy, a system that
interposes itself between clients and any replicated ser-
vice. At Prophecy’s core is a trusted sketcher compo-
nent, designed to extend the semi-trusted load balancer
that mediates access to an Internet service. The sketcher
performs fast, load-balanced reads when results are his-
torically consistent, and slow, replicated reads otherwise.
Despite its simplicity, Prophecy provides a new form of
consistency called delay-once consistency. Along the
way, we derive a distributed variant of Prophecy that
achieves the same consistency but without any trusted
components.

A prototype implementation demonstrates Prophecy’s
high throughput compared to BFT systems. We also de-
scribe and evaluate Prophecy’s ability to scale-out to sup-
port large replica groups or multiple replica groups. As
Prophecy is most effective when state updates are rare,
we finally present a measurement study of popular web-
sites that demonstrates a large proportion of static data.

1 Introduction
Replication techniques are now the norm in large-scale
Internet services, in order to achieve both reliability and
scalability. However, leveraging active agreement to
mask failures, whether to handle fail-stop behavior [41,
50] or fully malicious (Byzantine) failures [42], is not
yet widely used. There is some movement in this direc-
tion from industry—such as Google’s Chubby [10] and
Yahoo!’s Zookeeper [66] coordination services, based on
Paxos [41]—but both are used to manage infrastructure,
not directly mask failures in customer-facing services.

And yet non-fail-stop failures in customer-facing ser-
vices continue to occur, much to the chagrin and concern
of system operators. Failures may arise from malicious
break-ins, but they also may occur simply from system
misconfigurations: Facebook leaking source code due to
one misconfigured server [60], or Flickr mixing up re-
turned images due to one improper cache server [24].
In fact, both of these examples could have been pre-
vented through redundancy and agreement, without re-

quiring full N-version programming [8]. The perceived
need for systems robust to Byzantine faults—a superset
of misconfigurations and Heisenbugs—has spurned al-
most a cottage industry on improving performance re-
sults of Byzantine fault tolerant (BFT) algorithms [1, 6,
12, 17, 30, 37, 38, 56, 62, 64, 65, 67].

While the latency of recent BFT algorithms has
approached that of unreplicated reads to individual
servers [15, 38, 64], the throughput of such systems falls
far short. This is simple math: a minimum of four repli-
cas [12] (or sometimes even six [1]) are required to toler-
ate one faulty replica, and at least three must participate
in each operation. For datacenters in the (tens of) thou-
sands of servers, requiring four times as many servers
for the same throughput may be a non-starter. Even ser-
vices that already replicate their data, such as the Google
File System [25], would see their throughput drop signif-
icantly when using BFT agreement.

But if the replication cost of BFT is provably neces-
sary [9], something has to give. One might view our
work as a thought experiment that explores the potential
benefit of placing a small amount of trusted software or
hardware in front of a replicated service. After all, wide-
area client access to an Internet service is typically medi-
ated by some middlebox, which is then at least trusted to
provide access to the service. Further, a small and sim-
ple trusted component may be less vulnerable to prob-
lems such as misconfigurations or Heisenbugs. And by
treating the back-end service as an abstract entity that ex-
poses a limited interface, this simple device may be able
to interact with both complex and varied services. Our
implementation of such a device has less than 3000 lines
of code.

Barring such a solution, most system designers opt
either for cheaper techniques (to avoid the costs of
state machine replication) or more flexible techniques
(to ensure service availability under heavy failures or
partitions). The design philosophies of Amazon’s Dy-
namo [18], GFS [25], and other systems [20, 23, 61]
embrace this perspective, providing only eventually-
consistent storage. On the other hand, the tension be-
tween these competing goals persists, with some systems
in industry re-introducing stronger consistency proper-
ties. Examples include timeline consistency in Yahoo!’s
PNUTS [16] and per-user cache invalidation on Face-
book [21]. Nevertheless, we are unaware of any major

1

use of agreement at the front-tier of customer-facing ser-
vices. In this paper, we challenge the assumption that
the tradeoff between strong consistency and cost in these
services is fundamental.

This paper presents Prophecy, a system that lowers
the performance overhead of fault-tolerant agreement for
customer-facing Internet services, at the cost of slightly
weakening its consistency guarantees. At Prophecy’s
core is a trusted sketcher component that mediates client
access to a service replica group. The sketcher maintains
a compact history table of observed request/response
pairs; this history allows it to perform fast, load-balanced
reads when state transitions do not occur (that is, when
the current response is identical to that seen in the past)
and slow, replicated reads otherwise (when agreement
is required). The sketcher is a flexible abstraction that
can interface with any replica group, provided it exposes
a limited set of defined functionality. This paper, how-
ever, largely discusses Prophecy’s use with BFT replica
groups. Our contributions include the following:

• When used with BFT replica groups that guaran-
tee linearizability [32], Prophecy significantly in-
creases throughput through its use of fast, load-
balanced reads. However, it relaxes the consistency
properties to what we term delay-once semantics.

• We also derive a distributed variant of Prophecy,
called D-Prophecy, that similarly improves the
throughput of traditional fault-tolerant systems. D-
Prophecy achieves the same delay-once consistency
but without any trusted components.

• We introduce the notion of delay-once consistency
and define it formally. Intuitively, it implies that
faulty nodes can at worst return only stale (not arbi-
trary) data.

• We demonstrate how to scale-out Prophecy to sup-
port large replica groups or many replica groups.

• We implement Prophecy and apply it to BFT replica
groups. We evaluate its performance on realistic
workloads, not just null workloads as typically done
in the literature. Prophecy adds negligible latency
compared to standard load balancing, while it pro-
vides an almost linear-fold increase in throughput.

• Prophecy is most effective in read-mostly work-
loads where state transitions are rare. We conduct
a measurement study of the Alexa top-25 websites
and show that over 90% of requests are for mostly
static data. We also characterize the dynamism in
the data.

Table 1 summarizes the different properties of a tra-
ditional BFT system, D-Prophecy, and Prophecy. The
remainder of this paper is organized as follows. In §2 we

Property BFT D-Prophecy Prophecy
Trusted components No No Yes
Modified clients Yes Yes No
Session length Long Long Short, long
Load-balanced reads No Yes Yes
Consistency Linearized Delay-once Delay-once

Table 1: Comparison of a traditional BFT system, D-
Prophecy, and Prophecy.

motivate the design of D-Prophecy and Prophecy, and we
describe this design in §3. In §4 we define delay-once
consistency and analyze Prophecy’s implementation of
this consistency model. In §5 we discuss extensions to
the basic system model that consider scale and complex
component topologies. We detail our prototype imple-
mentation in §6 and describe our system evaluation in
§7. In §8 we present our measurement study. We review
related work in §9 and conclude in §10.

2 Motivating Prophecy’s Design
One might rightfully ask whether Prophecy makes un-
fair claims, given that it achieves performance and scal-
ability gains at the cost of additional trust assumptions
compared to traditional fault-tolerant systems. This sec-
tion motivates our design through the lens of BFT sys-
tems, in two steps. First, we improve the performance
of BFT systems on realistic workloads by introducing a
cache at each replica server. By optimizing the use of this
cache, we derive a distributed variant of Prophecy that
does not rely on any trusted components. Then, we ap-
ply this design to customer-facing Internet services, and
show that the constraints of these services are best met
by a shared, trusted cache that proxies client access to the
service replica group. The resulting system is Prophecy.

In our discussion, we differentiate between write re-
quests, or those that modify service state, and read re-
quests, or those that simply access state.

2.1 Traditional BFT Services and Real
Workloads

A common pitfall of BFT systems is that they are eval-
uated on null workloads. Not only are these workloads
unrealistic, but they also misrepresent the performance
overheads of the system. Our evaluation in §7 shows that
the cost of executing a non-null read request in the PBFT
system [12] dominates the cost of agreeing on the order-
ing of the request, even when the request is served en-
tirely from main memory. Thus the PBFT read optimiza-
tion, which optimistically avoids agreement on read re-
quests, offers little or no benefit for most realistic work-
loads. Improving the performance of read requests re-
quires optimizing the execution of the reads themselves.

2

Unlike write requests, which modify service state and
hence must be executed at each replica server, read re-
quests can benefit from causality tracking. For example,
if there are no causally-dependent writes between two
identical reads, a replica server could simply cache the
response of the first read and avoid the second read al-
together.1 However, this requires (1) knowledge of the
causal dependencies of all write requests, and (2) a re-
sponse cache of all prior reads at each replica server. The
first requirement is unrealistic for many applications: a
single write may modify the service state in complex
ways. Even if we address this problem by invalidating
the entire response cache upon receiving any write, the
space needed by such a cache could be prohibitive: a
cache of Facebook’s 60+ billion images on April 30,
2009 [49], assuming a scant 1% working-set size, would
occupy approximately 15TB of memory. Thus, the sec-
ond requirement is also unrealistic.

Instead of caching each response r, the replica servers
can store a compact, collision-resistant sketch s(r) to en-
able cache validation. That is, when a client issues a read
request for r, only one replica server executes the read
and replies with r, while the remaining replica servers
reply with s(r) from their caches. The client accepts r
only if the replica group agrees on s(r) and if s(r) vali-
dates r. Thus, even if the replica that returns r is faulty, it
cannot make the client accept arbitrary data; in the worst
case, it causes the client to accept a stale version of r.
Therefore we only need to ask one replica to execute the
read, effectively implementing what we call a fast read.
Fast reads drastically improve the throughput of read re-
quests and can be load-balanced across the replica group
to avoid repeated stale results. The replica servers main-
tain a fresh cache by updating it during regular (repli-
cated) reads, which are issued when fast reads fail. Us-
ing a compact cache reduces the memory footprint of the
Facebook image working set to less than 27GB.

We call the resulting system Distributed Prophecy, or
D-Prophecy, and call the consistency semantics it pro-
vides delay-once consistency.

2.2 BFT Internet Services
An oft-overlooked issue with BFT systems, including D-
Prophecy, is that they are implicitly designed for services
with long-running sessions between clients and replica
servers (or at least always presented and evaluated as
such). Clients establish symmetric session keys with
each replica server, although the overhead of doing so
is not typically included when calculating system perfor-
mance. Figure 1 shows the throughput of the PBFT im-

1Other causality-based optimizations, such as client-side specula-
tion [64] or server-side concurrent execution [37] are also possible, but
are complementary to any cache-based optimizations.

 1
 2
 4
 8

 16
 32
 64

 1 4 16 64 256 1024 4096

Th
ro

ug
hp

ut
 (K

re
qs

/s
)

Session Length

PBFT-ro

Figure 1: PBFT’s throughput in the thousands of requests
per second for null requests in sessions of varying length.
Note that both axes are log scale.

plementation as a function of session length, with all rel-
evant optimizations enabled including the read optimiza-
tion (indicated by ‘ro’). As sessions get shorter, through-
put is drastically reduced because replicas need to de-
crypt and verify clients’ new session keys. For PBFT
sessions consisting of 128 read requests, throughput is
half of its maximum, and for sessions consisting of 8 read
requests, throughput is one-tenth of its maximum.

The assumption of long-lived sessions breaks down
for Internet services, however, which are mostly char-
acterized by short-lived sessions and unmodified clients.
These properties make it impractical for clients to es-
tablish per-session keys with each replica. Moreover,
depending on clients to perform protocol-specific tasks
leads to poor backwards compatibility for legacy clients
of Internet services (e.g., web browsers), where cryp-
tographic support is not easily available [2]. Instead,
we might turn to using an entity knowledgeable of the
BFT protocol to proxy client requests to a service replica
group. And since Internet services already rely on the
correct operation of local middleboxes (at least with re-
spect to service availability), we extend this reliance
by converting the middlebox into a trusted proxy. The
trusted proxy interfaces multiple short-lived sessions be-
tween clients and itself with a single long-lived session
between itself and the replica group, acting as a client in
the traditional BFT sense.

When using proxied client access to a D-Prophecy
group, there is no need to maintain redundant caches at
each replica server: a shared cache at the trusted proxy
suffices, and it preserves delay-once consistency. A fast
read now mimics the performance of an unreplicated
read, as the proxy only asks one replica server for r and
validates the response with its (local) copy of s(r). Since
the cache is compact, the proxy remains a small and sim-
ple trusted component, amenable to verification. We call
this system Prophecy, and present its design in §3.

2.3 Applications
The delay-once semantics of Prophecy imply that faulty
nodes can at worst return stale (not arbitrary) data. This

3

semantics is sufficient for a variety of applications. For
example, Prophecy would be able to protect against the
Facebook and Flickr mishaps mentioned in the intro-
duction, because it would not allow arbitrary data to
reach the client. Applications that serve inherently static
(write-once) data are also good candidates, because here
a “stale” response is as fresh as the latest response. In §8
we demonstrate the propensity for static data in today’s
most popular websites.

Social networks and “Web 2.0” applications are good
candidates for delay-once consistency because they typ-
ically do not require all writes to be immediately visible.
Consider the following example from Yahoo!’s PNUTS
system [16]. A user wants to upload spring-break pho-
tos to an online photo-sharing site, but does not want his
mother to see them. So, he first removes her from the per-
mitted access list of his database record and then adds the
spring-break photos to this record. A consistency model
that allows these updates to appear in different orders at
different replicas, such as eventual consistency [22], is
insufficient: it violates the user’s intention of hiding the
photos from his mother. Delay-once consistency only
allows stale data to be returned, not data out-of-order:
if the photos are visible, then the access control update
must have already taken place. Further, once the user
has “refreshed” his own page and sees the photos, he is
guaranteed that his friends will also see them.

For applications where writes are critical, such as a
bank account, delay-once consistency is appropriate be-
cause it ensures that writes follow the protocol of the
replica group. Although reads may return stale results,
they can only do so in a limited way, as we discuss in
§4. On the other hand, there are some applications for
which delay-once consistency is not beneficial, such as
those that critically depend on reading the latest data
(e.g., a rail signaling service), or those that return non-
deterministic content (e.g., a CAPTCHA generator).

3 System Design
We first define a sketcher abstraction that lies at the heart
of Prophecy. For a more traditional setting, we use this
sketcher to design a distributed variant of Prophecy, or
D-Prophecy. We then present the design of Prophecy.

3.1 The Sketcher
Prophecy and D-Prophecy use a sketcher to improve
the performance of read requests to an existing replica
group. A sketcher maintains a history table of compact,
collision-resistant sketches of requests and responses
processed by a replica group. Each entry in the history
table is of the form (s(q),s(r)), where q is a request, r
is the response to q, and s is the sketching function used

sketcher Replica�
Server�1

ReplicaReplica�
Server�2

Clients
Replica�
Server�N

Replica�Group

Figure 2: Executing a fast read in D-Prophecy. Only one
replica server executes the read (bold line); the others re-
turn the response sketch in the history table (dashed lines).

for compactness (s typically makes use of a secure hash
function like SHA-1). The sketcher looks up or updates
entries in the history table using a standard get/set inter-
face, keyed by s(q). In Prophecy, only read requests and
responses are stored in the history table.

The specific use of the sketcher and its interaction
with the replica group differs between Prophecy and D-
Prophecy. However, both systems require the replica
group to support the following request interface:

• RESP fast(REQ q)
• (RESP r, SEQ_NO s) replicated(REQ q)

We expect the fast interface to be new for most replica
groups. The replicated interface should already exist, but
may need to be extended to return sequence numbers. No
modifications are made to the replica group beyond what
is necessary to support the interfaces, in either system.

3.2 D-Prophecy
Figure 2 shows the system model of D-Prophecy. Ex-
cept for the sketcher, all other entities are standard com-
ponents of a replicated service: clients send requests to
(and receive responses from) a service implemented by
N replica servers, according to some replication proto-
col like PBFT. Each replica server is augmented with a
sketcher that maintains a history table for read requests.
The history table is read by the fast interface and updated
by the replicated interface, as follows.

A client issues a fast read q by sending it to all replica
servers and choosing one of them to execute q and re-
turn r. The policy for selecting a replica server is un-
specified, but a uniformly random policy has especially
useful properties (see §4.2). The other replicas use their
sketcher to lookup the entry for s(q) and return the cor-
responding response sketch s(r), or null if the entry does
not exist. If the client receives a quorum of non-null re-
sponse sketches that match the sketch of the actual re-
sponse, it accepts the response. The quorum size de-
pends on the replication protocol; we give an example

4

Replica�
Server�12

Replica�
Server�2Sketcher Replica

Client

1

3

2

Clients
Trusted�proxy Replica

Client 34 3

Replica�Group

Replica�
Server�N

Figure 3: Prophecy mediating access to a replica group.

below. Otherwise, we say a transition has occurred and
the client reissues the request as a replicated read. A
replicated read is executed according to the protocol of
the replica group, with one additional step: all replica
servers use their sketcher to update the entry for s(q)
with the new value of s(r), before sending a response
to the client.

Readers familiar with the PBFT protocol will notice
that fast reads in D-Prophecy look very similar to PBFT
optimized reads. However, there is a crucial difference:
PBFT requires every replica server to execute the read,
while D-Prophecy requires only one such execution, per-
forming in-memory lookups of s(r) at the rest. For non-
null workloads, this represents a significant performance
improvement, as shown in §7. On the flip side, each
replica server requires additional memory to store its his-
tory table, though in practice this overhead is small. The
quorum size required for fast reads is identical to the quo-
rum size required for optimized reads: (2N + 1)/3 re-
sponses suffices with some caveats (see §5.1.3 of [11]),
and N always suffices.

The architecture of D-Prophecy resembles that of a
traditional BFT system: clients establish session keys
with the replica servers and participate fully in the repli-
cation protocol. As we observed in §2.2, this makes D-
Prophecy unsuitable for Internet services, with their en-
vironment of short-lived sessions and unmodified clients.
This motivates the design of Prophecy, discussed next.

3.3 Prophecy
Figure 3 shows the simplest realization of Prophecy’s
system model. (We consider extensions to the basic
model in §5.) There are four types of entities: clients,
sketchers, replica clients, and replica servers. Unmod-
ified clients’ requests to a service are handled by the
sketcher; together with the replica clients, this serves as
the trusted proxy described in §2.2. The replica clients
interact with the service, implemented by a group of N
replica servers, according to some replication protocol.

The sketcher issues each request through a replica
client; the next subsection details the handling of re-
quests. Functionally, the sketcher in Prophecy plays
the same role as the per-replica-server sketchers in D-
Prophecy. Architecturally, however, its role is quite dif-

ferent. In Prophecy, a fast read is sent only to the single
replica server that executes it, and neither the fast nor
replicated interface accesses the history table directly.
Thus, the replica group is treated as a black box. Since
the sketcher is external to the replica group, writes pro-
cessed by the group may no longer be visible or dis-
cernible to the sketcher; i.e., there may exist an exter-
nal write channel. Since only replica clients interact di-
rectly with the replica servers, each replica client can
maintain a single, long-lived session with each replica
server. Wide-area clients are shielded from any churn
in the replica group and are unaware of the replication
protocol: the only responses they see are those that have
already been accepted by the sketcher.

The type of session used between clients and the
sketcher is left open by our design, as it may vary from
service to service. For example, services that only allow
read or simple write operations (e.g., HTTP GETs and
POSTs) may use unauthenticated sessions. A service like
Facebook may use authentication only during user lo-
gin, and use unauthenticated cookie-based sessions after
that. Finally, services that store private or protected data,
such as an online banking system, may secure sessions
at the application level (e.g., using HTTPS). Prophecy’s
architecture makes it easy to cope with the overhead of
client-sketcher authentication, because one can simply
add more sketchers if this overhead grows too high (see
§5). To achieve the same scale-out effect, traditional
BFT systems like PBFT and D-Prophecy would need to
add entire replica groups.

3.3.1 Handling a Request
The sketcher stores two additional fields with each entry
(s(q),s(r)) in the history table: the sequence number s
associated with r, and a 2-bit value b indicating whether
s(q) is whitelisted (always issued as a fast read), black-
listed (always issued as a replicated request), or neither
(the default). The sketch s(r) is empty for whitelisted or
blacklisted requests. Algorithm 1 describes the process-
ing of a request and is illustrated in Figure 3 (numbers on
the right correspond to the numbered steps in the figure).

Prophecy requires a sequence number to be returned
by replicated, as it seeks to issue concurrent requests to
the replica group using multiple replica clients. Con-
currency allows reads to execute in parallel to improve
throughput. Unfortunately, a sketcher that issues re-
quests concurrently has no way of discerning the cor-
rect order of replicated reads by itself, i.e., the order they
were processed by the replica group. Thus, it relies on
the sequence number returned by replicated to ensure
that entries in the history table always reflect the latest
system state.

The sketcher requires some application-specific know-
ledge of the format of q and r. This information is used

5

Algorithm 1 Processing a request at the sketcher.
Receive request q from client (1)
if q is a read request then

(s(q),s(r),s ,b) Lookup s(q) in history table
if (s(r) 6= null) and (b 6= blacklisted) then

r0 fast(q) (2)
if (s(r0) = s(r)) or (b = whitelisted) then

return r0 to client (4)
end if

end if
(r0,s 0) replicated(q) (3)
if (s(r) = null) or (s 0 > s) then

Update history table with (s(q),s(r0),s 0,b)
end if

else
(r0,s 0) replicated(q) (3)

end if
return r0 to client (4)

to determine if q is a read or write request, and to dis-
card extraneous or non-deterministic information from q
or r while computing s(q) or s(r). For example, in our
prototype implementation of Prophecy, an HTTP request
is parsed by an HTTP protocol handler to extract the
URL and HTTP method of the request; the same handler
removes the date/time information from HTTP headers
of the response. In practice, the required application-
specific knowledge is minimal and limited to parsing
protocol headers; the payload of the request or response
(e.g., the HTTP body) is treated opaquely by the sketcher.

Whitelisting and blacklisting add flexibility to the han-
dling of requests, but may require additional application-
specific knowledge. One use of blacklisting that does
not require such knowledge is to dynamically blacklist
requests that exhibit a high frequency of transitions (e.g.,
dynamic content). This allows the sketcher to avoid is-
suing fast reads that are very likely to fail. (We do not
currently implement this optimization.)

3.4 Performance
In our analysis and evaluation, the sketcher is able to ac-
commodate all read requests in its history table without
evicting any entries. If needed, a replacement policy such
as LRU may be used, but this is unlikely: our current im-
plementation can store up to 22 million unique entries
using less than 1GB of memory.

The performance savings of a sketcher come from the
ability to execute fast, load-balanced reads whose re-
sponses match the entries of the history table. Thus,
Prophecy and D-Prophecy are most effective in read-
mostly workloads. We can estimate the savings by look-
ing at the cost, in terms of per-replica processing time,

of executing a read in these systems. Let t be the prob-
ability that a state transition occurs in a given workload.
Let CR be the cost of a replicated read and Cr the cost
of a fast read (excluding any sketcher processing in the
case of D-Prophecy), and let Chist be the cost of com-
puting a sketch and performing a lookup/update in a his-
tory table. Below, we calculate the expected cost of a
read in Prophecy and D-Prophecy when used with a BFT
replica group that uses PBFT’s read optimization. For
comparison, we include the cost of the unmodified BFT
group; here, t 0 is the probability that a PBFT optimized
read fails.

Prophecy: [Cr +2Chist]+ [t(NCR +Chist)]
D-Prophecy: [Cr +(N�1)Chist]+ [t(NCR +NChist)]

BFT: [NCr]+
⇥
t 0NCR

⇤

The addends on the left and right of each equation
show the cost of a fast read and a replicated read, respec-
tively. The equations do not include optimizations that
benefit all systems equally, such as separating agreement
from execution [67]. Prophecy performs two lookups in
the history table during a fast read (one before and one
after executing the read), and one update to the history
table during a replicated read. D-Prophecy performs a
history table lookup at all but one replica server during
a fast read, and an update to the history table of each
replica server during a replicated read. These equations
show that Prophecy operates at maximum throughput
when there are no transitions, because only one replica
server processes each request, as compared to over 2/3
of the replica servers in the BFT system (assuming, ideal-
istically, that only a necessary quorum of replica servers
execute the optimized read, and the remaining replicas
ignore it). Since Chist ⌧ Cr for non-null workloads—
the former involves an in-memory table lookup, the latter
an actual read—this is a factor of over (2/3)N improve-
ment. D-Prophecy’s savings are similar for the same
reason. Although t 0 may be significantly less than t in
practice—given that PBFT optimized reads may still suc-
ceed even when a state transition occurs—our evaluation
in §7 reveals that the benefit of PBFT optimized reads
over replicated reads is small for real workloads. Finally,
while Prophecy’s throughput advantage degrades as t in-
creases, we demonstrate in §8 that t is indeed low for
popular web services.

4 Consistency Properties
Despite their relatively simple designs, the consistency
properties of Prophecy and D-Prophecy are only slightly
weaker than those of the replica group. In this section,
we formalize the notion of delay-once consistency intro-
duced in §2. Delay-once consistency is a derived consis-

6

tency model; here, we derive it from linearizability [32],
the consistency model of most BFT protocols, and obtain
delay-once linearizability. Then, we show how Prophecy
implements delay-once linearizability.

4.1 Delay-once Linearizability
A history of requests and responses executed by a ser-
vice is linearizable if it is equivalent to a sequential his-
tory [40] that respects the irreflexive partial order on re-
quests imposed by their real-time execution [32]. Re-
quest X precedes request Y in this order, written X � Y ,
if the response of X is received before Y is sent. Suppose
one client sends requests (Ra,W b,Rc) to the service and
another client sends requests (W d ,Re,R f ,W g), with par-
tial order {Ra � Re,W g � Rc}. Then a valid linearized
history could look like the following:

hRa
0,W

d
1 ,W b

2 ,Re
2,R

f
2 ,W g

3 ,Rc
3i.

The R’s and W ’s represent read and write requests, and
subscripts represent the service state reflected in the re-
sponse to each request (following [28]). In contrast to
this history, the following is a valid delay-once lineariz-
able history, though it is not linearizable:

hRa
0,W

d
1 ,W b

2 ,Re
0,R

f
2 ,W g

3 ,Rc
2i.

Requests Re and Rc have stale responses because they do
not reflect the state update caused by sequentially prece-
dent writes (note that the staleness of Re’s response is
discernible to the issuing client, whereas the staleness of
Rc’s response is not). At a high level, a delay-once his-
tory looks like a linearized history with reads that reflect
the state of prior reads, but not necessarily prior writes.
The manner in which reads can be stale is not arbitrary,
however. Specifically, a history H is delay-once lineariz-
able if the subsequence of write requests in H, denoted
by H|W , satisfies linearizability, and if read requests sat-
isfy the following property:

Delay-once property. For each read request Rx in
H, let Ry and Wz be the read and write request of
maximal order in H such that Ry � Rx and Wz � Rx.
Then either x = y or x = z.

Delay-once linearizability implies both monotonic
read and monotonic write consistency, but not read-after-
write consistency. If �H is the partial order of the history
H, delay-once linearizability respects �H|W but not �H ,
due to the possible presence of stale reads.

The delay-once property ensures two things: first,
reads never reflect state older than that of the latest read
(they are only delayed to one stale state), and second,
reads that are updated reflect the latest state immediately.
Thus, a system that implements delay-once consistency
is responsive. To verify if a read in a delay-once consis-
tent history H is stale, one can check the following:

Staleness indicator. Given a read request Rx in H,
let Wy be the write request of maximal order in H
such that Wy � Rx. Rx is stale if and only if x < y.

The staleness property explains why object-based sys-
tems like web services fare particularly well with delay-
once consistency. In these systems, state updates to one
object are isolated from other objects, so staleness can
only occur between writes and reads to the same object.

The above derivation of delay-once consistency is
based on linearizability, but derivations from other con-
sistency models are possible. For example, a weaker
condition called read-after-write consistency also yields
meaningful delay-once semantics.

4.2 Prophecy’s Consistency Semantics
We now show that Prophecy implements delay-once lin-
earizability when used with a replica group that guaran-
tees linearizability, such as a PBFT replica group. A
similar (but simpler) argument shows that D-Prophecy
achieves delay-once linearizability, omitted here due to
space constraints.

Prophecy inherits the system and network model of the
replica group. When used with a PBFT replica group, we
assume an asynchronous network between the sketcher
and the replica group that may fail to deliver messages,
may delay them, duplicate them, or deliver them out-of-
order. Replica clients issue requests to the replica group
one at a time; requests are retransmitted until they are
received. We do not make any assumptions about the or-
ganization of the service’s state; for example, the service
may be a monolithic replicated state machine [39, 58]
or a collection of numerous, isolated objects [32]. The
sketcher may process requests concurrently. We model
this concurrency by allowing the sketcher to issue re-
quests to multiple replica clients simultaneously; the or-
der in which these requests return from replica clients is
arbitrary. Updates to service state may not be discernible
or visible to the sketcher—i.e., there may exist an ex-
ternal write channel—as discussed in §3.3. We show
that Prophecy achieves delay-once linearizability despite
concurrent requests and external writers.

Our analysis of Prophecy’s consistency requires a non-
standard approach because it is the sketcher, not the
replica servers, that enforces this consistency, and be-
cause fast reads are executed by individual replicas. In
particular, we introduce the notion of an accepted his-
tory. Let Hi for 1 i N be the history of all write
requests executed by replica server i and all fast read re-
quests executed by i that were accepted by the sketcher.
Let Rs be the history of all replicated read requests ac-
cepted by the sketcher. An accepted history Ai is the
union of Hi and Rs, for each replica server i. The po-
sition in Ai of each replicated read in Rs is well defined

7

because all reads are accepted at a single location (the
sketcher) and all replicated requests are totally ordered
by linearizability. We claim that the accepted history Ai
is delay-once linearizable.

To see this, observe that replicated requests satisfy
linearizability because they follow the protocol of the
replica group. The sketcher ensures that replicated reads
update the history table according to this order by using
the sequence numbers returned by the replicated inter-
face. Further, the sketcher only accepts a fast read if it
reflects the state of the latest replicated read. Since Ai
contains all replicated reads accepted by the sketcher (not
just those accepted by i), and since accepted fast reads
never reflect new state, it follows that all fast reads in Ai
must satisfy the delay-once property. While Ai may not
contain all write requests accepted by the replica group
(e.g., if i is missing an update), this only affects i’s abil-
ity to participate in replicated reads, and does not violate
delay-once linearizability. Thus, we conclude that Ai is
delay-once linearizable.

Limiting staleness via load balancing. Stale responses
are returned by faulty replica servers or correct replica
servers that are out-of-date. We can easily verify if an
accepted history contains stale responses by checking the
staleness indicator defined in §4. To limit the number of
stale responses, the fast interface dispatches fast reads
from all clients uniformly at random over the replica
servers.2 Let g be the fraction of faulty or out-of-date
replica servers currently in the replica group. If g is a
constant, then gk, the probability that k consecutive fast
reads are sent to these servers, is exponentially decreas-
ing. For BFT protocols, g < 2/3 assuming a worst-case
scenario where the maximum number of correct nodes
are out-of-date. For a replica group of size 4, the proba-
bility that k > 6 is less than 1.6%.

5 Scale and Complex Architectures
This section describes extensions to the basic Prophecy
model in order to integrate fault tolerance into larger-
scale and more complex environments.

Scaling through multiple sketchers. In the basic sys-
tem model of Prophecy (Figure 3), the sketcher is a single
bottleneck and point-of-failure. We address this limita-
tion by using multiple sketchers to build a sketching core,
as follows. First, we horizontally partition the global
history table, based on s(q)’s, into non-overlapping re-
gions, e.g., using consistent hashing [33]. We assign
each region to a distinct sketcher, which we refer to as re-
sponse sketchers. The partitioning preserves delay-once

2We assume for simplicity that the random selection is secure,
though in practice faulty replica servers may hamper this process. The
latter is an interesting problem, but outside the scope of this paper.

semantics because only a single sketcher stores the en-
try for each s(q). Second, we build a two-level sketch-
ing system as shown in Figure 4, where the first tier
of request sketchers demultiplex client requests. That
is, given a request q, any of a small number of request
sketchers computes s(q) and forwards q to the appropri-
ate response sketcher. Using a one-hop distributed hash
table (DHT) [27, 33] to manage the partitioning works
well, given the network’s small, highly-connected nature.
The response sketchers (the members of this DHT) issue
requests to the replica group(s) and sketch the responses,
ultimately returning them to the clients. (Importantly, the
replica servers in Figure 4 need not be part of a single
replica group, but may instead be organized into mul-
tiple groups.) The larger number of response sketchers
reflects the asymmetric bandwidth requirements of net-
work protocols like HTTP. We evaluate the scaling ben-
efits of multiple response sketchers in §7.7.

Handling sketcher failures. The sketching core han-
dles failure and recovery of sketchers seamlessly, be-
cause it can rely on the join and leave protocol of the
underlying DHT. Since request sketchers direct client re-
quests, they maintain the partitioning of the DHT. To
preserve delay-once semantics, this partitioning must be
kept consistent [10, 66] to avoid sending requests from
the same region of the history table to multiple response
sketchers. Prophecy’s support for blacklisting simplifies
this task, however. In particular, whenever a region of
the history table is being relinquished or acquired be-
tween response sketchers, we can allow more than one
response sketcher to serve requests from the same region
provided the entire region is blacklisted (forcing all re-
quests to be replicated). Once the partitioning has stabi-
lized, the new owner of the region can unset the blacklist
bit. As a result, membership dynamics can be handled
smoothly and simply, at the cost of transient inefficiency
but not inconsistency.

Mediating loosely-coupled groups. A sketching core
can be shared by the multiple, loosely-coupled com-
ponents that typically comprise a real service. Alter-
natively, components that operate in parallel can use
Prophecy via dedicated sketchers. Components that op-
erate in series, such as multi-tier web services, can use
Prophecy prior to each tier. However, applying agree-
ment protocols in series introduces nontrivial consis-
tency issues. We leave this problem to future work.

6 Implementation
Our implementation of Prophecy and D-Prophecy is
based on PBFT [12]. We used the PBFT codebase given
its stable and complete implementation, as well as newer
results [6] showing its competitiveness with Zyzzyva and

8

Replica�
Response�
Sketcher

Replica
Client

Request�
Sketcher

Replica
Response�
Sk t h

Replica
Client

Cli

Sketcher Client

Response ReplicaClients Response�
Sketcher

Replica
Client

ReplicaResponse�
Sketcher

Replica
Client

Request�
Sketcher

Figure 4: Scaling out Prophecy using multiple sketchers.

other recent protocols (much more so than was origi-
nally indicated [38]). We implemented and compared
three proxied systems (Prophecy, proxied PBFT with-
out optimized reads, and proxied PBFT with optimized
reads), as well as three non-proxied (“direct”) systems
(D-Prophecy, PBFT without optimized reads, and PBFT
with optimized reads). In our evaluation, we will com-
pare proxied systems only with other proxied systems,
and similarly for direct systems, as the architectures and
assumptions of the two models are fundamentally differ-
ent. The proxied systems do not authenticate communi-
cation between clients and the sketcher, though they eas-
ily can be modified to do so with equivalent overheads.

We implemented a user-space Prophecy sketcher in
about 2,000 lines of C++ code using the Tamer asyn-
chronous I/O library [36]. The sketcher forks a pro-
cess for each core in the machine (8 in our test clus-
ter), and the processes share a single history table via
shared memory. The sketcher interacts with PBFT
replica clients through the PBFT library. The pool of
replica clients available to handle requests is managed as
a queue. The sketching function uses a SHA-1 hash [48]
over parts of the HTTP header (for requests) and the en-
tire response body (for responses). The proxied PBFT
variants share the same code base as the sketcher, but do
not perform sketching, issue fast reads, or create or use
the history table.

We modified the PBFT library in three ways: to add
support for fast reads (about 20 lines of code), to return
the sequence numbers (about 20 LOC), and to add sup-
port for D-Prophecy (about 100 LOC). Additional modi-
fications enabled the same process to use multiple PBFT
clients concurrently (500 LOC), and modified the sim-
ple server distributed with PBFT to simulate a webserver
and allow “null” writes (500 LOC), as null operations
actually have 8-byte payloads in PBFT. We also wrote a
PBFT client in about 1000 lines of C++/Tamer that can
be used as a client in direct systems and as a replica client
in proxied systems.

System median 1st 99th
pr-PBFT 433 379 706

pr-PBFT-ro 296 255 544
Prophecy 256 216 286

Prophecy-100 617 553 768
PBFT 286 272 309

PBFT-ro 144 135 168
D-Prophecy 144 129 197

D-Prophecy-100 429 412 574

Table 2: Latency in µs for serial null reads.

7 Evaluation

This section quantifies the performance benefits and
costs of Prophecy and D-Prophecy, by characterizing
their latency and throughput relative to PBFT under vari-
ous workloads. We explore how the system’s throughput
characteristics change when we modify a few key vari-
ables: the processing time of the request, the size of the
response, and the client’s session length. Finally, we ex-
amine how Prophecy scales with the replica group size.

7.1 Experimental Setup

All of our experiments were run in a 25-machine clus-
ter. Each machine has eight 2.3GHz cores and 8GB of
memory, and all are connected to a 1Gbps switch.

The proxied systems are labeled Prophecy, pr-PBFT
(proxied PBFT), and pr-PBFT-ro (proxied PBFT with the
read optimization). The direct systems are labeled D-
Prophecy, PBFT, and PBFT-ro (PBFT with the read op-
timization). Multicast and batching are not used in our
experiments, as they do not impact performance when
using read optimizations; all other PBFT optimizations
are employed. Unless otherwise specified, all experi-
ments used four replica servers, a single sketcher/proxy
machine for the proxied systems, and a single client ma-
chine. The proxied experiments used 40 replica clients
across eight processes at the sketcher/proxy, and had 100
clients establish persistent HTTP connections with the
sketcher/proxy. The direct experiments used 40 clients
across eight processes. These numbers were sufficient
to fully saturate each system without degrading perfor-
mance. All experiments use infinite-length sessions be-
tween communicating entities (except for the one eval-
uating the effect of session length). Throughput exper-
iments were run for 30-second intervals and throughput
was averaged over each second.

In some experiments, we report numbers for
Prophecy-X or D-Prophecy-X , which signifies that the
systems experienced state transitions X% of the time.

9

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

Th
ro

ug
hp

ut
 (K

re
qs

/s
)

Transition Ratio

Prophecy
pr-PBFT-ro

pr-PBFT

Figure 5: Throughput of null reads for proxied systems
(Prophecy, pr-PBFT, and pr-PBFT-ro).

 10
 20
 30
 40
 50
 60
 70

 0 0.2 0.4 0.6 0.8 1

Th
ro

ug
hp

ut
 (K

re
qs

/s
)

Transition Ratio

PBFT-ro
D-Prophecy

PBFT

Figure 6: Throughput of null reads for direct systems (D-
Prophecy, PBFT, and PBFT-ro).

7.2 Null Workload

Latency. Table 2 shows the median and 99th percentile
latencies for 100,000 serial null requests sent by a single
client. All systems displayed low latencies under 1ms, al-
though the proxied systems have higher latencies as each
request must traverse an extra hop. Prophecy, pr-PBFT-
ro, D-Prophecy, and PBFT-ro all avoid the agreement
phase during request processing and thus have notably
lower latency than their counterparts. Prophecy-100 and
D-Prophecy-100 represent a worst-case scenario where
every fast read fails and is reissued as a replicated read.

Throughput. Figure 5 shows the aggregate throughput
of the proxied systems for executing null requests. We
achieve the desired transition ratio by failing that fraction
of fast reads at the sketcher.

Since replica servers can execute null requests
cheaply, the sketcher/proxy becomes the system bot-
tleneck in these experiments. Nevertheless, Prophecy
achieves 69% higher throughput than pr-PBFT-ro due to
its load-balanced fast reads, which require fewer pack-
ets to be processed by replica servers. As the transi-
tion ratio increases, however, Prophecy’s advantage de-
creases because fewer fast reads match the history table.
For example, when transitions occur 15% of the time—a
representative ratio from our measurement study in §8—
Prophecy’s throughput is 7% lower than pr-PBFT-ro’s.

Figure 6 depicts the aggregate throughput of the direct
systems. In this experiment, 40 clients across two ma-
chines concurrently execute null requests. D-Prophecy’s

 1

 2

 3

 4

 1 2 4 8 16 32 64 128 256 512

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Processing Time (µs)

Prophecy
Proph-15

pr-PBFT-ro
pr-PBFT

Figure 7: Throughput of proxied systems as processing
time increases, normalized against pr-PBFT-ro.

throughput is 15% lower than PBFT-ro’s when there
are no transitions, and 50% lower when there are 15%
transitions. D-Prophecy derives no performance advan-
tage from its fast reads because the optimized reads of
PBFT take no processing time, while D-Prophecy pays
the overhead for sketching and history table operations.

7.3 Server Processing Time

The previous subsection shows that when requests take
almost no time to process, Prophecy improves through-
put only by decreasing the number of packets at each
replica server, while D-Prophecy fails to achieve bet-
ter throughput. However, when the replicas perform
real work, such as the computation or disk I/O associ-
ated with serving a webpage, Prophecy’s improvement is
more dramatic.

Figures 7 and 8 demonstrate how varying processing
time affects the throughput of proxied systems (normal-
ized against pr-PBFT-ro) and direct systems (normal-
ized against PBFT-ro), respectively. As the processing
time increases—implemented using a busy-wait loop—
the cost of executing requests begins to dominate the cost
of agreeing on their order. This decreases the effective-
ness of PBFT’s read optimization, as evidenced by the
increase in pr-PBFT’s throughput relative to pr-PBFT-
ro, and similarly between PBFT and PBFT-ro. At the
same time, the higher execution costs dramatically in-
crease the effectiveness of load balancing in Prophecy
and D-Prophecy. Their throughput approaches 3.9 times
the baseline, which is only 2.5% less than the theoretical
maximum.

The effectiveness of load-balancing is more pro-
nounced in Prophecy than in D-Prophecy for two main
reasons. First, Prophecy’s fast reads involve only one
replica server, while D-Prophecy’s fast reads involve all
replicas, even though only a single replica actually exe-
cutes the request. Second, Prophecy performs sketching
and history table operations at the sketcher, whereas D-
Prophecy implements such functionality on the replica
servers, stealing cycles from normal processing.

10

 1

 2

 3

 4

 1 2 4 8 16 32 64 128 256 512

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Processing Time (µs)

D-Prophecy
D-Prophecy-15

PBFT-ro
PBFT

Figure 8: Throughput of direct systems as processing time
increases, normalized against PBFT-ro.

 0
 5

 10
 15
 20
 25
 30
 35

 0 0.2 0.4 0.6 0.8 1

Th
ro

ug
hp

ut
 (K

re
qs

/s
)

Transition Ratio

Prophecy
pr-PBFT-ro

pr-PBFT

Figure 9: Throughput of reads of a 1-byte webpage to
Apache webservers for proxied systems.

7.4 Integration with Apache Webserver
We applied Prophecy to a replica group in which each
server runs the Apache webserver [7], appropriately
modified to return deterministic results. Upon receiving
a request, a PBFT server dispatches the request body to
Apache via a persistent TCP connection over localhost.

Figure 9 shows the aggregate throughput of the prox-
ied systems for serving a 1-byte webpage. When there
are no transitions, Prophecy’s throughput is 372% that
of pr-PBFT-ro. At the representative ratio of 15%,
Prophecy’s throughput is 205% that of pr-PBFT-ro. The
processing time of Apache is enough to dominate all
other factors, causing Prophecy’s use of fast reads to sig-
nificantly boost its throughput.

Figure 10 shows the throughput of direct systems.
With no transitions, D-Prophecy’s throughput is 265%
that of PBFT-ro, and 141% when there are 15% transi-
tions.

In these experiments, the local HTTP requests to
Apache took an average of 94µs. For the remainder of
this section, we use a simulated processing time of 94µs
within replica servers when answering requests.

7.5 Response Size
Next, we evaluate the proxied systems’ performance
when serving webpages of increasing size, as shown by
Figure 11. As the response size increases, fewer replica
clients were needed to maximize throughput. At the
same time, Prophecy’s throughput advantage decreases
as the response size increases, as the sketcher/proxy

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

Th
ro

ug
hp

ut
 (K

re
qs

/s
)

Transition Ratio

D-Prophecy
PBFT-ro

PBFT

Figure 10: Throughput of concurrent reads of a 1-byte
webpage to Apache webservers for direct systems.

 1

 2

 3

 4

 1 2 4 8 16 32 64

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Response Size (KB)

Prophecy
Prophecy-15

pr-PBFT-ro
pr-PBFT

Figure 11: Throughput of proxied systems as response size
increases, normalized against pr-PBFT-ro.

becomes the bottleneck in each scenario. Increasing
the replica servers’ processing time shifts this drop in
Prophecy’s throughput to the right, as it increases the
range of response sizes for which processing time is the
dominating cost. Note that we only evaluate the systems
up to 64KB responses, because PBFT communicates via
UDP, which has a maximum packet size of 64KB.

7.6 Session Length
Our experiments with direct systems so far did not ac-
count for the cost of establishing authenticated sessions
between clients and replica servers. To establish a new
session, the client must generate a symmetric key that
it encrypts with each replica server’s public key, and
each replica server must perform a public-key decryp-
tion. Given the cost of such operations, the performance
of short-lived sessions can be dominated by the overhead
of session establishment, as we discussed in §2.2.

Figure 12 demonstrates the effect of varying session
length on the direct systems, in which each request per
session returns a 1-byte webpage. We find that the
throughput of PBFT and PBFT-ro are indistinguishable
for short sessions, but as session length increases, the
cost of session establishment is amortized over a larger
number of requests, and PBFT-ro gains a slight through-
put advantage. Similarly, D-Prophecy achieves its full
throughput advantage only when sessions are very long.

We do not evaluate the effect of session lengths in the
proxied systems, because they currently do not authenti-

11

 1

 2

 3

 4

 1 4 16 64 256 1024 4096

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Session Length (reqs)

D-Prophecy
D-Prophecy-15

PBFT-ro
PBFT

Figure 12: Throughput of direct systems as session length
increases, normalized against PBFT-ro.

 0

 20

 40

 60

 80

 100

 120

4 7 10 13

Th
ro

ug
hp

ut
 (K

re
qs

/s
ec

)

Replica Group Size

pr-PBFT-ro
Prophecy

Prophecy-15

Figure 13: Throughput of Prophecy and pr-PBFT-ro with
varying replica group sizes.

cate communication with the clients. Authentication can
easily be incorporated into these systems, however, at a
similar cost to Prophecy and pr-PBFT. That said, prox-
ied systems can better scale up the maximum rate of ses-
sion establishment than direct systems, as we observed
in §3.3: each additional proxy provides a linear rate in-
crease, while direct systems require an entire new replica
group for a similar linear increase.

7.7 Scaling Out
Finally, we characterize the scaling behavior of Prophecy
and proxied PBFT systems. By increasing the size of
their replica groups, PBFT systems gain resilience to a
greater number of Byzantine faults (e.g., from one fault
per 4 replicas, to four faults per 13 replicas). However,
their throughput does not increase, as each replica server
must still execute every request. On the other hand,
Prophecy’s throughput can benefit from larger groups, as
it can load balance fast reads over more replica servers.
As the sketcher can become a bottleneck in the system at
higher read rates, we used two sketchers for a 7-replica
group and three sketchers for a 10- and 13-replica group.

Figure 13 shows the throughput of proxied systems for
increasing group sizes. Prophecy’s throughput is 395%,
739%, 1000%, and 1264% that of pr-PBFT-ro, for group
sizes of 4, 7, 10, and 13 replicas, respectively. Prophecy
does not achieve such a significant throughput improve-
ment when experiencing transitions, however. We see
that a 15% transition ratio prevents Prophecy from han-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
of

 u
ni

qu
e

U
R

Ls

Transition ratio

≥ 5 responses
≥ 10 responses
≥ 25 responses
≥ 50 responses

Figure 14: A CDF of requests over transition ratios.

dling more than 32,000 req/s, which it achieves with a
replica group of size 10. Thus, under moderate transition
rates, further increasing the replica group size will only
increase fault tolerance, not throughput.

8 Measurement Study of Alexa
Sites

The performance savings of Prophecy are most pro-
nounced in read-mostly workloads, such as those involv-
ing DNS: of the 40K names queried by the ConfiDNS
system [52], 95.6% of them returned the same set of IP
addresses every time over the course of one day. In web
services, it is less clear that transitions are rare, given the
pervasiveness of so-called “dynamic content”.

To investigate this dynamism, we collected data from
the Alexa top 25 websites by scripting a Firefox browser
to reload the main page of each site every 20 seconds
for 24 hours on Dec. 29, 2008. Among the top sites
were www.youtube.com, www.facebook.com,
www.skyrock.com, www.yahoo.co.jp, and
www.ebay.com.3 The browser loads and executes
all embedded objects and scripts, including embedded
links, JavaScript, and Flash, with caching disabled. We
captured all network traffic using the tcpflow utility [19],
and then ran our HTTP parser and SHA-1-based sketch-
ing algorithm to build a compact history of requests and
responses, similar to the real sketcher.

Our measurement results show that transitions are rare
in most of the downloaded data. We demonstrate a clear
divide between very static and very dynamic data, and
use Rabin fingerprinting [55] to characterize the dynamic
data. Finally, we isolate the results of individual geo-
graphic “sites” using a CIDR prefix database.

8.1 Frequency of Transitions
For each unique URL requested during the experiment,
we measured the ratio of state transitions over repeated

3While one might argue that BFT agreement is overkill for many
of the sites in our study, our examples in the introduction show that
Heisenbugs and one-off misconfigurations can lead to embarrassing,
high-profile events. Prophecy protects against these mishaps without
the performance penalty normally associated with BFT agreement.

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
of

 u
ni

qu
e

U
R

Ls

Transition ratio

1st party
3rd party

Figure 15: A CDF over transition ratios of first-party vs.
third-party URLs.

requests. Figure 14 shows a CDF of unique URLs at
different transition ratios. We separately plotted those
URLs based on the number of requests sent to each one,
given that embedded links generate a variable number
of requests to some sites. (Where not specified, the
minimum number of requests used is 25.) We see that
roughly 50% of all data accessed is purely static, and
about 90% of all requests have fewer than 15% state tran-
sitions. These numbers confirmed our belief that most
dynamic websites are actually dynamic compositions of
very static content. The same graph scaled by the av-
erage response size of each request yields very similar
curves (omitted), suggesting that Figure 14 also reflects
the total response throughput at each transition ratio.

Figure 15 is the same plot as Figure 14 but divided
into first-party URLs, or those targeted at an Alexa top
website, and third-party URLs, or those targeted at other
sites (given that first-party sites can embed links to other
domains for image hosting, analytics, advertising, etc.).
The graph shows that third-party content is much more
static than first-party content, and thus third-party con-
tent providers like CDNs and advertisers could benefit
substantially from Prophecy.

The results in this section are conservative for two rea-
sons. First, they reflect a workload of only three requests
per minute per site, when in reality there may be tens or
hundreds of thousands of requests per minute. Second,
many URLs—though not enough to cause space prob-
lems in a real history table—saw only a few requests, but
returned identical responses, suggesting that our HTTP
parser was conservative in parsing them as unique URLs.
An important characteristic of all of the graphs in this
section is the relatively flat line across the middle: this
suggests that most data is either very static or very dy-
namic.

8.2 Characterizing Dynamic Data
Dynamic data degrades the performance of Prophecy be-
cause it causes failed fast reads to be resent as repli-
cated reads. Often, however, the amount of dynamism
is small and may even be avoidable. To investigate this,
we characterized the dynamism in our data by using Ra-

bin fingerprinting to efficiently compare responses on ei-
ther side of a transition. We divided each response into
chunks of size 1K in expectation [47], or a minimum of
20 chunks for small requests.

Our measurements indicate that 50% of all transitions
differ in at least 30% of their chunks, and about 13%
differ in all of their chunks. Interestingly, the edit dis-
tance of these transitions was much smaller: we deter-
mined that 43% of all transitions differ by a single con-
tiguous insertion, deletion, or replacement of chunks,
while preserving at least half or no more than doubling
the number of original chunks. By studying transitions
with low edit distance, we can identify sources of dy-
namism that may be refactorable. For example, a prelim-
inary analysis of around 4,000 of these transitions (se-
lected randomly) revealed that over half of them were
caused by load-balancing directives (e.g., a number ap-
pended to an image server name) and random identifiers
(e.g., client IDs) placed in embedded links or parame-
ters to JavaScript functions. In fact, most of the top-level
pages we downloaded, including seemingly static pages
like www.google.com, were highly dynamic for this
exact reason. A more in-depth analysis is slated for fu-
ture work.

8.3 Site-Based Analysis
A “site” represents a physical datacenter or cluster of ma-
chines in the same geographic location. A single site
may host large services or multiple services. Having
demonstrated Prophecy’s ability to scale out in such en-
vironments, we now study the potential benefit of de-
ploying Prophecy at the sites in our collected data. To
organize our data into geographic sites, we used forward
and reverse DNS lookups on each requested URL and
matched the resulting IP addresses against a CIDR pre-
fix database. (This database, derived from data supplied
by Quova [54], included over 2 million distinct prefixes,
and is thus significantly finer-grained than those provided
by RouteViews [57].) Requests that mapped to the same
CIDR prefix were considered to be part of the same site.
Figure 16 shows an overlay of the transition plots of each
site. From the figure, a few sites serve very static data
or very dynamic data only, but most sites serve a mix
of very static and very dynamic data. All but one site
(view.atdmt.com) show a clear divide between very
static and very dynamic data.

9 Related Work
A large body of work has focused on providing strong
consistency and availability in distributed systems. In the
fail-stop model, state machine replication typically used
primary copies and view change algorithms to improve

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
of

 u
ni

qu
e

U
R

Ls

Transition ratio

Figure 16: A CDF of URLs over transition ratios for all
sites for which CIDR data was available.

performance and recover from failures [41, 50]. Quo-
rum systems focused on tradeoffs between overlapping
read and write sets [26, 31]. These protocols have been
extended to malicious settings, both for Byzantine fault-
tolerant replicated state machines [12, 42, 56], Byzan-
tine quorum systems [1, 46], or some hybrid of both [17].
Modern approaches have optimized performance via var-
ious techniques, including by separating agreement from
execution [67], using optimistic server-side speculation
on correct operation [38], reducing replication costs
by optimizing failure-free operation [65], and allow-
ing concurrent execution of independent operations [37].
Prophecy’s history table is motivated by the same as-
sumption as this last approach—namely, that many op-
erations/objects are independent and hence often remain
static over time.

Given the perceived cost of achieving strong consis-
tency and a particular desire to provide “always-on”
write availability, even in the face of partitions, a num-
ber of systems opted for cheaper techniques. Several
BFT replicated state machine protocols were designed
with weaker consistency semantics, such as BFT2F [44],
which weakens linearizability to fork⇤ consistency, and
Zeno [59], which weakens linearizability to eventual
consistency. Several filesystems were designed in a sim-
ilar vein, such as SUNDR [45] and systems designed
for disconnected [29, 35] or partially-connected oper-
ation [51]. BASE [53] explored eventual consistency
with high scalability and partition tolerance; the foil
to database ACID properties. More recently, highly-
scalable storage systems being built out within data-
centers have also opted for cheaper consistency tech-
niques, including the Google File System [25], Yahoo!’s
PNUTS [16], Amazon’s Dynamo [18], Facebook’s Cas-
sandra [20], eBay’s storage techniques [61], or the popu-
lar approach of using Memcached [23] with a backend
relational database. These systems take this approach
partly because they view stronger consistency properties
as infeasible given their performance (throughput) costs;
Prophecy argues that this tradeoff is not necessary for
read-mostly workloads.

Recently, several works have explored the use of
trusted primitives to cope with Byzantine behavior.
A2M [13] prevents faulty nodes from lying inconsis-
tently by using a trusted append-only memory primi-
tive, and TrInc [43] uses a trusted hardware primitive
to achieve the same goal. Chun et al. [14] introduced a
lightweight BFT protocol for multi-core single-machine
environments that runs a trusted coordinator on one core,
similar in philosophy to Prophecy’s approach of extend-
ing the trusted computing base to include the sketcher.

Prophecy is unique in its application to customer-
facing Internet services and its ability to load-balance
read requests across a replica group while retaining good
consistency semantics. Perhaps closest to Prophecy’s se-
mantics is the PNUTS system [16], which supports a
load-balanced read primitive that satisfies timeline con-
sistency (all copies of a record share a common timeline
and only move forward on that timeline). Delay-once lin-
earizability is strictly stronger than timeline consistency,
however, because it does not allow a client to see a copy
of a record that is more stale than a copy the client has
already seen (whereas timeline consistency does).

There has been some work on using history as a con-
sistency or security metric for particular applications.
Aiyer et al. [4, 5] develop k-quorum systems that bound
the staleness of a read request to one of the last k written
values. Using Prophecy with a k-quorum system may
be synergistic: Prophecy’s load-balanced reads are less
costly than quorum reads, and k-quorum systems can
protect against an adversarial scheduler that attempts to
hamper Prophecy’s load balancing. The Farsite file sys-
tem [3] uses historical sketches to validate read requests,
but requires a lease-based invalidation protocol to keep
sketches strongly consistent. The system modifies clients
extensively and requires knowledge of causal dependen-
cies (if these constraints are ignored, then D-Prophecy
can easily be modified to achieve the same consistency
as Farsite). Pretty Good BGP [34] whitelists BGP adver-
tisements whose new route to a prefix includes its pre-
vious originating AS, while other routes require manual
inspection. ConfiDNS [52] uses both agreement and his-
tory to make DNS resolution more robust. It requires
results to be static for a number of days and agreed upon
by some number of recursive DNS resolvers. Perspec-
tives [63] combines history and agreement in a simi-
lar way to verify the self-signed certificates of SSH or
SSL hosts on first contact. Prophecy can be viewed as
a framework that leverages history and agreement in a
general manner.

10 Conclusions
Prophecy leverages history to improve the throughput of
Internet services by expanding the trusted middlebox be-

14

tween clients and a service replica group, while provid-
ing a consistency model that is very promising for many
applications. D-Prophecy achieves the same benefits for
more traditional fault-tolerant services. Our prototype
implementations of Prophecy and D-Prophecy easily in-
tegrate with PBFT replica groups and are demonstra-
bly useful in scale-out topologies. Performance results
show that Prophecy achieves 372% of the throughput of
even the read optimized PBFT system, and scales lin-
early as the number of sketchers increases. Our evalua-
tion demonstrates the need to consider a variety of work-
loads, not just null workloads as typically done in the lit-
erature. Finally, our measurement study of the Internet’s
most popular websites demonstrates that a read-mostly
workload is applicable to web service scenarios.

Acknowledgments
We thank our shepherd Petros Maniatis for helpful com-
ments on earlier versions of this paper. Siddhartha Sen
was supported through a Google Fellowship in Fault Tol-
erant Computing. Equipment and other funding was pro-
vided through the Office of Naval Research’s Young In-
vestigator program. None of this work reflects the opin-
ions or positions of these organizations.

References
[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter,

and J. Wylie. Fault-scalable byzantine fault-tolerant ser-
vices. In SOSP, Oct. 2005.

[2] B. Adida. Helios: Web-based open-audit voting. In
USENIX Security, July 2008.

[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. Wattenhofer. FARSITE: Federated,
available, and reliable storage for an incompletely trusted
environment. In OSDI, Dec 2002.

[4] A. S. Aiyer, L. Alvisi, and R. A. Bazzi. On the availability
of non-strict quorum systems. In DISC, Sept. 2005.

[5] A. S. Aiyer, L. Alvisi, and R. A. Bazzi. Byzantine and
multi-writer K-quorums. In DISC, Sept. 2006.

[6] L. Alvisi, A. Clement, M. Dahlin, M. Marchetti, and
E. Wong. Making Byzantine fault tolerant systems tol-
erate Byzantine faults. In NSDI, Apr. 2009.

[7] Apache HTTP Server. http://httpd.apache.
org/, 2009.

[8] A. Avizienis and L. Chen. On the implementation of n-
version programming for software fault tolerance during
execution. In IEEE COMPSAC, Nov. 1977.

[9] G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols. Journal of the ACM, 32(4), 1985.

[10] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In OSDI, Nov. 2006.

[11] M. Castro. Practical Byzantine Fault-Tolerance. PhD
thesis, Mass. Inst. of Tech., 2000.

[12] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance. In OSDI, Feb. 1999.

[13] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: making adversaries stick
to their word. In SOSP, Oct. 2007.

[14] B.-G. Chun, P. Maniatis, and S. Shenker. Diverse repli-
cation for single-machine Byzantine-Fault Tolerance. In
USENIX Annual, June 2008.

[15] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and
M. Dahlin. BFT: The time is now. In LADIS, Sept. 2008.

[16] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silber-
stein, P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver,
and R. Yerneni. PNUTS: Yahoo!’s hosted data serving
platform. In VLDB, Aug. 2008.

[17] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ replication: A hybrid quorum protocol for
Byzantine fault tolerance. In OSDI, Nov. 2006.

[18] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lak-shman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In SOSP, 2007.

[19] J. Elson. tcpflow—A TCP Flow Recorder.
http://www.circlemud.org/~jelson/
software/tcpflow/, 2009.

[20] Facebook. Facebook release cassandra: A structured
storage system on a p2p network. http://code.
google.com/p/the-cassandra-project/,
2008.

[21] Facebook. Scaling out. http://www.facebook.
com/note.php?note_id=23844338919, Aug.
2008.

[22] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and
A. Shvartsman. Eventually-serializable data services.
Theoretical Computer Science, 220(1), 1999.

[23] B. Fitzpatrick. Memcached: a distributed memory
object caching system. http://www.danga.com/
memcached/, 2009.

[24] Flickr. Flickr phantom photos. http://flickr.
com/help/forum/33657/, Feb. 2007.

[25] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In SOSP, Oct. 2003.

[26] D. K. Gifford. Weighted voting for replicated data. In
SOSP, Dec. 1979.

[27] A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing
for peer-to-peer overlays. In NSDI, Mar. 2004.

[28] J. V. Guttag, J. J. Horning, and J. M. Wing. Larch in five
easy pieces. Technical Report 5, DEC Systems Research
Centre, 1985.

[29] J. Heidemann and G. Popek. File system development
with stackable layers. ACM Trans. Comp. Sys., 12(1),
Feb. 1994.

[30] J. Hendricks, G. Ganger, and M. Reiter. Low-overhead
Byzantine fault-tolerant storage. In SOSP, Oct. 2007.

[31] M. Herlihy. A quorum-consensus replication method for
abstract data types. ACM Trans. Comp. Sys., 4(1), Feb.
1986.

[32] M. P. Herlihy and J. M. Wing. Linearizability: A cor-
rectness condition for concurrent objects. ACM Trans.
Program. Lang. Sys., 12(3), 1990.

15

http://httpd.apache.org/
http://httpd.apache.org/
http://www.circlemud.org/~jelson/software/tcpflow/
http://www.circlemud.org/~jelson/software/tcpflow/
http://code.google.com/p/the-cassandra-project/
http://code.google.com/p/the-cassandra-project/
http://www.facebook.com/note.php?note_id=23844338919
http://www.facebook.com/note.php?note_id=23844338919
http://www.danga.com/memcached/
http://www.danga.com/memcached/
http://flickr.com/help/forum/33657/
http://flickr.com/help/forum/33657/

[33] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on
the World Wide Web. In STOC, May 1997.

[34] J. Karlin, S. Forrest, and J. Rexford. Pretty Good BGP:
Improving BGP by cautiously adopting routes. In ICNP,
Nov. 2006.

[35] J. Kistler and M. Satyanarayanan. Disconnected opera-
tion in the Coda file system. ACM Trans. Comp. Sys., 10
(3), Feb. 1992.

[36] E. Kohler. Tamer. http://read.cs.ucla.edu/
tamer/, 2009.

[37] R. Kotla and M. Dahlin. High-throughput Byzantine fault
tolerance. In DSN, June 2004.

[38] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. In SOSP,
Oct. 2007.

[39] L. Lamport. Using time instead of timeout for fault-
tolerant distributed systems. ACM Trans. Program. Lang.
Sys., 6(2), 1984.

[40] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Trans.
Comput., 28(9), Sept. 1979.

[41] L. Lamport. The part-time parliament. ACM Trans.
Comp. Sys., 16(2), 1998.

[42] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Trans. Program. Lang. Sys., 4
(3), 1982.

[43] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.
Trinc: small trusted hardware for large distributed sys-
tems. In NSDI, Apr. 2009.

[44] J. Li and D. Mazières. Beyond one-third faulty replicas
in Byzantine fault tolerant systems. In NSDI, Apr. 2007.

[45] J. Li, M. N. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In OSDI, Dec. 2004.

[46] D. Malkhi and M. Reiter. Byzantine quorum systems. In
STOC, May 1997.

[47] A. Muthitacharoen, B. Chen, and D. Mazières. A low-
bandwidth network file system. In SOSP, Oct. 2001.

[48] NIS95. FIPS Publication 180-1: Secure Hash Standard.
Natl. Institute of Standards and Technology, Apr. 1995.

[49] F. E. Notes. Needle in a haystack: efficient storage of
billions of photos. http://www.facebook.com/
note.php?note_id=76191543919.

[50] B. M. Oki and B. H. Liskov. Viewstamped replication: a
general primary copy. In PODC, 1988.

[51] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and
A. Demers. Flexible update propagation for weakly con-
sistent replication. In SOSP, Oct. 1997.

[52] L. Poole and V. S. Pai. ConfiDNS: Leveraging scale
and history to improve DNS security. In WORLDS, Nov.
2005.

[53] D. Pritchett. BASE: An ACID alternative. ACM Queue,
6(3), 2008.

[54] Quova. http://www.quova.com/, 2006.
[55] M. O. Rabin. Fingerprinting by random polynomials.

Technical Report TR-15-81, Harvard Aiken Computation
Laboratory, 1981.

[56] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using ab-
straction to improve fault tolerance. In SOSP, Oct. 2001.

[57] RouteViews. http://www.routeviews.org/, 2006.
[58] F. B. Schneider. Implementing fault-tolerant services us-

ing the state machine approach: a tutorial. ACM Com-
puter Surveys, 22(4), Dec. 1990.

[59] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and
P. Maniatis. Zeno: eventually consistent byzantine-fault
tolerance. In NSDI, apr 2009.

[60] TechCrunch. Facebook source code leaked.
http://www.techcrunch.com/2007/08/
11/facebook-source-code-leaked/, Aug.
2007.

[61] F. Travostino and R. Shoup. eBay’s scalability odyssey:
Growing and evolving a large ecommerce site. In LADIS,
Sept. 2008.

[62] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Mad-
den. Tolerating Byzantine faults in database systems us-
ing commit barrier scheduling. In SOSP, Oct. 2007.

[63] D. Wendlandt, D. G. Andersen, and A. Perrig. Per-
spectives: Improving SSH-style host authentication with
multi-path probing. In USENIX Annual, June 2008.

[64] B. Wester, J. Cowling, E. B. Nightingale, P. M. Chen,
J. Flinn, and B. Liskov. Tolerating latency in replicated
state machines through client speculation. In NSDI, Apr.
2009.

[65] T. Wood, R. Singh, A. Venkataramani, and P. Shenoy. ZZ:
Cheap practical bft using virtualization. Technical Report
TR14-08, University of Massachusetts, 2008.

[66] Yahoo! Hadoop Team. Zookeeper. http://hadoop.
apache.org/zookeeper/, 2009.

[67] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault tolerant services. In SOSP, Oct. 2003.

16

http://read.cs.ucla.edu/tamer/
http://read.cs.ucla.edu/tamer/
http://www.facebook.com/note.php?note_id=76191543919
http://www.facebook.com/note.php?note_id=76191543919
http://www.techcrunch.com/2007/08/11/facebook-source-code-leaked/
http://www.techcrunch.com/2007/08/11/facebook-source-code-leaked/
http://hadoop.apache.org/zookeeper/
http://hadoop.apache.org/zookeeper/

