
RE: Reliable Email

Scott Garriss†, Michael Kaminsky∗
Michael J. Freedman‡◦, Brad Karp∗∗, David Mazières◦, Haifeng Yu∗†

†Carnegie Mellon University, ∗Intel Research Pittsburgh,
‡New York University, ∗∗University College London, ◦Stanford University

Abstract

The explosive growth in unwanted email has prompted
the development of techniques for the rejection of email,
intended to shield recipients from the onerous task of
identifying the legitimate email in their inboxes amid
a sea of spam. Unfortunately, widely used content-
based filtering systems have converted the spam prob-
lem into a false positive one: email has become unre-
liable. Email acceptance techniques complement rejec-
tion ones; they can help prevent false positives by filing
email into a user’s inbox before it is considered for rejec-
tion. Whitelisting, whereby recipients accept email from
some set of authorized senders, is one such acceptance
technique.

We present Reliable Email (RE:), a new whitelisting
system that incurs zero false positives among socially
connected users. Unlike previous whitelisting systems,
which require that whitelists be populated manually, RE:
exploits friend-of-friend relationships among email cor-
respondents to populate whitelists automatically. To do
so, RE: permits an email’s recipient to discover whether
other email users have whitelisted the email’s sender,
while preserving the privacy of users’ email contacts
with cryptographic private matching techniques. Using
real email traces from two sites, we demonstrate that RE:
renders a significant fraction of received email reliable.
Our evaluation also shows that RE: can prevent up to
88% of the false positives incurred by a widely deployed
email rejection system, at modest computational cost.

1 Introduction and Motivation

Written communication is most useful when it is reli-
able; that is, when senders and recipients can both expect
that a message sent will be received successfully by the
intended recipient. Correspondents who are connected
socially, whether directly or indirectly, often have some-
thing to lose if a message is not received (e.g., an urgent
request from one colleague to another, or an urgent com-
munication to a parent from her child’s teacher). Simi-
larly, a sender is most likely to expect a recipient to read
and act on communication when the two parties have a
preexisting social relationship, direct or indirect.

By the above definition, Internet email has been reli-
able throughout most of its entire long history, beginning
with its 1971 origins on the ARPAnet. Email users have
come to rely upon email reaching its destination.1 Today,
however, unsolicited commercial email has rendered In-
ternet email unreliable, as we explain below. We seek to
restore email’s reliability among correspondents who are
linked to one another socially.

Spam inconveniences users by forcing them to search
for legitimate email in an inbox dominated by chaff. De-
spite the efforts of legislative and law-enforcement bod-
ies to the contrary, spam remains a pressing problem of
large scale. In 2003, corporations spent an estimated
$2.5 billion on increased SMTP server capacity needed
to process spam [30], and in July 2005, over 65% of
email that crossed the Internet was spam [1]. The nat-
ural response of researchers and practitioners has been
to develop and deploy a broad range of techniques in-
tended to ensure that spam does not reach a user’s in-
box [2, 4, 6, 8, 19, 23, 29, 32, 33].

Content-based filtering has been particularly widely
adopted as a spam defense strategy, perhaps because of
its wide availability in free and commercial implementa-
tions. These systems are designed to reject email based
on the presence of string tokens associated with spam.
These tokens may either be selected manually by an ad-
ministrator, or may be learned, most often by applying
Bayesian learning to user-supplied training examples.

Many have reported great success at rejecting spam
using content-based techniques, as measured by sub-1%
false negative rates [20, 34]. Unfortunately, content-
based filtering has replaced the spam problem with a
false positive one. That is, misclassification of legitimate
email as spam by content-based filters has rendered email
unreliable. False positives are arguably more severe than
spam in one’s inbox, in that they are not merely a waste
of a user’s time—they represent possibly important email
the user does not see.

The reasons why content-based filters result in false

1SMTP server failures, disk exhaustion, and other hardware or soft-
ware failures—or a recipient’s simply not reading his email—can all of
course result in delay or non-delivery. Such cases have not historically
led users to view email itself as significantly unreliable, and some are
not amenable to eradication by technical means. They are thus beyond
the scope of consideration in this work.

Reliable

Email Filter

Spam

Trash

InboxEmail
default path default path

Figure 1: Complementary whitelisting and blacklisting.

positives are manifold.2 A legitimate communication
may contain strings associated with spam (e.g., “mort-
gage,” “offer,” “lottery,” “Lagos,” or any number of more
colorful words that figure prominently in the descriptions
of items flogged by spammers). Even if one were to build
a content-based filter that could avoid false positives in
these cases, others remain problematic, such as forward-
ing an interesting spam to a mailing list used for discus-
sion by spam filter designers. In effect, content-based
filters act as “dumb censors,” as they prevent legitimate
discussion on the basis of keyword matching—users can
no longer say what they want in email.

In this paper, we propose Reliable Email (RE:), an
automated email acceptance system based on whitelist-
ing of email according to its sender. Figure 1 depicts
a schematic view of how RE: fits into an email recipi-
ent’s spam-fighting system. RE: is first to examine in-
bound email, and it delivers any message it accepts di-
rectly to the recipient’s inbox. Note that RE: is entirely
complementary to a mail rejection system; it cannot in-
crease false positives because it either accepts a message
or passes it to whatever rejection system was already in
place.

The concept of a mail acceptance system is hardly
new. Perhaps the simplest mail acceptance system is a
sender whitelist, which places mail from senders enu-
merated on a list directly into the recipient’s inbox. To-
day, whitelisting is rarely used in practice for three chief
reasons:

• Whitelisting based on sender is trivially defeated by
forging From: addresses, which are unauthenti-
cated in SMTP. Even without knowing the contents
of a recipient’s whitelist, a spammer may trivially
generate spam forged to appear to be from the re-
cipient, whose address is most likely whitelisted.

• A recipient’s whitelist cannot accept mail from a
sender previously unknown to the recipient.

• Populating whitelists requires manual effort dis-
tributed diffusely in time, as users acquire new
contacts.

2Some argue that spammers will eventually be able to evade
Bayesian-trained content filters [10]; we are concerned chiefly with
their false positives in this work.

RE: incorporates a mechanism to defeat forgery of
From: addresses, as do other proposals that aim to
stop spam [8, 33]. More significantly, RE: automati-
cally broadens the set of senders whose mail is accepted
by recipients’ whitelists by explicitly examining the so-
cial network among email users. In particular, RE: al-
lows user A to attest to user B. Such an attestation in-
dicates that user A is willing to have email from user B
directly filed in his inbox. An attestation thus roughly
corresponds to the notion, “User A trusts user B not to
send him spam.” We say B is a friend of A. Clearly, at-
testations are useful for accepting mail in cases where a
sender and recipient are friends; a sender may choose to
generate an attestation for a recipient, and vice-versa, on
the basis of the other party’s identity.

We observe further that attestations are useful for ac-
cepting mail in cases where the sender and recipient are
not already friends, but instead share a friend in com-
mon, a situation we term friend-of-friend (FoF). Suppose
A and B are friends, B and C are friends, but A and C are
as yet unknown to each other. If C sends email to A, the
FoF relationship between A and C may give A confidence
that C is not a spammer. That is, A may trust B not to be
a spammer, B may trust C not to be a spammer, and on
this basis, A may conclude that C is unlikely to be one.

Each email domain that participates in RE: runs a
server that stores attestations. Together, the distributed
collection of RE: servers allows FoF queries over at-
testations, whereby an email’s recipient may determine
whether the email’s sender is an FoF. RE: thus allows a
recipient to accept email from FoFs without requiring all
users to trust a central authority.

Because attestations name email correspondents, al-
lowing one user to query another user for attestations
raises privacy concerns. RE: employs cryptographic
private matching techniques to preserve the privacy of
users’ contact lists. Section 3.8 details the specific guar-
antees that RE: provides.

A central question is how useful FoF relationships are
in increasing the number of emails RE: accepts into a
user’s inbox, versus the number of emails accepted by
direct friend relationships alone. We consider this ques-
tion in detail in Section 5. By way of motivation, we
note briefly here that when evaluating the utility of so-
cial whitelisting using email traces from multiple sites,
we find that RE: can accept almost 75% of received email
and can prevent up to 88% of the false positives incurred
by the existing spam filter. Moreover, augmenting friend
relationships with FoF relationships increases the frac-
tion of all received email accepted by RE: by at least
10%—a significant improvement in the fraction of re-
ceived email rendered reliable.

We proceed in the remainder of this paper as follows.
After reviewing related work in Section 2, Section 3 of-

fers design goals for a distributed whitelisting system and
describes the design of RE: in detail. Section 4 describes
our working RE: prototype, and Section 5 evaluates the
system. Section 6 discusses various design decisions and
open questions. We conclude in Section 7.

2 Related Work
We now survey the numerous and varied schemes pro-
posed to fight spam, and compare these approaches to
that taken in RE:.

Forgery Protection. Today’s whitelists are often vul-
nerable to abuse because sender addresses are unauthen-
ticated in SMTP, and thus may be forged trivially. Cur-
rent methods for the prevention of mail forgery fall into
two categories: digitally signed mail and trusted senders.

Digitally signing mail (e.g., with PGP [35]) allows re-
cipients to authenticate the mail’s content, including the
sender’s address. Clearly, requiring that all mail be dig-
itally signed would solve the address forgery problem,
but the use of digital signatures is hampered by the lack
of any widely deployed public-key infrastructure.

Under trusted senders, a recipient can determine
whether a received mail originated from a mail server
in the domain of the sender’s address. The Sender Pol-
icy Framework (SPF [33]), its derivative, Sender ID [26],
and Yahoo! Domain Keys [8] exemplify this approach.

Social Networks. Ebel et al. [16] study the topology of
an email social network and show that it exhibits small-
world behavior. Kong et al. [23] use this finding to pro-
pose a collaborative, content-based email rejection sys-
tem based on social networks, in which a user manually
identifies the spam he receives, and publishes a digest of
it to his social network. A user queries these digests to
determine if mail he has received was previously classi-
fied as spam by others in his social network. This scheme
presumes that users who are connected socially have the
same definition of what constitutes spam content.

Ceglowski and Schachter [12] and Brickley and
Miller [11] propose mechanisms for exchanging
whitelist information using Bloom filters and SHA-1
hashes, respectively. These data structures do not contain
cleartext whitelist entries, but are open to straightfor-
ward dictionary attacks. Both schemes assume sender
addresses are not forged. Goldbeck and Hendler [19]
present an algorithm that infers a trust score for a given
sender based on social relationships, but compromises
user privacy by requiring that users publish their social
relationships.

PGP [35], though not originally intended to fight
spam, uses a web-of-trust model for key distribution.
The web-of-trust model relies on friend-of-friend trust
relationships, as does RE:. RE:, however, uses these FoF

relationships only to help identify legitimate senders,
not for key distribution. RE: intentionally sidesteps
the problem of robust key distribution, as described in
Section 3.4.

Mail Rejection Systems. Machine learning techniques
for text classification have been adapted to distinguish
spam from legitimate email [21, 31]. Systems in this cat-
egory, as exemplified by SpamAssassin [6], are by far the
most widely deployed spam defense. As previously de-
scribed, such systems reduce the reliability of email, as
they inevitably classify some legitimate email as spam.
Such false positives are a severe enough problem that
some of the most accurate spam classification systems
(e.g., [2]) resort to human labor to help with their classi-
fication, at greatly increased cost.

Since human-directed classification is accurate, but
costly, several efforts have been made to distribute that
cost across an email system’s users. SpamNet [3], Dis-
tributed Checksum Clearinghouse (DCC) [4], and Ra-
zor2 [29] are all systems in which email users collaborate
to classify spam. In each of these systems, users report
spam to a centralized database. It is unclear how resilient
these systems are to malicious users, particularly ones
who mount a Sybil attack [13].

One may also reject email on the basis of the IP ad-
dress of the sending host; past spam sources are thus
blacklisted. Realtime Blackhole Lists (RBLs [5], or
more generally, DNSBLs) and SpamCop [7] take this ap-
proach. These systems automate the distribution of a list
of IP addresses known to have sent spam or run open
SMTP relays. Blacklisting the SMTP server for a do-
main runs the risk of blacklisting many legitimate users.
Because these lists are maintained in ad hoc fashion, it
can be slow to have a server’s reputation “cleared.”

Other Mail Acceptance Systems. In proof-of-work
schemes [9, 14, 15], a sender “pays” to send an email by
solving a computational puzzle. Payment schemes rely
on a similar notion, but they require senders to expend
money rather than computation, e.g., by directly paying
recipients [25]. For both classes of system, the intent
is that the resources required to send mail will be pro-
hibitively expensive in volume for a spammer, while af-
fordable in smaller quantities for an average legitimate
email sender. Laurie and Clayton [24] argue that spam-
mers may harness the computational resources of large
collections of compromised hosts to send spam in vol-
ume. Keeping email too expensive for spammers might
then entail making it too expensive for heavy legitimate
email users.

DQE [32] aims to limit the volume of email any one
sender may send, without compromising the reliability
of email between legitimate users. To achieve this goal,
DQE employs a central authority trusted by all email

users, which allocates quotas of unforgeable stamps to
email senders. Senders attach a stamp to every email they
send. Recipients check the validity of the stamp on mail
they receive. DQE eliminates false positives between
sender-recipient pairs that adopt the system (and thus
trust the same central quota allocator). When DQE is
deployed incrementally, however, a recipient that wants
protection from spam must fall back on a mail rejection
system when it receives unstamped mail; in so doing,
the recipient risks a false positive. We believe RE: and
DQE complement one another well. RE: incurs no false
positives for email between friends and FoFs, but can-
not prevent false positives on mail whose sender is not
a friend or FoF of the recipient. DQE, in contrast, can
prevent false positives between any sender-recipient pair,
provided they trust the same central quota allocator.

3 Design
We now continue by offering design goals for a robust
and secure distributed email social whitelisting system.
We then define terms useful in reasoning about RE:, de-
scribe RE:’s major components, and explain the system
by way of a typical email usage scenario. We conclude
this section by presenting the assumptions under which
RE: operates and its corresponding security guarantees.

3.1 Design Goals
To be robust and secure, a distributed system that
whitelists email and allows users to generate and query
for attestations must provide three basic guarantees.

Sender addresses cannot be forged. Because a
whitelisting system automatically accepts email based on
sender address, protecting against this type of forgery is
particularly important. Basic SMTP, however, does not
provide any mechanism to prevent a user from sending
email with an arbitrary From: address. RE: robustly
verifies that the From: address in a received email has
not been forged.

Attestations cannot be forged. An attestation is a state-
ment by one user that another user is trusted to send
email. Forging attestations would allow an adversary
(spammer) to trick the recipient into accepting the adver-
sary’s email, even if the sender’s address is not forged.
RE: uses digital signatures to guarantee that attestations
cannot be forged.

Privacy when exchanging whitelist information. A
social whitelisting system can automatically accept email
based on FoF relationships. A naive approach to learn-
ing about mutual friends is for one party to send his list of
friends to the other party, who computes the set intersec-
tion. This approach, however, compromises the privacy

of the first party. RE: uses a private set-matching proto-
col to compute the intersection of sets of friends, but still
provides provable privacy guarantees for both parties.

Additionally, any spam-fighting system is far more
easily deployable if it provides two practical properties:

Incremental deployability. Inevitably, some users will
adopt a spam-fighting system before others. A spam-
fighting system ideally will offer real benefit to the com-
munity of users who have adopted it thus far. Because
RE: is a mail acceptance system, it is complementary to
pre-existing spam rejection systems, and thus easy to de-
ploy incrementally. Clearly, the deployment of RE: does
nothing to worsen the spam problem for those who have
not adopted it. Moreover, RE: can confer benefit in the
form of reduced false positives in any pairwise deploy-
ment, in which the domains of both sender and recipient
run it.

Compatibility with today’s SMTP. Making changes to
the SMTP protocol slows adoption because developers
must incorporate the new anti-spam SMTP protocol ex-
tensions into their mail software, and site administrators
must then adopt one of the resulting new releases of this
software. RE: does not change SMTP in any way; the
system communicates over its own connections, and it is
easily placed in the email processing path of most mail
servers.

3.2 Definitions
The two key participants in any email exchange are the
sender (S) and the recipient (R). Every user U in RE:
possesses a public/secret key pair, denoted by PKU and
SKU . The user keeps his secret key somewhere where he
can access it while sending email. He registers his public
key with his Attestation Server (AS), described below.

As described in Section 1, a user can issue an attes-
tation to vouch that another user is a legitimate sender.
An attestation by A for B, written A→ B, indicates that
A trusts B to send email, and that A believes that other
people should trust B to send email. Attestations contain
the identities of the attester and the attestee, as well as an
expiration time. More formally, an attestation is

A→ B = {Hash(A),Hash(B),start,duration}SKA

Hash() is a collision-resistant cryptographic hash (e.g.,
SHA-1) of the attester’s or attestee’s email address. The
start and duration fields specify when the attestation ex-
pires. The entire attestation is cryptographically signed
by the attester using his secret key.

Each SMTP domain that participates in RE: runs an
Attestation Server (AS) responsible for storing attesta-
tions both by and to the users of that domain. The AS

[SMTP Client]

Sender (S)

SK(S)

Sender’s

Attestation

Server

MsgID Cache

...

...
Recipient’s

Attestation

Server

...

R−>A, PK(A)

Attestations

R−>B, PK(B)
...

...

B−>S, PK(S)

Attestations

...

Recipient (R)

[SMTP Server]

+
Do you have attestations from {A, B, ...}?

auth token

OK / Not OK
+

B−>S

mail message with auth token header

CheckMail

Helper

ER :

Figure 2: Sending Mail and Finding FoFs with RE:

also stores the public keys of its users as well as the pub-
lic keys of users attested to by its users (i.e., for each at-
testation A→ B, where A is in the AS’s domain, the AS
stores PKB). When the AS’s users receive email from
third-party senders, they use these attestee public keys
to verify the signatures on the attestations that the third-
party presents during an FoF query, as described below.
The AS can run on the same machine as the domain’s
SMTP server, or on a different host, as indicated by DNS
SRV records [22].

An AS responds to several types of client requests,
such as queries for public keys, attestations, and FoFs.
Some queries are restricted to users in the AS’s domain
(e.g., storing a public key) while others are open to ev-
eryone (e.g., getting a public key). Section 4 describes
the full list of requests an AS supports.

3.3 Example: Sending Mail with RE:

Figure 2 shows an example of how two users running
RE:, S and R, correspond by email. First, S composes
a message to R and creates an authentication token (see
Section 3.4). S signs the authentication token with his
secret key and sends the message to R using standard
SMTP. The authentication token is included as a header
in the email message to avoid requiring modifications to
the SMTP protocol.

R can decide to accept the mail based on the sender in
one of two ways, depending on whether the sender is a
direct friend or an FoF. These two cases differ in what
R sends to S and what S returns. Figure 2 shows the FoF
case.

To check for direct friendship, R examines the list of
senders to whom he has attested (stored on R’s AS); these
attestations are of the form R→∗. If the recipient has at-
tested to the sender (i.e., R→ S exists), R contacts S’s AS
to verify the authentication token. In this case, the token
verification is the only communication between R and S.

If the verification succeeds, RE: accepts the message and
delivers it directly to the recipient’s inbox.

If S is not one of R’s direct friends, R will try to de-
termine if S is an FoF. Specifically, R seeks to discover
whether any of his direct friends has attested to S: is there
an x such that R→ x and x→ S? To answer this question,
R queries the sender’s AS. This query effectively con-
tains a list of the recipient’s direct friends. The sender’s
AS responds with a list of any attestations to the sender it
holds from those direct friends. In Figure 2, the sender’s
AS returns B→ S, where B is a mutual friend. In this
case, the communication between R and S combines the
FoF query and verification of the authentication token.

In practice, R never actually sends its list of friends
directly to S. Rather, R performs this FoF query using
a private set matching protocol described in Section 3.8,
which guarantees that the sender does not learn any of
the recipient’s direct friends and that the recipient only
learns the attestations that are from his friends (i.e., the
set intersection).

If R finds a match for this FoF query—e.g., an attes-
tation to the sender by a B—it verifies the signature and
freshness of this attestation. Note that R’s own AS al-
ready has the mutual friend’s public key, PKB, stored
alongside R→ B. If the attestation is valid and the au-
thentication token verification succeeds, RE: accepts the
message and delivers it to the recipient’s inbox. Other-
wise, R concludes that it is unable to determine whether
or not the message is spam. R can then perform a de-
fault action (e.g., running the mail through a spam filter,
graylisting it, etc.).

3.4 Sender Authentication

RE: attaches an authentication token to each outgoing
email to protect against forged sender email addresses.
This token is defined as follows:

{Sender,Recipient,Timestamp,MessageID}SKS

The recipient verifies the authentication token be-
fore determining whether an incoming email should be
whitelisted: (1) The recipient checks that the sender, re-
cipient, and unique message ID match the values found
in the message itself. This check ensures that the token
cannot successfully be attached to an email destined to
a different address. The recipient then connects to the
sender’s AS, which (2) checks that the authentication to-
ken is unused and (3) verifies the token’s signature, as the
AS knows the sender’s public key PKS. If an authentica-
tion token has been previously redeemed or the signature
fails verification, the token check fails.3

3If after the recipient redeems the authentication token, one party
suffers a crash or a network failure, the recipient will be unable to com-

Thus, authentication tokens serve two purposes. First,
they allow recipients to reject forged sender addresses.
Second, they prevent an adversary from making arbi-
trary FoF queries to the AS by replaying a previously
redeemed token. Restricting FoF queries prevents the ad-
versary from learning who has attested to the sender.

To verify that the authentication token is unused, the
AS caches previously used tokens. To bound the size
of this cache, the authentication token contains a times-
tamp. The AS only keeps tokens whose corresponding
timestamps (times of issuance) are more recent than t
seconds in the past. A reasonable value for t might be one
week. Expiring authentication tokens based on times-
tamps assumes loosely synchronized clocks.

Because the recipient contacts the sender’s AS to ver-
ify the authentication token, the recipient need not know
the sender’s public key. This method of verification
assumes, however, that an adversary cannot perform a
man-in-the-middle attack (see Section 3.7). Performing
a man-in-the-middle attack in the wide-area network is
non-trivial, and is far more work than a typical spam-
mer would have the resources to perform for each email.
Furthermore, successfully tricking the recipient into be-
lieving an invalid authentication token is valid results in,
at worst, accepting a spam email into a user’s inbox (i.e.,
a false negative).

3.5 Revocation
If a user’s secret key is compromised or lost, authenti-
cation tokens and attestations signed by that key should
be revoked. Once a user discovers that his key has been
compromised, he uploads a new public key to his Attes-
tation Server. From that point forward, the AS simply
stops accepting authentication tokens signed with the old
key.

For attestations, there are two cases that RE: must han-
dle. First, when a recipient R’s key is compromised, he
should invalidate all attestations R→ ∗ stored at its own
AS; we call these local attestations. When R uploads a
new key to its AS, the AS can simply remove these lo-
cal attestations; R can then re-issue the attestations as
needed.

Second, R’s friends must stop using R’s attestations
stored at their Attestation Servers; we call these remote
attestations. Currently, RE: does not have a way to no-
tify every one of R’s friends automatically that his attes-
tations are now invalid. RE: handles this case through
expiration dates in attestations. Two expiration dates are

plete the SMTP transaction. When the sender retries, RE: will attempt
to redeem the same authentication token a second time. This authenti-
cation check will fail, however, and RE: will not be able to accept the
message automatically. In the current design, the recipient will then
simply fall back to its default action. In future versions of the protocol,
however, we intend to make RE: robust under such failures.

relevant: (1) The remote attestation itself (signed by R)
has an expiration date and after this date, R’s friends
will stop using it. (2) During an FoF query, R’s friends
present these remote attestations to users who have at-
tested to R, and these users attempt to verify the signature
on the remote attestations using R’s public key, which
they stored when attesting to R. These users will reject
the remote attestation if it is signed with an old, now in-
valid key. For example, if user U holds U → R and PKR,
U will re-fetch the attestation and PKR once the attes-
tation expires. Until then, however, U might accept mail
from one of R’s friends, or an adversary that can generate
any R→∗ using R’s compromised key.

A similar situation exists for revoking a single attesta-
tion, e.g., after a recipient R attests to a spammer by acci-
dent. To prevent the attestation’s direct use (not FoF use),
R simply removes the offending local attestation from his
AS, thereby eliminating future false negatives from this
spammer. This removal, however, does not help if the
spammer (the attestee) is already holding a copy of the
attestation, as he can subsequently use this remote attes-
tation to send mail to users who have attested to R. Cur-
rently, RE: only limits the duration of a bad attestation by
its expiration time, but alternatively the user can decide
to remove his attestation for the recipient and thereby dis-
regard the remote attestation presented by the spammer,
as described in the following section.

3.6 Policy Decisions

RE: leaves several policy decisions to the user and/or
system administrator. Most importantly, a user must
decide when to create attestations. The most labor-
intensive but least error-prone policy is for the user to
manually attest to other users after verifying that the
sender is trusted to send email. This verification can
be out-of-band (the user knows the sender personally) or
can be based on the recommendation of a mutual friend
learned through the RE: protocols. In the example above,
the recipient R might decide to attest to the sender S be-
cause his mutual friend B attested to S. In this way, FoF
queries help bootstrap a user’s attestations to include a
previously unknown correspondent.

Users can also specify policies that automatically cre-
ate attestations. For example, a user might decide that
anyone to whom he sends email is a trusted sender—
presumably this user does not send email to spammers—
and thus automatically create an attestation for each re-
cipient of his outbound email. The user might also tune
such a policy decision to include or exclude mail sent to
particular domains. Another example of automatic attes-
tation creation might be to attest to anyone that sends a
user three non-spam emails that the user does not discard.

Users must also decide how to set expiration dates in
an attestation. Expiration dates allow users to limit how
long their friends will continue using the remote attes-
tation. For example, a user might choose a more distant
expiration date for personal acquaintances versus senders
attested to automatically because they have sent three le-
gitimate emails.

We presume that a user’s trusted friend will only rarely
attest to a spammer. If this friend does attest to a spam-
mer, the user will accept mail from the spammer because
of the FoF social relationship. The user will know, how-
ever, which friend attested to the spammer. In this sense,
RE: limits the harm of attesting to a spammer: users can
identify a friend’s ill-considered remote attestation, and
they can choose to ignore that friend’s remote attestations
when accepting inbound email in the future.

We elected to limit the social networking component
of our system to one level (FoF). One might also con-
sider using social relationships of three hops or longer in
whitelisting email. We defer a discussion of this choice
to Section 6.

3.7 Assumptions
In addition to standard cryptographic hardness assump-
tions, RE: operates under the following assumptions:

• Clocks are loosely synchronized to within some er-
ror bound. This is to ensure that (1) the sender’s AS
accepts only authentication tokens that are not too
old, and that (2) the recipient uses only attestations
that have not expired.

• An adversary cannot launch a man-in-the-middle at-
tack. This assumption implies, for example, that the
adversary cannot subvert forward DNS queries or
intercept and modify IP packets traveling between
an email sender and recipient.

• An adversary cannot compromise the sender’s AS
and/or convince it to lie about the validity of an au-
thentication token or public key.

• An adversary cannot compromise a sender’s ma-
chine. Section 6 discusses this assumption in more
detail.

3.8 Privacy Protection
The FoF query allows the recipient to determine if any
of his friends have attested to the sender. RE: performs
this set intersection using a Private Matching (PM) pro-
tocol [18] that provides the following attractive privacy
properties:

• The sender S does not learn anything about the re-
cipient’s friends. Both sender and recipient do learn

an upper bound on the number of real friends pre-
sented by the opposite party, however.

• The recipient R learns only the intersection of the
two sets of friends, i.e., those persons f for whom
R→ f and f → S. The PM protocol does not pre-
vent parties from “lying” about their inputs; thus,
the recipient can include arbitrary friends in his
list when computing the set intersection. However,
such inputs will fail later attestation verification and
thus not result in a successful FoF chain.

• A third party observing all messages between
sender and recipient learns only an upper bound on
the size of each input, but nothing about their con-
tent nor the size of the intersection.

• No other party other than the recipient can execute
the FoF query, as the AS only allows one query per
valid authentication token.

RE:’s private matching protocol is a type of secure
two-party computation that is optimized for computation
and communication efficiency. At a high level, the basic
protocol has three steps:

1. The recipient encodes his kR friends’ names in a
special encrypted data structure, which he sends to
the sender.

2. The sender performs a computation on the en-
crypted data structure with each of her kS friends’
names and the corresponding attestations, generat-
ing kS outputs. If the sender’s friend f is encoded
within the encrypted data structure, an output’s un-
derlying plaintext becomes the attestation f → S;
otherwise, that output’s plaintext becomes random.
She sends the kS outputs back to the recipient.

3. The recipient decrypts these kS results. He recovers
the attestations corresponding to their set of friends
in common.

Our private matching protocol takes advantage of the
special mathematical properties of certain public-key en-
cryption schemes, such as Paillier [28] and a variant
of ElGamal [17]4, that preserve the group homomor-
phism of addition and allow multiplication by a constant.
In other words, the following operations can be per-
formed without knowledge of the private key: (1) Given
two encryptions enc(m1) and enc(m2), one can compute
enc(m1 +m2) = enc(m1) ·enc(m2). (2) Given some con-
stant c belonging to the same group, enc(cm) = enc(m)c.

4Standard ElGamal, which encrypts a message m as 〈gx,gxrm〉, does
not directly support the necessary homomorphic operations required.
Thus, when requiring these homomorphic properties, we encrypt m as
〈gx,gxrgm〉, even though decrypting this ciphertext only recovers gm,
not m! This variant is sufficient for almost all operations, with the
exception of the sender encrypting its attestation for later recovery by
the recipient, which therefore uses standard ElGamal.

We use the following corollary of these properties: (3)
Given encryptions of the coefficients a0, . . . ,ak of a poly-
nomial P of degree k, and a plaintext y, one can compute
an encryption of P(y).

We now construct a basic secure PM protocol in the
following manner:

1. The recipient R defines a polynomial P whose roots
are hash values encoding his kR friends, i.e., given
xi← Hash(f R

i), R computes:

P(y) = (x1− y)(x2− y) . . .(xkR − y) =
kR

∑
u=0

auyu

R encrypts these kR coefficients under his public key
and sends the resulting ciphertexts to S.

2. The sender S uses the homomorphic properties of
the encryption system to evaluate the polynomial
on each hash value of her kS friends, i.e., ∀i,yi ←
Hash(f S

i):

enc
(

P(yi)
)

= enc(a0)
(

enc(a1)
(
. . .enc(akR)yi

)yi
)yi

S then multiplies each P(yi) result by a fresh ran-
dom number r to get an intermediate result, and she
adds it to her corresponding attestation from f S

i (en-
crypted under R’s public key):

enc
(

r ·P(yi)+{ f S
i → S}

)
S randomly permutes this set and returns it to R.

3. R decrypts each element of this set. For every friend
in common, P(yi) = 0 and R recovers the attestation
f S
i → S. Otherwise, P(yi) is non-zero and the result-

ing decryption appears random. R checks that f S
i is

in its friends list and verifies the attestation f S
i → S

before accepting the FoF chain.

For proofs of the protocol’s security, as well as efficiency
optimizations and other implementation details, we refer
the reader to Freedman et al. [18].

Such cryptographic tools must be applied with care
to prevent information leakage that unknowingly intro-
duces side-channel attacks against the protocol’s privacy.
For example, one may be tempted to distribute public
keys inside FoF attestations, much like a web-of-trust for
key distribution. However, this approach can be used to
break the system’s privacy. Consider the case in which
a sender maintains multiple public keys. If the sender
receives attestations from friends on different keys, and
a recipient accepts one such key following a success-
ful FoF protocol with the sender and then subsequently
attests to it, the sender can immediately deduce which
friend the two parties have in common. Thus, all iden-
tifying information (public keys, email addresses) must
be retrieved directly from their corresponding parties, in
order to ensure consistency across participants and thus
prevent such side-channel attacks.

Public RPCs Private RPCs

GetPK GetWhitelist
SubmitAtt GetAtt
CheckAuth SetPK
FindFriend

Table 1: RPC interface to the Attestation Server

4 Implementation
The current RE: prototype consists of the Attestation
Server, Private Matching (PM) implementation, and a
number of utilities for creating attestations, authentica-
tion tokens, and for checking incoming mail. The pro-
totype is built atop the SFS toolkit [27], which provides
primitives for asynchronous event-driven programming,
cryptography, and RPC. We have integrated the RE: pro-
totype with the Mutt mail client, the Mail Avenger SMTP
server, and the Postfix SMTP client. Note that we made
no modifications to any of these pre-existing mail tools.
RE: is roughly 4500 lines of C++ source, plus 275 lines
of Sun XDR code for the RE: wire protocol specification.
RE: uses DSA for digital signatures on attestations and
authentication tokens. For the PM protocol, RE: uses the
ElGamal variant [17].

4.1 Attestation Server
Currently, each email domain that wishes to participate
in RE: must run an Attestation Server. The domain pub-
lishes SRV records [22] to indicate the location of the
AS. For each user A in the domain, the Attestation Server
is responsible for maintaining the following:

• A’s public key PKA

• all unexpired, redeemed authentication tokens gen-
erated by A when sending email

• all attestations A→ x created by A, along with x’s
public key PKx

• all remote attestations x→ A for A

In addition to maintaining this information, the Attes-
tation Server provides two RPC interfaces (see Table 1).
The public interface is used by email recipients to de-
cide whether to accept mail sent from this domain. The
private interface, requiring authentication, is used only
by the domain’s recipients: when processing incoming
mail, for updating public keys, and for providing users
access to their attestations and the corresponding attestee
public keys. The current implementation restricts access
to the private RPCs to clients running on the same ma-
chine as the AS; future versions of the Attestation Server
could allow clients to authenticate through existing secu-
rity mechanisms (e.g., SSL, Kerberos) and/or provide a

secure Web interface to the private RPCs (e.g., SetPK).
We now describe the public RPCs in detail.

GetPK retrieves the public key for a user in this do-
main. This function is used only when a user generates
an attestation for a user in this domain.

SubmitAtt serves two purposes. The first is to allow
users in this domain to upload attestations that they have
created for other users. The Attestation Server knows the
public keys for its local users, and can thus verify that
an attestation is valid before accepting it. The second
purpose of SubmitAtt is to accept attestations created by
other users for a user in this domain. In this situation,
the Attestation Server does not know the public key of
the issuer of the attestation, so it stores the attestation
without verifying it. Attestations of this type are only
used as part of a transitive link, and they are verified by
the person who wishes to use the transitive link to accept
mail.

CheckAuth verifies the authentication tokens included
in messages sent by users in this domain. The AS verifies
the token’s digital signature and that the authentication
token has not been used previously. To enforce the latter,
the server caches tokens that have been redeemed, but it
limits the size of the cache by rejecting tokens older than
a fixed window of time (e.g., one week).

FindFriend uses PM to compute the intersection be-
tween the supplied set of email addresses and the email
addresses of people who have attested to the sender.
The authentication token is included as a parameter to
FindFriend so that the recipient does not need to issue a
separate CheckAuth query.

4.2 Incremental Deployment

One requirement of any practical system is that it be
incrementally deployable. Since RE: either accepts an
email on the basis of attestations or passes the email to
the user’s traditional spam filter, deploying RE: does not
adversely affect a user’s ability to send and receive mail.

The current RE: prototype is deployable on a per-
domain basis. A domain that wishes to use RE: must
install and configure an Attestation Server plus make var-
ious RE: utilities available to its users. In the future, we
envision that these utilities will exist as easily download-
able plugins for popular mail clients. To ease early adop-
tion, future versions of RE: may also allow users to spec-
ify an alternative AS for situations in which the user’s
ISP does not run its own AS.

It is important to note that RE: is also incrementally
deployable within domains themselves. Users who do
not download and install the new client software will still
be able to send and receive mail; they merely will not be
able to take advantage of the reliability offered by RE:.

5 Evaluation
We now turn to evaluating RE:; particularly, we are con-
cerned with its effectiveness at whitelisting email, its po-
tential to reduce false positives, the computational cost of
private matching in the system, and the end-to-end email
processing throughput attainable when a standard email
processing system is augmented with RE:.

5.1 Effectiveness of RE:
The goal of RE: is to accept email, thereby preventing
these messages from becoming false positives in a mail
rejection system. To ascertain the effectiveness of RE:
at meeting this goal, our evaluation must answer three
questions:

1. Overall utility: What fraction of inbound emails
are accepted by RE:? This fraction of email is pro-
tected from becoming false positives.

2. Utility of FoF relationships: By how much do FoF
relationships improve RE:’s effectiveness in accept-
ing email beyond direct attestations?

3. End-to-end effectiveness: If RE: were deployed,
would it eliminate real false positives produced by
today’s rejection systems?

Ideally, we would perform a controlled experiment.
We would find a large population of email users and have
them run both RE: and a traditional content-based email
rejection system, side-by-side. We would pass a copy of
every inbound email to each of the two systems. For RE:,
users would create attestations as they saw fit, typically
upon sending or receiving email. As the social network
(distributedly stored attestations) builds up, we would
measure the fraction of accepted email. For the rejec-
tion system, we would have users inspect a spam folder
that contains messages that the rejection system flagged
as spam, and manually note any false positives. Finally,
we would directly count the emails accepted by RE: that
would have been false positives had the rejection system
been deployed alone.

Unfortunately, we do not have a large-scale deploy-
ment. We do, however, have email traces from a large
corporation and a large university. For the corporate
dataset, we also have data on false positives reported to
the email system administrators. Using this information,
we can approximate the ideal experiments. The main
problem, however, is that we must emulate user gener-
ation of attestations, as described below.

Email traces. The first trace is taken from a large corpo-
ration with well over 80,000 employees, all of whom use
email. The trace covers about one month of email and
contains over 63 million anonymized messages, where a

message with multiple recipients counts as one message
per recipient. Because of the corporation’s email server
architecture and the placement of the monitoring point,
email in the trace is nearly exclusively email sent into
and out of the corporate network (not mail internal to the
network). The corporation’s mail server uses a popular
content-based spam filter, and the trace indicates whether
or not the server’s spam filter judged each message to be
spam (via a spam score).

The second trace covers New York University’s top-
level domain, which includes approximately 60,000
email users. The trace covers about one week of email
and contains approximately 6 million anonymized mes-
sages. NYU uses the SpamAssassin-derived PureMes-
sage filter, and the trace also contains a spam score for
each message. Unlike the corporate trace, this univer-
sity trace also contains messages sent within the domain
(e.g., between two students).

A model for creating attestations. Lacking the social
network for the users in our email traces, we developed
a model for when users might create attestations based
on the trace itself and the following assumptions. These
rules were applied while processing the traces in chrono-
logical order, ignoring all messages that were flagged as
spam by the server’s content-filter.

1. Every sender attests to every recipient.
2. Every recipient attests to every sender.
3. (Corporate trace only) Every employee attests to ev-

ery other employee.

We believe that the first rule is reasonable since we
assume that the messages considered are not spam. Pre-
sumably, users are not sending email to spammers; fur-
thermore, by attesting to the recipient, they will auto-
matically whitelist any replies. The second rule would
be dangerous, of course, if the trace contained spam, as
the user would whitelist the spammer. Again, we assume
that all messages considered are not spam. Even so, this
rule might be optimistic, but it is useful for bootstrap-
ping the social network from a trace. The second rule
means that the recipient will accept all subsequent mail
from that sender (the first message, though, would not
be whitelisted as the rule is applied after processing the
message). The third rule is specific to the corporate trace;
the rule’s purpose is to capture the large body of email
messages that do not appear in the trace—the messages
between users within the corporate email network. In a
real deployment, these messages and the resulting attes-
tations would provide critical links in the social network.

The evaluation of the corporate dataset contains two
sources of error that result directly from limitations of the
dataset itself. The first source of error is the attestation
model described above, which assumes that every em-
ployee at the company attests to every other employee.

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 2 4 6 8 10 12 14 16 18 20

P
e

rc
e

n
ta

g
e

 o
f

M
a

il
W

h
it
e

lis
te

d

Messages Processed (millions)

Social Networks (Corp)
No Social Networks (Corp)

Social Networks (Univ)
No Social Networks (Univ)

Figure 3: RE: Total coverage

This assumption may cause us to overestimate the hit rate
for whitelisting. A more conservative rule for generat-
ing intra-company attestations might produce a lower hit
rate. The second source of error is that the dataset does
not include intra-company messages. This omission may
cause us to underestimate the hit rate for whitelisting.

5.1.1 Fraction of Mail Whitelisted

Given these traces and a model for when users would
create attestations, our first experiment was to measure
the fraction of mail that RE: could whitelist based on so-
cial relationships (both direct and FoF). RE:’s ability to
whitelist messages gives an indication of what fraction
of mail the system can make reliable.

We consider two measures of whitelisting’s efficacy.
First, we examine total whitelisting coverage, or the
fraction of all emails whitelisted. Second, we examine
whitelisting coverage for email from strangers. When
there is no previous message from a sender to a recipient,
we term the sender a stranger. It is precisely in this case
where FoF relationships are crucial to the acceptance of
email.

Figure 3 shows the results of the total coverage ex-
periment. The x-axis shows the number of email mes-
sages processed (in chronological order) so far, and the
y-axis shows the percentage of email received so far (i.e.,
percentage of x) that the system was able to whitelist.
The attestations are created as the trace is processed.
The lower curve (for each trace) is the effectiveness of
whitelisting, based on our attestation generation rules
above, without considering social links. The upper curve
plots the additional effectiveness of the whitelist when
one accepts mail from FoFs.

The two traces are plotted on the same graph to ease
comparison. Examining the 5 million email mark, where
the university trace ends, we see that the two envi-
ronments have relatively similar results. In the corpo-
rate trace, after processing 20 million non-spam mes-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16 18 20

P
e

rc
e

n
ta

g
e

 o
f

M
a

il
W

h
it
e

lis
te

d

Messages Processed (millions)

Social Networks (Corp)
No Social Networks (Corp)

Social Networks (Univ)
No Social Networks (Univ)

Figure 4: RE: Stranger coverage

sages, social whitelisting can accept almost 75% of
email received, approximately 10% more than the di-
rect whitelist. In the one-week university trace, after
processing almost 5 million non-spam messages, social
whitelisting can accept over 60% of email received, ap-
proximately 7% more than direct whitelisting.

Figure 4 shows the results of the strangers coverage
experiment, with the x-axis as before, and the y-axis de-
picting the fraction of email received from strangers that
the system was able to whitelist. While the attestation
generation rules used in this experiment are the same
as before, direct attestation whitelists very few emails,
as one expects: only emails from never-before-heard-
from senders are considered. In fact, the only emails
whitelisted by direct attestation are the first replies sent
by strangers in response to emails from recipients. FoF
queries are able to whitelist an additional 26% (corpo-
rate) or 13% (university) of email from strangers.

5.1.2 False Positives Saved

To make email reliable, RE: must reduce the incidence
of false positives. Specifically, RE: can help by accept-
ing email messages from friends or FoFs that would oth-
erwise be classified as spam. As noted above, we were
able to obtain false positive data for the corporate envi-
ronment but not for the university one.

The corporate false positive data is a list of all user-
reported false positives during the one-month trace pe-
riod. Typically, these reports are submitted by users out-
side of the company who received a bounce message
from the company’s mail server after the spam filter (in-
correctly) determined the user’s message was spam. The
list contains the anonymized sender and recipient email
addresses for each of these reports.

Using this data, we measured the effectiveness of RE:
at reducing false positives as follows. We ran the same
experiment described in Section 5.1.1, except we did
not automatically drop all messages that were flagged as

Encrypt Decrypt HAdd

Paillier 21.8 1.5 .017
ElGamal 1.7 0.8 .010

Table 2: Speed (ms) of 1024-bit public-key operations

spam in the trace. Instead, for each of these flagged mes-
sages, we consulted the list of reported false positives
to see if it contained the message’s sender-recipient pair.
If so, we assumed that the message was not spam, but
rather a false positive. This assumption is reasonable if
one assumes that spammers did not report false positives
to the company in order to get their spam through and
that spammers did not forge mail with the exact same
sender-recipient pair that appeared in the false positive
list.

For each false positive identified during the trace,
we recorded if the system would accept that message
based on the current social network. Out of 20 mil-
lion messages, we identified 172 false positives. Of
those false positives, approximately 84% would have
been whitelisted by RE: using direct attestations and an
additional 5% using FoF relationships. We note that the
number of reported false positives is most likely much
lower than the number of actual false positives.

5.2 Microbenchmarks
This section provides microbenchmarks for the speed
of homomorphic cryptosystems and private matching
protocol [18] implementations. Benchmarks were per-
formed on a 3 GHz Intel® Xeon® processor-based com-
puter running in 64-bit mode.

Table 2 shows the performance of Paillier [28] (in fast
decryption mode) and ElGamal [17] operations given as
the mean over 300 runs across five different keys. HAdd
corresponds to the cost of performing a homomorphic
addition of plaintexts, which is akin to modular multipli-
cation. Due to its superior performance, we use ElGamal
to instantiate our PM protocol. This section’s subsequent
PM benchmarks reflect this choice of cryptosystem.

There are three stages to evaluate in the Private Match-
ing protocol: (1) the recipient’s setup time to construct an
encrypted polynomial, (2) the sender’s evaluation of this
polynomial on its inputs, and (3) the recipient’s subse-
quent recovery of the intersection.

The recipient’s setup time is directly measured by kR
encryptions. These encryptions only need to be precom-
puted once per input set (friendship list); the recipient
recomputes these encrypted coefficients upon adding or
removing an element from its input.

Figure 5 shows the sender-side performance of PM,
given as the mean of three runs. We graph performance
for varying sender (kS) and recipient (kR) input sizes. Re-

 0.1

 1

 10

 100

 1000

 10000

 10 20 40 80 160 320 640

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
e

c
)

Sender input size

Recipient input size
640
320
160
80
40
20
10

Figure 5: Sender-side PM performance (seconds).

S input size 10 20 40 80 160

R comp. time (s) .008 .015 .032 .063 .126

Table 3: Time (s) for recipient to recover intersection

call that the sender must perform O(kS · kR) operations,
i.e., to evaluate each of its inputs on a degree-kR polyno-
mial. Yet, we see the practical effect of using Horner’s
Rule for evaluating the polynomial “from the inside out”:
most homomorphic operations work with exponents of
small size. Thus, in practice, the performance appears to
grow only linearly in both kR and kS for reasonably small
input sizes (i.e., its slope in log-log scale is 1).

The sender-side computation overhead is acceptable
for smaller set sizes. For example, when a sender and
recipient each have a set of 40 friends they want to inter-
sect, the sender spends 2.8 seconds to complete the PM
computation. At larger sizes, the overhead is more no-
ticeable. To intersect two sets of 160 friends, for exam-
ple, the sender needs almost 40 seconds of computation.

We make several observations as to this performance:
(1) The asymptotic running time of the PM can be
reduced to O(kS(1 + ln lnkR)) by using multiple low-
degree polynomials for potential performance improve-
ments [18]. (2) All operations are completely paralleliz-
able onto multi-processor architectures, as each compu-
tation on the sender’s kS inputs are independent of one
another. Furthermore, a single domain can deploy mul-
tiple Attestation Servers to distribute the load. Given the
money that people spend on fighting spam today, we be-
lieve the additional cost is reasonable. (3) Alternatively,
the cryptographic operations can be partially or fully im-
plemented in hardware for higher performance. (4) Fi-
nally, we observe from Section 5.1.1 that a large fraction
of messages for certain RE: deployments may be satis-
fied with direct attestations and thus would never perform
FoF queries in the first place.

Last, we examine the recipient’s time to recover the

Mean StdDev

Mail Avenger 16.7 0.57
RE: + Mail Avenger 14.4 0.76

Table 4: Delivery throughput (messages/second)

intersection (see Table 3). Note that performance is in-
dependent of the recipient’s input and computation can
again be parallelized over kS processors. We also con-
clude that most of the protocol’s load is placed on the
sender, which provides some protection against compu-
tational DoS attacks against email recipients.

5.3 Throughput

To analyze end-to-end throughput, we augment a stan-
dard mail processing system with RE: and measure its
impact. For all experiments, the SMTP server is a 2 GHz
Intel® Pentium® 4 processor-based computer running
Mail Avenger, and all machines are connected via a local
area network.

First, we measure how RE: affects the rate at which
mail is received by measuring how much time an SMTP
server needs to process mail with and without RE:. Our
experimental setup consists of our SMTP server and
three senders, each running on a different machine. The
senders simultaneously bombard the SMTP server with
sufficiently many messages to saturate it (e.g., sending
500 messages each as rapidly as possible). In the RE:
case, the recipient has attested to all of the senders,
and each sender serves as its own AS for authentication
checks. Table 4 shows that the addition of RE: reduces
throughput by 13.5%.

Second, we measure the time it takes for an AS to pro-
cess CheckAuth and FindFriend queries from recipients.
Because the AS must be contacted for each outgoing
mail, this time affects the rate at which a domain’s users
can send mail. (Note that the processing time required
on the client to add an authentication token to each mes-
sage is the time to generate a digital signature times the
number of recipients.) To measure the query-processing
rate on the AS, we have a single sender periodically send
a mail to our SMTP server. For these tests, the sender’s
AS is a 3 GHz Intel® Xeon® processor-based computer
running in 64-bit mode. The average time to process
CheckAuth and FindFriend5 queries is 0.0516 and 2.85
seconds, respectively. Equivalently, the AS can process
1162 CheckAuth queries per minute or 21.1 FindFriend
queries per minute. We note here too the performance
observations enumerated in the previous section, which
apply to the FindFriend queries.

5PM protocol performed using 40 friends in each set.

6 Discussion
We now discuss various design decisions, open ques-
tions, and useful enhancements to RE:.

Compromised Senders and Audit Trails. Under nor-
mal operation, RE: assumes that a sender’s machine is
not compromised (see Section 3.7). If this assumption is
violated, a spammer’s message will appear to come from
a legitimate user. Unfortunately, any acceptance system
based on identity (e.g., the sender) or even an opaque to-
ken (e.g., a stamp) is susceptible to attacks in which the
sender is compromised. The problem of compromised
senders, though, is just about false negatives: at worst,
a compromised sender in RE: can cause a recipient to
accept spam.

RE: provides the nice property, however, that the re-
cipient knows with some degree of certainty—due to the
authentication token—who sent the received spam and
why RE: accepted it. The “why” can be either because
of a direct attestation or an FoF relationship. For exam-
ple, this audit trail might indicate that RE: accepted the
spam because the recipient attested to Bob and Bob at-
tested to the sender. Given this information, a recipient
can choose to reconsider using his attestations for Bob.

False Negatives. Unfortunately, our anonymized traces
do not provide sufficient information to quantify how
RE: would affect the false negative rate. Qualitatively,
however, RE: is robust against false negatives: a false
negative can occur in RE: only if the recipient has at-
tested directly to a spammer or is connected via an FoF
chain. In either case, the recipient knows who the re-
sponsible party is, providing an important audit trail that
describes the trust relationship between recipient and
sender.

An attestation for a spammer might exist for several
reasons. A user may erroneously attest, he may have
been compromised by a virus, or he may be malicious
and attest to a spammer intentionally. One simple way to
limit the damage caused by machine compromises is to
require a password to generate a new attestation.6

Mail with Multiple Recipients. Our previous discus-
sion has been confined to mail that is addressed to a sin-
gle recipient. Many messages, however, contain multiple
recipients. These recipients are either listed explicitly, or
they are hidden behind a mailing list. In the former case,
the sender must generate a different authentication token
for each recipient because the attestation server rejects
duplicate tokens to prevent replay attacks (i.e., the AS
ensures one FoF query per token).

The sender must make sure, however, to send each to-
ken to only the corresponding recipient. Sending all of
the tokens to all of the recipients would allow one mis-

6Of course, a sophisticated adversary could use a keystroke sniffer.

behaving recipient to use up all of the tokens to make
FoF queries to the AS. Other recipients would get an er-
ror when trying to use their tokens because the request
would look like a replay attack. Note that the AS has
no way to ensure that the recipient is using the “correct”
authentication token (the one in which she appears) be-
cause the AS has no way to identify the requester as any
particular recipient.

Regarding mailing lists, the simplest solution is for
users to attest to the mailing list itself. The mailing
list moderator is then responsible for ensuring that spam
does not make it on to the list. Unfortunately, unmoder-
ated lists still pose a problem—there is no simple solu-
tion beyond the current content-based filtering.

Sender Privacy and Profiles. One inherent property
of the RE: design is that senders do reveal a subset of
their friends to the recipient (i.e., those that intersect
with the recipient’s list of friends). Thus, a malicious
recipient has the opportunity to query the sender with
an arbitrary list of friends to discover who has attested
to the sender. We can address this issue partially with
sender profiles, which can allow the sender to control
what attestations the sender uses during the FoF query. A
sender might choose to have a profile with a restricted set
of attestations—i.e., maintaining separate personal and
work profiles—so the recipient cannot learn about spe-
cific people who have attested to the sender. The poten-
tial downside of eliminating attestations from a profile
is that the chance of intersecting with the recipient’s set
of friends, and thus the sender having his mail automati-
cally accepted, is lower.

Length of Social Paths. In this work, we have only
explored direct and FoF social relationships, but clearly
longer paths bear examination: they are more inclusive
of previously unknown senders, and could thus poten-
tially whitelist more email. On the other hand, there
is also a tension between this greater coverage and an
increased risk of false negatives. As the length of the
shortest social path between the sender and recipient in-
creases, it becomes increasingly unclear whether the re-
cipient can safely automatically accept email. If and how
private matching protocols would work beyond two de-
grees of separation is also an open question; furthermore,
even if providing privacy with longer chains of trust were
possible, it would likely require that other parties be on-
line during the mail transaction besides the sender and
recipient.

7 Conclusion
Motivated by the decline in the end-to-end reliability
of email at the hands of spam-rejection systems, we
have described RE:, a system for automatically accept-

ing mail based on its sender. As an acceptance system,
RE: is complementary to existing spam-defense systems;
it simply bypasses mail rejection systems for senders
who are deemed trustworthy. RE: improves upon stan-
dard whitelisting approaches in two ways: by preventing
sender forgery though the use of an authentication token,
and more importantly, by increasing the fraction of email
that can be whitelisted through the examination of social
relationships, while preserving the privacy of users’ cor-
respondents.

We have shown that RE: can reliably deliver the ma-
jority of a site’s incoming mail; furthermore, augmenting
direct-friend attestations with friend-of-friend relation-
ships significantly increases the percentage of accepted
mail. More importantly, experiments show that RE: can
eliminate a large percentage of false positives produced
by an existing content-based spam filter. Our full imple-
mentation of RE: does not significantly reduce the rate at
which an SMTP server can accept incoming mail or im-
pose a substantial bottleneck on the rate at which users
of a domain can send mail.

8 Acknowledgments
The authors thank the anonymous reviewers, their shep-
herd Dan Rubenstein, Michael Walfish, and Mark Han-
dley for their feedback and comments. The authors also
extend a special thanks to Michael Puskar and NYU ITS,
Robert Johnson, Marc Foster, and Greg Matthews, with-
out whom the data analysis in this paper would not have
been possible. Antonio Nicolosi and Benny Pinkas pro-
vided valuable help with the cryptography, and Michael
Ryan contributed to the code. This work was par-
tially supported by project IRIS under NSF Cooperative
Agreement ANI-0225660.

References
[1] MessageLabs intelligence report: Spam intercepts timeline, July

2005. http://www.messagelabs.co.uk/.
[2] Symantec Brightmail AntiSpam. http://www.

brightmail.com/.
[3] CloudMark. http://www.cloudmark.com/.
[4] Distributed checksum clearinghouse, Oct. 2005. http:

//www.rhyolite.com/anti-spam/dcc/dcc-tree/
dcc.html.

[5] TrendMicro’s RBL+. http://www.mail-abuse.com/.
[6] SpamAssassin, . http://spamassassin.apache.org/.
[7] SpamCop, . http://www.spamcop.net/.
[8] E. Allman, J. Callas, M. Delany, M. Libbey, J. Fenton, and

M. Thomas. Domainkeys identified mail (DKIM). Internet Engi-
neering Task Force (IETF) Draft, July 2005.

[9] A. Back. Hashcash, May 1997. http://www.
cypherspace.org/hashcash/.

[10] T. Blackwell. Why spam cannot be stopped, June 2004. http:
//tlb.org/whyspamcannotbestopped.html.

[11] D. Brickley and L. Miller. FOAF, 2005. http://xmlns.
com/foaf/0.1.

[12] M. Ceglowski and J. Schachter. LOAF, 2004. http://loaf.
cantbedone.org/.

[13] J. R. Douceur. The sybil attack. In First International Workshop
on Peer-to-Peer Systems (IPTPS), Mar. 2002.

[14] C. Dwork and M. Naor. Pricing via processing or combatting
junk mail. In Advances in Cryptology (CRYPTO), volume 740 of
Lecture Notes in Computer Science, 1992.

[15] C. Dwork, A. Goldberg, and M. Naor. On memory-bound func-
tions for fighting spam. In Advances in Cryptology (CRYPTO),
volume 2729 of Lecture Notes in Computer Science, 2003.

[16] H. Ebel, L.-I. Mielsch, and S. Bornholdt. Scale-free topology of
e-mail networks. In Physcial Review E 66, 2002.

[17] T. ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information
Theory, 31(4):469–472, 1985.

[18] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private
matching and set intersection. In Advances in Cryptology — EU-
ROCRYPT 2004, May 2004.

[19] J. Golbeck and J. Hendler. Reputation network analysis for email
filtering. In Conference on Email and Anti-Spam (CEAS), 2004.

[20] P. Graham. Better bayesian filtering. In MIT Spam Conference,
Jan. 2003.

[21] P. Graham. A plan for spam, Aug. 2002. http://www.
paulgraham.com/spam.html/.

[22] A. Gulbransen, P. Vixie, and L. Esibov. RFC 2782: A DNS RR
for specifying the location of services (DNS SRV). Internet En-
gineering Task Force (IETF) Standards Track, Feb. 2000.

[23] J. Kong, P. O. Boykin, B. Rezaei, N. Sarshar, and V. Roychowd-
hury. Let your cyberalter ego share information and manage
spam, May 2005. http://arxiv.org/abs/physics/
0504026.

[24] B. Laurie and R. Clayton. Proof-of-work proves not to work. The
Third Annual Workshop on Economics and Information Security,
May 2004.

[25] T. Loder, M. V. Alstyne, and R. Wash. An economic answer to
unsolicited communication. In ACM Conference on Electronic
Commerce, May 2004.

[26] J. Lyon and M. Wong. Sender ID: Authenticating E-Mail. Internet
Engineering Task Force Draft IETF, Oct. 2004.

[27] D. Mazières. A toolkit for user-level file systems. In USENIX
Technical Conference, June 2001.

[28] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in Cryptology — EUROCRYPT
99, May 1999.

[29] V. Prakash. Razor. http://razor.sourceforge.net.
[30] S. Radicati. Anti-spam market trends, 2003–2007. Radicati

Group Study, 2003. http://www.radicati.com/.
[31] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A

bayesian approach to filtering junk E-mail. In Learning for Text
Categorization: Papers from the 1998 Workshop, Madison, Wis-
consin, 1998. AAAI Technical Report WS-98-05.

[32] M. Walfish, J. D. Zamfirescu, H. Balakrishnan, D. Karger, and
S. Shenker. Distributed quota enforcement for spam control. In
3rd Symposium on Networked System Design and Implementa-
tion (NSDI), San Jose, CA, May 2006.

[33] M. W. Wong. Sender authentication: What to do, July 2005.
http://spf.pobox.com/whitepaper.pdf.

[34] W. Yerazunis. The spam-filter accuracy plateau at 99.9% accu-
racy and how to get past it. In MIT Spam Conference, Jan. 2004.

[35] P. Zimmermann. The Official PGP User’s Guide. MIT Press,
Cambridge, 1995.

http://www.messagelabs.co.uk/
http://www.brightmail.com/
http://www.brightmail.com/
http://www.cloudmark.com/
http://www.rhyolite.com/anti-spam/dcc/dcc-tree/dcc.html
http://www.rhyolite.com/anti-spam/dcc/dcc-tree/dcc.html
http://www.rhyolite.com/anti-spam/dcc/dcc-tree/dcc.html
http://www.mail-abuse.com/
http://spamassassin.apache.org/
http://www.spamcop.net/
http://www.cypherspace.org/hashcash/
http://www.cypherspace.org/hashcash/
http://tlb.org/whyspamcannotbestopped.html
http://tlb.org/whyspamcannotbestopped.html
http://xmlns.com/foaf/0.1
http://xmlns.com/foaf/0.1
http://loaf.cantbedone.org/
http://loaf.cantbedone.org/
http://www.paulgraham.com/spam.html/
http://www.paulgraham.com/spam.html/
http://arxiv.org/abs/physics/0504026
http://arxiv.org/abs/physics/0504026
http://razor.sourceforge.net
http://www.radicati.com/
http://spf.pobox.com/whitepaper.pdf

	Introduction and Motivation
	Related Work
	Design
	Design Goals
	Definitions
	Example: Sending Mail with Re:
	Sender Authentication
	Revocation
	Policy Decisions
	Assumptions
	Privacy Protection

	Implementation
	Attestation Server
	Incremental Deployment

	Evaluation
	Effectiveness of Re:
	Fraction of Mail Whitelisted
	False Positives Saved

	Microbenchmarks
	Throughput

	Discussion
	Conclusion
	Acknowledgments

