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ABSTRACT
Predicting Software Change Coupling

Robert Michael Dondero, Jr.
Gregory W. Hislop, Ph.D.

This project was an exploratory study of techniques for predicting future change coupling among

a program’s source code files. Two source code files are change coupled if programmers edit them

together frequently, and separately infrequently. Specifically, this project investigated the predictive

power of three approaches: mining of software change logs, software similarity detection, and software

proximity detection.

Software mining extracts patterns from source code databases, that is, version control systems

containing source code and change histories. This project explored whether identification of past

change coupling among source code files can predict future change coupling among those files.

Software similarity detection finds files that contain similar, alias cloned, code. This project explored

whether identification of similar code among source code files can predict future change coupling

among those files. Finally, software proximity detection finds files that reference each other heavily.

This project explored whether identification of proximity among source code files can predict future

change coupling among those files.

This project performed the study applied a software miner (created specifically for this project), three

preexisting similarity detectors, and two proximity detectors (created specifically for this project) to

four large open source code databases at multiple points in time. It determined that software mining

generally generated the best predictions of the three approaches, followed by similarity detection,

followed by proximity detection.

Excessive source code change coupling can be a serious maintenance problem. So the prediction of

future change coupling is an important challenge in software engineering. The results of this project

shed light on the abilities of the three approaches, both in the absolute and relative senses, to predict

change coupling. So the results of this project hold promise for decreasing program maintenance

costs.
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1. INTRODUCTION

1.1 Project Definition

This project is an exploratory study of techniques for predicting future change coupling among a

program’s source code files. Two source code files are change coupled if programmers edit them

together frequently, and separately infrequently.

The software engineering community has recognized that excessive change coupling among source

code files can be a serious problem. For example, Fowler referred to excessive change coupling as

“shotgun surgery,” and described it informally as “when every time you make a kind of change,

you have to make a lot of little changes all over the place, they are hard to find, and it’s easy to

miss an important change.” He labeled shotgun surgery a “bad smell” in code [Fow00]. Researchers

from the software clone detection community have agreed and, in fact, consider prediction of change

coupling to be a major motivation for their work. “The presence of code clones — code snippets that

are similar in syntax and semantics — is generally considered to be an indication of poor software

quality. The primary concern is that programmers may introduce bugs when changing code if they

inadvertently neglect to change related code clones” [KSNM05].

Because excessive change coupling can be a serious problem, the prediction of future change cou-

pling is an important challenge in software engineering. A technique that provides such predictions

would be helpful. The technique’s predictions could be used to generate warnings for maintenance

programmers who, perhaps erroneously, edit one source code file but not another that is change

coupled to the edited file. The technique’s predictions also could indicate high-priority candidates

for refactoring, perhaps as aspects. Thus the technique would hold promise for decreasing program

maintenance costs.
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1.2 Project Overview

This project investigated three approaches for predicting future change coupling among source code

files:

• Software mining. Software mining examines change logs from source code databases, that is,

version control systems containing source code and change histories. Can identification of past

change coupling predict future change coupling? After all, in many endeavors the future is

best predicted by the past.

• Software similarity. Can identification of similar (that is, cloned) code among files predict

future change coupling among those files? After all, if two files contain similar code, then it is

possible that future changes might need to be applied to both.

• Software proximity. Informally, two source code files are proximate if they reference each other,

that is, if the code in one file references the code in the other. Can identification of proximity

among source code files predict future change coupling among those files? After all, if two files

are proximate, then they might be related functionally. Future enhancements to the shared

functionality might imply changing both files.

This project investigated the software mining approach by choosing a time that is at approximately

the halfway point in the “lifetime” of a source code database, and capturing a snapshot of the code

as it existed at that time. This project used a “Miner” tool, developed specifically for this project,

to analyze the database’s change log both before and after the halfway point. Specifically, the Miner

analyzed the change log from the halfway point toward the future to yield a reference set, that is,

a set of change coupled files in the snapshot that this project tried to predict. The Miner analyzed

the change log from the halfway point toward the past to yield a prediction set, that is, a set of files

in the snapshot that were predicted to be change coupled in the future. Figure 1.1 illustrates. The

issue, then, was how well the prediction set predicted the reference set. The “Procedure” chapter

describes the Miner tool in detail.

This project investigated the software similarity approach by examining the performance of some

existing software similarity detection tools, given the chosen snapshot, at predicting the reference

set. Specifically, it investigated two types of tools:
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• Software clone detectors. Software clone detectors identify similar code within and among

source code files. Indeed, as noted previously, prediction of change coupling is a major moti-

vation for research in clone detection. Can identification of clones among files of the chosen

snapshot predict change coupling among those files, as defined by the reference set?

• Software plagiarism detectors. Software plagiarism detectors are not designed to predict change

coupling; they are designed to be used in academic settings to detect cheating. Nevertheless,

plagiarism detectors find similar code, just as clone detectors do. Can identification of “plagia-

rism” among files of the chosen snapshot predict change coupling among those files, as defined

by the reference set?

Although software clone detectors and software plagiarism detectors come from largely disjoint

research communities, in reality they use similar techniques. The “Background and Literature

Survey” chapter provides details. In fact, the distinction between clone detecting tools and plagiarism

detecting tools was unimportant for this project. So this project united software clone and plagiarism

detectors under the umbrella title “software similarity detectors,” and focused on the performance

of the tools as a group.

This project investigated the software proximity approach using two proximity detectors developed

specifically for this project. The first determined proximity by considering the quantity of references

between files; the second determined proximity by considering, in a simple binary sense, whether

or not files reference each other. The “Procedure” chapter describes the two proximity detectors in

detail. Can identification of proximity among files of the chosen snapshot predict change coupling

among those files, as defined by the reference set?

To support generalizability of the results, this project performed those analyses using four distinct

source code databases. This project also performed the analyses using snapshots taken not only

at the halfway points of the databases, but also at the one-quarter and three-quarter points. The

results of the analyses shed light on the nature of change coupling, and how programmers best can

predict future instances of it.
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2. BACKGROUND AND LITERATURE SURVEY

Five research fields are related to this project: structural coupling, association rule mining, software

mining, software clone detection, and software plagiarism detection. The following subsections

describe those fields.

2.1 Structural Coupling

Structural coupling is related to this project in two ways. First, theoretical arguments concerning

structural coupling show that proximity is worthy of investigation as a prediction technique. Second,

the proximity detection approach used by this project extends previous research on that subject.

Simon [Sim01] explained that a complex system should be structured as a nearly decomposable

hierarchy of subsystems. The system should be decomposable in the sense that interactions within

subsystems should be more intense than interactions across subsystems. Systems that are so struc-

tured have an evolutionary advantage; they are easier to maintain than those that are not. By

extension, interactions across proximate subsystems should be more intense than interactions across

distant subsystems.

Clearly, Simon’s argument applies to software systems in particular. In software systems, interac-

tions across proximate subsystems (packages, classes, methods, etc.) should be more intense than

interactions across distant subsystems.

Simon’s argument is pertinent to this project. When a maintenance programmer changes a program,

he/she is interacting with that program. In a well designed system, such interactions will be more

intense across proximate subsystems than across distant subsystems. From that perspective, in a well

designed system change coupling will occur mostly between proximate files. Simon’s argument thus

supports this project’s investigation of proximity as a prediction mechanism for change coupling.

Robillard [Rob05] related the concept of structural coupling to the task of predicting software change

coupling. He analyzed coupling in terms of “specificity and reinforcement” to generate “suggestions”

of classes that relate to a given class. For Robillard, an “element” was a field or method. “An element
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y is specific to a set of interest I if any element in I related to y is related to few elements besides

y, and if y itself is related to few elements. . . An element y is reinforced by a set of interest I if

most elements related to y are in I” [Rob05]. Thus Robillard’s research is similar to this project’s

study of proximity as a change coupling prediction mechanism. His measures of specificity and

reinforcement are similar to this project’s measures of cosine and support (respectively), as defined

in the “Procedure” chapter.

Robillard implemented his approach as a software tool, and used the tool to perform two case studies.

The first case study analyzed JHotDraw, a “medium sized” open source system. Specifically, in that

study Robillard manually constructed a small set of interest, and used the tool to find elements

that were related to that set in terms of specificity and reinforcement. He then manually and

subjectively evaluated the results. The initial application of the tool yielded 17 elements, 8 of which

Robillard judged to be relevant to the initial set. A second iteration of the tool with a more strict

specificity/reinforcement cutoff yielded 12 elements, 10 of which he considered “very relevant” to

the initial set. He concluded:

This case study illustrated that our algorithm can be used to quickly identify a core set of
elements of interest. Because the algorithm only selected direct dependencies to elements
in the input set, it is clear that a single iteration does not produce the complete set of
elements of interest to a developer. However, applying the algorithm for a small number
of iterations can mitigate the painstaking manual inspection of dependencies needed to
build a core set of elements to investigate [Rob05].

The second case study was similar to the first, except that (1) it used Azureus, another medium

sized open source system, instead of JHotDraw, and (2) the manual subjective evaluation was

performed by two independent experts rather than by Robillard himself. Within the list of 58

elements recommended by the tool, the experts classified 31 as relevant, 12 as somewhat relevant, and

15 as not relevant. In summary, Robillard stated that “the Azureus study documents a realistic case

of a program investigation task where high-degree elements produced by our algorithm corresponded

to elements of interest for a developer performing the task.”

This project differed from Robillard’s research in several ways. Whereas Robillard investigated soft-

ware change coupling at the field/method level, this project investigated software change coupling

at the file (alias data type, alias class/interface/enumeration) level. Whereas Robillard matched

individual program elements to sets of other elements, this project performed strictly single element
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to single element matches. Whereas Robillard judged the quality of his results manually and subjec-

tively, this project determined the quality of its results programmatically and objectively. Whereas

Robillard judged his results relative to the task of finding code to help a programmer understand a

specific aspect of a system, this project judged its results relative to the task of predicting change

coupling. This project extended the research of Robillard by comparing the performance of proxim-

ity detection vs. that of mining and similarity detection as approaches toward predicting software

change coupling.

Background research has not found any studies of structural coupling that are more related to the

task of predicting software change coupling than those previously described.

2.2 Association Rule Mining

Association rule mining is a subfield of the data mining field. The goal of association rule mining is

to discover association rules of the form “an event involving item A implies an event involving item

B.” More specifically and pragmatically, in many cases the goal is to discover association rules of

the form “a customer who purchased item A is likely also to purchase item B.” Such rules can drive

recommendation engines in the world of commerce. Association rule mining has demanded much

attention because of that pragmatic utility. The mathematical difficulty of association rule mining

is another attraction for researchers.

Another goal of association rule mining is to estimate the strength of each association rule. The

stronger an association rule is, the more interesting it is in terms of generating recommendations,

and the more trustworthy those recommendations are. Tan et al. [TKS02] surveyed the field and

distilled a list of 21 interestingness/strength measures commonly used. Table 2.1 shows some of

those measures.

Table 2.1: Interestingness/Strength Measures for Association Rules

Measure Formula
Support P (A,B)
Confidence max(P (B|A), P (A|B))
Interest P (A,B)/(P (A) · P (B))
Cosine P (A,B)/

√
P (A) · P (B)

Jaccard P (A,B)/(P (A) + P (B)− P (A,B))
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In that table:

• P (A) is the probability that an event involving item A occurs.

• P (A,B) is the probability that an event involving both items A and B occurs.

• P (A|B) is the conditional probability that an event involving item A occurs, given the fact

that an event involving item B has occurred.

How does association rule mining relate to this project? Note that:

• P (A) could represent the probability that file A is involved in the current transaction.

• P (A,B) could represent the probability that both files A and B are involved in the current

transaction.

• P (A|B) could represent the probability that the current transaction involves file A, given the

fact that it involves file B.

In that sense, measures of association rule strength also are appropriate as measures of software

change coupling strength. In fact, measures of association rule strength also are appropriate as

measures of software similarity strength and software proximity strength. The “Procedures” chapter

provides details.

2.3 Software Mining

Software mining is a relatively new field, fueled in part by the availability of change history and bug

report repositories from open source projects. The field has an annual workshop — the “Interna-

tional Workshop on Mining Software Repositories,” associated with the “International Conference

on Software Engineering.”

Software mining is related to this project: this project evaluates mining of source code database

change logs as a technique for prediction of future change coupling. Also, this project uses mining of

source code database change logs to compute reference sets, that is, to compute the change couplings

that it attempts to predict.
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2.3.1 Software Mining and Change Coupling

Gall et al. [GHJ98] analyzed the release history of a large telecommunications switching system to

identify “logical coupling among modules in such a way that potential structural shortcomings can

be identified and further examined, pointing to restructuring or reengineering opportunities.” They

indeed did discover modules in the system that were in need of restructuring.

In a later study Gall et al. [GJK02] used software mining to find change coupling for the purpose

of identifying structural deficiencies in programs. Specifically, they compared a program’s change

coupling with its structural coupling; differences between the two identified “shortcomings . . . such as

architectural weaknesses, poorly designed inheritance hierarchies, or blurred interfaces of modules.”

Zimmermann et al. [ZDZ02], like Gall et al., analyzed systems by comparing their structural coupling

with “evolutionary” coupling, that is, change coupling. They used differences between structural

coupling and change coupling to find “anomalies which may be subject to restructuring.”

This project builds upon the research of Gall et al. and Zimmermann et al. by using software mining

not only to detect, but also to predict change coupling. Moreover, this project uses two additional

techniques — similarity detection and proximity detection — to predict change coupling.

2.3.2 Software Mining and Predicting Change Coupling

Two research efforts focused specifically on finding past change coupling for the purpose of predicting

future change coupling.

Zimmermann et al. [ZWDZ05], in a more recent research effort than their aforementioned one, mined

source code databases to determine past change coupling and thereby predict future change coupling.

Zimmermann et al. implemented their approach in a system named ROSE. Essentially, ROSE per-

formed four steps. In step 1 ROSE identified “transactions,” that is, sets of changes submitted at

the same time by the same developer. A transaction indicated program entities (files, methods,

or fields) that had been altered within the program, added to the program, or deleted from the

program. ROSE eliminated large transactions, specifically, “all changes that affect more than 30 en-

tities.” (This project did so also; the “Procedures” chapter explains why.) In step 2 ROSE analyzed

the transactions to mine fine-grained “association rules” of the form “altering/adding/deleting these
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entities implies altering/adding/deleting these associated entities.” In step 3 ROSE determined the

strength of each association rule in terms of “support count” and “confidence.” Support count was

“the number of transactions the rule has been derived from” [ZWDZ05]. More precisely, support

count was the number of transactions that involve all entities in the rule’s antecedent and conse-

quent. Confidence was “the relative amount of the given consequences across all alternatives for

a given antecedent” [ZWDZ05]. More precisely, confidence was the quotient of (1) the number of

transactions that involve all entities in the rule’s antecedent and consequent, and (2) the number of

transactions that involve all entities in the rule’s antecedent. In step 4, given a “situation” (that is,

a particular alteration/addition/deletion applied to the program) ROSE identified association rules

whose antecedents matched the situation, and used the consequents and strengths of those rules to

generate “recommendations” which alerted the programmer to related changes that he/she might

need to perform.

Zimmermann et al. conducted a thorough evaluation of ROSE using eight open source code

databases, all implemented using the CVS version control system. They provided this high-level

summary of their results:

(1) For stable systems . . . ROSE gives many and precise suggestions. In 63 percent of all
transactions, ROSE makes a recommendation. These contain 45 percent of the related
items, with a precision of more than 30 percent. In 90 percent of all recommendations,
the three topmost suggestions contain a correct entity. (2) For rapidly evolving systems
. . . ROSE’s most useful suggestions are at the file level. Overall, this is not surprising,
as ROSE would have to predict new functions — which is probably out of reach for any
approach. (3) The predictive power of ROSE increases quickly at the start of a project; it
is best during maintenance phases. (4) In about 2–7 percent of all erroneous transactions,
ROSE correctly detects the missing change. If such a warning occurs, it should be taken
seriously, as only 2 percent of all transactions cause false alarms [ZWDZ05].

This project is similar to the research of Zimmermann et al. in the sense that it measures change

coupling in terms of support and (what Zimmermann et al. call) confidence; details are provided

in the “Procedure” chapter. However, this project is more coarse-grained than the research of

Zimmermann et al.: it considers change coupling only at the file level. Moreover it considers only

file-level alterations; it does not identify past file-level deletions or additions, and makes no attempt to

predict future file-level additions or deletions. This project builds upon the research of Zimmermann

et al. in the sense that it compares the predictive performance of software mining vs. that of similarity

detection and proximity detection.
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Ying et al. [YMNCC04], like Zimmermann et al., mined source code databases to determine past

change coupling, with the intention of predicting future change coupling. And, like Zimmermann et

al., they used association rule mining on open source CVS source code databases. Unlike Zimmer-

mann et al., their analyses were at the file level only.

The approach of Ying et al. essentially involved three steps. In step 1, entitled “data preprocessing,”

they identified transactions. They also discarded very large transactions, with the understanding

that such transactions usually do not correspond to meaningful atomic changes. (As mentioned pre-

viously, this project also discarded large transactions, for the same reason; the “Procedure” chapter

provides details.) In step 2, entitled “association rule mining,” Ying et al. computed association

rules, where each association rule is simply a set of files that are change coupled. They measured

the strength of each association rule (that is, of each file set) in terms of “support,” where support is

the number of transactions containing all files of the set. (Note that Ying et al.’s notion of support

essentially is the same as that of Zimmermann et al.) In step 3, entitled “query,” a programmer

specified at least one file that is likely to be involved in a maintenance task. Ying et al. then used the

association rules and their strengths to generate “recommendations” which alerted the programmer

to related files that he/she also might need to change.

Ying et al. evaluated their approach by applying it to two large open source code databases. They

divided the source code database chronologically into two parts, using the first part to train their

tool (that is, to generate association rules) and the second part to test their tool (that is, to validate

their predictions). They then chose some maintenance tasks for which the files involved were known,

and measured the quality of their recommendations using precision and recall — as defined in the

classic information retrieval sense. They found that precision and recall were low. However, they

noted that the recommendations nevertheless were useful “as long as the gain to the developer

when the recommendation is helpful is greater than the cost to the developer of determining which

recommendations are false positives” [YMNCC04]. They then suggest that their approach would be

valuable to augment existing approaches to predicting change coupling.

Curiously, Ying et al. performed an additional analysis. They categorized each found instance of

change coupling in terms of “interestingness” using three levels: obvious, neutral, and surprising.

An “obvious” coupling corresponds to our notion of proximal coupling; a “surprising” coupling

corresponds to our notion of non-proximal, or distant, coupling; a “neutral” coupling is one that is
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somewhere between proximal and distant. They further analyzed the “surprising” change couplings,

and found that some of them were the result of cloned code.

Like Ying et al., this project analyzed change coupling at the file level, and measured change coupling

in terms of support. (The “Procedure” chapter provides details.) Also, like Ying et al., this project

examined file proximity. However this project builds upon the research of Ying et al. by making

proximity a first-class prediction mechanism; whereas Ying el al. use the concept of proximity

secondarily to classify change couplings found via mining, this project uses proximity — along with

mining — to predict change coupling. Moreover, this project extends the research of Ying et al. by

comparing the predictive power of mining and proximity detection with that of similarity detection.

Background research found no studies that compare the performance of software mining versus

similarity detection versus proximity detection for predicting software change coupling. Background

research found no studies in software mining that are more related to the task of predicting software

change coupling than those previously described.

2.4 Software Clone Detection

Software clone detection is related to this project: this project evaluates similarity detection as a

technique for predicting future change coupling, and clone detectors detect similarity.

2.4.1 Techniques and Tools

Software clone detection is a more mature field than software mining. Software clone detection

often is a topic at the annual “International Workshop on Source Code Analysis and Maintenance”

associated with the “International Conference on Software Maintenance.” In fact, twice a “Workshop

on Detection of Software Clones” was associated with that conference.

Researchers have proposed many clone detection techniques, and have developed many tools to

demonstrate those techniques. A paper by Koschke provides an overview of the field of clone de-

tection and of the techniques that it uses [Kos07]. A paper by Bruntink et al. provides a concise

summary of clone detection techniques [BvDvET05]. This section briefly describes some of those

techniques, and notes some tools which use them.
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Many clone detection techniques fall within three categories:

• Text-based techniques work by matching sequences of source code characters. Many tools in

this category work at the line level, that is, attempt to detect identical (or similar) lines of

source code. Many also transform the source code in small ways before matching character

sequences; typically they discard white space and comments.

• Token-based techniques work by matching sequences of source code tokens, alias words.

• AST-based techniques work by matching parse trees, alias abstract syntax trees (ASTs), that

describe source code structure.

Note that those clone detection technique categories parallel the three stages of compilation: a

compiler’s lexical analyzer reads a character sequence (that is, text) and writes a token sequence; a

compiler’s syntactic analyzer then reads the token sequence and writes an AST.

Other clone detection techniques fall within these three additional categories:

• Metrics-based techniques compute vectors of metrics (number of identifiers, number of unique

identifiers, number of operators, number of unique operators, etc.) for source code fragments,

and compare the vectors to find similar fragments. Other metrics-based techniques use such

metrics to compute a hash code for each source code fragment, and compare the hash codes

to find similar fragments.

• PDG-based techniques analyze source code fragments to determine the control and data depen-

dencies among source code statements, capturing those dependencies in program dependency

graphs (PDGs). They then compare the PDGs to identify similar code fragments. PDG-based

techniques are more robust than AST-based techniques. For example, a programmer might

use the same code skeleton to create multiple code fragments, each adjusted to a new con-

text. Although the resulting code fragments might differ with respect to abstract syntax (and

so might not be found by an AST-based technique), they might be similar with respect to

program dependencies (and so might be found by a PDG-based technique).

• Information retrieval-based techniques attempt to find similar code fragments by identifying

semantic similarities in the source code, including the source code comments.
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Generally, clone detection researchers demonstrate their techniques by developing tools. The follow-

ing is a list of some of those tools. The list contains only tools that are publicly available, and for

which information concerning principles of operation are available.

• Duplo is a text-based detector for C, C++, Java, C# and VB.Net code [DRD99]. It is available

for free download through the Worldwide Web at this URL:

http://sourceforge.net/projects/duplo/

• CCFinderX is a token-based detector for Java, C/C++, COBOL, VB, and C# code [KKI02,

HKKI07]. It is the successor of a token-based detector named CCFinder. It is available for

free download (with registration for an evaluation license) through the Worldwide Web at this

URL:

http://www.ccfinder.net/

• CloneDR is an AST-based detector for C, C++, Java, and COBOL code [BYM+98]. It is

available for purchase from Semantic Designs, Inc. Details are provided through the Worldwide

Web at this URL:

http://www.semanticdesigns.com/Products/Clone/index.html

• ccdiml is “an implementation of a variation of Baxter’s approach to clone detection and, thus,

falls in the category of AST-based clone detectors” [BvDvET05]. It is available for purchase

from Axivion though the Worldwide Web at this URL:

http://www.axivion.com/

• PMD’s Copy/Paste Detector (CPD) is a metrics-based detector for Java, JSP, C, C++, and

PHP code. It uses the well-known Karp-Rabin string matching algorithm [KR87]. It is avail-

able for free download through the Worldwide Web at this URL:

http://pmd.sourceforge.net/cpd.html

Background research found no publicly available clone detection tools that use a PDG-based or

information retrieval-based technique.
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2.4.2 Relative Evaluations

A few researchers evaluated the relative performance of clone detection techniques and tools.

Van Rysselberghe and Demeyer [VRD04] performed a qualitative evaluation of clone detection tech-

niques from a refactoring point of view. They did not use existing tools; instead they developed

their own. Specifically, they compared the simple line matching (text-based), parameterized match-

ing (token-based), and metric fingerprints (metrics-based) techniques. They concluded that “(1)

simple line matching is best suited for a partial, yet advanced restructuring with little effort; (2)

metric fingerprints work best for refactoring a system with minimal effort; (3) parameterized match-

ing demands more effort yet allows a more profound, less obvious restructuring of the code” [VRD04].

This project departs from that approach by performing a quantitative (not a qualitative) evalua-

tion, and by applying clone detectors to the task of predicting change coupling instead of finding

refactoring opportunities.

Bruntink et al. [BvDvET05] evaluated three clone detection tools from an aspect-oriented program-

ming point of view: ccdiml (AST-based), CCFinder (token-based), and PDG-DUP (PDG-based).

PDG-DUP is the authors’ name for the clone detector developed by Komondoor and Horwitz [KH01].

The authors’ approach was to “manually identify five specific crosscutting concerns in an industrial

C system and analyze to what extent clone detection is capable of finding them” [BvDvET05]. Their

results indicated no clear winner. Ccdiml generated the best results for three crosscutting concerns,

CCFinder’s results were almost as good for two of those three, and PDG-DUP generated the best

results for the remaining two concerns. This project departs from that approach by using objective

automatically generated reference data instead of subjective manually generated reference data, and

by applying clone detectors to the task of predicting change coupling instead of finding crosscutting

concerns.

2.4.3 Critiques of Evaluations

There are few evaluations of the relative performances of clone detectors. More common are isolated

evaluations of individual clone detectors, typically conducted by their creators.

Walenstein and Lakhotia [WL03] criticized such individual evaluations of clone detectors from an

information retrieval (IR) point of view. They noted that many such evaluations, in essence, measure
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the quality of a clone detector through its performance on the single generic query “find all clones.”

They argued that, instead, researchers should evaluate clone detectors as IR researchers evaluate

their systems: through performance on multiple specific queries. Coincidentally, they proposed “find

parallel maintenance headaches” as an example of an appropriately specific query [WL03]. That is

precisely the query which this project investigates.

Moreover, Walenstein et al. [WJL+03] described problems that they experienced creating reference

data for the evaluation of clone detectors. Fundamentally, the problems arose from the fact that

there is no generally accepted definition of “clone,” even in the context of a specific clone finding

task. So, as Walenstein et al. demonstrated, the reference data that human experts create to evaluate

clone detectors are far from unanimous; human experts “may not be reliable oracles” [WJL+03].

Walenstein et al. thus cast serious doubts upon many evaluations of clone detectors. This project

avoids such subjectivity entirely. It does not attempt to define the elusive “clone” concept, either

generally or relative to a specific task. Instead it provides an objective definition of the concept of

“change coupling.” It then sets clone detectors — however they define “clone” — to the task of

predicting change coupling.

2.4.4 Clone Detection and Predicting Change Coupling

Three studies examined the relationship between clone detection and change coupling.

Kim et al. [KSNM05] investigated the evolution of software clones over time. In particular, they used

the CCFinder clone detector to find clone “genealogies” in two large source code databases: carol

and dnsjava. Subsequent analysis of the genealogies revealed that “out of 109 genealogies in carol,

41 genealogies (38%) include a consistently changing pattern. Out of 125 genealogies in dnsjava,

45 genealogies (36%) include a consistently changing pattern. So, consistent with conventional

wisdom, many of the clones in the study impose the challenge of consistent update on programmers”

[KSNM05]. Thus the work of Kim et al. clearly supports the motivation for this project.

This project differed from the work of Kim et al. in the sense that it performed, essentially, the

opposite study. Whereas Kim et al. found clones and determined how many of them were change

coupled over time, this project found change coupled files and determined how many of them were

predicted by clone detection. Moreover, whereas Kim et al. used one similarity detector (CCFinder),

this project used multiple similarity detectors.
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As noted previously, Ying et al. [YMNCC04] used software mining to predict change couplings. They

then manually categorized the predicted change couplings as “obvious” (proximate), “surprising”

(distant), or “neutral” (in between proximate and distant). They further analyzed the “surprising”

coupling to try to determine the reasons why the files indeed were change coupled. They determined

that some of the “surprising” change couplings were the result of code cloning. Whereas Ying et

al. used software mining to find change coupled files and then manually determined which of those

change coupled files were cloned, this project used clone detectors to find cloned files, and then

automatically determined which of those files were change coupled.

Geiger et al. [GFGP06] hypothesized that the length of clones shared by files and the total number

of clones between files would correlate positively with change coupling between those files, and so

would be predictive of future change coupling. To investigate that theory they used the CCFinder

clone detector to perform a coarse-grained analysis of the Mozilla source code database — coarse

grained in the sense that they examined differences between product releases, not transactions.

A regression analysis failed to find the correlation to be statistically significant. “Although the

relation is statistically unverifiable it derives a reasonable amount of cases where the relation exists”

[GFGP06]. This project extends the research of Geiger et al. by using multiple clone detectors and

multiple similarity detection techniques, by performing a finer-grained transaction-level analysis of

changes, and by doing analyses of multiple source code databases (as described in the “Procedure”

chapter).

Background research found no prior study that (1) thoroughly examined the ability of clone detection

to predict future change coupling, or (2) examined the relative effectiveness of clone detection versus

software mining versus proximity detection to predict future change coupling. Background research

found no study in software clone detection that is more related to the task of predicting change

coupling than those previously described.
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2.5 Software Plagiarism Detection

Software plagiarism detection is related to this project: this project evaluates similarity detection

as a technique for predicting future change coupling, and plagiarism detectors detect similarity.

2.5.1 Techniques and Tools

In principle, plagiarism detectors can use any of the techniques used by clone detectors. In reality,

the field of plagiarism detection is dominated by one technique: the aforementioned metrics-based

Karp-Rabin string matching algorithm [KR87].

The Karp-Rabin algorithm uses hash codes to match strings. Essentially it computes a hash code

for each substring s[i...j] of the given “text” string, for each pair of character positions i and j. It

searches for a given “pattern” string within the given text string by computing the hash code of the

pattern string, and comparing it with the hash code of each substring of the text string. If the hash

codes are equal, the algorithm then performs a character-by-character comparison to assure that the

pattern string and the chosen substring of the text string indeed are identical.

The algorithm readily can be extended to search for multiple pattern strings within a given text

string. The algorithm can maintain the hash codes of the given pattern strings in a “set” data

structure (which itself could be a hash table). Then it can compute the hash code of each substring

of the text string, comparing each with the hash codes of the pattern strings via a (fast) set lookup.

The ease with which the algorithm can be extended to search for multiple pattern strings explains

its popularity for plagiarism detection. In that application the text string is a file, and the multiple

search strings are all substrings of some other file which should be checked for plagiarism.

Three plagiarism detectors currently are popular, and all use the Karp-Rabin algorithm:

• YAP3 [Wis96] detects plagiarism in Pascal, C, and LISP. It is similar to Whale’s earlier

“Plague” system [Wha90], and derives its name (“Yet Another Plague”) from that earlier

tool. YAP3 uses an algorithm developed by Wise — the “Running-Karp-Rabin Greedy-String-

Tiling (RKR-GST)” algorithm [Wis93] — that is a variant of the Karp-Rabin string matching

algorithm. The tool is available for download through the Worldwide Web at this URL:
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http://luggage.bcs.uwa.edu.au/∼michaelw/YAP.html

• JPlag [PMP02] detects plagiarism in Java, C#, C, C++, Scheme, and natural language text.

“. . . token strings are compared in pairs for determining the similarity of each pair. The method

used is basically ‘Greedy String Tiling’: During each such comparison, JPlag attempts to

cover one token string with substrings (‘tiles’) taken from the other as well as possible. The

percentage of the token strings that can be covered is the similarity value” [PMP02]. Thus

JPlag, like YAP3, uses the RKR-GST algorithm. JPlag is an online service that is freely

available through the Worldwide Web at this URL:

https://www.ipd.uni-karlsruhe.de/jplag/home.html

• MOSS [SDSWA03] (Measure of Software Similarity) detects plagiarism in C, C++, Java, C#,

Python, Visual Basic, Javascript, FORTRAN, ML, Haskell, Lisp, Scheme, Pascal, Modula2,

Ada, Perl, TCL, Matlab, VHDL, Verilog, Spice, MIPS assembly, a8086 assembly, a8086 assem-

bly, MIPS assembly, and HCL2 code. The authors do not reveal details of the tool’s algorithm,

motivated by their belief that revealing the details would compromise the effectiveness of the

tool. (If students know the tool’s algorithm, they might be able to defeat the tool.) The

authors do, however, provide an overview, and that overview clearly indicates that the tool

is built upon the Karp-Rabin string matching algorithm. MOSS is an online service that is

freely available through the Worldwide Web at this URL:

http://theory.stanford.edu/∼aiken/moss/

2.5.2 Relative Evaluations

Prechelt et al. [PMP02] analyzed the performance of JPlag by comparing it with that of MOSS

on four sets of student written programs: a “Simple” program set containing a large amount of

structural variation, a “Hard” program set containing little structural variation, a “Clean” program

set containing no instances of plagiarism, and a “Large” program set containing large programs

with large amounts of structural variation. They discovered that MOSS’s performance is essentially

the same as JPlag’s on the Simple, Clean, and Large program sets. However, JPlag is superior on

the Hard program set, achieving the same recall with much better precision [PMP02]. This project

extends the research of Prechelt et al. by analyzing additional similarity detection techniques. It
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also applies the techniques to relatively large open source programs instead of relatively small sets

of student written programs. Of course this project also applies the techniques to a different task:

predicting change coupling instead of detecting student plagiarism.

Burd and Bailey [BB02] evaluated existing plagiarism and clone detectors from a software main-

tenance perspective. Specifically, they evaluated three clone detectors: CCFinder (token-based),

CloneDR (AST-based), and Covet (metrics-based). They evaluated two plagiarism detectors: JPlag

(metrics-based) and MOSS (metrics-based). The authors measured the recall and precision of those

tools, when applied to the “GraphTool” software system, relative to a “clone base” derived from

that system. They established the clone base by merging the clones identified by all tools, and then

manually and subjectively determining which of those clones were maintenance problems. They

found that CloneDR achieved 100 percent precision and 9 percent recall, CCFinder achieved 72

percent precision and 72 percent recall, Covet achieved 63 percent precision and 19 percent recall,

JPlag achieved 82 percent precision and 12 percent recall, and MOSS achieved 73 percent precision

and 10 percent recall. This project extends the research of Burd and Bailey by using objective

reference data instead of subjective reference data, and by analyzing the performance of similarity

detectors on more than one target program. This project also applies the techniques to the specific

task of predicting change coupling instead of the more general “software maintenance” task.

2.5.3 Plagiarism Detection and Predicting Change Coupling

Background research found no project in software plagiarism detection that is more related to the

task of predicting change coupling than those previously described.
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3. RESEARCH QUESTIONS

This project investigated four research questions:

• Question 1: Can past change coupling among source code files predict future change coupling

among those files?

• Question 2: Can software similarity among source code files predict future change coupling

among those files?

• Question 3: Can software proximity among source code files predict future change coupling

among those files?

• Question 4: Which of those approaches works best?

This project investigated the research questions by analyzing files in pairs rather than in larger

clusters. In that regard, this project followed the approach of Hislop [His93a, His93b]. It was

necessary to rank files from most change coupled (or similar or proximate) to least change coupled

(or similar or proximate). Ranking clusters was problematic. “Hierarchical clustering suggests an

ordering for the clusters, but it is not clear if this is the order we want. For example, is a 2 member

cluster with a small radius more similar than a 4 member cluster with a slightly larger radius?

Even if we decide to rank strictly by hierarchy there may be problems. For example, how would we

evaluate a cluster with 3 members, 2 of which are actually . . . [change coupled] . . . and 1 of which

is not?” [His93a]. Analysis of file pairs instead of file clusters avoided such problems.

This project investigated the research questions through five analyses. The first analysis is enti-

tled the “Precision-Recall Analysis.” For each snapshot, the analysis determined the most “highly

sought” subset of file pairs from the reference set and the most “highly recommended” subset of file

pairs from each prediction set. Then it determined how many file pairs were shared by the highly

sought and highly recommended subsets. The more file pairs shared, the better the prediction

technique performed for that snapshot.

The second analysis is entitled the “Informal Precision Analysis.” As its name implies, it examined

the relative precision of the prediction techniques. It did so, for each snapshot, by mapping the most
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“highly recommended” file pairs of each prediction set into the reference set, thus selecting some

reference set pairs. It then determined how highly sought those selected reference set pairs were.

The third analysis, entitled the “Formal Precision Analysis,” was a formal (that is, a statistical)

variant of the Informal Precision Analysis. It was driven by this null hypothesis:

H0(1): When highly recommended prediction set file pairs are mapped into a reference

set, the reference set file pairs selected by one technique are no more highly sought than

are the reference set file pairs selected by another technique.

The fourth analysis is entitled the “Informal Recall Analysis.” As its name implies, it examined

the relative recall of the prediction techniques. Essentially it was a mirror image of the Informal

Precision Analysis. Whereas the Informal Precision Analysis mapped prediction set file pairs into the

reference set, the Informal Recall Analysis mapped reference set file pairs into each prediction set.

More precisely, for each snapshot the Informal Recall Analysis mapped the most “highly sought” file

pairs of the reference set into each prediction set, and determining how highly recommended those

prediction set pairs were.

Finally, the fifth analysis, entitled the “Formal Recall Analysis,” was a formal (that is, statistical)

variant of the Informal Recall Analysis. It was a mirror image of the Formal Precision Analysis,

driven by this null hypothesis:

H0(2): When highly sought reference set file pairs are mapped into prediction sets, the

file pairs selected from one prediction set are no more highly recommended than are the

file pairs selected from another prediction set.

The “Procedure” chapter provides details of the analyses. The “Results” chapter provides the results

of the analyses.
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4. PROCEDURE

This chapter defines terms, and describes the materials (programs and data) that this project used.

It also specifies this project’s data collection, data preprocessing, data processing, and data analysis

procedures.

4.1 Definitions

This section defines the terms that this project used.

4.1.1 Source Code Database

A source code database consists of source code and the history of changes to that source code. A

source code database is created through programmers’ execution of “commit” operations. A commit

operation adds a file to, updates a file of, or deletes a file from the source code database. A commit

operation records in the database (1) the name of the affected file, (2) the date and time of the

commit, (3) the identity of the programmer performing the commit, and (4) the programmer’s

description of the change.

Source code databases are implemented using version control systems. Subversion, CVS, ClearCase,

and SourceSafe are popular version control systems.

4.1.2 Snapshot

A snapshot consists of all source code in a source code database at a specific time.

4.1.3 Transaction

A transaction consists of a set of files that are committed to a source code database together.

Some popular version control systems keep track of transactions. Subversion is one such system.

Other popular version control systems do not keep track of transactions; instead they keep track of
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commit operations only. CVS is one such system.

This project used only source code databases that are implemented using Subversion. So this project

used the “transaction semantics” of the Subversion system.

4.1.4 Change Coupling

Informally, two source code files f1 and f2 of a source code database are change coupled if and only

if they are committed together many times, and separately few times. In other words, f1 and f2

are change coupled if and only if they frequently appear together in transactions, and one seldom

appears in a transaction without the other.

This project measured change coupling in two ways: support and cosine. The next two sections

describe those measures.

4.1.5 Change Coupling Support

As noted in the “Background and Literature Survey” chapter, the field of association rule mining

defines support as P (A,B), the probability that an event involving both items A and B occurred. As

related to this project, P (A,B) represents the probability that both files A and B were committed

in the current transaction.

More precisely, the project measured P (F1, F2) where:

• F1, F2 is the assertion “both f1 and f2 were committed in this transaction.”

• P (F1, F2) is the probability that both f1 and f2 were committed in this transaction.

The project estimated P (F1, F2) as:

transCount(f1, f2)
transCount

where transCount(f1, f2) is the number of transactions that involve both f1 and f2, and

transCount is the total number of transactions. Note that the denominator of that quotient is

the same for all files f1 and f2. Since the project was interested only in relative change coupling
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support between f1 and f2, the denominator was irrelevant. Thus the project defined change

coupling support as:

ccSupport(f1, f2) = transCount(f1, f2)

That formula essentially is the same as the support count measure used by Ying et al. [YMNCC04]

and Zimmermann et al. [ZWDZ05].

ccSupport is a symmetric measure. That is, ccSupport(f1, f2) equals ccSupport(f2, f1). A sym-

metric measure is appropriate for this project. Similarity detectors produce symmetric predictions

of change coupling: the similarity of f1 to f2 is the same as the similarity of f2 to f1. So it is

appropriate that the project’s measurement of actual change coupling also be symmetric.

4.1.6 Change Coupling Cosine

As noted in the “Background and Literature Survey” chapter, the field of association rule mining

defines cosine as:
P (A,B)√
P (A) · P (B)

where P (A) is the probability that an event involving item A occurred, P (B) is the probability that

an event involving item B occurred, and P (A,B) is the probability that an event involving both

items A and B occurred. As related to this project, P (A) represents the probability that file A was

committed in the current transaction, P (B) represents the probability that file B was committed

in the current transaction, and P (A,B) represents the probability that both files A and B were

committed in the current transaction.

More precisely, the project measured:

P (F1, F2)√
P (F1) · P (F2)

where

• F1 is the assertion “f1 was committed in this transaction.”

• F2 is the assertion “f2 was committed in this transaction.”

• F1, F2 is the assertion “both f1 and f2 were committed in this transaction.”
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• P (F1) is the probability that f1 was committed in this transaction.

• P (F2) is the probability that f2 was committed in this transaction.

• P (F1, F2) is the probability that both f1 and f2 were committed in this transaction.

The project estimated P (F1, F2) as described above. It estimated P (F1) as the number of trans-

actions involving f1 divided by the total number of transactions. It estimated P (F2) similarly. So

the project estimated change coupling cosine as:

transCount(f1,f2)
transCount√

transCount(f1)
transCount · transCount(f2)

transCount

where transCount and transCount(f1, f2) are as defined above, transCount(f1) is the number of

transactions that involve file f1, and transCount(f2) is the number of transactions that involve file

f2. Algebraic simplification yields this definition:

ccCosine(f1, f2) =
transCount(f1, f2)√

transCount(f1) · transCount(f2)

For example, suppose f1 was involved in 20 transactions and f2 was involved in 40 transactions.

Further suppose that 10 transactions involved both f1 and f2. Then:

ccCosine(f1, f2) =
10√

20 · 40
= 0.35

ccCosine is a symmetric measure. That is, ccCosine(f1, f2) equals ccCosine(f2, f1). As noted

previously, a symmetric measure was appropriate for this project. Similarity detectors produce

symmetric predictions of change coupling: the similarity of f1 to f2 is the same as the similarity of

f2 to f1. So it was appropriate that this project’s measurement of actual change coupling also be

symmetric. In that way this project’s cosine measure differs from the “confidence” measure used by

Zimmermann et al. [ZWDZ05].

Note that change coupling support increases each time f1 and f2 are committed in the same trans-

action. Thus the support measure captures the notion that two files are change coupled if and only

if they are changed together often.
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Note that change coupling cosine increases each time f1 and f2 are committed in the same trans-

action, and decreases each time f1 is committed in a transaction but f2 is not committed in that

same transaction (and vice versa). Thus the cosine measure captures the notion that two files are

change coupled if and only if they are changed together often and seldom separately.

4.1.7 Similarity

Informally, two source code files f1 and f2 of a source code database are similar if and only if they

contain many lines of code in common, and few lines of code other than the common ones.

As noted previously, this project measured change coupling in terms of support and cosine. It also

measured similarity in terms of support and cosine. The next two sections describe those measures.

4.1.8 Similarity Support

Paralleling the definition of change coupling support, this project defined similarity support as:

simSupport(f1, f2) = units(f1, f2)

where units(f1, f2) is the number of units (source code lines or source code tokens, depending upon

the similarity detector) shared by f1 and f2. For example, suppose the similarity detector detected

three code chunks shared by f1 and f2: the first consists of 20 lines, the second consists of 25 lines,

and the third consists of 30 lines. In that case:

simSupport(f1, f2) = 20 + 25 + 30 = 75

4.1.9 Similarity Cosine

Paralleling the definition of change coupling cosine, this project defined similarity cosine as:

simCosine(f1, f2) =
units(f1, f2)√

units(f1) · units(f2)
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where units(fx) is the number of units (lines or tokens, depending upon the similarity detector) in

file fx. For example, suppose f1 contains 500 lines, and f2 contains 600 lines. Also suppose the

similarity detector detected three code chunks shared by f1 and f2: the first consists of 20 lines,

the second consists of 25 lines, and the third consists of 30 lines. In that case:

simCosine(f1, f2) =
20 + 25 + 30√

500 · 600
= 0.14

4.1.10 Proximity

Informally, two source code files f1 and f2 of a source code database are proximate if and only if

they contain many references to each other, and few references to other files.

The concept of “reference” is programming language-specific, and so the definition of proximity also

is programming language-specific. This project focused on the Java programming language. In the

Java programming language, typically a source code file defines a single public type (class, interface,

or enumeration). So, for the purposes of this project, one Java source code file “references” another

if and only if the public type defined in one file explicitly references the name of the public type

defined in the other.

In Java a public type T1 can explicitly reference the name of another public type T2 in many

contexts:

• Extends Reference: T1 names T2 as the type which it extends

• Implements Reference: T1 names T2 as a type which it implements

• Field Type Reference: T1 defines a field of type T2

• Parameter Type Reference: T1 defines a method having a parameter of type T2

• Return Type Reference: T1 defines a method having return type T2

• Local Variable Reference: T1 defines a method having a local variable of type T2

• Static Method Call : T1 calls a static method of T2 via syntax of the form “T2.method()”

• Static Field Reference: T1 uses a static field of T2 via syntax of the form “T2.field”
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• Class Name Reference: T1 contains an expression of the form “T2.class”

• Cast Reference: T1 contains an expression of the form “(T2)expression”

• Instanceof Reference: T1 contains an expression of the form “expression instanceof T2”

• Generic Reference: T1 contains an expression of the form “T3 < T2 >” for some T3

This project considered references in all such contexts.

As noted previously, this project measured change coupling and similarity in terms of support and

cosine. This project also measured proximity in terms of support and cosine. The next two sections

describe those measures.

4.1.11 Proximity Support

Paralleling the definition of change coupling support and similarity support, this project defined

n’ary proximity support as:

proxSupportN(f1, f2) = refsN(f1, f2)

where refsN(f1, f2) is the number of references between f1 and f2, that is, the number of times

f1 references f2 plus the number of times f2 references f1. For example, suppose f1 contains 2

references to f2, and f2 contains 3 references to f1. In that case:

proxSupportN(f1, f2) = 2 + 3 = 5

This project also measured proximity support using a simpler scheme — a binary scheme rather

than an n’ary one. In the binary scheme, this project defined refs2(f1, f2) as:

• 0 if f1 does not reference f2 and f2 does not reference f1.

• 1 if f1 references f2 and f2 does not reference f1, or if f2 references f1 and f1 does not

reference f2.

• 2 if f1 references f2 and f2 references f1.
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That is, the simpler scheme does not consider the number of times f1 references f2; instead it

considers only whether f1 references f2. This project then defined the binary version of proximity

support as:

proxSupport2(f1, f2) = refs2(f1, f2)

For example, suppose f1 references f2 and f2 references f1. In that case:

proxSupport2(f1, f2) = 1 + 1 = 2

This project compared the predictive value of proxSupportN(f1, f2) with that of

proxSupport2(f1, f2). Details are provided in the “Procedure” chapter.

4.1.12 Proximity Cosine

Paralleling the definition of change coupling cosine and similarity cosine, this project defined n’ary

proximity cosine as:

proxCosineN(f1, f2) =
refsN(f1, f2)√

refsN(f1) · refsN(f2)

where refsN(fx) is the number of references between fx and all other files. For example, suppose:

• f1 contains 2 references to f2,

• f2 contains 3 references to f1,

• f1 contains 7 references to files other than itself,

• Files other than f1 contain 6 references to f1,

• f2 contains 10 references to files other than f2, and

• Files other than f2 contain 8 references to f2.

In that case:

proxCosineN(f1, f2) =
2 + 3√

(7 + 6) · (10 + 8)
= 0.33
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This project also measured proximity cosine using a simpler binary scheme. It defined binary

proximity cosine as:

proxCosine2(f1, f2) =
refs2(f1, f2)√

refs2(f1) · refs2(f2)

where refs2(fx) is the number of files that fx references plus the number of files that reference fx.

For example, suppose:

• f1 references f2,

• f2 references f1,

• f1 references 3 files other than itself,

• 4 files other than f1 reference f1,

• f2 references 5 files other than itself, and

• 6 files other than f2 reference f2.

In that case,

proxCosine2(f1, f2) =
1 + 1√

(3 + 4) · (5 + 6)
= 0.23

This project compared the predictive value of proxCosineN(f1, f2) with that of

proxCosine2(f1, f2), as described in the “Procedure” chapter.

4.2 Materials

This section describes the preexisting materials — data and programs — that this project used.

4.2.1 Source Code Databases

This project used four source code databases:

• Ant. “Apache Ant is a Java-based build tool. In theory, it is kind of like Make, but without

Make’s wrinkles” (http://www.ant.apache.org). The Ant source code database consists of

approximately 727 Java files and 6968 transactions involving Java files. This project accessed

the database via this URL:
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http://svn.apache.org/repos/asf/ant/core/trunk

• Struts. “Apache Struts is a free open-source framework for creating Java web applications”

(http://struts.apache.org/). Specifically, this project used the “Struts 1” source code database.

The database consists of approximately 654 Java files and 2347 transactions involving Java

files. This project accessed the database via this URL:

http://svn.apache.org/repos/asf/struts/struts1/trunk

• Tomcat. “Apache Tomcat is the servlet container that is used in the official

Reference Implementation for the Java Servlet and JavaServer Pages technologies”

(http://tomcat.apache.org/). Specifically, this project used the Tomcat Version 5.5 “Con-

tainer” source code database. The database consists of approximately 663 Java files and 2627

transactions involving Java files. This project accessed the database via this URL:

http://svn.apache.org/repos/asf/tomcat/container/tc5.5.x.

• Xerces. “Apache Xerces is a collaborative software development project dedicated to

providing robust, full-featured, commercial-quality, and freely available XML parsers and

closely related technologies on a wide variety of platforms supporting several languages”

(http://xerces.apache.org/charter.html). The database consists of approximately 676 Java

files and 3844 transactions involving Java files. This project accessed the database via this

URL:

http://svn.apache.org/repos/asf/xerces/java/trunk

All of those source code databases are from the Apache Foundation, but are the results of distinct

development efforts.

This project selected those source code databases to satisfy these criteria:

• Programming language. As noted previously, the “reference” concept is programming

language-specific, so this project focused on one programming language; that programming

language is Java. Java is popular, uses today’s dominant programming paradigm (object-

oriented programming), and is simpler to parse than its contemporary, C++. The selected

source code databases store Java source code.
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• Version control system. CVS and Subversion are the most popular version control system

for open source projects. As noted previously, the concept of “transaction” is defined in

Subversion, but not in CVS. So, to avoid ambiguity regarding the definition of “transaction,”

this project used only source code databases that use Subversion as the underlying version

control system.

• Number of source code files. The selected source code databases contain enough source code

files to yield statistically meaningful results, while still being manageable computationally.

• Number of transactions. The selected source code databases contain enough transactions to

yield reasonably large reference and prediction sets, while still being manageable computation-

ally.

4.2.2 Similarity Detectors

This project used three similarity detectors: Duplo (version 0.2.0), CCFinderX (version 10.1.12.8

for WinXP), and CPD (bundled with PMD version 4.0). This project attempted also to obtain the

CloneDR commercial similarity detector; those attempts ultimately failed.

This project selected those similarity detectors using these criteria:

• Tool availability. The selected similarity detectors were available to this project.

• Documentation availability. Documentation was available for the selected similarity detectors

indicating their principles of operation.

• Programming language. The selected similarity detectors work with the Java programming

language. Duplo is (mostly) language-independent; it works with Java. CCFinderX and CPD

are language-specific, and also work with Java.

• Technique used. As noted in the “Background and Literature Review” chapter, a similarity

detector can be classified according to the underlying techniques that it uses. For this project

it was desirable to use similarity detectors that represent different techniques. The selected

detectors indeed do: Duplo is text-based, CCFinderX is token-based, and CPD is metrics-

based.
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All of the selected similarity detectors are clone detectors. The “Background and Literature Review”

chapter also describes some plagiarism detectors that can be used to detect similarity. There are no

good candidates among them. YAP3 is inappropriate because it does not handle Java source code.

JPlag and MOSS are available, and handle Java. However they are available only as public services,

running on servers at institutions unrelated to this project. It would have been unreasonable to ask

such servers to handle the heavy workload that this project required. Fortunately CPD uses the

same underlying algorithm (the Karp-Rabin string matching algorithm) as YAP3, JPlag, and MOSS

do. So CPD was a suitable representative of those plagiarism detectors.

The following subsections describe the algorithms used by the three chosen similarity detectors.

Duplo

Duplo is text-based. It uses a lightweight, line oriented, mostly language-independent approach to

detecting clones. Specifically, it uses a three-step algorithm. In the first step Duplo transforms each

source code line into an internal form. To do that it simply condenses the line by removing white

space and comments. In the second step Duplo compares lines using string matching; the algorithm

used to perform the string matching is unspecified. It stores the results in a Boolean matrix; a

TRUE value at row X column Y of the matrix indicates that source code line X matches source

code line Y. In the third step Duplo runs a pattern matcher over the matrix. The pattern matcher

“captures diagonal lines and allows holes up to a certain size in the middle of a line.” Thus it finds

sequences of cloned lines [DRD99].

CCFinderX

CCFinderX is token-based. It uses a four-step algorithm. Step 1 is entitled “lexical analysis.” In

that step CCFinderX removes comments and white space, and groups the characters of a source

code file into tokens as defined by the programming language. It concatenates the tokens to form a

token sequence.

Step 2 is entitled “transformation.” In that step CCFinderX adds, removes, or changes tokens in

the token sequence using language-specific transformation rules. The Java transformation rules (1)

remove package names, (2) make sure each method call is prefixed with a class name or object
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name, (3) remove initialization lists, (4) separate class definitions by adding a special token to

mark class definition boundaries, (5) remove accessibility keywords (“private,”, “protected,” etc.),

and (6) convert each single statement nested within a control statement to a compound statement

containing that single statement. During the transformation step CCFinderX also replaces each

type and variable identifier with a special token, thus allowing matches between token sequences

that differ only by type or variable identifiers.

Step 3 is entitled “match detection.” In that step CCFinderX analyzes all substrings of the trans-

formed token sequence. It does so using the well known “suffix tree” approach. Many computer

science textbooks describe that approach. For example, Sedgewick describes it as follows:

We consider each position in the text to be the beginning of a string key that runs all the
way to the end of the text and build a symbol table with these keys, using string pointers.
The keys are all different (for example, they are of different lengths), and most of them
are extremely long. The purpose of a search is to determine whether or not a given search
key is a prefix of one of the keys in the index, which is equivalent to discovering whether
the search key appears somewhere in the text string... A search tree that is built from
keys defined by string pointers into a text string is called a suffix tree [Sed99].

More precisely, CCFinderX represents the clone location information as a tree “with sharing nodes

for leading identical subsequences.” CCFinderX then finds matches “by searching the leading nodes

on the tree” [KKI02]. For the sake of efficiency/scalability, CCFinderX allows only specific tokens at

the beginning of clone sequences (a token beginning a class definition, a token beginning an iteration

statement, etc.).

Finally, Step 4 is entitled “formatting.” In that step CCFinderX converts the detected clone pairs

into line and column numbers within the original source code files [KKI02,HKKI07].

CPD

CPD is metrics-based. It is bundled with PMD, a Java source code analyzer that

“finds unused variables, empty catch blocks, unnecessary object creation, and so forth”

[http://sourceforge.net/projects/pmd/]. The most recent version of CPD uses the Karp-

Rabin string matching algorithm, as do the currently popular plagiarism detection tools

[http://pmd.sourceforge.net/cpd.html]. The “Software Plagiarism Detection” section of the “Back-

ground and Literature Review” chapter describes the Karp-Rabin string matching algorithm.
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4.3 Data Collection

To collect its data, this project performed the steps described in the following subsections. Figure

4.1 provides an overview of the data collection procedure.

4.3.1 Download Current Snapshots

Run a Subversion client to download the most recent revision of each source code database.

In the Subversion system, a revision number applies to the source code database as a whole. Each

transaction generates a new revision of the database. Essentially, each snapshot has a single, unique

revision number. Similarly, each transaction has a single, unique revision number — the number

corresponding to the revision number of the database that it generated. Table 4.1 shows the numbers

of the most recent revisions at the times of the downloads.

Table 4.1: Revisions of Source Code Databases Used

Database Revision
Ant 556069
Struts 554496
Tomcat 558916
Xerces 556213

4.3.2 Download Change Logs

Run a Subversion client to download the entire database change log for each source code database.

A change log records all transactions applied to the database. Each transaction consists of an

author, a database revision number, a date and time, and a list of the files that participated in the

transaction.
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Figure 4.1: The Data Collection Procedure
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4.3.3 Retrieve Transaction Sets

Run a TransRetriever program, created specifically for this project, to transform each change log

into a transaction set in a format that was easier for downstream tools to manipulate.

The TransRetriever also eliminated from the change log all files except those containing Java source

code, that is all files except those whose file names end with “.java.”

4.3.4 Create Prediction and Reference Transaction Sets

Run a TransSetSplitter tool, created specifically for this project, to split the transaction set for each

entire database, thereby generating a prediction transaction set and reference transaction set for

each snapshot.

The TransSetSplitter determined the one-quarter, one-half, and three-quarter revision numbers of

each database. It did so by assigning an approximately equal number of transactions to each quarter.

For example, for the Ant one-quarter point snapshot the TransSetSplitter split the Ant transaction

set to generate (1) a prediction transaction set consisting of transactions having revision numbers

less than or equal to 270420, and (2) a reference transaction set consisting of all transactions having

revision numbers greater than 270420. For the Ant one-half point snapshot, the TransSetSplitter

split the Ant transaction set to generate (1) a prediction transaction set consisting of transactions

having revision numbers less than or equal to 273245, and (2) a reference transaction set consisting

of all transactions having revision numbers greater than 273245. For the Ant three-quarter point

snapshot, the TransSetSplitter split the Ant transaction set to generate (1) a prediction transaction

set consisting of transactions having revision numbers less than or equal to 277184, and (2) a reference

transaction set consisting of all transactions having revision numbers greater than 277184.

The TransSetSplitter generated a prediction transaction set and a reference transaction set for each

of the other snapshots similarly.

4.3.5 Download Past Snapshots

Run a Subversion client to download the appropriate past snapshots of each source code database.

That is, using the one-quarter, one-half, and three-quarter point revision numbers determined by
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the TransSetSplitter, download the one-quarter, one-half, and three-quarter point snapshots of each

database.

Table 4.2 shows the revision numbers of each snapshot. In that table, “Ant1” refers to the one-

quarter point snapshot of the Ant database, “Ant2” refers to the one-half point snapshot of the Ant

database, and “Ant3” refers to the three-quarter point snapshot of the Ant database. The table

uses similar abbreviations to refer to the snapshots of the Struts, Tomcat, and Xerces databases.

Table 4.2: Revisions of Database Snapshots

Snapshot Revision
Ant1 270420
Ant2 273245
Ant3 277184
Struts1 48885
Struts2 50222
Struts3 51352
Tomcat1 302000
Tomcat2 302994
Tomcat3 375682
Xerces1 317141
Xerces2 318456
Xerces3 319780

4.3.6 Data Collection Summary

In summary, the data collection procedure generated 12 snapshots (three for each of the four source

code databases), and a reference transaction set and prediction transaction set for each snapshot.

4.4 Data Preprocessing

After collecting the data, this project preprocessed each snapshot using the steps described in the

following subsections. Figure 4.2 provides an overview of the data preprocessing procedure.
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4.4.1 Parse Source Code Files To Determine Fileids

Run a FileIdParser program, created specifically for this project, on each file of each snapshot.

The FileIdParser had two jobs: (1) parse each file to assign it a “fileid,” and (2) discard inappropriate

files. It created a FileIds set that mapped each undiscarded file to its fileid. The next two subsections

describe those jobs.

Assign Fileids

For each snapshot, the FileIdParser’s first job was to give each Java source code file a fileid. The fileid

of each Java source code file was the name of the public data type (class, interface, or enumeration)

that it defined.

So, the FileIdParser parsed each Java source code file to determine the name of the public data type

that it defined. While doing so it created a FileIds set for the snapshot. The FileIds set mapped

each file name to the name of the data type defined in that file. That is, the FileIds set mapped

each file name to its fileid.

That “fileid” approach was motivated by the existence of development branches. In some snapshots,

developers clearly had created branches (that is, copies of entire directories) to support current

development efforts, with the intention of merging the branches back into the main trunk eventually.

As a result, some snapshots contained multiple files that defined the same data type: file X.java in a

trunk directory might define type X, and file X.java in a branch directory also might define type X.

In that case, the FileIdParser would assign both .java files the same fileid: X. All downstream data

preprocessing and processing tools stored their data by fileid, not by file name. Details are provided

in subsequent sections.

An alternative approach for the handling branches would have been to discard all branch files, thus

retaining only trunk files. But doing so would have eliminated files that were experiencing many

changes — precisely the kind of files that were the most interesting. So this project chose not to

discard those files, and instead to consolidate branch and trunk files using fileids.
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Discard Inappropriate Files

The FileIdParser’s second job was to discard inappropriate files from this project.

Specifically, the FileIdParser discarded any file that did not parse properly according to the Java

5.0 language specification. It did so because some downstream processing tools — some similarity

detectors, and the proximity detectors — work only for files that parse properly according to that

specification.

The FileIdParser also discarded any file that did not define a public type. It did so because Java

guarantees that the name of a public type is related to the name of the file in which it is defined,

but does not provide that guarantee for non-public types. If this project were to accept a file that

defines (possibly multiple) non-public types, then it would be impossible to map that file to a unique

type name, and so it would be impossible to assign that file a unique fileid.

Across all snapshots, the FileIdParser discarded approximately 4 percent of all source code files.

Table 4.3 shows the number of files discarded and retained for each snapshot.

Table 4.3: Counts of Files Discarded and Retained per Snapshot

Files Files
Snapshot Discarded Retained
Ant1 50 721
Ant2 67 727
Ant3 29 1048
Struts1 3 406
Struts2 7 654
Struts3 2 771
Tomcat1 29 647
Tomcat2 27 663
Tomcat3 13 772
Xerces1 53 485
Xerces2 37 676
Xerces3 28 681
TOTAL 345 8251
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4.4.2 Parse Source Code Files to Determine Line Counts

Run a LineCountParser program, created specifically for this project, on each file of each snapshot.

The LineCountParser computed the number of non-comment/non-white space lines for each fileid.

The line count for each fileid was the sum of the line counts of all files with that fileid. The line

counts were stored in a set named LineCounts. Each element of LineCounts related a fileid to a line

count.

As described in the “Definitions” section, line counts were used to compute simCosine values for

some similarity detectors. Specifically, the Duplo similarity detector uses lines as its unit of measure,

and so requires those counts. Duplo is designed to “remove comments and all white space until we

get a condensed form of the line” [DRD99]. So the LineCountParser also removed comments and

white space when determining line counts.

4.4.3 Parse Source Code Files to Determine Token Counts

Run a TokenCountParser program, created specifically for this project, on each file of each snapshot.

The TokenCountParser computed the number of tokens in each fileid. The token count for each

fileid was the sum of the token counts of all files with that fileid. The token counts were stored in a

set named TokenCounts. Each element of TokenCounts related a fileid to a token count.

As described in the “Definitions” section, token counts were used to compute simCosine values for

some similarity detectors. Specifically, the CCFinderX and CPD similarity detectors use tokens as

their unit of measure, and so require those counts.

The literature describing CCFinderX and CPD states that they use tokens as their unit of measure,

but is imprecise about how those tools define “token.” So the TokenCountParser defined “token”

as the Java programming language does. (One minor exception: the TokenCountParser considered

each white space delimited word of a string literal to be a distinct token.)

Thus the computation of simCosine values for CCFinderX and CPD necessarily was somewhat

imprecise. However, as described below in the “Data Analysis” section, simCosine was used only

as a secondary sorting mechanism — a tie breaker. So some imprecision in simCosine values was
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acceptable.

4.4.4 Data Preprocessing Summary

In summary, the data preprocessing procedure generated 12 “clean” database snapshots, and a

FileIds set, a LineCounts set, and a TokenCounts set for each snapshot.

4.5 Data Processing

After collecting and preprocessing the data, this project processed the data to generate reference

sets and prediction sets using the steps described in the following subsections. Figures 4.3, 4.4, and

4.5 provide an overview of the data processing procedure.

4.5.1 Create Reference Sets

Run a Miner program, created specifically for this project, to generate a reference set for each

snapshot.

The Miner accepted as input the snapshot’s reference transaction set and the FileIds set. It generated

as output the snapshot’s reference set, where each element of the reference set was a tuple of the

form:

< f1, f2, transCount(f1), transCount(f2), transCount(f1, f2) >

The Miner generated one such tuple for each combination of fileids f1 and f2, where f1 6= f2.

Thus each tuple identified a fileid pair (f1 and f2), and contained the data required to compute

ccSupport(f1, f2) and ccCosine(f1, f2) for that fileid pair.

The Miner computed transCount(f1) as the number of transactions involving any file having fileid

f1. The Miner computed transCount(f1, f2) as the number of transactions involving both (1) any

file with fileid f1, and (2) any file with fileid f2.

Note that the “fileid” approach was appropriate for creating reference sets. Certainly if branch files

X.java and Y.java were change coupled, then this project should consider the corresponding trunk

files X.java and Y.java to be change coupled also. And if branch file X.java and trunk file X.java
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Figure 4.3: The Data Processing Procedure: Part 1
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Figure 4.4: The Data Processing Procedure: Part 2



47

Snapshot

NaryProxDetector

N’ary Proximity Prediction Set
<f1, f2, refsN(f1), refsN(f2), refsN(f1, f2)>

The Data Processing Procedure: Part 3
For each Snapshot…

FileIds
<filename, fileid>

BinayProxDetector

Binary Proximity Prediction Set
<f1, f2, refs2(f1), refs2(f2), refs2(f1, f2)>

FileIds
<filename, fileid>

Figure 4.5: The Data Processing Procedure: Part 3



48

were involved in the same transaction (as they would be during a merge), then this project should

not consider those two files to be change coupled; conceptually, they are two versions of the same

file. Tracking transaction counts by fileid rather than file name accomplished those goals.

Zimmermann and Weißgerber noted that some large transactions are “because of infrastructure

changes, and not because of logical changes” [ZW04]. For example, updating a copyright notice

might imply simultaneous changes to many (perhaps even all) files in a source code database, yet

would not constitute a meaningful transaction in the context of this project. Systematically remov-

ing all unnecessary “import” statements from Java files is another example. Following the precedent

of Zimmermann and Weißgerber, the Miner discarded large transactions. Specifically, the Miner dis-

carded all transactions that involved more than 30 source code files, as Zimmermann and Weißgerber

did. Table 4.4 shows (1) the number of transactions that the Miner discarded, and (2) the number

of remaining transactions that it retained to create the reference set for each snapshot. Across all

snapshots, the Miner discarded less than one percent of all transactions.

Table 4.4: Counts of Transactions Discarded and Retained to Generate Reference Sets

Transactions Transactions
Snapshot Discarded Retained
Ant1 46 5180
Ant2 19 3465
Ant3 8 1734
Struts1 12 1748
Struts2 28 1145
Struts3 18 568
Tomcat1 10 1960
Tomcat2 6 1307
Tomcat3 3 653
Xerces1 18 2865
Xerces2 25 1897
Xerces3 21 940
TOTAL 214 23462
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4.5.2 Create Mining Prediction Sets

Run the Miner to generate a mining prediction set for each snapshot.

The Miner accepted as input the snapshot’s prediction transaction set. It generated as output the

snapshot’s mining prediction set, where each element of a mining prediction set was a tuple of the

form:

< f1, f2, transCount(f1), transCount(f2), transCount(f1, f2) >

The Miner generated one such tuple for each combination of fileids f1 and f2, where f1 6= f2.

Thus each tuple identified a fileid pair (f1 and f2), and contained the data required to compute

ccSupport(f1, f2) and ccCosine(f1, f2) for that fileid pair.

The Miner computed transCount(f1) as the number of transactions involving any file having fileid

f1. The Miner computed transCount(f1, f2) as the number of transactions involving both (1) any

file with fileid f1, and (2) any file with fileid f2.

Note that the “fileid” approach was appropriate for creating mining prediction sets, for the same

reasons that it was appropriate for creating reference sets.

The Miner discarded large transactions from the mining prediction sets, just as it did for the reference

sets. Table 4.5 shows the number of transactions that the Miner discarded and used to create the

mining prediction set for each snapshot. Across all snapshots, the Miner discarded approximately

one percent of all transactions.

4.5.3 Create Similarity Detector Output

Run each similarity detector on each snapshot.

Each similarity detector accepts a command-line argument indicating a minimum code fragment

length; the similarity detector does not detect similar code fragments that are smaller than that

specified length. Duplo expresses the minimum code fragment length in terms of lines; its default is

4 lines. CCFinderX expresses the minimum code fragment length in terms of tokens; its default is 50

tokens. Like CCFinderX, CPD expresses the minimum code fragment length in terms of token. It

does not use a default. For CPD the user must specify the minimum code fragment length explicitly.
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Table 4.5: Counts of Transactions Discarded and Retained to Generate Prediction Sets

Transactions Transactions
Snapshot Discarded Retained
Ant1 22 1720
Ant2 44 3440
Ant3 66 5160
Struts1 6 581
Struts2 7 1167
Struts3 24 1737
Tomcat1 3 654
Tomcat2 8 1306
Tomcat3 12 1959
Xerces1 13 948
Xerces2 21 1901
Xerces3 24 2859
TOTAL 250 23432

This project used these criteria to choose minimum code fragment lengths for the similarity detectors:

• It was appropriate that the similarity detectors be aggressive, that is, detect as many similar

code fragments as possible. So it was appropriate that this project use small values for the

minimum code fragment lengths.

• Some of the similarity detectors are memory intensive. For some of the similarity detectors,

an extremely small minimum code fragment length caused the detector to exhaust computer

memory. So the settings were bounded from below by available computer resources.

• For the sake of comparison of performance, it was appropriate that the similarity detectors be

parameterized such that they use approximately the same minimum code fragment lengths. An

analysis of the source code across all snapshots determined that each source code line consisted

of, on average, approximately 5 tokens. So if Duplo’s minimum fragment length were set to x

lines, then the minimum fragment length for CCFinderX and CPD should be set to 5x tokens.

After some experimentation, these were settings were chosen for the minimum code fragment lengths:

• For Duplo: 2 lines

• For CCFinderX: 10 tokens

• For CPD: 10 tokens
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Those settings satisfied the criteria listed above. In particular, they were as aggressive as possible

while still using a reasonable amount of computer memory. They also were approximately the same

across the three similarity detectors.

4.5.4 Create Similarity Prediction Sets

Run a DuploAdapter program, a CCFinderXAdapter program, and a CPDAdapter program, all

created specifically for this project, to generate a Duplo similarity prediction set, a CCFinderX

similarity prediction set, and a CPD similarity prediction set respectively.

The DuploAdapter accepted the output generated by Duplo and the FileIds and LineCounts sets

from data preprocessing. It analyzed that input to determine the value of units(f1, f2) for each

fileid pair. Using those values of units(f1, f2), and also using the values of units(f1) obtained from

LineCounts, the DuploAdapter generated a Duplo similarity prediction set whose elements were

tuples of the form:

< f1, f2, units(f1), units(f2), units(f1, f2) >

The DuploAdapter generated one such tuple for each combination of fileids f1 and f2, where f1 6=

f2. Thus each tuple identified a fileid pair (f1 and f2), and contained the data required to compute

simSupport(f1, f2) and simCosine(f1, f2) for that fileid pair.

The DuploAdapter computed units(f1) by averaging over the files having fileid f1. Conceptually

it created a composite of all files having fileid f1, and computed the units of that composite. It

computed the units of the composite by averaging, not summing, the units of the component files.

Similarly, the DuploAdapter computed units(f1, f2) by averaging over the files having fileids f1

and f2. Conceptually it computed a composite of all files having fileid f1, computed a composite of

all files having fileid f2, and then computed the units shared by those two composites. In all cases,

the composite was created by averaging, not summing, the units of the component files.

Note that the “fileid” approach was appropriate for creating the Duplo similarity prediction set.

If branch files X.java and Y.java were similar, then this project should consider the corresponding

trunk files X.java and Y.java to be similar also. Perhaps more importantly, if branch file X.java

and trunk file X.java contain similar code — as they almost certainly would — then this project

should not consider those two files to be similar with respect to the predictions that it generates;
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conceptually, they are two versions of the same file. Tracking unit counts by fileid rather than file

name accomplished those goals. Averaging (instead of summing) unit counts across all files with the

same fileid avoided biasing the results in favor of fileids with multiple associated files.

The CCFinderXAdapter used the same approach to generate a CCFinderX similarity prediction set.

It used the TokenCounts set instead of the LineCounts set to compute values of units(f1). Finally,

the CPDAdapter used the same approach to generate a CPD similarity prediction set. It also used

the TokenCounts set instead of the LineCounts set to compute values of units(f1).

The result was a Duplo similarity prediction set, a CCFinderX similarity prediction set, and a CPD

similarity prediction set for each snapshot.

4.5.5 Create N’ary Proximity Prediction Sets

Run a NaryProxDetector program, created specifically for this project, to create a n’ary proximity

prediction set for each snapshot.

Given a snapshot’s source code files and the FileIds set, the NaryProxDetector parsed each file to

find references to other files, more precisely, references to public types defined in other files. The

NaryProxDetector then generated a n’ary proximity prediction set for the snapshot. Each element

of the set was a tuple of the form:

< f1, f2, refsN(f1), refsN(f2), refsN(f1, f2) >

The NaryProxDetector generated one such tuple for each combination of fileids f1 and f2, where

f1 6= f2. Thus each tuple identified a fileid pair (f1 and f2), and contained the data required to

compute proxSupportN(f1, f2) and proxCosineN(f1, f2) for that fileid pair.

The NaryProxDetector computed refsN(f1) by averaging over the files having fileid f1. Conceptu-

ally it created a composite of all files having fileid f1, and computed the number of references to and

from that composite. It computed the composite reference counts by averaging, not summing, the

reference counts of the component files. Similarly, the NaryProxDetector computed refsN(f1, f2)

by averaging over the files having fileids f1 and f2. Conceptually it computed a composite of all

files having fileid f1, computed a composite of all files having fileid f2, and then computed the
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number of references between those two composites. It computed all composite reference counts by

averaging, not summing.

Note that the “fileid” approach was appropriate for creating n’ary proximity prediction sets. If

branch file X.java were proximate to branch file Y.java, then this project should consider the corre-

sponding trunk files X.java and Y.java to be proximate also. And if branch file X.java were proximate

to trunk file Y.java, then this project should consider trunk file X.java to be proximate to trunk

file Y.java also. Tracking reference counts by fileid rather than file name accomplished those goals.

Averaging (instead of summing) reference counts across all files with the same fileid avoided biasing

the results in favor of fileids with multiple files.

4.5.6 Create Binary Proximity Prediction Sets

Run a BinaryProxDetector program, created specifically for this project to create a binary proximity

prediction set for each snapshot.

The BinaryProxDetector was a variant of the NaryProxDetector. Given a snapshot’s source code

files, the BinaryProxDetector parsed each file to find references to other files, more precisely, ref-

erences to public types defined in other files. The BinaryProxDetector then generated a binary

proximity prediction set for the snapshot. Each element of the set was a tuple of the form:

< f1, f2, refs2(f1), refs2(f2), refs2(f1, f2) >

The BinaryProxDetector generated one such tuple for each combination of fileids f1 and f2, where

f1 6= f2. Thus each tuple identified a fileid pair (f1 and f2), and contained the data required to

compute proxSupport2(f1, f2) and proxCosine2(f1, f2) for that fileid pair.

The BinaryProxDetector computed refs2(f1) by averaging over the files having fileid f1. Conceptu-

ally it created a composite of all files having fileid f1, and computed the number of fileids proximate

to that composite. It computed the composite reference counts by averaging, not summing, the

reference counts of the component files. Similarly, the BinaryProxDetector computed refs2(f1, f2)

by averaging over the files having fileids f1 and f2. Conceptually it computed a composite of all

files having fileid f1, computed a composite of all files having fileid f2, and computed the number of

references between those two composites. It computed all composite reference counts by averaging,
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not summing.

Note that the “fileid” approach was appropriate for creating binary proximity prediction sets for

the same reasons that it was appropriate for creating the n’ary proximity prediction sets. Also note

that averaging (instead of summing) across all files with the same fileid was appropriate.

4.5.7 Data Processing Summary

In summary, the data processing procedure generated seven sets for each snapshot:

1. A reference set

2. A mining prediction set

3. A Duplo similarity prediction set

4. A CCFinderX similarity prediction set

5. A CPD similarity prediction set

6. A n’ary proximity prediction set

7. A binary proximity prediction set

4.6 Data Analysis

As noted in the “Research Questions” chapter, this project performed five analyses: a Precision-

Recall Analysis, an Informal Precision Analysis, a Formal Precision Analysis, an Informal Recall

Analysis, and a Formal Recall Analysis. The following sections describe the procedure that this

project followed to perform the analyses.

This section and subsequent chapters use the terms “file” and “file pair” instead of the more precise

but awkward “fileid” and “fileid pair.”

4.6.1 The Precision-Recall Analysis

For each snapshot, the Precision-Recall Analysis sorted the reference set and each prediction set in

descending order primarily by support and secondarily by cosine. It declared the first 1400 reference
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set file pairs to be “highly sought,” and the first x prediction set pairs to be “highly recommended”

— for x equaling 100, 200, . . . , 1400. It then determined how many file pairs were shared by the

highly sought and highly recommended subsets. The more file pairs shared by the highly sought

and highly recommended subsets, the better the prediction technique. A more precise description

of the algorithm used for the Precision-Recall Analysis is shown in Figure 4.6.

Thus the Precision-Recall Analysis evaluated the precision and recall of the results generated by the

prediction techniques — in the classic “information retrieval” sense. The Precision-Recall Analysis

imposed an artificial cutoff on each reference set: it declared the 1400 reference set file pairs above

the cutoff point to be “sought,” and it declared all reference set file pairs below the cutoff point to

be “not sought.” The analysis then determined, for each prediction set, the count (n) of “found”

file pairs that were, in fact, “sought.” It did so for increasingly large subsets of each prediction set

(that is, for x equaling 100, 200, . . . , 1400). The counts amounted to measurements of the precision

and recall of the prediction techniques: the precision of the technique was n/x, and its recall was

n/1400.

The Precision-Recall Analysis also computed the results that would be generated by a “Random”

technique, that is, a technique that randomly chooses highly recommended file pairs uniformly over

the entire prediction set. Comparing the results generated by the “real” prediction techniques with

those generated by a Random technique gave insight into the quality of the prediction techniques in

an absolute sense.

4.6.2 The Informal Precision Analysis

As noted in the “Research Questions” chapter, for each snapshot the Informal Precision Analysis

mapped the most “highly recommended” file pairs of each prediction set into the reference set, thus

selecting some reference set pairs. It then determined how highly sought those selected reference set

pairs were.

As a hypothetical example of the Informal Precision Analysis, consider Figure 4.7. Assume that

the reference set, prediction set A, and prediction set B are sorted in descending order primarily by

support and secondarily by cosine.

The analysis would declare the first x file pairs of prediction set A to be “highly recommended.” It
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For each prediction set (Miner, Duplo, CCFinderX, CPD, N’ary Prox, 
Binary Prox)

For x = 100, 200, ... 1400

total = 0

For each one-quarter point snapshot (Ant1, Struts1, 
Tomcat1, and Xerces1)

Sort the reference set in descending order 
primarily by support and secondarily by cosine.  
Mark the first 1400 file pairs as “highly sought.”

Sort the prediction set in descending order 
primarily by support and secondarily by cosine. 
Mark the first x file pairs as “highly 
recommended.”

Sort the reference set and prediction set in order by 
file pair. Step through all file pairs of the two sets 
in parallel. Count the number (n) of parallel file 
pairs that are marked in both sets. Thus n indicates 
the number of file pairs that occur within both the 
“highly sought” and “highly recommended” sets.  
Print n.

total += n

Print total/4

Repeat the above algorithm using one-half point snapshots (Ant2, 
Struts2, Tomcat2, and Xerces2).

Repeat the above algorithm using three-quarter point snapshots 
(Ant3, Struts3, Tomcat3, and Xerces3).

Figure 4.6: Algorithm for the Precision-Recall Analysis
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Figure 4.7: Hypothetical Example of the Informal Precision Analysis
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would map those file pairs into the reference set, and note the reference set support values of the

pairs that were selected from the reference set. The analysis then would declare the first x file pairs

of prediction set B to be “highly recommended.” It would map those file pairs into the reference

set, and note the reference set support values of the pairs that were chosen from the reference set.

A good prediction technique (such as A) would select reference set pairs that have relatively high

reference set support values. A poor prediction technique (such as B) would select reference set pairs

that have relatively low reference set support values. The larger the support values of the selected

pairs, the better the prediction technique. Noting that the mean of the support values of the pairs

selected by A is larger than the mean of the support values of the pairs selected by B, the analysis

could conclude that A is a better prediction technique than B.

This project performed precisely that analysis. For each snapshot, it mapped the best x file pairs

(for x equaling 100, 200, . . . , 1400) of each prediction set into the reference set, and noted the

reference set support values of the pairs that were selected from the reference set. It then computed

the mean of those support values. Finally, it compared the means for each prediction technique.

A more precise description of the algorithm used for the Informal Precision Analysis is shown in

Figure 4.8.

4.6.3 The Formal Precision Analysis

As noted in the “Research Questions” chapter, the Formal Precision Analysis was a formal (that is,

statistical) variant of the Informal Precision Analysis. It was driven by this null hypothesis:

H0(1): When highly recommended prediction set file pairs are mapped into the reference

set, the reference set file pairs selected by one technique are no more highly sought than

are the reference set file pairs selected by another technique.

Continuing the hypothetical example introduced when describing the Informal Precision Analysis

. . .

Through the Informal Precision Analysis one could conclude that prediction technique A is better

than prediction technique B. But could the analysis conclude that A is significantly better than B? A

one-factor between-subjects analysis of variance (ANOVA) could determine that. The independent
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For each prediction set (Miner, Duplo, CCFinderX, CPD, N’ary Prox, 
Binary Prox)

For x = 100, 200, ... 1400

total = 0

For each one-quarter point snapshot (Ant1, Struts1, 
Tomcat1, and Xerces1)

Sort the prediction set in descending order 
primarily by support and secondarily by cosine.

Map the first x prediction set file pairs into the 
reference set, thus selecting x reference set file 
pairs.  Compute the mean of the support values of 
the selected reference set file pairs.  Print that 
mean.

total += mean

Print total/4

Repeat the above algorithm using one-half point snapshots (Ant2, 
Struts2, Tomcat2, and Xerces2).

Repeat the above algorithm using three-quarter point snapshots 
(Ant3, Struts3, Tomcat3, and Xerces3).

Figure 4.8: Algorithm for the Informal Precision Analysis
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variable would be prediction technique, having levels A and B. The dependent variable would be

support; that is, the scores would be the reference set support values of the file pairs that each

prediction technique selected from the reference set. This project would compute the F statistic,

and test it at the α = .05 level.

This project performed precisely that analysis. For each snapshot, it mapped the best 1400 file pairs

of each prediction technique into the reference set, and noted the reference set support values of

the pairs that were selected from the reference set. It then performed a one-factor between-subjects

ANOVA. The independent variable was prediction technique. The dependent variable was support;

that is, the scores were the reference set support values of the file pairs that each prediction technique

selected from the reference set. The analysis computed the F statistic, and tested it at the α = .05

level.

A more precise description of the algorithm used for the Formal Precision Analysis is shown in

Figure 4.9.

4.6.4 The Informal Recall Analysis

As noted in the “Research Questions” chapter, for each snapshot the Informal Recall Analysis

mapped the most “highly recommended” file pairs of the reference set into each prediction set, thus

selecting some prediction set pairs. It then determined how highly recommended those prediction

set pairs were.

The Informal Recall Analysis was a mirror image the Informal Precision Analysis, with a compli-

cation. As a hypothetical example of the analysis, consider Figure 4.10. Assume that the reference

set, prediction set A, and prediction set B are sorted in descending order primarily by support and

secondarily by cosine.

The analysis would declare the first x file pairs of the reference set to be “highly sought.” It would

map those file pairs into the A prediction set, and note the quality of the prediction set pairs

selected. Similarly, it would map those file pairs into the B prediction set, and note the quality of

the prediction set pairs selected.

The complication is that prediction set A and prediction set B might measure support on different

scales. So it would be unreasonable to compare the support values of the selected file pairs from
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For each one-quarter point snapshot (Ant1, Struts1, Tomcat1, and 
Xerces1)

For each prediction set (Miner, Duplo, CCFinderX, CPD, N’ary 
Prox, Binary Prox)

Sort the prediction set in descending order primarily by 
support and secondarily by cosine. 

Map the first 1400 prediction set file pairs into the 
reference set, thus selecting 1400 reference set file pairs.  
Form a set of integers consisting of the reference set 
support values of the selected file pairs.

Perform a one-factor between-subjects ANOVA on the sets of 
integers to determine the effect of (independent variable) 
prediction set upon (dependent variable) support.  

Repeat the above algorithm using one-half point snapshots (Ant2, 
Struts2, Tomcat2, and Xerces2).

Repeat the above algorithm using three-quarter point snapshots 
(Ant3, Struts3, Tomcat3, and Xerces3).

Figure 4.9: Algorithm for the Formal Precision Analysis



62

Sorted
Prediction

Set A

Sorted
Reference

Set

Sorted
Prediction

Set B

x
Pairs

.

.

.

.

.

.

.

.

.

x
Pairs

Figure 4.10: Hypothetical Example of the Informal Recall Analysis
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prediction set A with the support values of the selected file pairs from prediction set B. Instead, the

analysis could compare the ranks of the selected file pairs from prediction set A with the ranks of the

selected file pairs from prediction set B. The smaller the ranks of the selected pairs, the better the

prediction technique. Noting that the mean of the ranks of the pairs selected from the A prediction

set is smaller than the mean of the ranks of the pairs selected from the B prediction set, the analysis

could conclude that A is a better prediction technique than B.

This project performed precisely that analysis. For each snapshot, it mapped the best x file pairs

(for x equaling 100, 200, . . . , 1400) of the reference set into each prediction set, and noted the ranks

of the file pairs that were selected from each prediction set. It then computed the mean of those

ranks. Finally, it compared the means for each prediction technique. A more precise description of

the algorithm used for the Informal Recall Analysis is shown in Figure 4.11.

This project computed file pair ranks in the obvious way. The most highly ranked file pair was

assigned rank 0; the next most highly ranked file pair was assigned rank 1; etc. If the pairs at

positions x through y were tied in support and cosine, then those pairs were assigned the rank

(x+ y)/2.

4.6.5 The Formal Recall Analysis

Finally, as noted in the “Research Questions” chapter, the Formal Recall Analysis was a formal

(that is, statistical) variant of the Informal Recall Analysis. It was driven by this null hypothesis:

H0(2): When highly sought reference set file pairs are mapped into prediction sets, the

file pairs selected from one prediction set are no more highly recommended than are the

file pairs selected from another prediction set.

Continuing the hypothetical example introduced when describing the Informal Recall Analysis . . .

Through the Informal Recall Analysis, one could conclude that prediction technique A is better

than prediction technique B. To formalize that result, a subsequent ANOVA then could be based

on rank. The independent variable would be prediction technique, having levels A and B. The

dependent variable would be rank; that is, the scores would be the ranks of the file pairs selected

from each prediction set. The analysis would compute the F statistic, and test it at the α = .05
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For each prediction set (Miner, Duplo, CCFinderX, CPD, N’ary Prox, 
Binary Prox)

For x = 100, 200, ... 1400

total = 0

For each one-quarter point snapshot (Ant1, Struts1, 
Tomcat1, and Xerces1)

Sort the reference set in descending order 
primarily by support and secondarily by cosine.

Sort the prediction set in descending order 
primarily by support and secondarily by cosine.

Map the first x reference set file pairs into the 
prediction set, thus selecting x prediction set file 
pairs.  Compute the mean of the ranks of the 
selected reference set file pairs.  Print that mean.

total += mean

Print total/4

Repeat the above algorithm using one-half point snapshots (Ant2, 
Struts2, Tomcat2, and Xerces2).

Repeat the above algorithm using three-quarter point snapshots 
(Ant3, Struts3, Tomcat3, and Xerces3).

Figure 4.11: Algorithm for the Informal Recall Analysis
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level.

This project performed precisely that analysis. For each snapshot, it mapped the best 1400 file

pairs of the reference set into each prediction set, and noted the ranks of the file pairs that were

selected from each prediction set. It then performed a one-factor between-subjects ANOVA. The

independent variable was prediction technique. The dependent variable was rank; that is, the scores

were the ranks of the file pairs selected from each prediction set. The analysis computed the F

statistic, and tested it at the α = .05 level.

A more precise description of the algorithm used for the Formal Recall Analysis is shown in Fig-

ure 4.12.

4.7 Data Analysis Notes

This section lists some subtle points of the data analysis procedure. In particular, it describes and

justifies the (1) choice of 1400 as the maximum pair count, (2) choice of support and cosine as the

sorting criteria, and (3) handling of ties in support and cosine.

4.7.1 Concerning the Choice of Maximum Pair Count

There is nothing about the analyses that requires the maximum pair count to be set at any particular

value. Nevertheless, it was appropriate that the analyses use a maximum pair count that was as

large as possible, while still allowing equitable comparisons of the performances of all prediction

techniques for all snapshots.

As shown in the “Results” chapter, all reference sets contained at least 1400 “meaningful” file pairs,

that is, file pairs that have support and cosine values that are greater than zero. All prediction sets

also contained at least 1400 meaningful file pairs. There were some sets that contained fewer than

1500 meaningful file pairs. So 1400 was the largest multiple of 100 that the analysis could use such

that only meaningful file pairs were examined. Those pragmatic observations motivated the choice

of 1400 as the maximum pair count for the analyses.
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For each one-quarter point snapshot (Ant1, Struts1, Tomcat1, and 
Xerces1)

For each prediction set (Miner, Duplo, CCFinderX, CPD, N’ary 
Prox, Binary Prox)

Sort the prediction set in descending order primarily by 
support and secondarily by cosine. 

Sort the reference set in descending order primarily by 
support and secondarily by cosine.

Map the first 1400 reference set file pairs into the 
prediction set, thus selecting 1400 prediction set file 
pairs.  Form a set of integers consisting of the prediction 
set ranks of the selected file pairs.

Perform a one-factor between-subjects ANOVA on the sets of 
integers to determine the effect of (independent variable) 
prediction set upon (dependent variable) support.  

Repeat the above algorithm using one-half point snapshots (Ant2, 
Struts2, Tomcat2, and Xerces2).

Repeat the above algorithm using three-quarter point snapshots 
(Ant3, Struts3, Tomcat3, and Xerces3).

Figure 4.12: Algorithm for the Formal Recall Analysis
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4.7.2 Concerning the Sort Order

The analyses sorted reference sets and prediction sets primarily by support and secondarily by

cosine. That decision was based partly upon mathematics, partly upon precedent, and partly upon

intuition.

Why sort by support? As noted in the “Definitions” section, support has a firm mathematical

foundation from the field of association rule mining. In the context of association rule mining Tan

et al. showed that no sort order is consistently best in all applications. However, they added that

“support is a widely-used measure in association rule mining because it represents the statistical

significance of a pattern” [TKS02]. They also showed that support pruning — here eliminating from

consideration all file pairs whose support is below a given threshold — is a viable technique as long

as only positively correlated file pairs are of interest. That indeed was the case in this project.

So support, in a mathematical sense, was a viable choice for the analysis, as was the technique of

pruning all but the “first x” file pairs. The use of support also has precedent in the field of software

mining. In particular, Ying et al. use support (but not cosine) [YMNCC04].

Why sort by cosine? As with support, and as noted in the “Definitions” section, cosine has a firm

mathematical foundation from the field of association rule mining. Moreover the use of cosine has

precedent in software mining. Specifically, Zimmermann et al. essentially use an asymmetric variant

of cosine in their research [ZWDZ05].

Why sort by both support and cosine? Within each reference set and prediction set, many file

pairs had identical support measures. The combination of support and cosine generated fewer ties;

essentially, cosine served the role of tie breaker. So the combination of support and cosine yielded

more precise assessments of the quality of the prediction sets than would either measure alone. The

next section addresses the issue of “ties” in support and cosine more thoroughly.

Why sort primarily by support and secondarily by cosine instead of vice versa? Sorting the reference

sets primarily by support and secondarily by cosine corresponds to an intuitive understanding of

which file pairs a software developer would most want prediction tools to find. Consider an example.

Suppose files f1 and f2 have been changed many times in the same transactions, but also many

times in different transactions. In that case f1 and f2 have high support, but low cosine. Now

suppose f3 and f4 have been changed only once, within the same transaction. In that case f3
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and f4 have low support, but high (in fact, perfect) cosine. Which file pair would the programmer

consider more highly change coupled? Which file pair would the programmer most want prediction

tools to find? This project considered f1 and f2 to be more highly change coupled than f3 and

f4. So the analysis sorted reference sets primarily by support and secondarily by cosine. The same

intuition motivated the decision to sort prediction sets primarily by support and secondarily by

cosine. Sorting the prediction sets in that manner corresponds to an intuitive understanding of

which file pairs a software developer would most want prediction tools to recommend.

4.7.3 Concerning Ties in Support and Cosine

As noted in the previous section, the analyses sorted file pairs by both support and cosine to minimize

the number of ties. Nevertheless, some ties remained.

In principle, ties could affect the analyses. For example, suppose the four file pairs at ranks 99

through 102 of a reference (or prediction) set have the same support and cosine, and the cutoff point

for the analysis is 100. Should all four of the pairs at ranks 99 through 102 be included in the highly

sought (or highly recommended) set? Should none of them be included? Should only two of them

be included?

In fact, there were few ties among file pairs with nonzero support and cosine. So the analyses

handled ties through randomization. The analyses randomly shuffled each reference set and each

prediction set before sorting by support and cosine. As a result, file pairs that had identical support

and cosine values appeared in random order within their clusters.

The analyses performed the randomization for each snapshot, for each prediction technique, and for

each file pair count 100, 200, . . . , 1400. So the chances that the handling of ties would unfairly favor

one prediction technique over another were small. To further reduce the changes of unfair biases

because of handling of ties, this project analyzed each snapshot multiple times. In all cases the

relative performances of the prediction techniques were the same.
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5. RESULTS

This chapter describes the results of this project. Its first section describes the sparse nature of the

reference and prediction sets. The remaining sections provide the results of the five analyses.

5.1 File Pair Counts

The number of file pairs in each snapshot is shown in Table 5.1. The table also shows the number

of “meaningful” file pairs, that is, file pairs that had nonzero support values in each snapshot’s

reference set and prediction sets. For example, the first row of the table indicates that:

• The Ant1 snapshot had 259560 file pairs. That is, its reference set and all of its prediction

sets contained 259560 file pairs.

• The reference set for the Ant1 snapshot had 10782 meaningful file pairs.

• The prediction set generated by Miner for the Ant1 snapshot had 8088 meaningful file pairs.

• The prediction set generated by Duplo and its adapter for the Ant1 snapshot had 19968

meaningful file pairs.

• The prediction set generated by CCFinderX and its adapter for the Ant1 snapshot had 17332

meaningful file pairs.

• The prediction set generated by CPD and its adapter for the Ant1 snapshot had 5841 mean-

ingful file pairs.

• The prediction set generated by the N’ary Proximity Detector for the Ant1 snapshot had 2495

meaningful file pairs.

• The prediction set generated by the Binary Proximity Detector for the Ant1 snapshot had

2495 meaningful file pairs.

Some observations:
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• Few file pairs were change coupled. That is, the reference sets contained few meaningful pairs

relative to the total pair counts. On average across all snapshots, only 1.9 percent of the file

pairs were change coupled.

• Similarly, the Miner, similarity detectors, and proximity detectors predicted change coupling

between few files. That is, the prediction sets contained few meaningful pairs relative to the

total pair counts.

• Generally the similarity detectors predicted change coupling between more file pairs than did

the Miner. The Miner predicted change coupling between more files than did the proximity

detectors.

• Among the similarity detectors, Duplo predicted change coupling between the most file pairs,

followed by CCFinderX, followed by CPD.

• All reference sets and prediction sets contained at least 1400 meaningful file pairs. Some sets

contained fewer than 1500 meaningful file pairs. So the data support this project’s choice of

1400 as the cutoff point for the informal and formal analyses.

5.2 Results of the Precision-Recall Analysis

As described in the “Data Analysis” section, for each snapshot the Precision-Recall Analysis sorted

the reference set and each prediction set in descending order primarily by support and secondarily

by cosine. It declared the first 1400 reference set file pairs to be “highly sought”, and the first x

prediction set pairs to be “highly recommended” — for x equaling 100, 200, . . . , 1400. It then

determined how many file pairs were shared by the highly sought and highly recommended subsets.

The more file pairs were shared by the highly sought and highly recommended subsets, the better

the prediction technique.

Table 5.2 shows the results of the Precision-Recall Analysis for the one-half point snapshots. For

example, in that table the number 52 in the first data row indicates that, for the Ant2 snapshot,

the best 100 pairs suggested by the Miner and the best 1400 pairs of the reference set had 52 pairs

in common. The last seven rows of the table show averages across all four snapshots. For example,

the number 56 at the intersection of the “100” column and the Miner row is the average of 52 (as

previously described), 61 (the corresponding result for the Struts2 snapshot), 57 (the corresponding
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result for the Tomcat2 snapshot), and 54 (the corresponding result for the Xerces2 snapshot). In

other words, the number 56 indicates that, over the Ant2, Struts2, Tomcat2, and Xerces2 snapshots,

on average the best 100 pairs suggested by the Miner and the best 1400 pairs of each reference set

had 56 pairs in common.

Figure 5.1 shows the result averages graphically. For example, in that graph the leftmost data point

for the Miner graph shows that, over the Ant2, Struts2, Tomcat2, and Xerces2 snapshots, on average

the best 100 pairs suggested by the Miner and the best 1400 pairs of each reference set had 56 pairs

in common.

As noted in the “Data Analysis” section, the results of the Precision-Recall Analysis can be inter-

preted in terms of precision and recall, in the classic information retrieval sense, if we interpret the

first 1400 file pairs of the reference set to be “truly” change coupled. For example, as previously

noted, for the Ant2 snapshot 52 of the first 100 prediction set file pairs generated by the Miner were

shared by the first 1400 reference set file pairs. So, with the assumption that the first 1400 reference

set file pairs are “truly” change coupled, the Miner’s precision was 52/100 (52 percent), and its recall

was 52/1400 (3.7 percent) out of a maximum possible 100/1400 (7.1 percent). Similarly, the result

averages can be interpreted in terms of precision and recall.

Motivated by those observations, Figure 5.2 shows the result averages as a traditional precision-

recall graph. For example, in that graph the topmost data point, located at coordinates (.04,.56),

indicates that when the Miner’s recall over the four one-half point snapshots was .04, its precision

was .56.

The results for the one-quarter point snapshots are provided in appendices. Specifically:

• Table A.1 shows the results of the Precision-Recall Analysis.

• Figure A.1 shows the results graphically.

• Figure A.2 shows the results as a traditional precision-recall graph.

The results for the three-quarter point snapshots also are provided in appendices:

• Table A.2 shows the results of the Precision-Recall Analysis.

• Figure A.3 shows the results graphically.
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• Figure A.4 shows the results as a traditional precision-recall graph.

The following are observations concerning the results of the Precision-Recall Analysis:

• Generally, the mining technique generated the best predictions, followed by the similarity

detection technique, followed by the proximity detection technique.

• Among the similarity detectors, CPD generated the best predictions, followed by Duplo, fol-

lowed by CCFinderX. The performance of CCFinderX was particularly poor; its performance

was worse than that of the proximity detectors.

• Among the proximity detectors, the Binary Proximity Detector generated better predictions

than the N’ary Proximity Detector.

• Those observations were consistent across the one-quarter, one-half, and three-quarter point

snapshots.

The tables and figures also show the results that would be generated by a “Random” technique, that

is, a technique that randomly selects file pairs uniformly over the entire reference set. Comparing

the results generated by the other prediction techniques to those generated by a Random technique

gave insight into the quality of the prediction techniques in an absolute sense.

Table 5.3 extracts data from the previously mentioned tables to indicate the performances of the

some of the techniques, in an absolute sense, at the “low end” of the analysis. Specifically, the table

indicates the quality of the first 100 file pairs recommended by the Miner (as the only representative

of the mining approach), CPD (as the best representative of the similarity detection approach), and

Binary Proximity (as the better representative of the proximity detection approach) versus that of

randomly selected pairs.

The table indicates that all of the prediction techniques performed substantially better than random

selection at the low end of the analysis. Thus all of the techniques had substantial predictive power

at the low end.

Similarly, Table 5.4 extracts data from the previously mentioned tables to indicate the performances

of the some of the techniques, in an absolute sense, at the “high end” of the analysis. Specifically,
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Table 5.3: Absolute Performances of Selected Prediction Techniques for First 100 File Pairs

Number of Pairs Shared
By Highly Sought Set (1400 Pairs)

And Highly Recommended Set (100 Pairs)
Snapshot Random Miner CPD BinaryProx
Ant1 0.5 54 38 28
Ant2 0.5 52 63 23
Ant3 0.3 29 34 21
Struts1 1.7 83 70 23
Struts2 0.7 61 10 29
Struts3 0.5 61 11 25
Tomcat1 0.7 46 44 30
Tomcat2 0.6 57 43 22
Tomcat3 0.5 46 26 19
Xerces1 1.2 58 41 25
Xerces2 0.6 54 40 22
Xerces3 0.6 35 40 15
TOTAL 8.4 636 460 282

the table indicates the quality of the first 1400 file pairs recommended by the Miner, CPD, and

Binary Proximity versus that of randomly selected pairs.

The table indicates that all of the prediction techniques also performed substantially better than

random selection at the high end of the analysis. So, again, all of the techniques had substantial

predictive power.

5.3 Results of the Informal Precision Analysis

As described in the “Data Analysis” section of the “Procedure” chapter, the Informal Precision

Analysis mapped the x most highly recommended file pairs (for x equaling 100, 200, . . . , 1400) of

each prediction set into the reference set, and noted the reference set support values of the pairs that

were selected from the reference set. It then computed the mean of those support values. Finally, it

compared the means for each prediction technique. The larger the mean, the better the prediction

technique.

Table 5.5 shows the results of the Informal Precision Analysis for the one-half point snapshots. For

example, in that table the number 2.33 in the first data row indicates that, for the Ant2 snapshot,

when the best 100 pairs recommended by the Miner were mapped into the reference set, the mean

of the support values of the chosen reference set pairs was 2.33. The last six rows of the table show
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Table 5.4: Absolute Performances of Selected Prediction Techniques for First 1400 File Pairs

Number of Pairs Shared
By Highly Sought Set (1400 Pairs)

And Highly Recommended Set (1400 Pairs)
Snapshot Random Miner CPD BinaryProx
Ant1 7.6 375 273 239
Ant2 7.4 315 281 205
Ant3 3.6 196 184 178
Struts1 23.8 476 426 235
Struts2 9.2 255 211 183
Struts3 6.6 331 130 141
Tomcat1 9.4 317 305 238
Tomcat2 8.9 265 233 264
Tomcat3 6.6 245 187 182
Xerces1 16.7 494 323 174
Xerces2 8.6 413 269 217
Xerces3 8.5 350 284 184
TOTAL 116.9 4032 3106 2440

averages across all four snapshots. For example, the number 2.8575 at the intersection of the “100”

column and the Miner row is the average of 2.33 (as previously described), 3.07 (the corresponding

result for the Struts2 snapshot), 2.78 (the corresponding result for the Tomcat2 snapshot), and 3.25

(the corresponding result for the Xerces2 snapshot).

Figure 5.3 shows the result averages for the one-half point snapshots graphically. For example, the

data point for the Miner graph at x value “100” has y value 2.8575, as previously described.

Appendices show the results of the Informal Precision Analysis for the one-quarter point and three-

quarter point snapshots. Specifically, Table B.1 and Figure B.1 show the results for the one-quarter

point snapshots. Table B.2 and Figure B.2 show the results for the three-quarter point snapshots.

The following are observations concerning the results of the Informal Precision Analysis:

• Generally, the mining technique performed better than the similarity detection technique, and

the similarity detection technique performed better than the proximity detection technique

with respect to precision.

• Among the similarity detectors, CPD had better precision than Duplo, and Duplo has better

precision than CCFinderX. The performance of CCFinderX was particularly poor; it performed

worse than the proximity detectors.
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• Among the proximity detectors, the Binary Proximity Detector had better precision than the

N’ary Proximity Detector.

• Those observations were consistent across the one-quarter, one-half, and three-quarter point

snapshots.

5.4 Results of the Formal Precision Analysis

As described in the “Data Analysis” section of the “Procedure” chapter, the Formal Precision

Analysis was a formal (that is, statistical) variant of the Informal Precision Analysis. It investigated

this null hypothesis:

H0(1): When highly recommended prediction set file pairs are mapped into the reference

set, the reference set file pairs selected by one technique are no more highly sought than

are the reference set file pairs selected by another technique.

As also described in the “Data Analysis” section of the “Procedure” chapter, for each snapshot the

Formal Precision Analysis mapped the best 1400 file pairs of each prediction technique into the

reference set, and noted the reference set support values of the pairs that were selected from the ref-

erence set. It then performed a one-factor between-subjects ANOVA. The independent variable was

prediction technique, having levels “Miner,” “Duplo,” “CCFinderX”, “CPD,” “N’ary Proximity,”

and “Binary Proximity.” The dependent variable was support; that is, the scores were the reference

set support values of the file pairs that each prediction technique selected from the reference set.

The analysis computed the F statistic, and tested it at the α = .05 level.

In summary, these are the results of the Formal Precision Analysis for each one-quarter point snap-

shot:

• Ant1: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

69.18,MSE = 5.88, p < .05. So this project rejected the null hypothesis.

• Struts1: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

40.72,MSE = 6.37, p < .05. So this project rejected the null hypothesis.
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• Tomcat1: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

19.53,MSE = 2.34, p < .05. So this project rejected the null hypothesis.

• Xerces1: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

81.06,MSE = 2.38, p < .05. So this project rejected the null hypothesis.

Table 5.6 shows the results of the Formal Precision Analysis for the one-quarter point snapshots.

The table uses a succinct notation. For each snapshot, the prediction techniques are listed in order

of descending quality: the technique having the best precision is listed in the first column, and

the technique having the worst precision is listed in the last column. The mean of the support

values chosen by each prediction technique is listed under that prediction technique, immediately

followed by the standard deviation in parentheses. The asterisks indicate “ties” in performance.

More formally, an asterisk indicates that post hoc comparisons using the Tukey HSD test indicated

no significant difference in the performance of two techniques.

For example, consider the second data row for the Struts1 snapshot. That row indicates that the

mean of the support values of the reference set file pairs chosen by CPD was 1.44, with standard

deviation 2.69. The pattern of asterisks in that row indicates that the performance of CPD was

significantly worse than the performance of Miner, not significantly different from the performances

of CCFinderX or Duplo, and significantly better than the performances of N’ary Proximity and

Binary Proximity.

These are observations concerning the results of the Formal Precision Analysis for the one-quarter

point snapshots:

• Among the three similarity detectors, CPD had the best precision overall. It had better

precision than the other similarity detectors for three of the four snapshots, and significantly

better precision for two of the four snapshots.

• Among the two proximity detectors, Binary Proximity had the better precision. It had better

precision than N’ary Proximity for three of the four snapshots, and significantly better precision

for one of the four snapshots.

• Miner had better precision than all other techniques for all four snapshots. It had significantly

better precision than all other techniques for three of the four snapshots.
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Table 5.6: Formal Precision Analysis: Results for One-Quarter Point Snapshots

Ant1 Snapshot
Miner Duplo CPD BProx NProx CCFinderX

2.21(2.96)
1.88(2.71)

1.55(2.58)
1.26(2.12)

.95(.21) *
* .82(.19)

Struts1 Snapshot
Miner CPD CCFinderX Duplo NProx BProx

1.95(3.20)
1.44(2.69) * *

* 1.40(2.67) *
* * 1.21(2.59)

.86(1.91) *
* .77(1.80)

Tomcat1 Snapshot
Miner CPD BProx NProx CCFinderX Duplo

.84(1.98) *
* .69(1.47) * *

* .63(1.77) *
* * .54(1.70) *

* .45(1.09) *
* .33(.83)

Xerces1 Snapshot
Miner CPD Duplo BProx NProx CCFinderX

1.29(2.28)
.58(1.55) * *

* .57(1.46) *
* * .43(1.32) *

* .39(1.32)
.22(1.02)
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• Overall, the mining approach had significantly better precision than the similarity detection

and proximity detection approaches. The similarity detection approach, especially as repre-

sented by CPD, had better precision than the proximity detection approach, but the difference

was less significant.

These are the results of the Formal Precision Analysis for the one-half point snapshots:

• Ant2: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

46.11,MSE = 1.49, p < .05. So this project rejected the null hypothesis.

• Struts2: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

155.03,MSE = 1.26, p < .05. So this project rejected the null hypothesis.

• Tomcat2: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

42.33,MSE = 1.30, p < .05. So this project rejected the null hypothesis.

• Xerces2: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

68.27,MSE = 4.77, p < .05. So this project rejected the null hypothesis.

Table 5.7 provides the results of the Formal Precision Analysis for the one-half point snapshots.

These are observations concerning the results of the Formal Precision Analysis for the one-half point

snapshots:

• Among the three similarity detectors, CPD had the best precision. It had better precision

than the other similarity detectors for all four snapshots, and significantly better precision for

two of the four snapshots.

• Among the two proximity detectors, Binary Proximity had better precision. It had better

precision than N’ary Proximity for three of the four snapshots, and significantly better precision

for one of the four snapshots.

• Miner had better precision than all other techniques for all four snapshots. In fact, it had

significantly better precision than all other techniques for all four snapshots.

• Overall, the mining approach had significantly better precision than the similarity detection

and proximity detection approaches. The similarity detection approach, especially as repre-
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Table 5.7: Formal Precision Analysis: Results for One-Half Point Snapshots

Ant2 Snapshot
Miner CPD Duplo BProx CCFinderX NProx

.95(1.39)
.81(1.30) *

* .81(1.28)
.64(1.22)

.42(1.02) *
* .41(1.08)

Struts2 Snapshot
Miner CPD BProx NProx Duplo CCFinderX

1.08(1.45)
.87(1.38)

.69(1.17) *
* .61(1.22)

.25(.75)
.09(.41)

Tomcat2 Snapshot
Miner BProx NProx CPD CCFinderX Duplo

.67(1.74)
.50(1.20) * *

* .45(1.24) *
* * .39(1.05)

.18(.62) *
* .15(.55)

Xerces2 Snapshot
Miner CPD Duplo NProx BProx CCFinderX

1.72(2.79)
1.30(2.59) *

* 1.08(2.54)
.78(1.74) *

* .76(1.55)
.34(1.50)
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sented by CPD, had better precision than the proximity detection approach, but the difference

was less significant.

These are the results of the Formal Precision Analysis for the three-quarter point snapshots:

• Ant3: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

30.35,MSE = .57, p < .05. So this project rejected the null hypothesis.

• Struts3: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

131.15,MSE = .60, p < .05. So this project rejected the null hypothesis.

• Tomcat3: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

34.22,MSE = .38, p < .05. So this project rejected the null hypothesis.

• Xerces3: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

51.63,MSE = 1.79, p < .05. So this project rejected the null hypothesis.

Table 5.8 provides the results of the Formal Precision Analysis for the three-quarter point snapshots.

These are observations concerning the results of the Formal Precision Analysis for the three-quarter

point snapshots:

• Among the three similarity detectors, CPD had the best precision. It had better precision

than the other similarity detectors for all four snapshots. In fact, it had significantly better

precision for all four snapshots.

• Among the two proximity detectors, Binary Proximity had better precision. It had better

precision than N’ary Proximity for all four snapshots, and significantly better precision for one

of the four snapshots.

• Miner had better precision than all other techniques for all four snapshots. It had significantly

better precision than all other techniques for two of the four snapshots.

• Overall, the mining approach had significantly better precision than the similarity detection

and proximity detection approaches. There was little difference in the precisions of the simi-

larity detection and proximity detection approaches.
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Table 5.8: Formal Precision Analysis: Results for Three-Quarter Point Snapshot

Ant3 Snapshot
Miner CPD BProx Duplo NProx CCFinderX

.45(.89) * *
* .40(.85) * *
* * .37(.74) *

* * .36(.77) *
* .28(.69)

.14(.53)
Struts3 Snapshot

Miner BProx NProx CPD Duplo CCFinderX
.73(1.17)

.33(.76) *
* .33(.84)

.23(.72)
.12(.57) *

* .06(.26)
Tomcat3 Snapshot

Miner BProx CPD NProx Duplo CCFinderX
.33(.92)

.19(.59) * *
* .19(.59) *
* * .18(.70)

.10(.38) *
* .05(.33)

Xerces3 Snapshot
Miner CPD Duplo BProx NProx CCFinderX

.94(1.69) *
* .86(1.64)

.68(1.57)
.48(1.00) *

* .38(.88) *
* .32(.98)
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So the results of the Formal Precision Analysis across the one-quarter, one-half, and three-quarter

point snapshots were quite consistent. Generally the mining approach had significantly better pre-

cision than the similarity detection approach, and similarity detection had better precision than

proximity detection approach, although the difference was less significant.

5.5 Results of the Informal Recall Analysis

As described in the “Data Analysis” section of the “Procedure” chapter, the Informal Recall Analysis

mapped the x most highly sought file pairs (for x equaling 100, 200, . . . , 1400) of the reference set

into each prediction set, and noted the ranks of the file pairs that were selected from each prediction

set. It then computed the mean of those ranks. Finally, it compared the means for each prediction

technique. The smaller the mean, the better the technique.

Table 5.9 shows the results of the Informal Recall Analysis for the one-half point snapshots. For

example, in that table the number 27580 in the first data row indicates that, for the Ant2 snapshot,

when the best 100 pairs of the reference set were mapped into the Miner prediction set, the mean

of the ranks of the chosen Miner prediction set pairs was 27580. The last six rows of the table

show averages across all four snapshots. For example, the number 30705 at the intersection of

the “100” column and the Miner row is the average of 27580 (as previously described), 66393 (the

corresponding result for the Struts2 snapshot), 17654 (the corresponding result for the Tomcat2

snapshot), and 11193 (the corresponding result for the Xerces2 snapshot).

Figure 5.4 shows the results of the Informal Recall Analysis for the one-half point snapshots graph-

ically. For example, the data point for the Miner graph at x value “100” has y value 30705, as

previously described. Note that lines appearing low in the graph indicate better performance than

lines appearing high in the graph.

Appendices show the results of the Informal Recall Analysis for the one-quarter point and three-

quarter point snapshots. Specifically, Table C.1 and Figure C.1 show the results for the one-quarter

point snapshots. Table C.2 and Figure C.2 show the results for the three-quarter point snapshots.

The following are observations concerning the results of the Informal Recall Analysis:

• Generally, the mining technique and the similarity detection technique had better recall than
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the proximity detection technique.

• Largely because of the strong performance of Duplo, there was little difference in the recall of

the mining approach and the recall of the similarity detection approach.

• Among the similarity detectors, Duplo had better recall than CPD, and CPD had better recall

than CCFinderX.

• Among the proximity detectors, the performances of the Binary Proximity Detector and the

N’ary Proximity Detector were nearly identical with respect to recall. The performance of

Binary Proximity Detector was very slightly better.

• Those observations were consistent across the one-quarter, one-half, and three-quarter point

snapshots.

5.6 Results of the Formal Recall Analysis

As described in the “Data Analysis” section of the “Procedure” chapter, the Formal Recall Analysis

was a formal (that is, statistical) variant of the Informal Recall Analysis. It investigated this null

hypothesis:

H0(2): When highly sought reference set file pairs are mapped into the prediction sets,

the file pairs selected from one prediction set are no more highly recommended than are

the file pairs selected from another prediction set.

As also described in the “Data Analysis” section of the “Procedure” chapter, for each snapshot the

analysis mapped the best 1400 file pairs of each reference set into the prediction sets, and noted the

ranks of the pairs thus selected from the prediction sets. It then performed a one-factor between-

subjects ANOVA. The independent variable was prediction technique, having levels “Miner,” “Du-

plo,” “CCFinderX,” “CPD,” “N’ary Proximity,” and “Binary Proximity.” The dependent variable

was rank; that is, the scores were the ranks of the file pairs selected from the prediction sets. The

analysis computed the F statistic, and tested it at the α = .05 level.

These are the results for the one-quarter point snapshots:
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• Ant1: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

240.45,MSE = 3636225985, p < .05. So this project rejected the null hypothesis.

• Struts1: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

108.06,MSE = 363807807, p < .05. So this project rejected the null hypothesis.

• Tomcat1: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

121.86,MSE = 2357350087, p < .05. So this project rejected the null hypothesis.

• Xerces1: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

269.39,MSE = 686370407, p < .05. So this project rejected the null hypothesis.

Table 5.10 provides the results of the Formal Recall Analysis for the one-quarter point snapshots.

Because the scores are ranks, and because smaller ranks are better than larger ones, smaller mean

values are better than larger ones.

These are observations concerning the results of the Formal Recall Analysis for the one-quarter point

snapshots:

• Overall there was little difference in the recall of the mining approach and the similarity

detection approach, although the strong performance of Duplo gave similarity detection a

distinct edge.

• Both the mining approach and the similarity detection approach had significantly better recall

than the proximity detection approach.

These are the results of the Formal Recall Analysis for the one-half point snapshots:

• Ant2: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

248.03,MSE = 3615581016, p < .05. So this project rejected the null hypothesis.

• Struts2: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

75.88,MSE = 2212634588, p < .05. So this project rejected the null hypothesis.

• Tomcat2: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

63.42,MSE = 2585497245, p < .05. So this project rejected the null hypothesis.
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Table 5.10: Formal Recall Analysis: Results for One-Quarter Point Snapshots (All Numbers Ex-
pressed in Thousands)

Ant1 Snapshot
Duplo Miner CPD CCFinderX BProx NProx
44(61)

55(64)
75(65) *

* 80(66)
105(52) *

* 105(52)
Struts1 Snapshot

Duplo Miner CPD CCFinderX BProx NProx
22(21) *

* 23(21)
27(20) *

* 29(20)
34(16) *

* 34(16)
Tomcat1 Snapshot

Duplo CPD CCFinderX Miner BProx NProx
45(51)

66(55) *
* 70(53) *

* 72(49)
84(43) *

* 84(43)
Xerces1 Snapshot

Duplo Miner CCFinderX CPD BProx NProx
21(28)

32(29) *
* 34(29)

43(27)
50(21) *

* 50(21)
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• Xerces2: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

122.49,MSE = 2808164941, p < .05. So this project rejected the null hypothesis.

Table 5.11 provides the results of the Formal Recall Analysis for the one-half point snapshots.

Table 5.11: Formal Recall Analysis: Results for One-Half Point Snapshots (All Numbers Expressed
in Thousands)

Ant2 Snapshot
Miner Duplo CCFinderX CPD BProx NProx
53(65) *

* 58(66)
87(66) *

* 88(64)
112(49) *

* 112(48)
Struts2 Snapshot

Duplo CPD Miner CCFinderX BProx NProx
61(57)

74(51)
82(46) *

* 83(47)
90(40) *

* 90(40)
Tomcat2 Snapshot

Duplo Miner CPD CCFinderX BProx NProx
58(56)

76(52) * *
* 76(52) *
* * 78(54)

87(45) *
* 87(45)

Xerces2 Snapshot
Miner Duplo BProx NProx CPD CCFinderX
45(56)

75(55) *
* 81(52) * *

* 81(52) *
* * 83(52) *

* 88(50)

These are observations concerning the results of the Formal Recall Analysis for the one-half point

snapshots:

• Overall there was little difference in the recall of the mining approach and the similarity
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detection approach, although the strong performance of Duplo gave similarity detection a

slight edge.

• Both the mining approach and the similarity detection approach generally had better recall

than the proximity detection approach.

These are the results of the Formal Recall Analysis for the three-quarter point snapshots:

• Ant3: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

152.27,MSE = 1.57E10, p < .05. So this project rejected the null hypothesis.

• Struts3: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

168.82,MSE = 4420965546, p < .05. So this project rejected the null hypothesis.

• Tomcat3: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

105.69,MSE = 4403476857, p < .05. So this project rejected the null hypothesis.

• Xerces3: The ANOVA indicated a significant effect for the prediction technique: F (5, 8394) =

65.05,MSE = 2961206049, p < .05. So this project rejected the null hypothesis.

Table 5.12 provides the results of the Formal Recall Analysis for the three-quarter point snapshots.

These are observations concerning the results of the Formal Recall Analysis for the three-quarter

point snapshots:

• Although the Miner had better recall than all other techniques for three of the four three-

quarter point snapshots, there was little difference in the recall of the mining approach and

the similarity detection approach. As with the one-quarter and one-half point snapshots, Duplo

performed particularly well.

• Both the mining approach and the similarity detection approach generally had significantly

better recall than the proximity detection approach.

So the results of the Formal Recall Analysis across the one-quarter, one-half, and three-quarter

point snapshots were quite consistent. Generally, largely because of the strong performance of

Duplo, there was little difference in the recall of the mining and similarity detection approaches.
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Table 5.12: Formal Recall Analysis: Results for Three-Quarter Point Snapshots (All Numbers Ex-
pressed in Thousands)

Ant3 Snapshot
Miner Duplo CPD CCFinderX BProx NProx

119(137)
167(142)

196(127) *
* 209(128)

226(106) *
* 226(106)

Struts3 Snapshot
Miner Duplo CPD CCFinderX NProx BProx
66(74)

92(76)
107(69) *

* 110(69)
127(53) *

* 127(53)
Tomcat3 Snapshot

Duplo Miner CPD CCFinderX BProx NProx
83(76)

93(73)
108(69)

120(67) * *
* 126(55) *
* * 126(55)

Xerces3 Snapshot
Miner Duplo CPD CCFinderX BProx NProx
60(59)

72(57) *
* 77(56) *

* 78(56)
91(49) *

* 91(49)
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Both the mining and similarity detection approaches had significantly better recall than proximity

detection approach.
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6. DISCUSSION OF RESULTS

This chapter comments on the results of this project, the value of the results, and threats to the

validity and reliability of the results.

6.1 Precision Results

The results of the Informal Precision Analysis and the Formal Precision Analysis yield the following

observations.

6.1.1 Precision Results Within the Similarity Detection Approach

Of the similarity detection techniques, CPD (representing the metrics-based techniques) consistently

had the best precision, followed by Duplo (representing the text-based techniques), followed by

CCFinderX (representing the token-based techniques).

This project did not investigate why CPD had better precision than Duplo, or why Duplo had better

precision than CCFinderX. But it can speculate...

There seems to be an inverse relationship between (1) the amount of pre-match code transformation

that a similarity detector performs and (2) the similarity detector’s precision. CCFinderX performs

the most pre-match transformation. As noted previously, CCFinderX discards comments and white

space. It also removes package names, makes sure each method call is prefixed with a class name or

object name, removes initialization lists, separates class definitions by adding a special token to mark

class definition boundaries, removes accessibility keywords, and converts each single statement nested

within a control statement to a compound statement containing that single statement. CCFinderX

also had the worst precision. Duplo performs a small amount of pre-match transformation; it

discards comments and white space. Yet it had much better precision than CCFinderX. Finally,

CPD performs no pre-match transformation at all; in particular, it does not discard comments or

white space. Yet it had the best precision of all three similarity detectors.

That inverse relationship makes some intuitive sense. Researchers design similarity detectors to
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perform pre-match code transformations with the intention of improving recall. They want to detect

relationships between code fragments that are similar, but not necessarily identical. Naturally, any

attempt to improve recall incurs the risk of degrading precision. It is easy to believe that a tool

which finds code fragments that are similar will perform with less precision than a tool which finds

code fragments that are identical.

6.1.2 Precision Results Within the Proximity Detection Approach

Of the two proximity detection techniques, the Binary Proximity technique had better precision

than the N’ary Proximity technique, although not significantly so. That result is counterintuitive

and surprising. N’ary proximity bases its predictions on more data than does Binary Proximity. So

one might expect N’ary proximity to have better precision.

This project did not investigate why Binary Proximity had better precision than N’ary Proximity.

But it can speculate...

It seems that source code files that reference each other many times are no more change coupled

than source code files that reference each other few times. So the additional data used by the N’ary

Proximity gave inappropriately high support and cosine values to source code files that reference

each other many times. Thus N’ary Proximity had worse precision than Binary Proximity.

6.1.3 Precision Results Among the Three Prediction Approaches

As noted in the “Results” chapter, almost universally the mining approach had significantly better

precision than the similarity prediction approach. The similarity detection approach had better

precision than the proximity detection approach, although the difference was less significant.

This project did not investigate why the mining approach had better precision than the similarity

detection approach, or why the similarity detection approach had better precision than the proximity

detection approach. But it can speculate...

There seems to be a relationship between (1) the amount of data used to generate predictions and (2)

the precision of those predictions. In a sense, the mining approach bases its predictions on more data

than the similarity detection approach does. The mining approach analyzes the entire pre-snapshot
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history of changes to the source code files; in contrast, the similarity detection approach uses only

the source code files of the current snapshot. In a sense, the similarity detection approach bases

its predictions on more data than the proximity detection approach does. The similarity detection

approach uses all text of the current snapshot files; in contrast, the proximity detection approach

considers only references between files. It seems reasonable to speculate that using more data would

yield more precise predictions.

6.2 Recall Results

The results of the Informal Recall Analysis and the Formal Recall Analysis yield the following

observations.

6.2.1 Recall Results Within the Similarity Detection Approach

Among the similarity detection techniques, Duplo (representing the text-based techniques) had the

best recall. That result was not particularly surprising, especially because Duplo found many more

file pairs with nonzero change coupling than the other similarity detectors did, as indicated by Table

5.1.

CPD (representing the metrics-based techniques) had the second best recall, and CCFinderX (rep-

resenting the token-based techniques) had the third best recall. That result was surprising because

CCFinderX found more file pairs with nonzero change coupling than CPD did, again as indicated

by Table 5.1.

This project did not investigate why Duplo had better recall than CPD or why CPD had better

recall than CCFinderX. But it can speculate...

Why did Duplo have better recall than CPD? As noted previously, Duplo performs pre-match

transformations of the code — specifically, it removes comments and white space — with the goal

of improving recall. In contrast, CPD does no pre-match transformations. Perhaps that difference

explains why Duplo had better recall than CPD.

Why did CPD have better recall than CCFinderX? As noted previously, that result was surprising

because CCFinderX found more file pairs with nonzero change coupling than CPD did. That result
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was all the more surprising because, as also noted previously, CCFinderX performs many pre-match

transformations of the source code with the goal of increasing recall. One would expect it to have

better recall than CPD (or Duplo).

On the other hand, for the sake of efficiency/scalability CCFinderX performs some optimizations

during its matching process. In particular, CCFinderX allows only specific tokens at the beginning of

clone sequences. The designers admit that “This technique might slightly reduce the sensitivity [here,

recall] of clone detection, but practically it is very important to make the tool scalable” [KKI02].

That observation begs speculation that, perhaps in this domain, such optimizations during the

matching process affect recall negatively and substantially.

6.2.2 Recall Results Within the Proximity Detection Approach

Of the two proximity detection techniques, Binary Proximity had slightly better recall than N’ary

Proximity. The difference was statistically insignificant. That result was mildly surprising because

N’ary Proximity bases its predictions on more data than Binary Proximity does. So, at least at first

glance, one might expect N’ary Proximity to have substantially better recall than Binary Proximity.

This project did not investigate why N’ary Proximity and Binary Proximity had approximately the

same recall. But it can speculate...

N’ary Proximity and Binary Proximity identified exactly the same file pairs as having nonzero

support values; the only difference was in the ordering of those file pairs. The count of such file

pairs was extremely small relative to the total count of all file pairs. So one might expect recall to

be approximately the same — and poor — for both techniques.

6.2.3 Recall Results Among the Three Prediction Approaches

Generally, there was little difference in the recall of the mining and similarity detection approaches.

The mining and similarity detection approaches had better recall than the proximity detection

approach.

This project did not investigate why the mining and similarity detection approaches had better recall

than the proximity detection approach. But it can speculate...
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As noted in Table 5.1, the prediction techniques found very different numbers of “meaningful” file

pairs, that is, file pairs with nonzero support. Listed in descending order, over all snapshots Duplo

found 257872 meaningful file pairs, CCFinderX found 181287, Miner found 77321, CPD found 66786,

and N’ary Proximity and Binary Proximity found 29462. Given only those counts, one might expect

Duplo to have the best recall, followed by CCFinderX, followed by Miner, followed by CPD, followed

by N’ary and Binary Proximity.

Most of the techniques adhered to that expected pattern. There were only two anomalies: Miner

performed better than expected, and CCFinderX performed worse than expected.

The previous sections speculate about the cause of CCFinderX’s poor recall. Perhaps Miner (and

thus the mining approach) had the best recall because it based its predictions on the largest amount

of data. Perhaps the mining approach is simply, qualitatively, the best technique.

6.3 Overall Results

So, with respect to precision, the mining approach performed substantially better than the simi-

larity detection approach, and the best techniques of the similarity detection approach performed

substantially better than the proximity detection approach. With respect to recall, there was no

substantial difference between the performance of the mining approach and the best technique of

the similarity detection approach, and both of those approaches performed substantially better than

the proximity detection approach.

This project need not pronounce an overall “winner.” Nevertheless, the Precision-Recall Analysis

provides a mechanism for doing so: it combines precision and recall measurements into traditional

precision-recall graphs. According to those graphs, the mining approach is superior to the similarity

detection approach, and the similarity detection approach (with the exception of CCFinderX) is

superior to the proximity detection approach.

The Precision-Recall Analysis shows not only the performances of the mining, similarity detection,

and proximity detection approaches, but also the performance of an artificial technique that generates

random predictions. Comparing the performances of the three “real” approaches with that of the

random technique provides a sense of the performance of the former in an absolute sense.
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All three of the prediction approaches generated results that were substantially better than the

random technique. Given the number of files in the databases and the paucity of changes to those

files, one might expect the quality of change coupling predictions to be low. In the light of those

modest expectations, all three of the approaches performed well in an absolute sense.

In conclusion, this project provides the following answers to the questions posed in the “Research

Questions” chapter:

• Question 1: Can past change coupling among source code files predict future change coupling

among those files? Yes. The predictions generated by mining change logs are substantially

better than random.

• Question 2: Can software similarity among source code files predict future change coupling

among those files? Yes. The predictions generated by analysis of software similarity are

substantially better than random.

• Question 3: Can software proximity among source code files predict future change coupling

among those files? Yes. The predictions generated by analysis of software proximity are

substantially better than random.

• Question 4: Which of those approaches works best? Mining of change logs has the best

precision, followed by similarity detection, followed by proximity detection. Mining of change

logs and similarity detection have the best recall, followed by proximity detection.

6.4 The Value of the Results

This project showed that all three of the change coupling prediction approaches have substantial

predictive power. Because excessive change coupling is a software maintenance problem, and because

the techniques have substantial predictive power, it is reasonable to expect that programmers will

find value in using any or all of the techniques. This project’s results are valuable to software

developers in that absolute sense.

This project’s results also are valuable to software developers in the relative sense. In particular,

the results indicate an inverse relationship between quality and cost. The results thus suggest how
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the three change coupling prediction approaches might reasonably fit into the software development

process. Consider the following explanation...

As with any computer program, the cost of running a change coupling prediction tool has two

components:

• Computer cost, that is, the cost of running the tool in terms of space (computer memory

required) and time (processing time consumed).

• People cost, that is, the cost of human labor. People cost is proportional to the wall-clock

time required for the tool to run to completion; as wall-clock time increases, programmer

productivity decreases, and thus people cost increases. (Just as importantly, as wall-clock

time increases, the likelihood of the programmer actually using the tool decreases.) In that

sense people cost can be measured in terms of wall-clock time.

Given the processing speed of today’s computers and the abundance of memory that they contain,

computer cost often is less important than people cost. Indeed for this project neither processing

speed nor computer memory size posed critical limitations. So, for this project, essentially the

relationship between quality and cost reduced to the relationship between quality and people cost.

Consider the three change coupling prediction approaches in terms of that relationship:

• The predictions generated by the mining approach had the highest quality. However, the

mining approach had high people cost. A typical execution of the Miner on one snapshot con-

sumed approximately 6 minutes of wall-clock time. Most of that time was spent downloading

the change log. Note that a programming shop could mitigate the cost by downloading the

change log in the background, perhaps automatically overnight.

• The predictions generated by the similarity detection approach were of lower quality than those

generated by mining, although they rivaled those of mining with respect to recall. However the

similarity detection approach generally had smaller people cost than the mining approach did.

A typical execution of Duplo and its adapter on a single snapshot consumed approximately

2.5 minutes of wall-clock time. A typical execution of CPD and its adapter consumed approx-

imately 2 minutes. Curiously, a typical execution of CCFinderX and its adapter consumed

approximately 12 minutes of wall-clock time. Thus CCFinderX not only generated the worst

predictions, but also consumed the most wall-clock time, by far, while doing so.
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• The proximity detection approach clearly was the worst performer of the three. On the other

hand, it had the smallest people cost. A typical execution of the N’ary or Binary Proximity

Detector on a single snapshot consumed less than 1 minute of wall-clock time.

Thus the project’s results indicate that “you get what you pay for.” That is, the results indicate an

inverse relationship between quality and people cost. Mining yielded the highest quality predictions,

but also had the highest people cost. Proximity detection yielded the lowest quality predictions,

but also had the lowest people cost. Although its recall rivaled that of mining, similarity detection

generally fell into the middle ground.

Those relative results are valuable to software developers because they suggest how a software

developer reasonably might use the techniques within the software development process. A developer

might use proximity detection as a frequent quick check for routine changes. A developer might use

similarity detection less frequently for larger or more important changes. Finally, a developer might

use mining only occasionally, especially for particularly large or important changes.

6.5 Threats to Validity

This section describes threats to this project’s internal and external validity.

6.5.1 Threats to Internal Validity

Does this project’s procedure justify the conclusions drawn from its results?

Concerning the Informal Analyses

Fundamentally, this project drew these two conclusions from the results of its informal analyses:

• All of the techniques had predictive value.

• Mining generated better predictions than did similarity detection, and similarity detection

generated better predictions than did proximity detection.

Does this project’s procedure justify those conclusions?
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This project can be viewed in terms of its parameters and the values that it chose for them. These

were the parameters and values:

• Source code database. This project used Ant, Struts, Tomcat, and Xerces.

• Database snapshot times. This project used the one-quarter, one-half, and three-quarter points

in terms of transaction count.

• Similarity detector. This project used Duplo, CCFinderX, and CPD.

• Large transaction cutoff. This project used 30 as the cutoff. That is, this project discarded

transactions containing more than 30 files.

• Similarity detector “maximum clone length” settings. This project used 2 lines as the maxi-

mum clone length setting for Duplo, and 10 tokens as the maximum clone length setting for

CCFinderX and CPD.

• Measures of strength. This project used support as the primary sort mechanism, and cosine

as the secondary sort mechanism.

This project’s choices for those parameter values were principled; the “Procedure” chapter provides

details. Nevertheless, choosing any specific values for those parameters necessarily threatens this

project’s internal validity. Certainly it is possible that this project’s choices for those parameter

values might have influenced its conclusions.

For example, it is possible that choosing another value for the CCFinderX maximum clone length

might have improved that similarity detector’s performance, even to the point that it (and thus the

similarity detection approach) might have generated better results than the Miner (and thus the

mining approach). Future research could investigate such possibilities, as described in the “Future

Research” chapter.
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Concerning the Formal Precision Analysis

Fundamentally, this project drew these two conclusions from the Formal Precision Analysis:

• Mining generated significantly more precise predictions than similarity detection did.

• Similarity detection generated more precise predictions than proximity detection did, although

the difference was less significant.

Does this project’s procedure justify those conclusions?

The Informal Precision Analysis was an ANOVA. One of the criteria for ANOVA is that the scores

in the population sampled be normally distributed. So in the Formal Precision Analysis the support

values among the reference set file pairs should have been normally distributed. In fact, the support

values among the reference set files pairs were not normally distributed. Instead, they were skewed

toward low values of support. For all snapshots, most file pairs had support 0, fewer had support 1,

fewer still had support 2; etc.

Another criterion for ANOVA is that the variances (or standard deviations) of the scores in the

populations be equal. So in the Formal Precision Analysis the variance of the reference set support

values chosen by prediction technique A should have been equal to the variance of the reference set

support values chosen by prediction technique B, for all combinations of A and B. In fact, those

variances (or standard deviations) were not equal, as shown in the “Results” chapter.

So, strictly speaking, the data were not appropriate for the ANOVA test. However, ANOVA is

thought to be “robust” [Kie02] against violations of the normality and equality of variance assump-

tions. And violations of those assumptions are more likely to have minimal effects on the analysis

when:

1. The number of subjects in each group is the same.

2. The two distributions of scores have about the same shape.

3. The distributions are neither very peaked nor very flat.

4. The significance level is set at .05 rather than .01 [Kie02].
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Items 1, 2, and 4 were true of the Formal Precision Analysis. So the use of ANOVA for the Formal

Precision Analysis was reasonable.

Concerning the Formal Recall Analysis

Fundamentally, this project drew these two conclusions from its Formal Recall Analysis:

• Mining and similarity detection recalled significantly more change coupled pairs than proximity

detection did.

• The performances of mining and similarity detection at recalling changed coupled pairs did

not differ significantly.

Does this project’s procedure justify those conclusions?

Like the Formal Precision Analysis, the Formal Recall Analysis was an ANOVA. So the data should

have conformed to the normality assumption. That is, the ranks of pairs in each prediction set

should have been normally distributed. That was not the case. Within each prediction set, most of

the file pairs had zero strength and cosine values, and thus were tied at the highest (that is, worst)

rank. By definition of “rank,” the remaining ranks were uniformly, not normally, distributed.

Moreover, the data should have conformed to the equality of variances (or standard deviations)

assumption. That is, the ranks of the selected pairs from prediction set A should have had the same

variance (or standard deviation) as the ranks of the selected pairs from prediction set B. As shown

in the “Results” chapter, that was not the case.

So, strictly speaking, the data of the Formal Recall Analysis were not appropriate for the ANOVA

test. However, those data did possess attributes 1, 2, and 4 (as described above). So, as with the

Formal Precision Analysis, the use of ANOVA was reasonable.

6.5.2 Threats to External Validity

Are the results of this project generalizable to the “real world”?

The data that this project used were not artificial; they were from the “real world” of open source

code development. In that sense the threats to external validity were minimal.
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Moreover, the strong consistency of the data across virtually all snapshots of all databases suggests

that the results of this project are generalizable to other open source code databases. Nevertheless,

there is a threat that the chosen open source databases might not be representative of open source

databases in general. Future research could investigate that point, as described in the “Future

Research” chapter.

The threat is stronger that the chosen source code databases, all of which were open source, might

not be representative of proprietary source code databases. It is possible that the nature of change

coupling differs in open source and proprietary software development, and so it is possible that the

quality of prediction mechanisms might differ also. Future research could investigate that point as

well.

6.6 Threats to Reliability

Are the results repeatable? That is, will this project’s procedure, when applied repeatedly to the

same data, yield the same results each time?

Of course, the use of human participants is a large source of nondeterminism, and thus is a large

threat to reliability. This project did not involve human participants. So this project did not suffer

from that threat.

This project generated its results entirely programmatically. Almost all aspects of the programs

were deterministic, and so completely repeatable. The only nondeterministic aspect of the programs

was their handling of ties: file pairs that were tied with respect to both support and cosine were

ordered randomly within reference and prediction sets. However, as described in the “Data Analysis”

section, the clusters of meaningful ties were small. Moreover, this project ran the analyses multiple

times, thus reducing the likelihood that ties would affect the results in any substantial way.

In short, this project’s procedure was almost entirely deterministic, and so was repeatable, and so

was reliable.
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7. FUTURE RESEARCH

This chapter suggests variations and extensions of this project, and thus suggests future research.

7.1 Small Variations and Extensions

This section lists some relatively small variations and extensions, in no particular order.

• Vary kinds of databases studied. This project evaluated change coupling prediction tech-

niques using four open source code databases. Future research could use additional or different

open source code database, and/or some proprietary source code databases. Do some predic-

tion techniques work better for open source code databases than for proprietary source code

databases?

• Vary strength measures. This project measured change coupling strength, similarity strength,

and proximity strength using support and cosine. The field of association mining uses other

measures too: interest, collective strength, Laplace, Jaccard, odds ratio, etc. [TKS02]. Future

research could experiment with those alternative measures. Do alternative measures yield

better predictions of change coupling than support and cosine do?

• Vary kinds of proximity. This project measured proximity in terms of the number of references

between the classes defined in files. There are many kinds of references: inheritance (extends),

implementation (implements), composition, etc. Future work could explore various kinds of

proximity as mechanisms for predicting change coupling. Do some kinds of proximity predict

change coupling better than others?

• Vary criteria for choosing snapshots. This project chose database snapshots at the one-quarter,

one-half, and three-quarter points in terms of transaction count. Future research could choose

the snapshots at different points — for example, points determined in terms of number of files

changed, or simple chronological time.

• Use time-limited reference sets. When computing the reference set for the snapshot at time

x, future research could limit the time range to [x+ 1, x+ 1 + ∆] for some ∆. That is, future
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research could limit the reference set to some reasonable length of time. After all, no tool can

be expected to provide accurate predictions of change coupling that occurs in the very distant

future. Does using time-limited reference sets affect the perception of the quality of the results

generated by prediction techniques?

• Use time-limited mining prediction sets. When computing the mining prediction set for the

snapshot at time x, future research could limit the time range to [x−∆, x] for some ∆. That is,

future research could limit the mining prediction set to some reasonable length of time. After

all, changes that occurred in the very distant past are unlikely to provide accurate predictions

of change coupling that occurs in the future. Does using time-limited mining prediction sets

affect the quality of the mining prediction sets?

• Vary similarity detector settings. As noted previously, the similarity detectors require as input

the minimum number of shared tokens/lines required for the tool to declare code chunks to

be similar. This project used only one setting for each similarity detector. Future research

could vary the “minimum number of shared tokens/lines” parameter. Does varying similarity

detector settings substantially affect the performance of the detectors at predicting change

coupling?

• Vary the “large transaction” cutoff. This project discarded all transactions that consist of

more than 30 files. Future research could vary that cutoff point, and determine if doing so

affects the analyses. Does varying the large transaction cutoff affect the evaluation of the

prediction techniques?

Future research also could perform a fine-grained examination of transactions, and manually

could discard only those transactions that do not represent, in the opinions of experts, “true”

change coupling among files.

• Vary similarity detection techniques. This project used three clone/plagiarism detection tech-

niques to detect similarity, each of which was implemented by an existing tool. Future work

could use other clone/plagiarism detection techniques, perhaps techniques created specifically

for the task of predicting change coupling. Might other techniques — perhaps one created

specifically for the task of predicting change coupling — predict change coupling better than

the ones used by this project?

For example, future research could develop a tool that represents the entities and relationships
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defined within each source code file as a graph. It then could find similar files using graph

similarity algorithms. The graph isomorphism problem is NP-Complete, and so is impractical

for large systems. But it might be reasonable to use the Jacquard index approach — a “quick

and dirty” graph matching algorithm — for large systems.

• Generate composite similarities. Future research could compute composites of the results gen-

erated by the similarity detectors. That could be done using stepwise regression to determine

the weighted combination of similarity prediction sets that yields the best predictive perfor-

mance. Does a composite generated by stepwise regression generate better predictions than

any of the individual similarity detectors?

As an alternative, future research could compute composite similarities using a genetic algo-

rithm. Future research could use a genetic algorithm to “learn” the combination of individual

similarity sets that yields the best predictive performance. Does a composite generated by a

genetic algorithm generate better predictions than the individual similarity detectors?

7.2 Large Variations and Extensions

This section lists some larger variations and extensions, in no particular order.

• Analyze types of changes. Future research could analyze types of changes to each file within

a transaction, where types of change are “add a file,” “delete a file,” and “update a file.”

Future research then could investigate questions such as these: Are new files more change

coupled than older files? Does the level of change coupling decrease with age? Do files that

are added to the program within the same transaction have a high degree of change coupling?

Can change coupling be more accurately predicted for some types of changes?

• Perform finer grained analyses. This project analyzed change coupling at the file level, and thus

at the class/interface/enumeration level. Future research also could analyze change coupling

at the field/method level.

• Determine why. Having identified a prediction technique that works well or poorly, future

research could investigate why it does so.

Within the similarity and proximity detection approaches, that research could take the form of

a feature analysis. Future research could examine similarity and proximity detectors that work
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well to determine which file features they use to determine file similarity/proximity. Similarly,

future research could examine similarity/proximity detectors that work poorly to determine

which file features they use. Given lists of such file features, statistical techniques such as

stepwise regression, cluster analysis, and/or discriminate analysis could be brought to bear

to determine which weighted combination of features best predicts change coupling. Thereby,

future research could develop its own change coupling prediction technique based upon analysis

of “why” existing techniques work well or poorly.

• Analyze bug databases. This project attempted to predict future change coupling, with the

principled belief that change coupling, generally, is problematic. But it could be the case

that not all change coupling is problematic. Future research could analyze bug databases to

determine which change couplings are problematic, that is, which cause bugs over time. Future

research then could try to predict such problematic change couplings exclusively.

• Focus on “distant” change coupling. Arguably, change coupling is most problematic among

those file pairs that are not proximate, that is, that are “distant.” After all, programmers

might naturally apply a change to files that are proximate to the currently edited file, while

forgetting to apply a related change to files that are distant from the currently edited file.

Future research could focus on the prediction of change coupling between files that are distant.

• Analyze transactions independent of change coupling. Future research could analyze trans-

actions themselves. Future research could cluster transactions into “problematic” and “not

problematic” categories by determining the number of bugs that result from each transaction.

Future research then could perform a discriminate analysis to determine which features of

transactions discriminate between problematic and nonproblematic transactions. What fea-

tures of transactions (size, bushiness/scrawniness over various file similarity graphs, author,

etc.) best predict bugs?

Different programmers may have different patterns of interaction with program databases. In

particular, their check-in strategies might differ. Do expert and novice programmers generate

different kinds of transactions?

• Analyze software change beyond change coupling. What is the impact of project evolution upon

software change? Do changes in project management impact change patterns predictably?

What is the impact of architecture on the nature of software change? For example, does a
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sharply layered architecture generate more or less change, or different patterns of change, than

an unlayered architecture does?



115

BIBLIOGRAPHY

[BB02] Elizabeth Burd and John Bailey. Evaluating clone detection tools for use during
preventative maintenance. In Second IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM’02), 2002.

[BvDvET05] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwe. On the
use of clone detection for identifying crosscutting concern code. IEEE Transactions
on Software Engineering, 31(10):804–818, 2005.

[BYM+98] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. Clone detection using abstract syntax trees. In International Conference on
Software Maintenance 1998, pages 368–377. IEEE Computer Society Press, 1998.

[DRD99] Stephane Ducasse, Matthias Rieger, and Serge Demeyer. A language independent ap-
proach for detecting duplicated code. In International Conference on Software Main-
tenance, pages 109–118, 1999.

[Fow00] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, 2000.

[GFGP06] R. Geiger, B. Fluri, H. Gall, and M. Pinzger. Relation of code clones and change
couplings. Lecture Notes in Computer Science, 3922:411–425, 2006.

[GHJ98] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based on
product release history. In International Conference on Software Maintenance 1998
(ICSM 98), 1998.

[GJK02] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release history data for de-
tecting logical couplings. In Sixth International Workshop on Principles of Software
Evolution (IWPSE’03), 2002.

[His93a] Gregory W. Hislop. Assessing the potential for software reuse. Doctoral Dissertation,
Drexel University, 1993.

[His93b] Gregory W. Hislop. Using existing software in a software reuse initiative. In WISR
6-Sixth Annual Workshop in Reuse, 1993.

[HKKI07] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Method and
implementation for investigating code clones in a software system. Information and
Software Technology, 49:985–998, 2007.

[KH01] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in
source code. In Eighth International Symposium on Statis Analysis (SAS’01), pages
40–56, 2001.

[Kie02] Harold O. Kiess. Statistical Concepts for the Behavioral Sciences. Allyn and Bacon,
Boston, MA, third edition, 2002.

[KKI02] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multi-linguistic token-based code
clone detection system for large scale source code. IEEE Transactions on Software
Engineering, 28(7):654–670, 2002.

[Kos07] Rainer Koschke. Survey of research on software clones. In Dagstuhl Seminar 06301
(drops.dagstuhl.de/opus/volltexte/2007/962), 2007.



116

[KR87] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development, 31(2):249–260, 1987.

[KSNM05] Miryung Kim, Vibha Sazawal, David Notkin, and Gail C. Murphy. An empirical study
of code clone genealogies. In ESEC-FSE’05, pages 187–196, Lisbon, Portugal, 2005.

[PMP02] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding plagiarisms among a
set of programs with jplag. Journal of Universal Computer Science, 8(11):1016–1038,
2002.

[Rob05] Martin P. Robillard. Automatic generation of suggestions for program investigation.
In ESEC-FSE’05, pages 11–20, Lisbon, Portugal, 2005. ACM.

[SDSWA03] Saul Schleimer, Daniel S. Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local
algorithms for document fingerprinting. In SIGMOD 2003, San Diego, CA, 2003.

[Sed99] Robert Sedgewick. Algorithms in C. Addison-Wesley, Reading, MA, third edition,
1999.

[Sim01] Herbert A. Simon. The Sciences of the Artificial. The MIT Press, Cambridge, MA,
third edition, 2001.

[TKS02] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right interest-
ingness measure for association patterns. In SIGKIDD ’02, pages 32–41, Edmonton,
Alberta, Canada, 2002.

[VRD04] Filip Van Rysselberghe and Serge Demeyer. Evaluating clone detection techniques from
a refactoring perspective. In 19th International Conference on Automated Software
Engineering (ASE’04). IEEE, 2004.

[Wha90] Geoff Whale. Software metrics and plagiarism detection. Journal of Systems and
Software, 13:131–138, 1990.

[Wis93] Michael J. Wise. String similarity via greedy string tiling and running karp-rabin
matching. http://vernix.org/marcel/share/RKR GST.ps, 1993.

[Wis96] Michael J. Wise. Yap3: Improved detection of similarities in computer program and
other texts. SIGCSE Bulletin, 28(1):130–134, 1996.

[WJL+03] Andrew Walenstein, Nitin Jyoti, Junwei Li, Yun Yang, and Arun Lakhotia. Problems
creating task-relevant clone detection reference data. In 10th Working Conference on
Reverse Engineering (WCRE’03), pages 285–294, 2003.

[WL03] Andrew Walenstein and Arun Lakhotia. Clone detector evaluation can be improved:
Ideas from information retrieval. In Second International Workshop on the Detection
of Software Clones (IWDSC ’03), pages 11–12, 2003.

[YMNCC04] Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll. Predict-
ing source code changes by mining change history. IEEE Transactions on Software
Engineering, 30(9):574–586, 2004.

[ZDZ02] Thomas Zimmermann, Stephan Diehl, and Andreas Zeller. How history justifies sys-
tem architecture (or not). In Sixth International Workshop on Principles of Software
Evolution (IWPSE’03). IEEE, 2002.

[ZW04] Thomas Zimmermann and Peter Weißgerber. Preprocessing cvs data for fine-grained
analysis. In Mining Software Repositories, pages 2–6, 2004.



117

[ZWDZ05] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller. Mining
version histories to guide software changes. IEEE Transactions on Software Engineer-
ing, 31(6):429–445, 2005.



118

APPENDIX A: RESULTS OF THE PRECISION-RECALL ANALYSIS
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APPENDIX B: RESULTS OF THE INFORMAL PRECISION ANALYSIS
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APPENDIX D: SOFTWARE CREATED FOR THE PROJECT

This chapter describes some of the software tools created specifically for this project. Whereas the

“Procedure” chapter provides conceptual descriptions of the tools in the context of this project, this

chapter provides more physical descriptions with less context.

D.1 Data Collection and Preprocessing Software

D.1.1 TransRetriever

The job of the TransRetriever was to retrieve transactions from a given change log. More specifically,

the input to the TransRetriever was a Subversion change log, an XML document retrieved via a

command of the form:

svn log -v --xml > ChangeLog

The output from the TransRetriever was a text file containing data of the form:

--------------------------------------------------

Transaction date/time

Transaction revision number

Transaction author

Name of first Java file involved in this transaction

Name of second Java file involved in this transaction

...

--------------------------------------------------

Transaction Date/Time

Transaction revision number

Transaction author

Name of first Java file involved in this transaction

Name of second Java file involved in this transaction

...
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Thus the TransRetriever transformed each change log into a transaction set that was in a format

amenable to processing by downstream software. The TransRetriever also eliminated all files except

those containing Java source code, that is, all files except those whose file names ended with “.java.”

The TransRetriever consisted of a Java program. The Java program made heavy use of the SAX

API. A bash shell script ran the TransRetriever.

D.1.2 TransSetSplitter

Given a transaction set and a point in time, the job of the TransSetSplitter was to split the trans-

action set at that point in time, thus generating two subsets: the prediction transaction set and the

reference transaction set.

More specifically, the input to the TransSetSplitter was a transaction set and quarter number (1, 2,

or 3). Its output was two subsets: (1) the subset of all transactions that occurred from the starting

time of the program database through the specified quarter, and (2) the subset of all transactions

that occurred thereafter. For example, given quarter number 3 the TransSetSplitter would split

the given transaction set into (1) the subset of all transactions that occurred throughout the first

three quarters of the “lifetime” of the database, and (2) the subset of all transactions that occurred

throughout the last quarter of the “lifetime” of the database.

The TransSetSplitter also generated output indicating the Subversion revision number at which it

performed its split. The revision number was used subsequently to retrieve the appropriate database

snapshot.

The TransSetSplitter consisted of a straightforward text-oriented Java program. A bash shell script

ran the TransSetSplitter.

D.1.3 FileIdParser

Given the source code files comprising a snapshot, the job of the FileIdParser was to parse each file

of the snapshot according to the Java 5 grammar, assign each file a fileid, and store the relationships

between files and fileids in a set named FileIds.

The primary component of the FileIdParser was a Java program. The input to the program was a



137

Java source code file. Its output was a status code indicating whether or not the file parsed properly

and defined a public data type (class, interface, or enumeration). If the file parsed properly and

defined a public data type, then the program also wrote a unique fileid. The fileid was the fully

qualified name of the public data type that the file defined. If the file did not parse properly or did

not define a public data type, then the program’s status code indicated that fact.

A bash shell script ran the program repeatedly, once for each file of a given snapshot. The script

collected the output of the program into a set (actually, a file) named FileIds. The FileIds set related

each source code file name to its unique fileid. The script also deleted each source code file that

the program denoted as non-parsing or devoid of a public type definition, thus generating a clean

snapshot for use by downstream tools.

The Java program was built using the SableCC compiler generator

(http://sablecc.org/) and a tailored version of the Java 5 grammar retrieved from

http://www.daimi.au.dk/∼fagidiot/fagidiot/?p=38. Please pardon the off-color name of that

URL; of course that name was beyond this project’s control.

D.1.4 LineCountParser

Given the source code files comprising a snapshot, the LineCountParser determined the number of

non-white space, non-comment lines for each fileid, storing the relationships between fileids and line

counts in a set named LineCounts.

The LineCountParser was a combination of (1) a comment-stripper program written in Java that

accepted a Java source code file and removed comments from it, (2) the UNIX grep command (to

eliminate white space lines), (3) the UNIX wc command (to compute line counts), and (4) a Java

program to compute the line count for each cluster of source code files with the same fileid.

A bash shell script glued together the lower level tools that comprised the LineCountParser.

D.1.5 TokenCountParser

Given the source code files comprising a snapshot, the TokenCountParser determined the number

of Java tokens in each source code file, and stored the relationships between fileids and token counts
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in a set named TokenCounts.

The TokenCountParser was a combination of (1) a token counting program that accepted a Java

source code file and counted the number of tokens that it contained, and (2) a Java program to

compute the token count for each cluster of source code files with the same fileid.

The token counting program was generated using the aforementioned SableCC compiler generator

and Java 5 grammar.

A bash shell script glued together the lower level tools that comprised the TokenCountParser.

D.2 Data Processing Software

D.2.1 Miner

The Miner accepted as input a snapshot’s reference transaction set and its FileIds set. It generated

as output the snapshot’s reference set, where each element of the reference set was a tuple of the

form:

< f1, f2, transCount(f1), transCount(f2), transCount(f1, f2) >

The Miner generated one such tuple for each combination of fileids f1 and f2, where f1 6= f2.

Similarly, the Miner accepted as input the snapshot’s prediction transaction set and the FileIds set,

and generated as output the snapshot’s mining prediction set.

The Miner computed transCount(f1) as the number of transactions involving any file having fileid

f1. The Miner computed transCount(f1, f2) as the number of transactions involving both (1) any

file with fileid f1, and (2) any file with fileid f2.

The Miner discarded any transaction that involved more than 30 source code files.

The Miner’s job involved using the FileIds set to map file names, as found in the given transaction

set, to fileids. That process was not entirely straightforward. For example:

• File names in the given transaction set were expressed as full file path names. However

the prefixes of those full file path names (that is, the portion of the file names that did not

correspond to package names) sometimes changed over the lifetime of the database. The Miner
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needed to trim away such prefixes.

• Often the given transaction set contained references to files that existed in the past (or will

exist in future), but which did not exist in the specified snapshot; the Miner needed to discard

such references.

The Miner contained database-specific code to handle such mapping issues.

The Miner consisted of a single Java program, driven by a bash shell script.

D.2.2 DuploAdapter

The DuploAdapter read output generated by Duplo, the FileIds set, and the LineCounts set. It

analyzed that input to determine the value of units(f1, f2) for each fileid pair. Using those values

of units(f1, f2), and also using the values of units(f1) obtained from LineCounts, the DuploAdapter

generated a Duplo similarity prediction set whose elements were tuples of the form:

< f1, f2, units(f1), units(f2), units(f1, f2) >

The DuploAdapter generated one such tuple for each combination of fileids f1 and f2, where f1 6=

f2.

The DuploAdapter computed units(f1) by averaging over the files having fileid f1. Conceptually

it created a composite of all files having fileid f1, and computed the units of that composite. It

computed the units of the composite by averaging, not summing, the units of the component files.

Similarly, the DuploAdapter computed units(f1, f2) by averaging over the files having fileids f1

and f2. Conceptually it computed a composite of all files having fileid f1, computed a composite of

all files having fileid f2, and then computed the units shared by those two composites. In all cases,

the composite was created by averaging, not summing, the units of the component files.

More formally, the DuploAdapter computed:

• units(f1) as the average of the line counts of all files with fileid f1.

• units(f1, f2) as the quotient of (1) the count of lines shared by all files with fileid f1 and all

files with fileid f2, and (2) the product of the count of files with fileid f1 and the count of files
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with fileid f2.

The DuploAdapter consisted of a single Java program, driven by a bash shell script.

D.2.3 CcFinderXAdapter

The CCFinderXAdapter used the same approach as did the DuploAdapter to generate a CCFinderX

similarity prediction set. It used the TokenCounts set instead of the LineCounts set to compute

values of units(f1).

The CCFinderXAdapter consisted of two Java programs. The first program read the (rather elabo-

rate) output from CCFinderX, and generated an intermediate text file having this format:

------------------------------

fileidA

fileidB

Count of tokens shared by fileidA and fileidB

------------------------------

fileidC

fileidD

Count of tokens shared by fileidC and fileidD

...

The second program read the intermediate text file, and wrote the CCFinderX similarity prediction

set. A bash shell script ran the two programs.

D.2.4 CPDAdapter

The CPDAdapter used the same approach as did the CCFinderXAdapter to generate a CPD simi-

larity prediction set.

As did the CCFinderXAdapter, the CPDAdapter consisted of two Java programs. The first program

read the elaborate output from CPD, and generated an intermediate text file having the same format

as shown above. It used the SAX API to parse the XML output generated by CPD. The second
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program read the intermediate text file, and wrote the CPD similarity prediction set. A bash shell

script ran the two programs.

D.2.5 NaryProxDetector

Given a snapshot’s source code files and the FileIds set, the NaryProxDetector created a n’ary

proximity prediction set for the snapshot.

The NaryProxDetector consisted of two Java programs. The first program parsed each source code

file of a given snapshot to write an intermediate file of the form:

--------------------------------------------------------

filename1

fileid of file referenced by filename1

fileid of file referenced by filename1

...

--------------------------------------------------------

filename2

fileid of file referenced by filename2

fileid of file referenced by filename2

...

--------------------------------------------------------

...

The first program was generated using the aforementioned SableCC compiler generator and Java 5

grammar.

The second program read the intermediate file and wrote an n’ary proximity set for the given

snapshot. Each element of the n’ary proximity prediction set was a tuple of the form:

< f1, f2, refsN(f1), refsN(f2), refsN(f1, f2) >

The second program generated one such tuple for each combination of fileids f1 and f2, where

f1 6= f2.
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The second program computed refsN(f1) by averaging over the files having fileid f1. Conceptually

it created a composite of all files having fileid f1, and computed the number of references to and

from that composite. It computed the composite reference counts by averaging, not summing, the

reference counts of the component files. Similarly, the second program computed refsN(f1, f2) by

averaging over the files having fileids f1 and f2. Conceptually it computed a composite of all files

having fileid f1, computed a composite of all files having fileid f2, and then computed the number of

references between those two composites. It computed all composite reference counts by averaging,

not summing.

More precisely, the second program computed refsN(f1, f2) using this algorithm:

1. Determine the number of references from all files with fileid f1 to fileid f2. Divide that sum

by the number of files with fileid f1, yielding a “directional reference count” from f1 to f2.

2. Determine the number of references from all files with fileid f2 to fileid f1. Divide that sum

by the number of files with fileid f2, yielding a “directional reference count” from f2 to f1.

3. Add the two directional reference counts.

The second program computed refsN(f1) as the sum of refsN(f1, fn), alias refsN(fn, f1), for

all fileids fn.

A bash shell script ran the two programs.

D.2.6 BinaryProxDetector

As noted in the “Procedure” chapter, given a snapshot’s source code files and the FileIds set the

BinaryProxDetector created a binary proximity prediction set for the snapshot.

The BinaryProxDetector consisted of two Java programs. The first program was identical to the

first program that comprised the NaryProxDetector.

The second program was similar to the second program that comprised the NaryProxDetector.

The second program read the intermediate file generated by the first program, and wrote a binary

proximity set for the given snapshot. Each element of the binary proximity prediction set was a
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tuple of the form:

< f1, f2, refs2(f1), refs2(f2), refs2(f1, f2) >

The second program generated one such tuple for each combination of fileids f1 and f2, where

f1 6= f2.

The BinaryProxDetector computed refs2(f1) by averaging over the files having fileid f1. Conceptu-

ally it created a composite of all files having fileid f1, and computed the number of fileids proximate

to that composite. It computed the composite reference counts by averaging, not summing, the

reference counts of the component files. Similarly, the BinaryProxDetector computed refs2(f1, f2)

by averaging over the files having fileids f1 and f2. Conceptually it computed a composite of all

files having fileid f1, computed a composite of all files having fileid f2, and computed the number of

references between those two composites. It computed all composite reference counts by averaging,

not summing.

More precisely, the second program computed refs2(f1, f2) using this algorithm:

1. Determine the count of files with fileid f1 that reference fileid f2. Divide that count by the

number of files with fileid f1, yielding a “directional reference count” from f1 to f2.

2. Determine the count of files with fileid f2 that reference fileid f1. Divide that count by the

number of files with fileid f2, yielding a “directional reference count” from f2 to f1.

3. Add the two directional reference counts.

The second program computed refs2(f1) as the sum of refs2(f1, fn), alias refs2(fn, f1), for all

fileids fn.

A bash shell script invoked the two programs.
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D.3 Data Analysis Software

D.3.1 PRAnalyzer

The PRAnalyzer tool generated data for the Precision-Recall Analysis.

The primary component of the PRAnalyzer was a Java program. The program accepted a reference

set, a reference set count (always 1400), a prediction set, and a prediction set count (x). It computed

the support and cosine values of each file pair in the reference set, and sorted the reference set in

descending order primarily by support and secondarily by cosine. It did the same for the prediction

set. Then it determined the count of file pairs shared by the first 1400 reference set file pairs and

the first x prediction set file pairs, and wrote that count.

A bash shell script invoked the Java program for values of x in the range 100, 200, . . . 1400, for each

prediction set, and for each snapshot.

D.3.2 PrecisionAnalyzer

The PrecisionAnalyzer generated data for the Informal Precision Analysis.

The primary component of the PrecisionAnalyzer was a Java program. The program accepted a

reference set, a prediction set, and a count (x). The program computed the support values of each file

pair in the reference set. It computed the support and cosine values of each file in each prediction

set, and sorted the prediction sets in descending order primarily by support and secondarily by

cosine. The program then selected the first x file pairs of the first prediction set, mapped them into

the reference set, and computed and printed the mean the support values of the reference set pairs

thus selected.

A bash shell script invoked the Java program for values of x in the range 100, 200, . . . 1400, for each

prediction set, and for each snapshot.
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D.3.3 PrecisionAnalyzerANOVA

The PrecisionAnalyzerANOVA generated data for the Formal Precision Analysis.

The primary component of the PrecisionAnalyzer was a Java program. The program accepted a

snapshot’s reference set, its six prediction sets, and a count (x). The program computed the support

values of each file pair in the reference set. It computed the support and cosine values of each file

in each prediction set, and sorted the prediction sets in descending order primarily by support and

secondarily by cosine. The program then selected the first x file pairs of the first prediction set,

mapped them into the reference set, and printed the support values of the reference set pairs thus

selected. It repeated that process for each prediction set.

A bash shell script invoked the Java program for values of x in the range 100, 200, . . . 1400 for each

snapshot.

This project used SPSS to perform the ANOVA on the data generated by the PrecisionAnalyzerA-

NOVA.

D.3.4 RecallAnalyzer

The RecallAnalyzer generated data for the Informal Recall Analysis.

The primary component of the RecallAnalyzer was a Java program. The program accepted a

reference set, a prediction set, and a count (x). The program computed the support and cosine

values of each file pair in the reference set, and sorted the reference set in descending order primarily

by support and secondarily by cosine. It computed the support value, cosine value, and rank of

each file pair in the prediction set. The program then selected the first x file pairs of the reference

set, mapped them into the prediction set, and computed and printed the mean of the ranks of the

prediction set pairs thus selected.

A bash shell script invoked the Java program for values of x in the range 100, 200, . . . 1400, for each

prediction set, and for each snapshot.
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D.3.5 RecallAnalyzerANOVA

The RecallAnalyzerANOVA generated data for the Formal Recall Analysis.

The primary component of the RecallAnalyzer was a Java program. The program accepted a

snapshot’s reference set, its six prediction sets, and a count (x). The program computed the support

and cosine values of each file pair in the reference set, and sorted the reference set in descending

order primarily by support and secondarily by cosine. It computed the support value, cosine value,

and rank of each file pair in each prediction set. The program then selected the first x file pairs of

the reference set, mapped them into the first prediction set, and printed the ranks of the prediction

set pairs thus selected. It repeated that process for each prediction set.

A bash shell script invoked the Java program for values of x in the range 100, 200, . . . 1400 for each

snapshot.

This project used SPSS to perform the ANOVA on the data generated by the RecallAnalyzerANOVA.



147

VITA

Robert Michael Dondero, Jr. was born in Upper Darby, PA on May 30, 1956. He is a citizen of the

United States.

Mr. Dondero graduated Maxima Cum Laude from La Salle University (Philadelphia, PA) with a

B.A. in mathematics and computer science. He also received an M.S.E. in computer and information

science from the University of Pennsylvania (Philadelphia, PA) with 4.0 G.P.A. Thereafter he com-

pleted 45 post-masters credits in computer and information science at the University of Delaware

(Newark, DE) and Temple University (Philadelphia, PA).

Mr. Dondero has held a variety of software engineering positions in governmental and commer-

cial organizations. He was an applications programmer at E. I. duPont de Nemours & Company

(Wilmington, DE), a systems programmer at Sperry Univac (Blue Bell, PA), a software engineering

consultant at the Naval Air Development Center (Warminster, PA), a senior software engineer at

Sterling Winthrop Pharmaceuticals (Malvern, PA), and a lead applications programmer at Towers

Perrin (Philadelphia, PA).

Also, Mr. Dondero has held positions as a teacher of computer science and software engineering.

He was a full-time associate professor at La Salle University (Philadelphia, PA), where he earned

tenure. He was a part-time instructor at the Pennsylvania State University (Great Valley, PA),

and was the chief course developer at Hewlett-Packard, HPAS/Bluestone Division (Mount Laurel,

NJ). At the time of writing he is a full-time lecturer in the Department of Computer Science at

Princeton University. In that capacity he has been awarded six Engineering Council “Excellence

in Engineering Education” awards and the Engineering Council’s “Lifetime Achievement Award for

Excellence in Teaching.”

Mr. Dondero has published one research paper: Dondero, Robert M. and Wiedenbeck, Susan. “Sub-

setability as a New Cognitive Dimension?” Proceedings of 18th Annual Psychology of Programming

Interest Group Workshop (PPIG’06). Brighton, U.K. 2006.

Mr. Dondero’s professional interests include software engineering, computer science, and software

engineering and computer science education. He is a member of the Association for Computing

Machinery (ACM) and its Special Interest Group on Computer Science Education (SIGCSE).




