
1 Derivation of Point-to-Plane Minimization
Consider the Chen-Medioni (point-to-plane) framework for ICP. Assume we have a collection of
points (pi, qi) with normals ni. We want to determine the optimal rotation and translation to be
applied to the first collection of points (i.e., the pi) to bring them into alignment with the second
(i.e., the qi). Thus, we want to minimize the alignment error

E =
∑

i

[
(Rpi + t − qi) · ni

]2 (1)

with respect to the rotation R and translation t.
The rotation is a nonlinear function, incorporating sines and cosines of the rotation angles. If,

however, we assume that incremental rotations will be small, it is possible to linearize the rotations,
approximating cos θ by 1 and sin θ by θ. For example, in the case of rotation in x,

Rx,α =
*.
,

1 0 0
0 cos α − sin α
0 sin α cos α

+/
-

≈
*.
,

1 0 0
0 1 −α
0 α 1

+/
-
.

Thus, the full rotation may be approximated as

R ≈
*.
,

1 −γ β
γ 1 −α
−β α 1

+/
-
, (2)

for rotations α, β, and γ around the x, y, and z axes, respectively.
Substituting Equation (2) into (1) we obtain

E =
∑

i

[
(pi,x − γpi,y + βpi,z + tx − qi,x)ni,x +

(γpi,x + pi,y − αpi,z + ty − qi,y)ni,y +

(−βpi,x + αpi,y + pi,z + tz − qi,z)ni,z
]2,

which may be rewritten as

E =
∑

i

[
(pi − qi) · ni + t · ni +

α(pi,yni,z − pi,zni,y) +
β(pi,zni,x − pi,xni,z) +
γ(pi,xni,y − pi,yni,x)

]2.

Defining

c = p × n
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and

r = *.
,

α
β
γ

+/
-
,

the alignment error may be written as

E =
∑

i

[
(pi − qi) · ni + t · ni + r · ci

]2.

We now minimize E with respect to α, β, γ, tx , ty, and tz by setting the partial derivatives to
zero:

∂E

∂α
=

∑
i

2 ci,x
[
(pi − qi) · ni + t · ni + r · ci

]
= 0

∂E

∂ β
=

∑
i

2 ci,y
[
(pi − qi) · ni + t · ni + r · ci

]
= 0

∂E

∂γ
=

∑
i

2 ci,z
[
(pi − qi) · ni + t · ni + r · ci

]
= 0

∂E

∂tx
=

∑
i

2 ni,x
[
(pi − qi) · ni + t · ni + r · ci

]
= 0

∂E

∂ty
=

∑
i

2 ni,y
[
(pi − qi) · ni + t · ni + r · ci

]
= 0

∂E

∂tz
=

∑
i

2 ni,z
[
(pi − qi) · ni + t · ni + r · ci

]
= 0

These equations may be collected and written in matrix form:

∑
i

*.........
,

ci,xci,x ci,xci,y ci,xci,z ci,xni,x ci,xni,y ci,xni,z

ci,yci,x ci,yci,y ci,yci,z ci,yni,x ci,yni,y ci,yni,z

ci,zci,x ci,zci,y ci,zci,z ci,zni,x ci,zni,y ci,zni,z

ni,xci,x ni,xci,y ni,xci,z ni,xni,x ni,xni,y ni,xni,z

ni,yci,x ni,yci,y ni,yci,z ni,yni,x ni,yni,y ni,yni,z

ni,zci,x ni,zci,y ni,zci,z ni,zni,x ni,zni,y ni,zni,z

+/////////
-

*.........
,

α
β
γ
tx

ty
tz

+/////////
-

= −
∑

i

*.........
,

ci,x (pi − qi) · ni

ci,y (pi − qi) · ni

ci,z (pi − qi) · ni

ni,x (pi − qi) · ni

ni,y (pi − qi) · ni

ni,z (pi − qi) · ni

+/////////
-

.

This is a linear matrix equation of the form Cx = b, where C is the 6 × 6 “covariance matrix”
accumulated from the ci and ni, x is a 6 × 1 vector of unknowns, and b is a 6 × 1 vector that also
depends on the data points. The equation may be solved using standard methods (A is symmetric,
so Cholesky decomposition is the preferred algorithm), yielding the optimal incremental rotation
and translation.
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2 Analysis of Stability
The above 6 × 6 covariance matrix also encodes the increase in the alignment error when the
transformation is moved away from its optimum:

dE =
1
2

(
dα dβ dγ dtx dty dtz

) *.
,

C +/
-

*.........
,

dα
dβ
dγ
dtx

dty
dtz

+/////////
-

.

The larger this increase the greater the stability of ICP, since the error landscape will have a deep,
well-defined minimum. On the other hand, if there are incremental transformations that cause only
a small increase in alignment error, ICP will be relatively unstable with respect to these degrees of
freedom.

By expandingC in terms of its eigenvectors wemay see directly the effect of various incremental
transformations. If all eigenvalues of C are large, any transformation away from the minimum will
result in a large increase in alignment error. If, on the other hand, one or more eigenvalues are
small, the corresponding eigenvectors are transformations that do not increase error much, and
therefore represent directions in transformation space along which the error landscape is shallow.

3 Applications of Eigenvalue Analysis
The most obvious application of the above analysis is to evaluate the stability of aligning two
meshes together. This involves computing the matrix C, summed over the entire region of overlap,
and finding its eigenvalues. Any small eigenvalues indicate a low-confidence alignment. This has
implications on which pairings to use for global registration.

A second potential application involves looking at small patches on a single mesh, computing
the eigenvalues of C over each patch, and thus determining the potential stability of ICP on each
region. Applications of this might be:

• Using the local stability to assign weights during ICP. This would help to prevent noise in
mostly-flat regions from swamping the “signal” available near good features.

• Using local stability to determine the best places to compute and store surface signatures for
structural indexing.

• Building a “dictionary” of local surface shapes and the number of small eigenvalues each
produces. For example:
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Planar patch 3 small eigenvalues 1 rotation and 2 translations unstable
Spherical patch 3 small eigenvalues 3 rotations unstable
Cylindrical patch 2 small eigenvalues 1 translation and 1 rotation unstable
Patch w. spherical bump 1 small eigenvalue 1 rotation unstable
Patch w. groove 1 small eigenvalue 1 translation unstable
Corner of a cube 0 small eigenvalues No unstable components of alignment

This table is probably not complete – it would be nice to come up with a systematic way of
classifying the possibilities.
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Neighborhood size: 1

Neighborhood size: 3

Neighborhood size: 6

Neighborhood size: 10

Figure 1: Bunny model color coded according to the magnitude of the three smallest eigenvalues
on local neighborhoods. The four rows of the table correspond to evaluating C over neighborhoods
of radius 1, 3, 6, and 10 edges. The color coding is such that black regions correspond to 3
small eigenvalues, blue to 2 small eigenvalues, green to 1 small eigenvalue, and red to no small
eigenvalues.
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