
SANE: A Protection Architecture for Enterprise Networks

Martin Casado, Tal Garfinkel, Aditya Akella, Michael J. Freedman
Dan Boneh, Nick McKeown, Scott Shenker
{casado,talg,mfreed,dabo,nickm}@cs.stanford.edu

aditya@cs.cmu.edu, shenker@icsi.berkeley.edu

Abstract

Connectivity in today’s enterprise networks is regulated
by a combination of complex routing and bridging poli-
cies, along with various interdiction mechanisms such as
ACLs, packet filters, and other middleboxes that attempt
to retrofit access control onto an otherwise permissive
network architecture. This leads to enterprise networks
that are inflexible, fragile, and difficult to manage.

To address these limitations, we offer SANE, a pro-
tection architecture for enterprise networks. SANE de-
fines a singleprotection layerthat governs all connec-
tivity within the enterprise. All routing and access con-
trol decisions are made by a logically-centralized server
that grants access to services by handing out capabilities
(encrypted source routes) according to declarative access
control policies (e.g., “Alice can access http serverfoo”).
Capabilities are enforced at each switch, which are sim-
ple and only minimally trusted. SANE offers strong at-
tack resistance and containment in the face of compro-
mise, yet is practical for everyday use. Our prototype im-
plementation shows that SANE could be deployed in cur-
rent networks with only a few modifications, and it can
easily scale to networks of tens of thousands of nodes.

1 Introduction

The Internet architecture was born in a far more innocent
era, when there was little need to consider how to defend
against malicious attacks. Moreover, many of the Inter-
net’s primary design goals, such as universal connectiv-
ity and decentralized control, which were so critical to its
success, are at odds with making it secure.

Worms, malware, and sophisticated attackers mean
that security can no longer be ignored. This is particu-
larly true for enterprise networks, where it is unaccept-
able to lose data, expose private information, or lose sys-
tem availability. And so security measures have been
retrofitted to enterprise networks via many mechanisms,

including router ACLs, firewalls, NATs, and other mid-
dleboxes, along with complex link-layer technologies
such as VLANs.

Despite years of experience and experimentation,
these mechanisms are far from ideal. They require a
significant amount of configuration and oversight [43],
are often limited in the range of policies they can en-
force [45], and produce networks that are complex [49]
and brittle [50]. Moreover, even with these techniques,
security within the enterprise remains notoriously poor.
Worms routinely cause significant losses in productiv-
ity [9] and potential for data loss [29, 34]. Attacks re-
sulting in theft of intellectual property and other sensitive
information are similarly common [19].

The long and largely unsuccessful struggle to protect
enterprise networks convinced us to start over with a
clean slate, with security as a fundamental design goal.
The result is ourSecure Architecture for the Networked
Enterprise (SANE). The central design goals for our ar-
chitecture are as follows:

• Allow natural policies that are simple yet power-
ful. We seek an architecture that supports natural
policies that are independent of the topology and
the equipment used, e.g., “Allow everyone in group
sales to connect to the http server hosting documen-
tation.” This is in contrast to policies today that are
typically expressed in terms of topology-dependent
ACLs in firewalls. Through high-level policies, our
goal is to provide access control that is restrictive
(i.e., provides least privilege access to resources),
yet flexible, so the network does not become unus-
able.

• Enforcement should be at the link layer, to prevent
lower layers from undermining it.In contrast, it is
common in today’s networks for network-layer ac-
cess controls (e.g., ACLs in firewalls) to be under-
mined by more permissive connectivity at the link
layer (e.g., Ethernet and VLANs).



• Hide information about topology and services from
those without permission to see them.Once an at-
tacker has compromised an end host, the usual next
step is to map out the network’s topology—to iden-
tify firewalls, critical servers, and the location of
end hosts—and to identify end hosts and services
that can be compromised. Our goal is to hide all
such information to embrace the principle of least
knowledge.

• Have only one trusted component.Today’s net-
works trust multiple components, such as firewalls,
switches, routers, DNS, and authentication services
(e.g., Kerberos, AD, and Radius). The compromise
of any one component can wreak havoc on the en-
tire enterprise. Our goal is to rely on a central (yet
potentially replicated) trusted entity where all pol-
icy is centrally defined and executed.

SANE achieves these goals by providing a single pro-
tection layer that resides between the Ethernet and IP
layer, similar to the place that VLANs occupy. All con-
nectivity is granted by handing outcapabilities. A ca-
pability is an encrypted source route between any two
communicating end points.

Source routes are constructed by a logically-
centralized Domain Controller (DC) with a complete
view of the network topology. By granting access using
a global vantage point, the DC can implement policies
in a topology-independent manner. This is in contrast to
today’s networks: the rules in firewalls and other mid-
dleboxes have implicit dependencies on topology, which
become more complex as the network and policies grow
(e.g. VLAN tagging and firewall rules) [14, 47].

By default, hosts can only route to the DC. Users must
first authenticate themselves with the DC before they can
request a capability to access services and end hosts. Ac-
cess control policies are specified in terms of services
and principals, e.g., “users in group martins-friends can
access martin’s streaming-audio server”.

At first glance, our approach may seem draconian: All
communication requires the permission of a central ad-
ministrator. In practice, the administrator is free to im-
plement a wide variety of policies that vary from strict
to relaxed and differ among users and services. The key
here is that SANE allows the easy implementation and
enforcement of a simply expressed rule.

Our approach might also seem dependent on a sin-
gle point-of-failure (the DC) and not able to route traffic
around failures (because of static source routes). How-
ever, as we will argue, we can use standard replication
techniques, such as multiple DCs and redundant source
routes, to make the network reliable and quick to recover
from failures.

The remainder of the paper is organized as follows. In
Section 2, we further argue why current security mech-
anisms for the enterprise are insufficient and why the
SANE approach is feasible. Section 3 presents a detailed
design of SANE. We will see that by delegating access
control and routing to a central controller, we can reduce
the complexity of the forwarding elements (switches)
and the degree to which we must trust them. We also
show how a specific implementation of SANE could be
deployed in current networks with only a few modifi-
cations (even though SANE is a radical departure from
traditional network design). Section 4 covers SANE’s
resistance to a strong attack model. In Section 5, we
present and evaluate a prototype software implementa-
tion of SANE, and Section 6 demonstrates that SANE
can easily scale to networks of tens of thousands of nodes
and does not significantly impact user-perceived latency.
We present related work in Section 7 and conclude in
Section 8.

2 What’s Wrong with Existing Tech-
niques?

Complexity of Mechanism. A typical enterprise net-
work today uses several mechanisms simultaneously to
protect its network: VLANs, ACLs, firewalls, NATs, and
so on. The security policy is distributed among the boxes
that implement these mechanisms, making it difficult to
correctly implement an enterprise-wide security policy.
Configuration is complex (for example, routing proto-
cols often require thousands of lines of policy configura-
tion [50]), making the security fragile. Furthermore, the
configuration is often dependent on network topology,
and is based on addresses and physical ports, rather than
on authenticated end-points. When the topology changes
or hosts move, the configuration frequently breaks, re-
quires careful repair [50], and possibly undermines its
security policies.

A common response is to put all security policy in one
box and at a choke-point in the network, for example, in
a firewall at the network’s entry and exit point. If an at-
tacker makes it through the firewall, they have unfettered
access to the whole network.

Another way to address this complexity is to enforce
protection on the end host via distributed firewalls [14].
While reasonable, this has the down-side of placing all
trust in the end hosts. End host firewalls can be disabled
or bypassed, leaving the network unprotected, and they
offer no containment of malicious infrastructure, e.g., a
compromised NIDS [8].

Our new architecture allows simple high-level policies
to be expressed centrally. Policies are enforced by a sin-
gle fine-grain mechanism within the network.

2



Proliferation of Trust. Today’s networks provide a
fertile environment for the skilled attacker. Switches
and routers must correctly export link state, calculate
routes, and perform filtering; yet over time, these mech-
anisms have become more complex, with new vulnera-
bilities discovered at an alarming rate [8, 10, 7, 11]. If
compromised, an attacker can often take down the net-
work [32, 48] or redirect traffic to permit eavesdropping,
traffic analysis, and man-in-the-middle attacks.

Our new architecture replaces all these mechanisms
with simple, minimally-trusted forwarding elements, re-
ducing the number of trusted (and configured) compo-
nents to just one centrally-managed controller. Our goal
is to minimize the trusted computing base.

Proliferation of Information. A further resource for an
attacker is the proliferation of information on the net-
work layout of today’s enterprises. This knowledge is
valuable for helping to identify sensitive servers, fire-
walls, and IDS systems, which can be exploited for com-
promise or denial of service. Topology information is
easy to gather: switches and routers keep track of the net-
work topology (e.g., the OSPF topology database) and
broadcast it periodically in plain-text. Likewise, host
enumeration (e.g., ping and ARP scans), port scanning,
traceroutes, and SNMP can easily reveal the existence
of, and the route to, hosts. Today it is common for net-
work operators to filter ICMP and change default SNMP
passphrases to limit the amount of information available
to an intruder.

Our new architecture hides both the network structure,
as well as the location of critical services and hosts, from
all unauthorized network entities. Minimal information
is made available as needed for correct function and for
fault diagnosis.

2.1 Threat Environment

SANE seeks to provide protection robust enough for
demanding threat environments—government and mili-
tary networks, financial institutions, or demanding busi-
ness settings—yet flexible enough for everyday use. We
assume a robust threat environment with bothinsider
(authenticated users or switches) andoutsider threats
(e.g., an unauthenticated attacker plugging into a net-
work jack). This attacker may be sophisticated, capable
of compromising infrastructure components and exploit-
ing protocol weaknesses. Consequently, we assume at-
tacks can originate from any network element, such as
end hosts, switches, or firewalls.

SANE prevents outsiders from originating any traffic
except to the DC, while preventing malicious end hosts
from either sending traffic anywhere that has not been ex-
plicitly authorized, or, if authorized, subjecting the net-

work to a denial-of-service attack which cannot be sub-
sequently disabled.

SANE makes a best effort attempt to maintain avail-
ability in the face of malicious switches; however, we do
not attempt to achieve full network-layer Byzantine fault
tolerance [38]. In a normal SANE network, little can be
done in the face of a malicious DC, however, we discuss
strategies for dealing with this and other threats in§4.

2.2 What’s Special about the Enterprise?

We can exploit several properties of enterprise networks
to make them more secure. First, enterprise networks are
often carefully engineered and centrally administered,
making it practical (and desirable) to implement policies
in a central location.1

Second, most machines in enterprise networks are
clients that typically contact a predictable handful of
local services (e.g., mail servers, printers, file servers,
source repositories, HTTP proxies, or ssh gateways).
Therefore, we can grant relatively little privilege to
clients using simple declarative access control policies;
in our system we adopt a policy interface similar to that
of a distributed file system.

Third, in an enterprise network, we can assume that
hosts and principals are authenticated; this is already
common today, given widely deployed directory services
such as LDAP and Active Directories. This allows us to
express policies in terms of meaningful entities, such as
hosts and users, instead of weakly bound end-point iden-
tifiers such as IP and MAC addresses.

Finally, enterprise networks—when compared to the
Internet at large—can quickly adopt a new protection ar-
chitecture. “Fork-lift” upgrades of entire networks are
not uncommon, and new networks are regularly built
from scratch. Further, there is a significant willingness
to adopt new security technologies due to the high cost
of security failures.

3 System Architecture

SANE ensures that network security policies are en-
forced during all end host communication at the link
layer, as shown in Figure 1. This section describes two
versions of the SANE architecture. First, we present a
clean-slate approach, in which every network component
is modified to support SANE. Later, we describe a ver-
sion of SANE that can inter-operate with unmodified end
hosts running standard IP stacks.

3.1 Domain Controller

The Domain Controller (DC) is the central component
of a SANE network. It is responsible for authenticating

3



Figure 1:The SANE Service Model: By default, SANE only
allows hosts to communicate with the Domain Controller (DC).
To obtain further connectivity they must take the following
steps: (0) Principals authenticate to the DC and establish a se-
cure channel for future communication. (1) ServerB publishes
service under a unique name B.http in the Network Service Di-
rectory. (2) For a clientA to get permission to access B.http, it
obtains acapability for the service. (3) ClientA can now com-
municate with server by prepending the returned capability to
each packet.

.

users and hosts, advertising services that are available,
and deciding who can connect to these services. It al-
lows hosts to communicate by handing out capabilities
(encrypted source routes). As we will see in Section 3.5,
because the network depends on it, the DC will typically
be physically replicated (described in Section 3.5).

The DC performs three main functions:

1. Authentication Service: This service authenticates
principals (e.g., users, hosts) and switches. It main-
tains a symmetric key with each for secure commu-
nication.2

2. Network Service Directory (NSD): The NSD re-
places DNS. When a principal wants access to a
service, it first looks up the service in the NSD (ser-
vices are published by servers using a unique name).
The NSD checks for permissions—it maintains an
access control list (ACL) for each service—and then
returns acapability. The ACL is declared in terms
of system principals (users, groups), mimicking the
controls in a file system.

3. Protection Layer Controller : This component
controls all connectivity in a SANE network by gen-
erating (and revoking)capabilities. A capability is a
switch-levelsource routefrom the client to a server,

Figure 2:Packets forwarded from client A to server B across
multiple switches using a source-routed capability. Each layer
contains the next-hop information, encrypted to the associated
switch’s symmetric key. The capability is passed to A by the
DC (not shown) and can be re-used to send packets to B until it
expires.

Ethernet SANE header IP header data

Figure 3: SANE operates at the same layer as VLAN. All
packets on the network must carry a SANE header at theisola-
tion layer, which strictly defines the path that packet is allowed
to take.

as shown in Figure 2. Capabilities are encrypted
in layers (i.e., onion routes [23]) both to prove that
they originated from the DC and to hide topol-
ogy. Capabilities are included in a SANE header
in all data packets. The SANE header goes between
the Ethernet and IP headers, similar to the location
VLANs occupy (Figure 3).

The controller keeps a complete view of the network
topology so that it can compute routes. The topol-
ogy is constructed on the basis of link-state updates
generated by authenticated switches. Capabilities
are created using the symmetric keys (to switches
and hosts) established by the authentication service.

The controller will adapt the network when things
go wrong (maliciously or otherwise). For exam-
ple, if a switch floods the DC with control traffic
(e.g. link-state updates), it will simply eliminate the
switch from the network by instructing its imme-
diate neighbor switches to drop all traffic from that
switch. It will issue new capabilities so that ongoing
communications can start using the new topology.

All packet forwarding is done by switches, which can
be thought of as simplified Ethernet switches. Switches
forward packets along the encrypted source route carried
in each packet. They also send link-state updates to the
DC so that it knows the network topology.

Note that, in a SANE network, IP continues to pro-
vide wide-area connectivity as well as a common fram-

4



ing format to support the use of unmodified end hosts.
Yet within a SANE enterprise, IP addresses are not used
for identification, location, nor routing.

3.2 Network Service Directory

The NSD maintains a hierarchy of directories and ser-
vices; each directory and service has an access control
list specifying which users or groups can view, access,
and publish services, as well as who can modify the
ACLs. This design is similar to that deployed in dis-
tributed file systems such as AFS [25].

As an example usage scenario, supposemartin
wants to share his MP3’s with his friendsaditya ,
mike , and tal in the high performance network-
ing group. He sets up a streaming audio server
on his machine bongo , which has a directory
stanford.hpn.martin.friends with ACLs
already set to allow his friends to list and acquire ser-
vices. He publishes his service by adding the command

sane --publish stanford.martin.ambient:31337

to his audio server’s startup script, and, correspondingly,
adds the command

sane --remove stanford.martin.ambient

to its shutdown script. When his streaming au-
dio server comes on line, it publishes itself in the
NSD as ambient . When tal accesses this ser-
vice, he simply directs his MP3 player to the name
stanford.martin.ambient The NSD resolves
the name (similar to DNS), has the DC issue a capability,
and returns this capability, whichtal ’s host then uses to
access the audio server onbongo .

There is nothing unusual about SANE’s approach to
access control. One could envision replacing or combin-
ing SANE’s simple access control system with a more
sophisticated trust-management system [15], in order to
allow for delegation, for example. For most purposes,
however, we believe that our current model provides a
simple yet expressive method of controlling access to
services.

3.3 Protection Layer

All packets in a SANE network contain a SANE header
located between the Ethernet and IP headers. In Figure 4,
we show the packet types supported in SANE, as well as
their intended use (further elaborated below).

Communicating with the DC. SANE establishes de-
fault connectivity to the DC by building a minimum

HELLO Payload

DC Request Capability Authenticator Payload

FORWARD Cap-ID Cap-Exp Capability Payload

REVOKE Cap-ID Cap-Exp SignatureDC

Figure 4: Packet types in a SANE network:HELLOpackets
are used for immediate neighbor discovery and thus are never
forwarded.DCpackets are used by end hosts and switches to
communicate with the DC; they are forwarded by switches to
the DC along a default route.FORWARDpackets are used for
most host-to-host data transmissions; they include an encrypted
source route (capability) which tells switches where to forward
the packet. Finally,REVOKEpackets revoke a capability before
its normal expiration; they are forwarded back along a capabil-
ity’s forward route.

spanning tree (MST), with the DC as the root of the tree.
This is done using a standard distance vector approach
nearly identical to that used in Ethernet switches [1], with
each switch sendingHELLOmessages to its neighbor, in-
dicating its distance from the root. The MST algorithm
has the property that no switch learns the network topol-
ogy nor is the topology reproducible from packet traces.

The spanning tree is only used to establish default
routes for forwarding packets to the DC. We also need
a mechanism for the DC to communicate back with
switches so as to establish symmetric keys, required both
for authentication and for generating and decoding capa-
bilities. Note that the DC can initially only communicate
with its immediate neighbors, since it does not know the
full topology.

The DC first establishes shared keys with its direct
neighbors, and it receives link-state updates from them.
It then iteratively contacts switches at increasing dis-
tances (hop-counts), until it has established shared keys
with all switches to obtain a map of the full topology.3

To contact a switch multiple hops away, the DC must
first generate a capability given the topology informa-
tion collected thus far. Once established, keys provide
confidentiality, integrity, and replay defense for all sub-
sequent traffic with the DC via anauthenticatorheader,
much like IPsec’sESPheader.

All capability requests and link state updates—packets
of typeDC—are sent along the MST. As packets traverse
the MST, the switches construct arequest capability4 by
generating an encrypted onion at each hop containing the
previous and next hop, encrypted under the switch’s own
key. The DC uses the request capabilities to commu-
nicate back to each sender. Because these capabilities
encode the path, the DC can use them to determine the
location of misbehaving senders.

Point-to-Point Communication. Hosts communicate

5



using capabilities provided by the DC. This traffic is sent
usingFORWARDpackets which carry the capability. On
receipt of a packet, switches first check that the capabil-
ity is valid, that it has not expired and that it has not been
revoked (discussed later).

Before discussing how capabilities are constructed,
we must differentiate between long-lived names and
ephemeral connection identifiers. Names are known to
the service directory for published services and their ac-
cess control lists. Identifiers enable end hosts to de-
multiplex packets as belonging to either particular con-
nections with other end hosts or to capability requests
with the DC, much like transport-level port numbers in
TCP or UDP. (They are denoted asclient-ID and
server-ID below.) So, much like in traditional net-
worksà la DNS names and IP addresses, users use SANE
names to identify end-points, while the network soft-
ware and hardware uses connection identifiers to identify
unique services.

The DC constructs capabilities using three pieces of
information: the client’s name and location (given in the
capability request), the service’s location (stored in the
service directory), and the path between these two end-
points (as calculated from the network topology and any
service policies).

Each layer in the capability is calculated recursively,
working backward from the receiver, using the shared
key established between the DC and the corresponding
switches.

1. Initialize:
CAPABILITY ← EKserver−name (client-name, client-ID,

server-ID, last-hop)

2. Recurse: For each node on the path, starting from
the last node, do:

CAPABILITY ← EKswitch−name (switch-name, next-hop, prev-

hop,CAPABILITY )

3. Finalize:
CAPABILITY ← EKclient−name (client-name, client-ID, first-

hop,CAPABILITY ), IV

Where,Ek(m) denotes the encryption of messagem
under the symmetric keyk. Encryption is implemented
using a block cipher (such as AES) and a message au-
thentication code (MAC) to provide both confidentiality
and integrity.

All capabilities have a globally unique IDCap-ID
for revocation, as well as an expiration time, on the or-
der of a few minutes, after which a client must request a
new capability. This requires that clocks are only loosely
synchronized to within a few seconds. Expiration times
may vary by service, user, host, etc.

The MAC computation for each layer includes the
Cap-ID as well as the expiration time, so they cannot be
tampered with by the sender or en-route. The initializa-
tion vector (IV) provided in the outer layer of capabilities
is the encryption randomization value used for all layers.
It prevents an eavesdropper from linking capabilities be-
tween the same two end-points.5

Revoking Access.The DC canrevokea capability to im-
mediately stop a misbehaving sender for misusing a ca-
pability. A victim first sends a revocation request, which
consists of the final layer of the offending capability, to
the DC. The DC verifies that the requester is on the ca-
pability’s path, and it returns a signed packet of type
REVOKE.

The requester then pushes the revocation request to the
upstream switch from which the misbehaving capabil-
ity was forwarded. The packet travels hop-by-hop on
the reverse path of the offending capability. On-path
switches verify the DC’s digital signature, add the re-
vokedCap-ID to a local revocation list, and compare
it with the Cap-ID of each incoming packet. If a match
is found, the switch drops the incoming packet and for-
wards the revocation to the previous hop. Because such
revocation packets are not on the data path, we believe
that the overhead of signature verification is acceptable.

A revocation is only useful during the lifetime of its
corresponding capability and therefore carries the same
expiration time. Once a revocation expires, it is purged
from the switch. We discuss protection against revoca-
tion state exhaustion in section 4.1.

3.4 Interoperability

Discussion thus far has assumed a clean-slate redesign
of all components in the network. In this section, we de-
scribe how a SANE network can be used by unmodified
end-hosts with the addition of two components:transla-
tion proxiesfor mapping IP events to SANE events and
gatewaysto provide wide-area connectivity.

Translation Proxies. These proxies are used as the first
hop for all unmodified end hosts. Their primary func-
tion is to translate between IP naming events and SANE
events. For example, they map DNS name queries to DC
service lookups and DC lookup replies to DNS replies.
When the DC returns a capability, the proxy will cache
it and add it to the appropriate outgoing packets from
the host. Conversely, the proxy will remove capabilities
from packets sent to the host.

In addition to DNS, there are a number of service
discovery protocols used in today’s enterprise networks,
such as SLP [44], DNS SD [4], and uPNP [6]. In order to
be fully backwards-compatible, SANE translation prox-

6



ies must be able to map all service lookups and requests
to DC service queries and handle the responses.

Gateways. Gateways provide similar functionality to
perimeter NATs. They are positioned on the perime-
ter of a SANE network and provide connectivity to the
wide area. For outgoing packets, they cache the capa-
bility and generate a mapping from the IP packet header
(e.g., IP/port 4-tuple) to the associated capability. All in-
coming packets are checked against this mapping and, if
one exists, the appropriate capability is appended and the
packet is forwarded.

Broadcast. Unfortunately, some discovery protocols,
such as uPNP, perform service discovery by broadcast-
ing lookup requests to all hosts on the LAN. Allowing
this without intervention would be a violation of least
privilege. To safely support broadcast service discovery
within SANE, all packets sent to the link-layer broadcast
address are forwarded to the DC, which verifies that they
strictly conform to the protocol spec. The DC then reis-
sues the request to all end hosts on the network, collects
the replies and returns the response to the sender. Putting
the DC on the path allows it to cache services for subse-
quent requests, thus having the additional benefit of lim-
iting the amount of broadcast traffic. Designing SANE to
efficiently support broadcast and multicast remains part
of our future work.

Service Publication. Within SANE, services can be
published with the DC in any number of ways: trans-
lating existing service publication events (as described
above), via a command line tool, offering a web inter-
face, or in the case of IP, hooking into thebind call on
the local host̀a la SOCKS [30].

3.5 Fault Tolerance

Replicating the Domain Controller. The DC is logi-
cally centralized, but most likely physically replicated so
as to be scalable and fault tolerant. Switches connect
to multiple DCs through multiple spanning trees, one
rooted at each DC. To do this, switches authenticate and
send their neighbor lists to each DC separately. Topol-
ogy consistency between DCs is not required as each DC
grants routes independently. Hosts randomly choose a
DC to send requests so as to distribute load.

Network level-policy, user declared access policy and
the service directory must maintain consistency among
multiple DCs. If the DCs all belong to the same
enterprise–and hence trust each other–service advertise-
ments and access control policy can be replicated be-
tween DCs using existing methods for ensuring dis-
tributed consistency. (We will consider the case where

DCs do not trust each other in the next section.)

Recovering from Network Failure. In SANE, it is the
end host’s responsibility to determine network failure.
This is because direct communication from switches to
end hosts violates least privilege and creates new avenues
for DoS. SANE-aware end hosts send periodic probes or
keep-alive messages to detect failures and request fresh
capabilities.

When a link fails, a DC will be flooded with requests
for new capabilities. We performed a feasibility study (in
Section 6), to see if this would be a problem in practice,
and found that even in the worst-case when all flows are
affected, the requests would not overwhelm a single DC.

So that clients can adapt quickly, a DC may issue
multiple (edge-disjoint, where possible) capabilities to
clients. In the event of a link failure, a client simply uses
another capability. This works well if the topology is rich
enough for there to be edge-disjoint paths. Today’s en-
terprise networks are not usually richly interconnected,
in part because additional links and paths make security
more complicated and easier to undermine. However,
this is no longer true with SANE—each additional switch
and link improves resilience. With just two or three al-
ternate routes we can expect a high degree of fault tol-
erance [27]. With multiple paths, an end host can set
aggressive time-outs to detect link failures (unlike in IP
networks, where convergence times can be high).

3.6 Additional Features

This section discusses some additional considerations of
a SANE network, including its support for middleboxes,
mobility, and support for logging.

Middleboxes and Proxies. In today’s networks, prox-
ies are usually placed at choke-points, to make sure traf-
fic will pass through them. With SANE, a proxy can be
placed anywhere; the DC can make sure the proxy is on
the path between a client and a server. This can lead to
powerful application-level security policies that far out-
reach port-level filtering.

At the very least, lightweight proxies can validate that
communicating end-points are adhering to security pol-
icy. Proxies can also enforce service- or user-specific
policies or perform transformations on a per-packet ba-
sis. These could be specified by the capability. Proxies
might scan for viruses and apply vulnerability-specific
filters, log application-level transactions, find informa-
tion leaks, and shape traffic.

Mobility. Client mobility within the LAN is transpar-
ent to servers, because the service is unaware of (and so
independent of) the underlying topology. When a client

7



changes its position—e.g., moves to a different wireless
access point—it refreshes its capabilities and passes new
return routes to the servers it is accessing. If a client
moves locations, it should revoke its current set of out-
standing capabilities. Otherwise, much like today, a new
machine plugged into the same access point could access
traffic sent to the client after it has left.

Server mobility is handled in the same manner as
adapting to link failures. If a server changes location,
clients will detect that packets are not getting through
and request a new set of capabilities. Once the server has
updated its service in the directory, all (re)issued capa-
bilities will contain the correct path.

Anti-mobility. SANE also trivially anti-mobility. That
is, SANE canpreventhosts and switches from moving
on the network by disallowing access if they do. As the
DC knows the exact location of all senders given request
capabilities, it can be configured to only service hosts if
they are connected at particular physical locations. This
is useful for regulatory compliance, such as 911 restric-
tions on movement for VoIP-enabled devices. More gen-
erally, it allows a strong “lock-down” of network enti-
ties to enforce strong policies in the highest-security net-
works. For example, it can be used to disallow all net-
work access to rogue PCs.

Centralized Logging. The DC, as the broker for all
communications, is in an ideal position for network-wide
connection logging. This could be very useful for foren-
sics. Request routes protect against source spoofing on
connection setup, providing a path back to the connect-
ing port in the network. Further, compulsory authentica-
tion matches each connection request to an actual user.

4 Attack Resistance

SANE eliminates many of the vulnerabilities present in
today’s networks through centralization of control, sim-
ple declarative security policies and low-level enforce-
ment of encrypted source routes. In this section, we enu-
merate the main ways that SANE resists attack.

• Access-control lists: The NSD uses ACLs fordi-
rectories, preventing attackers from enumerating all
services in the system—an example of the principle
of least knowledge—which in turn prevents the dis-
covery of particular applications for which compro-
mises are known. The NSD controls access toser-
vicesto enforce protection at the link layer through
DC-generated capabilities—supporting the princi-
ple of least privilege—which stops attackers from
compromising applications, even if they are discov-
ered.

• Encrypted, authenticated source-routes and
link-state updates:These prevent an attacker from
learning the topology or from enumerating hosts
and performing port scans, further examples of
the principle of least knowledge.6 SANE’s source
routes prevent hosts from spoofing requests either
to the DC on the control path or to other end hosts
on the data path. We discuss these protections fur-
ther in Section 4.1.

• Authenticated network components: The au-
thentication mechanism prevents unauthenticated
switches from joining a SANE network, thwarting a
variety of topology attacks. Every switch enforces
capabilities providing defence in depth. Authenti-
cated switches cannot lie about their connectivity
to create arbitrary links, nor can they use the same
authenticated public key to join the network using
different physical switches. Finally, well-known
spanning-tree or routing attacks [32, 48] are impos-
sible, given the DC’s central role. We discuss these
issues further in section 4.2.

SANE attempts to degrade gracefully in the face of more
sophisticated attacks. Next, we examine several major
classes of attacks.

4.1 Resource Exhaustion

Flooding. As discussed in section 3.3, flooding attacks
are handled through revocation. However, misbehaving
switches or hosts may also attempt to attack the net-
work’s control path by flooding the DC with requests.
Thus, we rate-limit requests for capabilities to the DC. If
a switch or end host violates the rate limit, the DC tells
its neighbors to disconnect it from the network.

Revocation state exhaustion. SANE switches must
keep a list of revoked capabilities. This list might fill,
for example, if it is maintained in a small CAM. An at-
tacker could hoard capabilities, then cause all of them to
be revoked simultaneously. SANE uses two mechanisms
to protect against this attack: (1) If its revocation list fills,
a switch simply generates a new key; this invalidates all
existing capabilities that pass through it. It clears its re-
vocation list, and passes the new key to the DC. (2) The
DC tracks the number of revocations issued per sender.
When this number crosses a predefined threshold, the
sender is removed from the service’s ACLs.

If a switch uses a sender’s capability to flood a re-
ceiver, thus eliciting a revocation, the sender can use a
different capability (if it has one) to avoid the misbehav-
ing switch. This occurs naturally because the client treats
revocation—which results in an inability to get packets

8



Figure 5: Attacker C can deny service toA by selectively
droppingA’s packets, yet letting the packets of its parent (B)
through. As a result,A cannot communicate with the DC, even
though a alternate path exists throughD.

through—as a link failure, and it will try using a differ-
ent capability instead. While well-behaved senders may
have to use or request alternate capabilities, their perfor-
mance degradation is only temporary, provided that there
exists sufficient link redundancy to route around misbe-
having switches. Therefore, using this approach, SANE
networks can quickly converge to a state where attackers
hold no valid capabilities and cannot obtain new ones.

4.2 Tolerating Malicious Switches

By design, SANE switches have minimal functionality—
much of which is likely to be placed in hardware—
making remote compromise unlikely. Furthermore, each
switch requires an authenticated public key, preventing
rogue switches from joining the network. However, other
avenues of attack, such as hardware tampering or supply-
chain attacks, may allow an adversary to introduce a ma-
licious switch. For completeness, therefore, we consider
defenses against malicious switches attempting to sab-
otage network operation, even though the following at-
tacks are feasible only in the most extreme threat envi-
ronments.

Sabotaging MST Discovery. By falsely advertising a
smaller distance to the DC during MST construction,
a switch can cause additional DC traffic to be routed
through it. Nominally, this practice can create a path in-
efficiency.

More seriously, a switch can attract traffic, then start
dropping packets. This practice will result in degraded
throughput, unless the drop rate increases to a point at
which the misbehaving switch is declared failed and a
new MST is constructed.

In a more subtle attack, a malicious switch can selec-
tively allow packets from its neighbors, yet drop all other
traffic. An example of this attack is depicted in Figure 5:
Node C only drops packets from node A. Thus, B does
not change its forwarding path to the DC, as C appears to
be functioning normal from its view. As a result, A can-
not communicate with the DC, even though an alternate
path exists through D. Note that this attack, at the MST
discovery phase, precludes our normal solution for rout-

ing around failures—namely, using node-disjoint paths
whenever possible—as node A has never registered with
the DC in the first place.

From a high level, we can protect against this selective
attack by hiding the identities of senders from switches
en-route. Admittedly, it is unlikely that we can prevent
all such information leakage through the various side-
channels that naturally exist in a real system, e.g., due
to careful packet inspection and flow analysis. Some
methods to confound such attacks include (1) hiding eas-
ily recognizable sender-IDs from packet headers,7 (2)
padding all response capabilities to the same length to
hide path length, and (3) randomizing periodic messages
to the DC to hide a node’s scheduled timings.

Using these safeguards, if a switch drops almost all
packets, its immediate neighbors will construct a new
MST that excludes it. If it only occasionally drops pack-
ets, the rate of MST discovery is temporarily degraded,
but downstream switches will eventually register with the
DC.

Bad Link-State Advertisements. Malicious switches
can try to attract traffic by falsifying connectivity infor-
mation in link-state updates. A simple safeguard against
such attacks is for the DC to only add non-leaf edges to
its network map when both switches at either end have
advertised the link.

This safeguard does not prevent colluding nodes from
falsely advertising a link between themselves. Unfortu-
nately, such collusion cannot be externally verified. No-
tice that such collusion can only result in a temporary
denial-of-service attack when capabilities containing a
false link are issued: When end hosts are unable to route
over a false link, they immediately request a fresh capa-
bility. Additionally, the isolation properties of the net-
work are still preserved.

Note that SANE’s requirement for switches to initially
authenticate themselves with the DC prevents Sybil at-
tacks, normally associated with open identity-free net-
works [21].

4.3 Tolerating a Malicious DC

Domain controllers are highly trusted entities in a SANE
network. This can create a single point-of-failure from
a security standpoint, since the compromise of any one
DC yields total control to an attacker.

To prevent such a take-over, one can distribute trust
among DCs using threshold cryptography. While the full
details are beyond the scope of this paper, we sketch the
basic approach. We split the DCs’ secret key across a few
servers (sayn < 6), such that two of them are needed
to generate a capability. The sender then communicates
with 2-out-of-n DCs to obtain the capability. Thus, an

9



attacker gains no additional access by compromising a
single DC.8 To prevent a single malicious DC from re-
voking arbitrary capabilities or, even worse, completely
disconnecting a switch or end host, the revocation mech-
anism (section 3.3) must also be extended to use asym-
metric threshold cryptography [20].

Given such replicated function, access control policy
and service registration must be done independently with
each DC by the end host, using standard approaches for
consistency such as two-phase commit. When a new DC
comes online or when a DC re-establishes communica-
tion after a network partition, it must have some means
of re-syncing with the other DCs. This can be achieved
via standard Byzantine agreement protocols [18].

5 Implementation

This section describes our prototype implementation of
a SANE network. Our implementation consists of a DC,
switches, and IP proxies. It does not support multiple
DCs, there is no support for tolerating malicious switches
nor were any of the end-hosts instrumented to issue re-
vocations.

All development was done in C++ using the Virtual
Network System (VNS) [17]. VNS provides the abil-
ity to run processes within user-specified topologies, al-
lowing us to test multiple varied and complex network
topologies while interfacing with other hosts on the net-
work. Working outside the kernel provided us with a
flexible development, debug, and execution environment.

The network was in operational use within our group
LAN—interconnecting seven physical hosts on 100 Mb
Ethernet used daily as workstations—for one month. The
only modification needed for workstations was to re-
duce the maximum transmission unit (MTU) size to 1300
bytes in order to provide room for SANE headers.

5.1 IP Proxies and SANE Switches

To support unmodified end hosts on our prototype net-
work, we developed proxy elements which are posi-
tioned between hosts and the first hop switches. Our
proxies use ARP cache poisoning to redirect all traf-
fic from the end hosts. Capabilities for each flow are
cached at the corresponding proxies, which insert them
into packets from the end host and remove them from
packets to the end host.

Our switch implementation supports automatic neigh-
bor discovery, MST construction, link-state updates and
packet forwarding. Switches exchangeHELLO mes-
sages every 15 seconds with their neighbors. Whenever
switches detects network failures, they reconfigure their
MST and update the DC’s network map.

The only dynamic state maintained on each switch
is a hash table of capability revocations, containing the
Cap-ID s and their associated expiration times.

We use OCB-AES [42] for capability construction and
decryption with 128-bit keys. OCB provides both confi-
dentiality and data integrity using a single pass over the
data, while generating ciphertext that is exactly only 8
bytes longer than the input plaintext.

5.2 Domain Controller

The DC consists of four separate modules: the authen-
tication service, the network service directory, and the
topology and capability construction service in the Pro-
tection Layer Controller. For authentication purposes,
the DC was preconfigured with the public keys of all
switches.

Capability construction. For end-to-end path calcula-
tions when constructing capabilities, we use a bidirec-
tional search from both the source and destination. All
computed routes are cached at the DC to speed up subse-
quent capability requests for the same pair of end hosts,
although cached routes are checked against the current
topology to ensure freshness before re-use.

Capabilities use 8-bit IDs to denote the incoming and
outgoing switch ports. Switch IDs are 32 bits and the
service IDs are 16 bits. The innermost layer of the capa-
bility requires 24 bytes, while each additional layer uses
14 bytes. The longest path on our test topologies was 10
switches in length, resulting in a 164 byte header.

Service Directory. DNS queries for all unauthenticated
users on our network resolve to the DC’s IP address,
which hosts a simple webserver. We provide a basic
HTTP interface to the service directory. Through a web
browser, users can log in via a simple web-form and can
then browse the service directory or, with the appropriate
permissions, perform other operations (such as adding
and deleting services).

The directory service also provides an interface for
managing users and groups. Non-administrative users
are able to create their own groups and use them in
access-control declarations.

To access a service, a client browses the directory
tree for the desired service, each of which is listed as
a link. If a service is selected, the directory server
checks the user’s permissions. If successful, the DC gen-
erates capabilities for the flows and sends them to the
client (or more accurately, the client’s SANE IP proxy).
The web-server returns an HTTP redirect to the ser-
vice’s appropriate protocol and network address, e.g.,
ssh://192.168.1.1:22/ . The client’s browser
can then launch the appropriate application if one such

10



is registered; otherwise, the user must do so by hand.

5.3 Example Operation

As a concrete example, we describe the events for an ssh
session initiated within our internal network. All par-
ticipating end hosts have a translation proxy positioned
between them and the rest of the network. Additionally,
they are configured so that the DC acts as their default
DNS server.

Until a user has logged in, the translation proxy returns
the DC’s IP address for all DNS queries and forwards all
TCP packets sent to port 80 to the DC. Users opening
a web-browser are therefore automatically forwarded to
the DC so that they may log in. This is similar in feel
to admission control systems employed by hotels and
wireless access points. All packets forwarded to the DC
are accompanied by a SANE header which is added by
the translation proxy. Once a user has authenticated, the
DC caches the user’s location (derived from the SANE
header of the authentication packets) and associates all
subsequent packets from that location with the user.

Suppose a user ssh’s from machineA to machineB.
A will issue a DNS request forB. The translation proxy
will intercept the DNS packet (after forging an ARP re-
ply) and translate the DNS requests to a capability re-
quest for machineB. Because the the DNS name does
not contain an indication of the service, by convention
we prepend the service name to the beginning of the DNS
request (e.g. ssh ssh.B.stanford.edu). The DC does the
permission check based on the capability (initially added
by the translation proxy) and the ACL of the requested
service.

If the permission check is successful, the DC re-
turns the capabilities for the client and server, which are
cached at the translation proxy. The translation proxy
then sends a DNS reply toA with a unique destination
IP addressd, which allows it to demultiplex subsequent
packets. Subsequently, when the translation proxy re-
ceives packets fromA destined tod, it changesd to the
destination’s true IP address (much like a NAT) and tags
the packet with the appropriate SANE capability. Addi-
tionally, the translation proxy piggybacks the return ca-
pability destined for the server’s translation proxy on the
first packet. Return traffic from the server to the client is
handled similarly.

6 Evaluation

We now analyze the practical implications of running
SANE on a real network. First, we study the perfor-
mance of our software implementation of the DC and
switches. Next, we use packets traces collected from

a medium-sized network to address scalability concerns
and to evaluate the need for DC replication.

6.1 Microbenchmarks

Table 1 shows the performance of the DC (in capabilities
per second) and switches (in Mb/s) for different capabil-
ity packet sizes (i.e., varying average path lengths). All
tests were done on a commodity 2.3GHz PC.

As we show in the next section, our naive implementa-
tion of the DC performs orders of magnitude better than
is necessary to handle request traffic in a medium-sized
enterprise.

The software switches are able to saturate the 100Mb/s
network on which we tested them. For larger capabil-
ity sizes, however, they were computationally-bound by
decryption—99% of CPU time was spent on decryption
alone—leading to poor throughput performance. This
is largely due to the use of an unoptimized encryption
library. In practice, SANE switches would be imple-
mented in hardware. We note that modern switches,
such as Cisco’s catalyst 6K family, can perform MAC
level encryption at 10Gb/s. We are in the process of re-
implementing SANE switches in hardware.

6.2 Scalability

One potential concern with SANE’s design is the central-
ization of function at the Domain Controller. As we dis-
cuss in Section 3.5, the DC can easily be physically repli-
cated. Here, we seek to understand the extent to which
replication would be necessary for a medium-sized enter-
prise environment, basing on conclusions on traffic traces
collected at the Lawrence Berkeley National Laboratory
(LBL) [36].

The traces were collected over a 34-hour period in
January 2005, and cover about 8,000 internal addresses.
The trace’s anonymization techniques [37] ensure that
(1) there is an isomorphic mapping between hosts’ real
IP addresses and the published anonymized addresses,
and (2) real port numbers are preserved, allowing us to
identify the application-level protocols of many packets.
The trace contains almost 47 million packets, which in-
cludes 20,849 DNS requests and 145,577 TCP connec-
tions.

Figure 6 demonstrates the DNS request rate, TCP con-
nection establishment rate, and the maximum number of
concurrent TCP connections per second, respectively.

The DNS and TCP request rates provide an estimate
for an expected rate of DC requests by end hosts in a
SANE network. The DNS rate provides a lower-bound
that takes client-side caching into effect, akin to SANE
end hosts multiplexing multiple flows using a single ca-
pability, while the TCP rate provides an upper bound.

11



5 hops 10 hops 15 hops
DC 100,000 cap/s 40,000 cap/s 20,000 cap/s

switch 762 Mb/s 480 Mb/s 250 Mb/s

Table 1: Performance of a DC and switches

Figure 6: DNS requests, TCP connection establishment requests, and maximum concurrent TCP connections per
second, respectively, for the LBL enterprise network.

Even for this upper bound, we found that the peak rate
was fewer than 200 requests per second, which is 200
times lower than what our unoptimized DC implementa-
tion can handle (see Table 1).

Next, we look at what might happen upon a link fail-
ure, whereby all end hosts communicating over the failed
link simultaneously contact the DC to establish a new
capability. To understand this, we calculated the maxi-
mum concurrent number of TCP connections in the LBL
network.9 We find that the dataset has a maximum of
1,111 concurrent connections, while the median is only
27 connections. Assuming the worst-case link failure—
whereby all connections traverse the same network link
which fails—our simple DC can still manage 40 times
more requests.

Based on the above measurements, we estimate the
bandwidth consumption of control traffic on a SANE net-
work. In the worst case, assuming no link failure, 200
requests per second are sent to the DC. We assume all
flows are long-lived, and that refreshes are sent every 10
minutes. With 1,111 concurrent connections in the worst
case, capability refresh requests result in at most an ad-
ditional 2 packets/s.10 Given header sizes in our proto-
type implementation and assuming the longest path on
the network to be 10 hops, packets carrying the forward
and return capabilities will be at most 0.4 KB in size,
resulting in a maximum of 0.646 Mb/s of control traffic.

This analysis of an enterprise network demonstrates
that only a few domain controllers are necessary to han-
dle DC requests from tens of thousands of end hosts. In
fact, DC replication is probably more relevant to ensure
uninterrupted service in the face of potential DC failures.

7 Related Work

Network Protection Mechanisms.Firewalls have been
the cornerstone of enterprise security for many years.
However, their use is largely restricted to enforcing
coarse-grain network perimeters [45]. Even in this lim-
ited role, misconfiguration has been a persistent prob-
lem [46, 47]. This can be attributed to several factors
which SANE tries to address; in particular, their low-
level policy specification and very localized view leaves
firewalls highly sensitive to changes in topology. A vari-
ety of efforts have examined less error prone methods for
policy specification [13], as well as how to detect policy
errors automatically [33].

The desire for a mechanism that supports ubiquitous
enforcement, topology independence, centralized man-
agement, and meaningful end-point identifiers has lead
to the development of distributed firewalls [14, 26, 2].
Distributed firewalls share much with SANE in their ini-
tial motivation but differ substantially in their trust and
usage model. First, they require that some software be
installed on the end host. This can be beneficial as it pro-
vides greater visibility into end host behavior, however,
it comes at the cost of convenience. More importantly,
for end hosts to perform enforcement, that end host must
be trusted (or at least some part of it, e.g., the OS [26], a
VMM [22], the NIC [31], or some small peripheral [40]).
Furthermore, in a distributed firewall scenario, the net-
work infrastructure itself receives no protection, i.e., the
network is still “on” by default. This design affords no
defense-in-depth if the end-point firewall is bypassed, as
it leaves all other network elements (e.g., switches, mid-
dleboxes, and unprotected end hosts) exposed.

12



Weaver et al. [45] argue that existing configura-
tions of coarse-grain network perimeters (e.g., NIDS
and multiple firewalls) and end host protective mech-
anisms (e.g. anti-virus software) are ineffective against
worms, both when employed individually or in combi-
nation. They advocate augmenting traditional coarse-
grain perimeters with fine-grain protection mechanisms
throughout the network, especially to detect and halt
worm propagation.

Finally, commercial offerings from Consentry [3] in-
troduce special-purpose bridges for enforcing access
control policy. To our knowledge, these solutions re-
quire that the bridges be placed at a choke point in the
network so that all traffic needing enforcement passes
through them. In contrast, SANE permission checking is
done at a central point only on connection setup, decou-
pling it from the data path. SANE’s design both allows
redundancy in the network without undermining network
security policy and simplifies the forwarding elements.

Dealing with Routing Complexity. Often misconfig-
ured routers make firewalls simply irrelevant by routing
around them. The inability to reason about connectivity
in complex enterprise networks has fueled commercial
offerings such as those of Lumeta [5], to help adminis-
trators discover what connectivity exists in their network.

In their 4D architecture, Rexford et al. [41, 24] ar-
gue that the decentralized routing policy, access control,
and management has resulted in complex routers and
cumbersome, difficult-to-manage networks. Similar to
SANE, they argue that routing (the control plane) should
be separated from forwarding, resulting a very simple
data path. Although 4D centralizes routing policy deci-
sions, they retain the security model of today’s networks.
Routing (forwarding tables) and access controls (filtering
rules) are still decoupled, disseminated to forwarding el-
ements, and operate the basis of weakly-bound end-point
identifiers (IP addresses). In our work, there is no need
to disseminate forwarding tables or filters, as forwarding
decisions are madea priori and encoded in source routes.

Predicate routing [43] attempts to unify security and
routing by defining connectivity as a set of declarative
statements from which routing tables and filters are gen-
erated. SANE differs, however, in that users are first-
class objects—as opposed to end-point IDs or IP ad-
dresses in Predicate routing—and thus can be used in
defining access controls.

Expanding the Link-layer. Reducing a network from
two layers of connectivity to one, where all forwarding
is done entirely at the link layer, has become a popu-
lar method of simplifying medium-sized enterprise net-
works. However, large Ethernet-only networks face sig-
nificant problems with scalability, stability, and fault

tolerance, mainly due to their use of broadcast and
spanning-tree-based forwarding.

To address these concerns, several proposals have sug-
gested replacing the MST-based forwarding at the link-
layer with normal link-state routing [39, 35]. Some,
such as Myers et al. [35], advocate changing the Eth-
ernet model to provide explicit host registration and dis-
covery based on a directory service, instead of the tra-
ditional broadcast discovery service (ARP) and implicit
MAC address learning. This provides better scalability
and transparent link-layer mobility, and it eliminates the
inefficiencies of broadcast. Similarly, SANE eliminates
broadcast in favor of tighter traffic control through link-
state updates and source routes. However, we eschew
the use of persistent end host identifiers, instead associ-
ating each routable destination with the switch port from
where it registered.

Capabilities for DDOS prevention. Much recent work
has focused on DoS remediation through network en-
forced capabilities on the WAN [12, 51, 52]. These sys-
tems assumes no cooperation between network elements,
nor do they have a notion of centralized control. Instead,
clients receive capabilities from servers directly and vice
versa. Capabilities are constructed on-route by the ini-
tial capability requests. This offers a very different pol-
icy model than SANE, as it is designed to meet different
needs (limiting wide area DoS) and relies on different
operating assumptions (no common administrative do-
main).

8 Conclusion

We believe that enterprise networks are different from the
Internet at large and deserve special attention: Security
is paramount, centralized control is the norm, and uni-
form, consistent policies are important. However, pro-
viding strong protection is difficult, and it requires some
tradeoffs. There are clear advantages to having an open
environment where connectivity is unconstrained and ev-
ery end host can talk to every other. Just as clearly, how-
ever, such openness is prone to attack by malicious users
from inside or outside the network.

We set out to design a network that greatly limits the
ability of an end host or switch to launch an effective at-
tack, while still maintaining flexibility and ease of man-
agement. Drastic goals call for drastic measures, and we
understand that our proposal—SANE—is an extreme ap-
proach. SANE is conservative in the sense that it gives
the least possible privilege and knowledge to all parties,
except to a trusted, central Domain Controller. We be-
lieve that this would be an acceptable practice in en-
terprises, where central control and restricted access are
common.

13



Yet SANE remains practical: Our implementation
shows that SANE could be deployed in current networks
with only a few modifications, and it can easily scale to
networks of tens of thousands of nodes.

9 Acknowledgements

We would like to thank Mendel Rosenblum, Vern Pax-
son, Nicholas Weaver, Mark Allman and Bill Cheswick
for their helpful comments on this project. We also
like to thank the anonymous reviewers for their feedback
and especially our shepherd, Michael Roe, for his guid-
ance. This research was supported in part by the Stan-
ford Clean Slate program, the 100x100 project and NSF.
Part of this research was performed while on appoint-
ment as a U.S. Department of Homeand Security (DHS)
Fellow under the DHS Scholarship and Fellowship Pro-
gram, a program administered by the Oak Ridge Institute
for Science and Education (ORISE) for DHS through an
interagency agreement with the U.S Department of En-
ergy (DOE). ORISE is managed by Oak Ridge Associ-
ated Universities under DOE contract number DE-AC05-
00OR22750. All opinions expressed in this paper are the
authors’ and do not necessarily reflect the policies and
views of DHS, DOE, ORISE, or NSF. This work was also
supported in part by TRUST (The Team for Research in
Ubiquitous Secure Technology), which receives support
from the National Science Foundation (NSF award num-
ber CCF-0424422).

Notes

1A policy might be specified by many people (e.g, LDAP), but is
typically centrally managed.

2SANE is agnostic to the PKI or other authentication mechanism in
use (e.g. Kerberos, IBE). Here, we will assume principals and switches
have keys that have been certified by the enterprises CA.

3To establish shared keys, we opt for a simple key-exchange proto-
col from theIKE2 [28] suite.

4Request capabilities are similar to network capabilities as dis-
cussed in [12, 51]

5We use the same IV for all layers—as opposed to picking a new
random IV for each layer—to reduce the capability’s overall size. For
standard modes of operation (such as CBC and counter-mode) reusing
the IV in this manner does not impact security, since each layer uses a
different symmetric key.

6For example, while SANE’s protection layer prevents an adver-
sary from targeting arbitrary switches, an attacker can attempt to target
a switch indirectly by accessing an upstream server for which it other-
wise has access permission.

7Normally, DC packet headers contain a consistent sender-ID in
cleartext, much like the IPSecESP header. This sender-ID tells the
DC which key to use to authenticate and decrypt the payload. We re-
place this static ID with an ephemeral nonce provided by the DC. Every
DC response contains a new nonce to use as the sender-ID in the next
message.

8Implementing threshold cryptography for symmetric encryption is
done combinatorially [16]: Start from at-out-of-t sharing (namely, en-

crypt a DC master secret under all independent DC server keys) and
then construct at-out-of-n sharing from it.

9To calculate the concurrent number of TCP connections, we
tracked srcip:srcport:dstip:dstport tuples, where a connection is consid-
ered finished upon receiving the first FIN packet or if no traffic packets
belonging to that tuple are seen for 15 minutes. There were only 143
cases of TCP packets that were sent after a connection was considered
timed-out.

10This is a conservative upper bound: In our traces, the average
flow length is 92s, implying that at most, 15% of the flows could have
lengths greater than 10 minutes.

References

[1] 802.1D MAC Bridges. http://www.ieee802.org/1/pages/802.1D-
2003.html.

[2] Apani home page. http://www.apani.com/.

[3] Consentry home page. http://www.consentry.com/.

[4] DNS Service Discover (DNS-SD). http://www.dns-sd.org/.

[5] Lumeta. http://www.lumeta.com/.

[6] UPnP Standards. http://www.upnp.org/.

[7] Cisco Security Advisory: Cisco IOS Remote Router Crash.
http://www.cisco.com/warp/public/770/ioslogin-pub.shtml, Au-
gust 1998.

[8] CERT Advisory CA-2003-13 Multiple Vulnerabilities in Snort
Preprocessors. http://www.cert.org/advisories/CA-2003-13.html,
April 2003.

[9] Sasser Worms Continue to Threaten Corporate Productivity.
http://www.esecurityplanet.com/alerts/article.php/3349321, May
2004.

[10] Technical Cyber Security Alert TA04-036Aarchive HTTP Pars-
ing Vulnerabilities in Check Point Firewall-1. http://www.us-
cert.gov/cas/techalerts/TA04-036A.html, February 2004.

[11] ICMP Attacks Against TCP Vulnerability Exploit.
http://www.securiteam.com/exploits/5SP0N0AFFU.html, April
2005.

[12] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet
Denial-of-Service with Capabilities.SIGCOMM Comput. Com-
mun. Rev., 34(1):39–44, 2004.

[13] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A
novel firewall management toolkit.ACM Trans. Comput. Syst.,
22(4):381–420, 2004.

[14] S. M. Bellovin. Distributed firewalls. ;login:, 24(Security),
November 1999.

[15] M. Blaze, J. Feigenbaum, and A. D. Keromytis. Keynote: Trust
management for public-key infrastructures (position paper). In
Proceedings of the 6th International Workshop on Security Pro-
tocols, pages 59–63, London, UK, 1999. Springer-Verlag.

[16] E. Brickell, G. D. Crescenzo, and Y. Frankel. Sharing block ci-
phers. InProceedings of Information Security and Privacy, vol-
ume 1841 ofLNCS, pages 457–470. Springer-Verlag, 2000.

[17] M. Casado and N. McKeown. The Virtual Network System. In
Proceedings of the ACM SIGCSE Conference, 2005.

[18] M. Castro and B. Liskov. Practical byzantine fault tolerance
and proactive recovery.ACM Transactions on Computer Systems
(TOCS), 20(4):398–461, Nov. 2002.

[19] D. Cullen. Half Life 2 leak means no launch for Christmas.
http://www.theregister.co.uk/2003/10/07/halflife 2 leak means/,
October 2003.

14



[20] Y. Desmedt and Y. Frankel. Threshold cryptosystems. InAd-
vances in Cryptology - Crypto ’89, 1990.

[21] J. R. Douceur. The Sybil attack. InFirst Intl. Workshop on Peer-
to-Peer Systems (IPTPS 02), Mar. 2002.

[22] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A virtual machine-based platform for trusted computing.
In Proceedings of the 19th Symposium on Operating System Prin-
ciples(SOSP 2003), October 2003.

[23] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Hiding Rout-
ing Information. In R. Anderson, editor,Proceedings of Infor-
mation Hiding: First International Workshop, pages 137–150.
Springer-Verlag, LNCS 1174, May 1996.

[24] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rex-
ford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A Clean Slate 4D
Approach to Network Control and Management. InIn ACM SIG-
COMM Computer Communication Review, October 2005.

[25] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and performance in a distributed file system.ACM Trans. Com-
put. Syst., 6(1):51–81, Feb. 1988.

[26] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith.
Implementing a distributed firewall. InACM Conference on Com-
puter and Communications Security, pages 190–199, 2000.

[27] G. C. S. Jian Pu, Eric Manning. Routing Reliability Analysis
of Partially Disjoint Paths. InIEEE Pacific Rim Conference on
Communications, Computers and Signal processing (PACRIM’
01), volume 1, pages 79–82, August 2001.

[28] C. Kaufman. Internet key exchange (ikev2) protocol. draft-ietf-
ipsec-ikev2-10.txt (Work in Progress).

[29] A. Kumar, V. Paxson, and N. Weaver. Exploiting underlying
structure for detailed reconstruction of an internet-scale event. In
to appear in Proc. ACM IMC, October 2005.

[30] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones.
Socks protocol version 5. RFC 1928, March 1996.

[31] T. Markham and C. Payne. Security at the Network Edge: A
Distributed Firewall Architecture. InDARPA Information Sur-
vivability Conference and Exposition, 2001.

[32] G. M. Marro. Attacks at the data link layer, 2003.

[33] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis
engine. InSP ’00: Proceedings of the 2000 IEEE Symposium
on Security and Privacy, page 177, Washington, DC, USA, 2000.
IEEE Computer Society.

[34] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. Inside the Slammer Worm.IEEE Security and Pri-
vacy, 1(4):33–39, 2003.

[35] A. Myers, E. Ng, and H. Zhang. Rethinking the Service Model:
Scaling Ethernet to a Million Nodes. InACM SIGCOMM Hot-
Nets, November 2004.

[36] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tier-
ney. A first look at modern enterprise traffic. InACM/USENIX
Internet Measurement Conference, Oct. 2005.

[37] R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and packet
trace anonymization.ACM Comput. Commun. Rev., 36(1), Jan.
2006.

[38] R. Perlman.Network layer protocols with Byzantine robustness.
PhD thesis, Massachussets Institute of Technology, 1988.

[39] R. J. Perlman. Rbridges: Transparent Routing. InINFOCOM,
2004.

[40] V. Prevelakis and A. D. Keromytis. Designing an Embedded
Firewall/VPN Gatweway. InProc. International Network Con-
ference, July 2002.

[41] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. My-
ers, G. Xie, J. Zhan, and H. Zhang. Network-Wide Decision
Making: Toward A Wafer-Thin Control Plane. InProceedings
of HotNets III, November 2004.

[42] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A Block-
Cipher Mode of Operation for Efficient Authenticated Encryp-
tion. In ACM Conference on Computer and Communications Se-
curity, pages 196–205, 2001.

[43] T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jardetzky. Pred-
icate routing: Enabling controlled networking.SIGCOMM Com-
put. Commun. Rev., 33(1):65–70, 2003.

[44] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service lo-
cation protocol. RFC 2165, july 1997.

[45] N. Weaver, D. Ellis, S. Staniford, and V. Paxson. Worms vs.
Perimeters: The Case for Hard-LANs. InProc. Hot Interconnects
12, August 2004.

[46] A. Wool. A quantitative study of firewall configuration errors.
IEEE Computer, 37(6):62–67, 2004.

[47] A. Wool. The use and usability of direction-based filtering in
firewalls. Computers & Security, 26(6):459–468, 2004.

[48] S. Wu, B. Vetter, and F. Wang. An experimental study of insider
attacks for the OSPF routing protocol. October 1997.

[49] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg, G. Hjalm-
tysson, and J. Rexford. On static reachability analysis of ip net-
works. InIEEE INFOCOM 2005, March 2005.

[50] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, and
G. Hjalmtysson. Routing design in operational networks: A look
from the inside. InProc. ACM SIGCOMM ’04, pages 27–40,
New York, NY, USA, 2004. ACM Press.

[51] A. Yaar, A. Perrig, and D. Song. Siff: A stateless internet flow
filter to mitigate ddos flooding attacks. InIn Proceedings of the
IEEE Security and Privacy Symposium, May 2004.

[52] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. InProc. ACM SIGCOMM ’05, pages 241–252, New
York, NY, USA, 2005. ACM Press.

15


