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Abstract

We consider the problem of picking (buying) an inexpensive
s− t path in a graph where edges are owned by independent
(selfish) agents, and the cost of an edge is known to its owner
only. We study the problem of finding frugal mechanisms for
this task, i.e. we investigate the payments the buyer must
make in order to buy a path.

First, we show that any mechanism with (weakly) dom-
inant strategies (or, equivalently, any truthful mechanism)
for the agents can force the buyer to make very large pay-
ments. Namely, for every such mechanism, the buyer can be
forced to pay c(P )+ 1

2
n(c(Q)− c(P )), where c(P ) is the cost

of the shortest path, c(Q) is the cost of the second-shortest
path, and n is the number of edges in P . This extends the
previous work of Archer and Tardos [1], who showed a simi-
lar lower bound for a subclass of truthful mechanisms called
min-function mechanisms. Our lower bounds have no such
limitations on the mechanism.

Motivated by this lower bound, we study mechanisms

for this problem providing Bayes–Nash equilibrium strate-

gies for the agents. In this class, we identify the optimal

mechanism with regard to total payment. We then demon-

strate a separation in terms of average overpayments be-

tween the classical VCG mechanism and the optimal mech-

anism showing that under various natural distributions of

edge costs, the optimal mechanism pays at most logarithmic

factor more than the actual cost, whereas VCG pays
√

n

times the actual cost. On the other hand, we also show that

the optimal mechanism does incur at least a constant factor

overpayment in natural distributions of edge costs. Since

our mechanism is optimal, this gives a lower bound on all

mechanisms with Bayes–Nash equilibria.

1 Introduction

Internet protocols often involve interaction among mul-
tiple participants. Most often, these participants, or
agents, are selfishly motivated, and as such cannot be
expected to follow the rules of a protocol if deviating
from the protocol allows the agents to achieve some
gain. In contexts in computer science where privacy
is important, cryptographic tools have been developed
and used to protect parties against dishonest behavior.
However, where the implication of dishonest behavior is
a quantifiable gain or loss (in terms of some resource,
whether it be money or time), looking at this prob-
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lem from an economic perspective is useful. The field
of mechanism design concerns the design of protocols
which discourage certain “bad” behaviors (i.e. behav-
iors which have quantifiable consequences on resources
that the protocol designer wishes to avoid).

Mechanisms are protocols that collect information
privately known to a group of agents and use it to
determine some outcome. (For instance, a standard
auction mechanism will collect bids, and based on
these bids select a winner for the auctioned item and
determine how much that winner should pay.) The main
concern here is that an agent may not honestly report its
private information if it believes that lying can increase
its expected profit. A mechanism is called truthful if it
is in every agent’s “best interest” to simply report its
private information honestly.1

A critical aspect of this definition is in what sense
do we interpret “best interest.” A very strong interpre-
tation of this condition requires that no matter what
(potentially foolish) strategy any other agent follows,
each agent is individually best off if it reports its pri-
vate information honestly to the mechanism. In other
words, truth-telling is a (weakly) dominant strategy for
each agent. A less stringent interpretation is possible
if one assumes rational selfish behavior for all partici-
pants. Here, we are satisfied if the strategies of each
agent honestly reporting their private information form
a Bayes–Nash equilibrium. This means that we assume
the distributions of all agents’ private values (but not
the values themselves) to be common knowledge, and
require that for any particular agent who believes that
all the other agents will tell the truth, truth-telling is
the best option as well.
Frugality. To “convince” each agent to act honestly,
typically a mechanism will have to pay agents in ways
that encourage honest behavior. Unfortunately, this
can often lead to mechanisms with payment rules that
require potentially enormous payments to agents. In

1One might wonder why we should care so much about
ensuring honesty, when our overall objective might be something
different – like maximizing revenue or minimizing cost. In
fact, concentrating on truth-telling equilibria is without loss of
generality by the “revelation principle” of game theory: for every
mechanism with some equilibrium, there exists another essentially
equivalent mechanism with truth-telling as its equilibrium.



this paper, we study this critical problem, and concern
ourselves with the question of designing mechanisms
that avoid large “overpayments.”

We study this phenomenon in a situation which
appears to suffer most acutely from this problem. We
consider mechanisms which must assemble a team of
agents to perform a larger task. Each agent performs
a specific fixed service, but only certain combinations
of these services will suffice to accomplish the larger
objective. A special case of considerable interest (c.f. [9,
10, 6, 1]) is where each agents controls an edge in
a network, and the mechanism must purchase a path
between some nodes s and t. In this case, allowed teams
are sets of agents which control s—t paths. The private
information of each agent is its cost in selling the use
of its edge. Note that in fact, conversely, many team-
organizing problems can be modeled as finding paths in
a graph.

This setting differs critically from that of standard
auctions in that the buyer gains no value unless it ac-
quires a particular allowable combination of goods. To
see why this situation lends itself to the problem of over-
payment, consider the situation from the perspective of
an agent in the winning team. (For rough intuition, we
will consider the “first-price auction” protocol in which
each agent places a bid, and the team with the smallest
total bids wins, and each agent is paid its bid.) Sup-
pose each agent truthfully reports its private cost (we
will argue that this is not in the best interest of the
agents). If the total cost C of the agents on the win-
ning team is significantly lower than the total cost C′

of the second least expensive team (a likely situation if
the sizes of needed teams are large), then each agent on
the winning team is tempted to have increased its bid
by ∆ = C′ − C. While the difference in total cost is ∆,
the overpayment in this case could be n∆, where n is
the number of agents in the winning team.

1.1 Our Results We focus on the path problem as
described above. We first study the problem of worst-
case overpayment in the context of mechanisms which
have truth-telling as a (weakly) dominant strategy for
each agent. Here, we prove a strong negative result for
all mechanisms, essentially matching the rough intuition
given above: We show that for every mechanism, if
truth-telling is a dominant strategy for each player, then
the mechanism can be forced to pay c(P ) + 1

2n(c(Q) −
c(P )), where c(P ) is the cost of the shortest path, c(Q)
is the cost of the second-shortest path, and n is the
number of edges in P . Furthermore, we extend this
bound for randomized mechanisms, as defined in [9].
This improves over the previous work of Archer and
Tardos, who showed a similar lower bound for a subclass

of such mechanisms called min-function mechanisms.
Our lower bounds have no limitations of this kind on
the mechanism.

This lower bound motivates us to study the problem
of overpayment with regard to mechanisms using Bayes–
Nash equilibria. In one of the main technical contribu-
tions of this work, we present an analysis which identi-
fies the optimal mechanism with regard to total payment
– i.e. the Bayes–Nash equilibrium of this mechanism
minimizes the total expected payment for the buyer,
over all mechanisms. It turns out that while the opti-
mal mechanism has dominant strategies for all players
(and hence the bound established in the first part of
the paper still applies), the average overpayment can
be reduced dramatically. Namely, we show that under
various natural distributions of edge costs, the optimal
mechanism pays at most logarithmic factors more than
the actual cost, whereas the classical VCG mechanism
must pay

√
n times the actual cost. On the other hand,

we also show that the optimal mechanism does incur at
least a constant factor overpayment in natural distribu-
tions of edge costs. Since our mechanism is optimal, this
gives a lower bound on all mechanisms with Bayes–Nash
equilibria.

1.2 Related Work Recently, a number of results
have been obtained by applying ideas and methods from
theoretical computer science to problems of economics
and game theory [10]. Many of them concentrate on the
field of mechanism design (also known as implementa-
tion theory, or theory of incentives). One of the most
important results here is the celebrated Vickrey–Clarke–
Groves (VCG) mechanism [12, 2, 5], which guarantees
efficient allocation, i.e., the bidder with the highest val-
uation, or, in the case of procurement auctions, the low-
est cost, wins the auction. In our context, efficiency cor-
responds to picking the cheapest path; while this max-
imizes social welfare, as we will see, it does not always
minimize the total overpayment.

The first paper to explicitly use this approach for
the shortest path problem is [9], in which the authors
formulate the problem, describe the solution given
by VCG, and discuss the associated computational
difficulties. However, [9] does not address the issue
of minimizing the payments to the agents, but rather
treats the payments as a tool for eliciting truthful
responses.

On the other hand, revenue maximizing (or, equiv-
alently, payment minimizing) auctions in other settings
received a great deal of attention from both economists
and computer scientists. One of the most prominent
papers in this area is [8], which constructs the optimal
auction for selling an item to one out of n buyers. While



Myerson’s results do not apply directly in our situation,
we use his techniques to derive the results in the second
part of the paper. In [11], Ronen and Saberi generalize
the results of [8] in a different direction, namely, that of
interdependent valuations. The recent papers [4, 3] in-
vestigate the properties of revenue-maximizing auctions
for digital goods.

These two lines of research are combined in [1],
which raises the issue of frugality in shortest path
auctions. The authors address the same question as
we do, namely, that of designing a mechanism that
selects a reasonably short path and induces truthful
bidding without paying an unacceptably high premium.
They provide a partial negative solution to the problem.
Namely, they describe a general class of min function
mechanisms and show that every mechanism from this
class can be forced to pay c(P )+ k(c(Q)− c(P )), where
c(P ) is the cost of the chosen path, c(Q) is the cost
of an alternate path, and k is the number of edges in
the chosen path. Furthermore, they list a number of
properties (other than truthfulness) that can be desired
from an auction mechanism, and show that on two large
classes of graphs (namely, ones containing an s − t arc
and ones that consist of some connected graph between
s and t and two extra s − t paths that are disjoint from
the rest of the graph) every mechanism that enjoys these
properties is a min-function mechanism. Together,
these results imply that any truthful mechanism with
these properties on a graph with three node-disjoint
s − t paths cannot avoid paying an unacceptably high
premium.

To compare this with the main result of the first
part of this paper, note that our approach works for
any individually rational truthful mechanism on a graph
with at least two node disjoint s−t paths. However, the
premium that the mechanism is forced to pay is c(P ) +
1
2k(c(Q)− c(P )), while in the setting of [1] the payment
can be as high as c(P ) + k(c(Q) − c(P )). Furthermore,
our bound applies to randomized mechanisms as well.

2 Preliminaries

We model the network by a graph G = (V,E) with two
distinguished vertices s and t. Each edge ei ∈ E has an
associated cost c(ei), which is private, that is, known to
the owner of ei only. A cost of a path in G is the sum
of the costs of the edges on the path. By the shortest
path we mean the path that has the smallest cost.

The costs that the edges announce for themselves
are called bids. We denote the bid of edge ei by b(ei);
bP stands for the vector of bids along a path P . The
auction mechanism is supposed to select a path between
s and t; we refer to this path as the winning path, and
say that edges on the selected path win, while edges not

on the path lose.
As in the previous work, we assume that the buyer

has no alternative to picking some path in the graph.
A mechanism is a triple (B, Q(b),M(b)), where

B =
∏

i Bi is the set of possible bids, Q : B 7→ [0, 1]E is
an allocation rule, and M : B 7→ RE is a payment rule,
where Qi(b) is the probability that ei is on the chosen
path given that the bid vector is b, and Mi(b) is the
corresponding payment to agent i.

There are two basic solution concepts considered in
the game-theoretic literature, namely, an equilibrium in
dominant strategies and Nash equilibrium, the former
being much stronger than the latter.

Definition 2.1. A strategy in a game is (weakly) dom-
inant if, regardless of what any other players do, the
strategy earns a player a payoff that is at least as large
as that earned by any other strategy.

Definition 2.2. A (weak) Nash equilibrium is a set of
strategies, one for each player, such that a change in
strategies by any player would lead that player to earn
no more than if she remained with her current strategy.

Clearly, if for a given game each player has a
dominant strategy, then this set of strategies constitutes
a Nash equilibrium. The converse is not always true,
and, moreover, for some games there exists a Nash
equilibrium but none of the players has a dominant
strategy (for example, consider the game of Rock,
Paper, Scissors: it is not difficult to show that in the
one-round version of the game picking each move with
probability 1/3 is an equilibrium strategy; however, if
you know that your opponent always plays Rock, this
strategy is no longer optimal).

An important refinement of Nash equilibrium for
games of incomplete information (such as auctions) is
the notion of Bayes–Nash equilibrium, which requires
each player’s strategy to be a best response to other
player’s strategies given that the distributions from
which the players draw their private values (in our case,
the edge costs) are common knowledge. For example,
one’s bidding strategy may crucially depend on the fact
that all edge costs (including his own) are uniformly
distributed on [0, 1], and everybody knows this.

In the first part of the paper, we concentrate
on mechanisms that possess dominant strategies; the
analysis of the second part applies to Bayes–Nash
equilibria as well.

A mechanism can, in principle, be quite compli-
cated, since so far we have made no restrictions on what
the participants’ bids can be. Fortunately, it turns out
that we can restrict our attention to truthful, or incen-
tive compatible mechanisms, in which each player’s best



strategy is to announce his true value. This result is
usually referred to as the revelation principle and can
be stated as follows:

Proposition 2.1. For any mechanism

M = (B, Q(b),M(b))

that has a Nash equilibrium, there is a corresponding
mechanism M ′ such that for any set of players’ values,
the outcomes and payments of M ′ are the same as
in a given equilibrium of M , and under M ′, it is an
equilibrium for each agent to report her value truthfully;
moreover, if a player i had a dominant strategy under
M , then truth-telling is a dominant strategy under M ′.

It is well known (see, e.g. [9, 4]) that if truth-
telling is a dominant strategy, the payment to an edge
ei depends only on the bids of other edges and whether
this edge wins or loses. It follows immediately that there
must exist a threshold bid, i.e., the highest bid of this
edge that still wins the auction, given that the bids of
other participants remain the same.

We require that the mechanism has the property of
voluntary participation or individual rationality, that is,
the payment an edge receives is no less than its costs.
Furthermore, since we are interested in minimizing the
total payment, there is no loss of generality in restricting
ourselves to mechanisms that pay zero to losing edges.
In this case, the payments to edges are completely
determined by the path selection rule: each winning
edge gets its threshold bid T , each losing edge gets 0.

The VCG mechanism is a truthful mechanism that
maximizes the “social welfare”. In our case, this simply
means picking the shortest available path and paying
each agent his threshold bid.

3 Costly Example

In this section, we show that for any graph that contains
two node-disjoint s − t paths, any auction mechanism
for which truthful bidding is a dominant strategy can
be forced to pay b(P ) + 1

2k(b(Q) − b(P )), where P is
the shortest path, Q is the shortest alternative path,
b(T ) =

∑

e∈T b(e) is the total cost of path T , and
k = min(|P |, |Q|).

Consider a truthful mechanism on a graph that
consists of two node-disjoint paths, P and Q, |P | = n1,
|Q| = n2.

Theorem 3.1. For any L, ε > 0, there are bid vectors
bP , bQ such that b(P ) = L, b(Q) = L + ε, and the total
payment is at least L + ε

2 min(n1, n2).

Proof. Fix arbitrary positive L, ε. Let bi
P , i = 1, . . . , n1,

denote the vector of bids along P where each edge bids

L
n1

except for the ith edge that bids L
n1

+ ε. Similarly,

let bj
Q, j = 1, . . . , n2, denote the vector of bids along Q

where each edge bids L
n2

except for the jth edge that

bids L
n2

+ ε. By b0
P (respectively, b0

Q) denote the vector
of bids along P (respectively, Q) where each edge bids
L
n1

(respectively, L
n2

).
Consider a directed bipartite graph G whose ver-

tices are bi
P , bj

Q, i = 1, . . . , n1, j = 1, . . . , n2, and there

is an edge from bi
P to bj

Q if whenever the edges along P

bid according to bi
P and the edges along Q bid according

to bj
Q, path Q wins.
This graph has n1n2 edges (there is exactly one edge

for each pair (bi
P , bj

Q)) and n1 +n2 vertices, so there is a
vertex that has at least n1n2

n1+n2

edges leaving it. Without

loss of generality, suppose that this vertex is b1
Q, and

the endpoints of the edges that leave it are bi1
P , . . . , bit

P ,
t = n1n2

n1+n2

.
Consider the situation when edges along Q bid

according to b1
Q and edges along P bid according to b0

P .
It is known that any truthful auction is monotone, that
is, a losing edge cannot cause itself to win by raising
its bid. Since the mechanism chooses bi1

P over b1
Q, this

implies that in our setting P is going to win.
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Figure 1: Costly example.

The payments to edges on P are determined by their
threshold bids. Obviously, each edge will be paid at
least its bid, that is, L

n1

. Furthermore, we know that
if any of the edges i1, . . . , it raises its bid by ε, path P
still wins, so for these n1n2

n1+n2

edges the threshold bid

is at least L
n1

+ ε. Hence, the total payment is at least
L+ε n1n2

n1+n2

. Note that the total cost of the winning path
is L, while the total cost of the shortest alternative path
is L + ε. As

1

2
min(n1, n2) ≤ n1n2

n1 + n2
≤ min(n1, n2),

it follows that the total payment can be much greater
than the actual cost, or even the cost of the shortest
alternative path.



3.1 Embedding into a Bigger Graph We would
like to embed this costly example into a bigger graph.
That is, given an arbitrary graph that contains two
node-disjoint paths P and Q between S and T , we would
like to assign weights to edges that do not belong to P
or Q so that the mechanism never chooses any of these
edges. If this can be done, the argument goes through
without change.

It turns out that while this is not necessarily the
case, it is still true that any mechanism on a graph that
contains such two paths can be forced to pay at least
b(P ) + 1

2 min(|P |, |Q|)(b(Q) − b(P )). The proof, as well
as the counterexample, can be found in the full version
of this paper.

3.2 Extension to Randomized Case It turns out
that our lower bound applies to randomized auction
mechanisms as well. Following [9], we define a random-
ized mechanism as a probability distribution over deter-
ministic mechanisms and say that the resulting mecha-
nism is truthful if all the underlying deterministic mech-
anisms are truthful.

Definition 3.1. (cf. [9]) A randomized mechanism is
a probability distribution over a family {mr | r ∈ I} of
mechanisms, all sharing the same sets of strategies and
possible outputs.

The outcome of such a mechanism is a probability
distribution over outputs and payments; the problem
specification must specify what output distributions are
required. For the case of optimization problems, the
objective function on such a distribution is taken to be
the expectation over the choice of r ∈ I.

Definition 3.2. A strategy ai is called universally do-
minant (in short, dominant) for agent i if it is a
dominant strategy for every mechanism in the support of
the randomized mechanism. A randomized mechanism
is called universally truthful (in short, truthful) if truth-
telling is a dominant strategy, and strongly truthful if
it is the only one.

Now, consider a randomized auction mechanism on the
graph of Fig. 1. Fix arbitrary L, ε and construct the
above-described bipartite graph for each deterministic
mechanism in its support. By linearity of expectation,
there is a vertex of the bipartite graph whose expected
outdegree is at least n1n2

n1+n2

. Suppose again that this

vertex is b1
Q and consider the auction in which Q bids

according to b1
Q and P bids according to b0

P . As we have
seen, for any deterministic mechanism mr, the payment
to the edges of P is at least L+outdegreer(b

1
Q)×ε, where

outdegreer(b
1
Q) is the outdegree of b1

Q in the bipartite
graph that corresponds to mr. Taking the expectation

over all mr, we see that the expected payment is at least
L + 1

2kε.

4 Optimal Auctions

In this section, we consider a wider class of mechanisms,
namely, ones that have a Bayes–Nash equilibrium (but
not necessarily a dominant strategy for each player).
We assume that the mechanism designer knows the
distributions of costs on each edge. Under some weak
regularity conditions on the cost distributions, we find
the optimal mechanism for our problem, that is, the one
that minimizes the total payment to the edges.

Our argument extends the reasoning in the seminal
paper of Myerson [8], as presented in [7]. However, My-
erson’s original results are derived for standard auctions
only, that is, the ones in which a single object is to be
allocated to one out of n buyers, while in our case the
buyer only gains utility when he acquires a path, i.e., a
set of edges. There are several generalizations of My-
erson’s work, but none of them applies directly to our
situation.

We start by introducing some new notation. Sup-
pose that the cost xi of each edge ei ∈ E is randomly
chosen from a probability space Xi = [0, ωi] according
to a distribution Fi with density function fi.

Set X =
∏

ei∈E Xi. We assume that the edge costs
are independent, i.e., the joint density function f(x)
is equal to the product

∏

ei∈E fi(xi). For any vector
v ∈ Rn, set v−i = (v1, . . . , vi−1, vi+1, . . . , vn).

By revelation principle, we can restrict ourselves
to truthful mechanisms. In this case, a mechanism is
completely defined by an allocation rule Q : X 7→ [0, 1]E

and a payment rule M : X 7→ RE.
Define

qi(zi) =

∫

X
−i

Qi(zi,x−i)f−i(x−i)dx−i

and

mi(zi) =

∫

X
−i

Mi(zi,x−i)f−i(x−i)dx−i.

That is, qi(zi) is the probability that i wins if he reports
his costs as zi and everyone else reports their costs
truthfully, and mi(zi) is his expected payment in this
case.

We assume that all bidders have linear utility
functions, that is, if the bid vector iz z, and the ith
bidder’s true cost is xi (in general, xi 6= zi), then his
utility is equal to Mi(z) − xiQi(z). This implies that
the expected utility of a truthful player i whose costs
are xi is Ui(xi) = mi(xi) − xiqi(xi). Note that the
payment received by the agent is not conditional on his



winning the auction; rather, the probability of this event
is incorporated into the payment rule.

Claim 4.1. For any incentive compatible mechanism
(Q,M), we have

Ui(xi) = Ui(0) −
∫ xi

0

qi(ti)dti,

mi(x) = mi(0) −
∫ xi

0

qi(ti)dti + xiqi(xi).

Proof. From incentive compatibility,

Ui(zi) ≥ mi(xi) − ziqi(xi) = Ui(xi) + (xi − zi)qi(xi).

Since
Ui(xi) = max

zi

{mi(zi) − xiqi(zi)},

Ui(xi) is a convex function, so it is absolutely continuous
and differentiable almost everywhere. Whenever Ui(xi)
is differentiable, U ′

i(xi) = −qi(xi), and, consequently,

Ui(xi) = Ui(0) −
∫ xi

0

qi(ti)dti.

The second line follows from the definition of Ui(xi)
and the fact that mi(0) = Ui(0).

Claim 4.2. A mechanism is incentive compatible if and
only if all qis are nonincreasing and mis are given by
the formula in Claim 4.1.

Proof. It has been shown that for an incentive compat-
ible mechanism U ′

i(xi) = −qi(xi) almost everywhere.
Since Ui(xi) is convex, qi(xi) is nonincreasing.

For the converse direction, note that Ui(zi) ≥
mi(xi) − qi(xi)zi if and only if

Ui(zi) ≥ Ui(xi) + (xi − zi)qi(xi),

or, using the expression for Ui(t),

(xi − zi)qi(xi) ≤
∫ xi

zi

qi(ti)dti.

Clearly, if qi(xi) is nonincreasing, this condition always
holds.

Now we can derive the requirements for the optimal
mechanism, that is, the one that minimizes the total
payment

∑

ei∈E E[mi(xi)].
We say that the mechanism design problem is regu-

lar if for all i the function xi + Fi(xi)
fi(xi)

is nondecreasing.

This requirement holds for a wide class of distributions,
e.g., any distribution whose density function is nonin-

creasing. In what follows, we refer to ci(xi) = xi+
Fi(xi)
fi(xi)

as the virtual cost of edge ei.

Theorem 4.3. If the mechanism design problem is reg-
ular, then the optimal mechanism is given by a pair of
functions (Q(x),M(x)), where Q(x) always picks the
path with the smallest virtual cost, and

Mi(x) = Qi(x)xi +

∫ ωi

xi

Qi(ti,x−i)dti.

Proof. By definition,

E[mi(xi)] =

∫ ωi

0

mi(xi)fi(xi)dxi = mi(0)+

+

∫ ωi

0

xiqi(xi)fi(xi)dxi −
∫ ωi

0

∫ xi

0

qi(ti)dtifi(xi)dxi.

Changing the order of integration, E[mi(xi)] can be
expressed as

mi(0)+

∫ ωi

0

xiqi(xi)fi(xi)dxi −
∫ ωi

0

(1−Fi(ti))qi(ti)dti,

or, rewriting,

mi(0) +

∫ ωi

0

(

xi − 1 − Fi(xi)

fi(xi)

)

qi(xi)fi(xi)dxi =

= mi(0) +

∫

X

(

xi − 1 − Fi(xi)

fi(xi)

)

Qi(x)f(x)dx.

The mechanism designer is allowed to choose Qi(x)
and mi(0) (by choosing Mi(0)) so as to minimize
∑

ei∈E E[mi(xi)], subject to the following constraints:

• For any x, Q(x) must specify a path in the graph,
that is, for some path P from s to t, it must be that
Qi(x) = 1 for all ei ∈ P .

• Incentive compatibility, that is, qi(xi) must be a
nonincreasing function of xi for all i.

• Individual rationality, i.e. Ui(xi) ≥ 0 for all i, xi.

Since

Ui(xi) = Ui(0) −
∫ xi

0

qi(ti)dti,

from the last condition we get

mi(0) = Ui(0) ≥
∫ xi

0

qi(ti)dti

for all xi. As qi(ti) ≥ 0 for all values of ti, this is
equivalent to stipulating that

mi(0) ≥
∫ ωi

0

qi(ti)dti.

Since our goal is to minimize the total payment, we can
set

mi(0) =

∫ ωi

0

qi(ti)dti.



Hence, the buyer’s objective function can be rewritten
as

∑

i

∫ ωi

0

(

xi +
Fi(xi)

fi(xi)

)

qi(xi)fi(xi)dxi =

=

∫

X

(

∑

i

(

xi +
Fi(xi)

fi(xi)

)

Qi(x)

)

f(x)dx.

Since the first constraint requires the mechanism to
pick a path in the graph, the best it can do for any fixed
x is to choose a path P with the smallest virtual cost,

i.e., the one that minimizes
∑

ei∈P (xi +
Fi(xi)
fi(xi)

). Picking

the optimal path at every point x will also minimize the
average cost with respect to f , that is, the integral we
consider.

Formally, fix a shortest path algorithm A, run A on

the original graph using the values xi + Fi(xi)
fi(xi)

as the

corresponding edge weights, and set Qi(x) = 1 if ei is
on the path chosen by A and Qi(x) = 0 otherwise.

It remains to verify that this path selection rule
is incentive compatible. To see that, note that for
any fixed x−i, increasing xi does not increase the ith
player’s chances of winning, since the cost of all paths
including this edge goes up (here we use the assumption

that xi + Fi(xi)
fi(xi)

is nondecreasing). That is, as xi grows,

Qi(x) can go from 1 to 0, but not the other way around.
Averaging over all possible values of x−i, we see that
qi(xi) is nonincreasing.

By Claim 4.1, the expected payment mi(xi) is
completely determined by mi(0) and qi(x). As we have
seen, the optimal value of mi(0) is

∫ ωi

0 qi(ti)dti, so

mi(xi) =

∫ ωi

0

qi(ti)dti −
∫ xi

0

qi(ti)dti + xiqi(xi) =

=

∫ ωi

xi

qi(ti)dti + xiqi(xi).

Choosing

Mi(x) = Qi(x)xi +

∫ ωi

xi

Qi(ti,x−i)dti

satisfies this condition.

Remark 4.4. Observe that for all x Qi(x) is either 0
or 1. Consequently, Mi(x) can be rewritten as sup{ti |
Qi(ti,x−i) = 1}. This shows that the amount paid
by the optimal mechanism to each agent is exactly this
agent’s threshold bid, and hence the optimal Bayes–Nash
mechanism is, in fact, a dominant strategy mechanism.

Remark 4.5. Note also that to compute this payment,
it suffices to identify the cheapest alternate path in terms

of the virtual costs and then perform some simple cal-
culations. This implies that the payments to the win-
ners can be computed very efficiently using the approach
of [6], provided that it is easy to compute the virtual cost

c(x) = x + F (x)
f(x) and its inverse.

5 VCG vs. Optimal Auction

The virtual cost of an edge can be much larger than
its actual cost. This is the main reason why for many
natural distributions the optimal mechanism performs
considerably better than VCG in terms of total over-
payment. In particular, if f(x) is a sharply declining
function, c(x) grows very quickly. Hence, the edges
with even moderately high actual costs are going to
have extremely high virtual costs. Now, the calcula-
tion of threshold bids involves raising the bid of just
one edge by the total difference between the costs of
two paths; this is exactly the kind of configuration that
is ‘penalized’ by c(x), so the payments to winning edges
are going to be relatively low.

Consider, for example, the graph Gn that consists
of two disjoint paths P and Q of length n, and suppose
that all edge costs are distributed according to fa,ε(x),
where

fa,ε(x) =







1 − ε if x ∈ [0, 1],
ε/(a − 1) if x ∈ [1, a],
0 if x > a.

Set a = αn, ε = β
n2 , where α and β do not depend

on n. Then with probability at least 1 − nε all agents
bid at most 1 (and their corresponding virtual costs
are at most 2). Whenever this happens, the threshold
bid of each agent is at most 1, since the virtual cost
that corresponds to bidding x > 1 is Ω(n3), so the
total overpayment is at most n. Even if this is not
the case, the threshold bid of any agent is at most
a, so the expected total overpayment is bounded by
(1 − nε)(n ∗ 1) + nε(n ∗ a) = O(n).

On the other hand, since for large enough n the
variance of this distribution is at least C, where C is
some constant independent of n, for the original costs
c(P ), c(Q), we have

E[|c(P ) − c(Q)|] =
√

2Var(P ) ≥
√

2nC = Θ(
√

n).

Since the overhead paid by the original VCG mechanism
to each agent on the winning path is precisely |c(P ) −
c(Q)|, the total overpayment is Θ(n

√
n). Moreover, it

is clear that this is true not just for this distribution,
but for any distribution with finite variance that does
not depend on n.

This example provides a separation of Θ(
√

n) be-
tween the optimal mechanism and VCG. We can obtain



a similar result for unbounded distributions (i.e., ones
that allow arbitrarily high edge costs), most notably,
the halfnormal distribution HD(a) with density

fa(x) =
2a

π
exp(

−a2x2

π
)

or the exponential distribution ED(a) with density
fλ(x) = λe−λx.

We ran a series of simulations on the graph Gn with
n = 2k, k = 1, . . . , 9, and the edge costs distributed
according to HD(1) and ED(1). In both cases, we
conducted both the respective optimal auction and the
VCG auction and computed the average payments to
an edge on the winning path. The results are shown in
Fig. 2.

One can see that for both distributions the payment
to each agent by the optimal auction is roughly log n,
and the payment by VCG is Θ(

√
n). (The latter result

is to be expected, of course, as these distributions have
constant variance.) We present the proof for the case
of the exponential distribution; the argument for the
halfnormal distribution is similar.

Theorem 5.1. In the optimal auction on the graph Gn

that consists of two disjoint paths of length n, where the
edge costs are distributed according to the exponential
distribution with density f(x) = e−x, the overpayment
to each edge is O(log n).

Proof. For f(x) = e−x, the corresponding virtual cost

function c(x) = x + F (x)
f(x) is equal to x + 1−e−x

e−x =

ex + x − 1. Note that ex − 1 ≤ c(x) ≤ ex+1, and c(x) is
monotone increasing, so c−1(y) ≤ ln(y + 1).

Consider an edge e on the winning path. Suppose
that the edge costs on the losing path are x1, . . . , xn,
and the edge costs on the winning path are x′

1, . . . , x
′

n.
Set z2n = max{x1, . . . , xn, x′

1, . . . , x
′

n}. Clearly, the
payment to e is at most

c−1(c(x1) + . . . + c(xn)) ≤ c−1(nc(z2n)) ≤

≤ ln(nc(z2n) + 1) ≤ lnn + z2n + 2.

Hence, the expected payment to e is bounded from
above by E[z2n] + O(log n). Let us compute E[z2n].
Since the edge costs are independent, we have

F (t) = Pr[z2n < t] = (1 − e−t)2n

f(t) = 2n(1 − e−t)2n−1e−t,

and

E[z2n] =

∫

∞

0

2n(1 − e−t)2n−1e−ttdt =

= −
∫ 1

0

2ny2n−1 ln(1 − y)dy =

=

∫ 1

0

2ny2n−1

(

y +
y2

2
+

y3

3
+ . . .

)

dy =

= 2n

∫ 1

0

∞
∑

k=1

y2n+k−1

k
dy =

= 2n
∞
∑

k=1

1

k(2n + k)
=

∞
∑

k=1

(

1

k
− 1

2n + k

)

= O(ln n).

This means that the expected payment to each
agent on the winning path is O(log n) and the total
overpayment is O(n log n).

5.1 Bounded costs We have seen that the optimal
mechanism can be very different from VCG. However,
if we assume that for all i the edge costs are uniformly
distributed on some fixed interval of the form [0, a] (i.e.,
fi(x) = 1/a if 0 ≤ x ≤ a and 0 otherwise for all i),
then a small modification of the VCG mechanism is
actually optimal. To see that, note that in this case

ci(x) = x + x/a
1/a = 2x, so the mechanism always chooses

the shortest path, and the payment to a winning edge is
the highest bid at which it would still win the auction.
However, when the costs are known to be in [0, a], the
bids higher than a are not allowed, so the payment to an
agent is capped at a, while in the original model there
is no such cap.

To understand the importance of this modification,
consider again the graph Gn that consists of two disjoint
paths of length n, and suppose that all edge costs are
uniformly distributed on [0, 1]. As shown above, the
total overpayment of the original VCG mechanism is
Θ(n

√
n).

On the other hand, the modified mechanism pays
at most 1 to each agent, so the total payment (and the
overpayment) is O(n). More generally, if the costs of
agent i are at most ωi, the expected premium paid by
the optimal mechanism to agent i is

∫ ωi

0

∫ ωi

xi

qi(ti)dtifi(xi)dxi =

∫ ωi

0

qi(ti)Fi(ti)dti.

For ωi < ∞, as qi(ti) ≤ 1, Fi(ti) ≤ 1 for all i, ti, this
implies that the overpayment to each agent is at most
O(1) (another way to see that is to note that no agent
is ever paid more than ωi), and the total overpayment
is O(n). Moreover, this formula can be used to bound
the overpayment for ωi = ∞ as well.

On a more pessimistic note, we have to mention
that for many distributions, there is a matching lower
bound of Ω(n). We give the proof for the case of the
uniform distribution U [0, a]. By symmetry, it is easy
to show that q(a

2 ) = 1
2 , and since q(t) is nonincreasing,
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Figure 2: The lower curve represents the payments by
the optimal auction; the upper curve represents the
payments by VCG. Note that the x-axis is drawn to
logarithmic scale.

q(t) ≥ 1
2 if t < a

2 . This implies

∫ a

0

q(t)
t

a
dt ≥

∫ a/2

0

t

2a
dt =

a

16
.

6 Conclusion

In the first part of the paper, we have shown that all
mechanisms for the shortest path problem that possess
dominant strategies are not frugal. We then analyzed
the Bayes–Nash equilibria for this problem and con-
structed the optimal mechanism for any regular cost
distribution. It turns out that for a wide class of dis-
tributions, the overpayment by the optimal mechanism
is much smaller that that by VCG. On the other hand,
for certain distributions over bounded domains, small
modifications of VCG can be optimal.

Furthermore, for some natural distributions, even
the optimal mechanism may incur a constant factor
overpayment. This suggests investigating other models
for this problem, such as, for example, repeated games.
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