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ABSTRACT. This paper discusses the expression of algorithms by flowcharts, and in particular 
by flowcharts without explicit go-to's (D-charts). For this purpose we introduce a machine 
independent definition of algorithm which is broader than usual. Our conclusion is that D- 
charts are in one technical sense more restrictive than general flowcharts, but not if one allows 
the introduction of additional variables which represent a history of control flow. 
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1. Introduction 

The t e rm  " a l g o r i t h m "  is used  in m a n y  different  ways .  Some t imes  we speak  of an 
algori thm as a process  in t he  abs t r ac t ,  w i t hou t  reference to  a pa r t i c u l a r  compute r .  
I t  is in th is  sense, for example ,  t h a t  we speak  of t he  " r ad ix  exchange  sor t  a l g o r i t h m , "  
or the  "s implex  a l g o r i t h m . "  Of ten  we iden t i fy  an  a lgo r i t hm wi th  a p a r t i c u l a r  se- 
quence of ins t ruc t ions  for a p a r t i c u l a r  compu te r .  

In  th is  p a p e r  we shal l  p r e sen t  a new def in i t ion  of a lgo r i t hm which emphas izes  
the sequence of c o m m a n d s  assoc ia ted  wi th  a p a r t i c u l a r  " i n p u t . "  W e  t h e n  define 
the not ion "expres s ion"  of a lgor i thms  b y  genera l  f lowchar ts  and  f lowchar ts  w i thou t  
explicit go- to ' s  ( D - c h a r t s ) .  Some t h e o r e m s  are  given which  exhib i t  some of the  rela-  
tionships be tween  a lgor i thms ,  f lowchar ts ,  and  D-cha r t s .  

2. Algorithms 

Central  to  our  d iscuss ion is t he  no t ion  of an  a lgo r i t hm which  is def ined i n d e p e n d e n t l y  
of its express ion in a g iven language .  One such def ini t ion of an  a lgo r i t hm can be 
given as follows: 

Let  N be a set  of variables or names. If  n E N,  t h e n  n t akes  on values in a value 
set V~. Le t  C be a f inite set  of "suff ic ient ly  ba s i c "  ope ra t ions  cal led commands. All 
members of C are  of t he  form y ~-- f (Y l ,  "'" , Y~), where  k > 0, y, y l ,  " ' "  , yk are  
members of N ,  a n d  f is some func t ion  of t he  va lues  of t h e  names  Yl,  • • • , Yk • A 
function s which  associa tes  wi th  each m e m b e r  of N a va lue  in t he  co r respond ing  
value set is cal led a state function; t h a t  is, if for eve ry  n C N,  s(n) C V , ,  t h e n  s 
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is called a state function. Let S denote a prechosen class of state functions called 
initial state fu~clions. An algorithm A is a function which associates with each mem- 
ber s C S a finite sequence A ( s )  of members of C (possibly the null sequence X). 
The execution of A with respect to 8 E S is a finite sequence sOSl • • • s~, of state func- 
tions determined by: 

1 . 8 o = 8 .  
2. Suppose y + - f ( y l ,  • •. , yk) is the ith term in the sequence A ( s )  ; then s~(n) = 

s i - l (n)  for all n E (N - {y}) and s i (y)  = f ( s i - l ( y i ) ,  " . .  , s i - l ( yk ) ) .  
3. u is equal to the number of terms in A ( s ) .  
Example:  Algorithm SEARCH. N = {M, list[ ], count[ ], i, x}. We are using 

list[ ] (and count[ ]) to denote a countably infinite number of names; specifically 
list[ ] is shorthand for the names list[l], list[2], list[3], . . . .  S = {s I 8 ( M )  > 1}. 
This algorithm searches list[l], . . .  , list[M] for x. If it is found at position j, say, 
count[j] is incremented by 1. If it is not found, it is appended to the list at position 
M + 1, count[M + 1] is initialized 

Let  C = { c , ,  . . . ,  c8}. 

cl g i~-- 1, 

c2 a__ i + - i +  1, 

c3 ~ count[/] ~ count[i] + 1, 

SEARCH is given by 

= t cI(c2)j-lc3 
SEARCH(s)  (c1(c2) ~(M) c4c5c6 

at 1, and finally M is incremented by 1. 

c4 & list[i] ~-- x, 

c~ & count[i] ~-- 1, 

c8 a_ M ~ - - i .  

if s( x) = 8(list[j]), 1 _< j _< 8( M )  , j is as small 
as possible, 

if s(x)  ~ s(list[j]), 1 < j _< 8 ( M ) .  

The above definition of an algorithm employs only the sequence of commands 
to be carried out and says nothing about how one determines the appropriate com- 
mand sequence for each initial state function. This allows us to discuss the idea of 
having more than one expression for a given algorithm. Our primary concern is with 
the finite expression of algorithms by charts which indicate in a schematic way the 
"flow of control" from command to command. 

3. Flowcharts and D-Charts 

Clearly, if there are only a finite number of allowable initial state functions one 
could simply catalog the appropriate command sequences of an algorithm. Com~ 
plications arise when there is an infinite, number of possible initial state functions. 
We shall use a special class of flowcharts called D-charts as a means of expressing 
algorithms. 

By a flowchart F we mean a finite directed graph which satisfies the following: 
1. Each of the vertices of F must be one of the following types: 

(a) Start vertex: 

F contains precisely one start  vertex, and this vertex has exactly one edge 
incident away from it and no edges incident toward it. 
(b) Stop vertex: 
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F contains precisely one stop vertex, and this vertex has one or more edges 
incident toward it and no edges incident away from it. 
(c) Command type: 

s¢ 
c~ is a sequence of commands;  there are one or more edges incident toward a 
command vertex;  exactly one edge is incident away. 
( d) Decision type: 

& 
There are two edges leaving a decision vertex; one of these edges is labeled 
with a quantifier@'ee predicate P and the other with ~ P ,  the negation of P; 
there are one or more edges incident toward a decision vertex. 

2. F is a connected graph (in the undirected sense).  
We consider a quantifier-free predicate to consist of " a toms"  which are combined 

according to the rules of the propositional calculus. The atoms are relations of the 
form R ( y l ,  . . .  , yk) where yi C N for i = 1, . . .  , k; k > 0; and R takes oil the 
value " t rue"  or "false" when we substi tute the values of the variables yi 
i n R ( y l ,  . . . ,yk).  

D-charts (after Di jks t ra  [1]) are a rest.rieted class of flowcharts defined reeursively 
by the following grammar:  

< ~ 1 " >  ~ <BLOO(> 

A 
~BI..O0~> ~ <BLOCK> 

p '~p 

<E~JME~AT)ON> ~ < . B L ~ >  L_r___J 

Note tha t  the following conventions have been used: 

(1) in the ( E N U M E R A T I O N )  rule we have used "~" for ~ , and 

(2) in the ( I T E R A T I O N )  rule we have used 

P for ~ P ~  

It. should be dea r  tha t  this last convention causes no difficulty in determining 
where to return after we have "executed" (BLOCK).  

The quantities defined for algorithms in Section '2 are defined analogously for 
flowcharts; thus we may  speak of the set N of variables of a flowchart F, the set S 
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of in i t ia l  s t a t e  funct ions  of F ,  and  t h e  set C of c o m m a n d s  assoc ia ted  wi th  F .  The  
sequence of c o m m a n d s  and  s t a t e  func t ions  assoc ia ted  wi th  each s 6 S is deter-  
mined  b y  F as follows: i n i t i a l l y ,  we have  s 6 S as our  cu r r en t  s t a t e  funct ion,  a 
c o m m a n d  sequence c equal  to  X, and  a s t a t e  func t ion  sequence a = s, and  we are 
pos i t ioned  a t  t he  S T A R T  ver tex  of F .  

Suppose  we are  a t  a ve r t ex  ~ ~ F,  wi th  t he  cu r ren t  s t a t e  func t ion  s' ,  cu r ren t  com- 
m a n d  sequence c, and  cu r ren t  s t a t e  func t ion  sequence a. W e  shall  descr ibe  how one 
de t e rmines  a new cur ren t  s t a t e  funct ion ,  u p d a t e s  c and  a, a n d  chooses a new current  
ve r t ex  in F :  

(1) I f  ~, is t he  S T A R T  ver tex ,  s ' ,  c, and  o" are  unchanged  and  we move  to the  
un ique  successor of the  S T A R T  ver tex .  

(2) I f  ~, is a c o m m a n d  ve r t ex  and  o~ = clc2 . . .  C m ,  t hen  c becomes  cclc~ . . .  c m ,  

s '  becomes  Sm, and  o" becomes  as1 . . .  s,~ ; where  if ci  ~- y ~ - - f ( y l ,  . . .  , y ~ ) ,  then 
s i ( n )  = s i _ 1 ( n )  for all  n 6 N - {y} a n d  s i ( y )  = f ( s ~ - l ( y l ) ,  . . .  , s i - l ( y k ) ) ,  and 
where  so = s' .  W e  move  to  t h e  un ique  successor of t he  c o m m a n d  ver tex .  

(3) I f  ~ is a decis ion ver tex ,  s ' ,  c,  and  a r e m a i n  unchanged .  W e  eva lua t e  P with 

A D-chart which expresses Algorithm SEARCH: 

~ i < - M  A FOUND ,"NO" 
F O ~ J N D ~  ~ x~li~ I l i O N  

D 

A flowchart which directly expresses Algorithm SEARCH: 

i~-M i>M 

P 

A D-chart which directly expresses Algorithm SEARCH: 

l i t  III I (iJ It X A i~ld 

FIG. 1 
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respect to s' and if P is " t rue"  we move to the successor of ~ determined by the 
edge labeled P, otherwise we move to the successor of ~ determined by  the edge 
labeled ~ P .  

(4) If  ~ is the STOP vertex we define F(s) = c and define the execution of F with 
respect to s to be a. 

Let F be a flowchart and let N', V,,' for each n C N',  C', and S '  be associated 
with F. Let A be an algorithm and the quantit ies N, V~ for each n C N, C, and S 
be associated with A. We say tha t  F directly expresses algorithm A if: 

1. N = N ' ,  V~ = V,,' for each n C N, C = C', S = S' ,  and 
2. for e a c h s  C S F(s) = A ( s ) .  
Let ed(A) denote the set of flowcharts which directly express algorithm A. 
Direct expression of an algorithm does not always provide easily understood 

flowcharts, and accordingly we say tha t  F expresses algorithm A if: 
1. N ~ N' ,  V~ = Vn' for n C N, C c C', S = S ' / N  ( S ' / N  denotes the set 

of functions obtained by  restricting the members  of S '  to the set N) ,  and 
2. for each s C S, A(s )  is a subsequence of F(s')  where s' is any member  of S '  

whose restriction to N is equal to s, and the state functions in the execution of A 
with respect to s are equal to the restrictions to N of the corresponding state func- 
tions in the execution of F with respect to s'. 

Let e(A) denote the set of flowcharts which express algorithm A. Since flow- 
charts are necessarily finite, it may  be tha t  e(A) = ¢. Furthermore,  ed(A) ~ e(A).  
See Figure 1. 

D-charts are as "powerful"  as flowcharts in the following sense: 
THEORE~ 1 (BShm and Jacopini [2]). I f  F E e(A) then there exists a D-chart 

D E ~(A). 
PROOF. Label the S T A R T  vertex in F with no and the STOP vertex with n= ,  

and label all other vertices of F with the labels n~, . . .  , n ~ .  I f  n~ is a command 
vertex we construct a corresponding D-char t  block as follows: 

,o nj 

l<_J~m o r j . m  

If n~ is a decision vertex we construct a corresponding D-char t  block as follows: 

'o nj to n x 

I <-j~-m ~ j = ~  

I$ k ! m  or k=m 

If N is the set of variables of F we assume tha t  Yl  , " " " , Y m  , V~: are not in N and 
that these new variables take on values in {0, 1}. If  ~i' is the D-char t  block cor- 
responding to vertex ni in F, we construct the D-char t  shown in Figure 2, where we 
assume tha t  n1 is the vertex in F which directly succeeds the S T A R T  vertex (1 _< 
j _< m or j = ~ )  and m > 1 (if m = 0 then D = F) .  I t  is easy 
to see tha t  D E e(A).  | 

Suppose F C ed(A) and R is the set of all a toms used in the formation of pred- 
icates associated with F. We say tha t  a flowchart F '  is directly equivalent to F 
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~o 
FIG. 2 

with respect to A and the atoms R of F, if F '  C ed(A) and the predicates appearing 
in F ~ are formed using only atoms in R. 

The following theorem is analogous to a theorem of Knuth  and Floyd [3]. 
THEORE~ 2. There exists an algorithm A and a flowchart F C e~( A ) such that 

there is no D-chart which is directly equivalent to F with respect to A and the atom8 
R o f F .  

PROOF. Consider the following algorithm A and flowchart F where F C ed(A). 

N = {M, i}, VM = V, = {1, 2 , ' " } ,  

z = { s i s ( M )  > 1, s ( i )  = 1}, C = {c~,  c~}, R = {p},  

cl a_ i ~ - - 2 M - - i ,  

c2 A i ¢ - 2 M -  2 -  i, 

p a = i < M ,  

~(c~c~)k; s ( M )  odd and k = Is(M) - 1]/2, 
A ( s )  = ~c:(clc2)h; s (M)  even and h = [s(M) - 2]/2. 

~ P  

F 

M Sequence of values of t  

( ~ p ) l ( ~ p )  
(p)l(p)l(p) 
(p)l(p)3(~-~p)3(~p) 
(p)l  (p)5 (~p)3  (p)3 (p) 
(p)l(p)7(~p)3(p)5(~p)5(~p) 
(p)l(p)U(~p)3(p)7(~p)5(p)5(p) 
(p) l (p)11(~p)3(p)9(~p)5(p)7(~-~p)7(up)  

The predicates in parentheses hold at their respective points in the sequence 
Consider the following sequence of commands and predicates 

a = (p) c2(~p)  cl(p) c2(~p)  c1(p) c2(-.~p) cl(p) c~(~--~p) . . . .  
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We interpret the above sequence as a metadescription of the execution of F for 
arbitrarily large M. Specifically, the subsequence of commands is the algorithm 
A (s) for arbitrarily large s (M) ;  the predicate following each command holds after 
the corresponding command is executed, tha t  is, (p) following cl means that  i < M 
after cl is executed, and ( ~ p )  following c2 means that  i > M after c2 is executed. 

We make the assumption that  there is a D-chart  D which is directly equivalent to 
F, and we shall show that  this leads to a contradiction. Let us "follow" the execu- 
tion of D(s) when s(M) is arbitrarily large; suppose I is the first vertex in D which 
we visit for a second time. By the structure of D, I is an iteration vertex 

T 
' (q) 

visl1~cll'the firsttwlcev~e~., l 
-" : | PATH IN 

~ I FIRST LOOP 

The symbol (q) represents the atom (either p or ~ p )  which was true when this 
loop was entered for the first time, and (r) is the atom which was true when the 
vertex I was reached for the second time. / 

Assume that  (q) = (p) and (r) = ( ~ p ) .  By inspection of a it is clear tha t  

must appear on the path 

One can choose s'(M) such that  D(s') behaves exactly like D(s) until ~ is reached 

for the first time, at which time in the execution of D (s ') ,  c~ causes p to be true and 
this is in fact the last command executed for this value of s'(M). This results in 
infinite looping and consequently (q) = (p) and (r) = ( ~ p )  cannot hold. A similar 
argument shows that  (q) = (~-~p) and (r) = (p) cannot hold. 

Assume tha t  (q) = (p) and (r) = (p) .  

(p) 

In this case~and~must appear 

m ~  

;(p) 

at least one t ime as consecutive command 

vertices in the loop. Again by choosing s'(M) properly we can cause p to hold after 
c2 is executed for the first t ime in this loop. This again implies infinite looping and 
consequently (g) = (p) and (r) = (p) cannot hold. Similarly, (g) = ( ~ p )  and 
(r) = (~-~p) cannot hold. We are therefore forced to conclude that  there is no re- 
peated vertex in the execution of D(s) when s(M) is arbitrarily large. This is ira- 
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possible since D is finite and we can conclude tha t  there is no D-char t  which is 
directly equivalent to F. | 

4. Flags 

In  the proof of Theorem 1 we introduced the variables vl in order to construct the 
appropriate  D-chart ,  as did BShm and Jacopini [2]. We can think of these variables 
as "flags" or "signals" which tell us which sequence of commands to execute next. 
We can make the notion of a "flag" more precise. Let  N be the set of variables asso- 
ciated with a flowchart F. We say tha t  a variable x E N is a flag if x takes on values 
in a finite set, and in each command of the form x ~ f ( y l  " • • ym), each of the 
variables Yl, • • • , ym are flags. The variable F O U N D  in the D-char t  which expressed 
Algorithm S E A R C H  is a flag. 

Intui t ively  one would think tha t  flags are unessential in a flowchart, and in fact 
it is easy to show tha t  they are dispensible in a certain sense. For example, suppose 
we wanted to eliminate the flag F O U N D  in the Example.  Since F O U N D  takes 
on only two values we can make two copies of D (considered as a flowchart),  one 
with the value of F O U N D  considered to be " N O "  and the other with F O U N D  set 
to the value "YES."  Any s ta tement  which changes the value of F O U N D  is replaced 
by  an appropriate  transfer. 

Figure 3 shows two copies of D, one for each of the possible values of FOUND.  
The  dotted edges are edges which have been omitted. A single S T A R T  vertex has 
been added, and it is immediately followed by  a test  to determine the appropriate 
copy of D to begin with. Figure 3 can be reduced to a flowchart by successively 
eliminating all vertices with no incoming edges, replacing all series edges by single 
edges, replacing all parallel edges by  single edges, and finally coalescing all the STOP 
vertices into a single STOP vertex. This procedure applied to Figure 3 results in 
the flowchart F in the Example.  

We say tha t  a set W of flags is complete if x ~-- ] ( y l ,  • • • , yk) E C and x E W 
imply y l ,  • • • , yk E W. From the above example it should be clear tha t :  

THEOREM 3. Let F E ed( A ) and W be a complete set of flags of F. For each s E S 
let B (  s) be the subsequence of A ( s) obtained by dropping all commands of the form 
x * - f ( y l ,  " "  , yk), where x E W.  Then there is a flowchart F t which one can con- 
struct f rom F such that F '  E ed(B).  

/ S i 2 : z ! , i l  ...... 

FOUND="NO" FOUNO="YES" 

Fro. 3 
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5. Summary 

The theorems of the previous sections are examples of results which might be mis- 
leading when applied to the problem of making an algorithm easy to understand. 
Theorem 1 means tha t  D-charts  are as powerful as flowcharts if we are allowed to 
add flags to a given flowchart. However,  the form of the D-char t  given in the proof 
of the theorem is clearly not a desirable expression of an algorithm. The additional 
flags in the D-char t  merely represent the topology of the original flowchart, and this 
encoding of all the topology into flags does not necessarily make understanding the 
algorithm easy. 

Theorem 3, on the other hand, shows tha t  flags are superfluous since their effect 
can always be accounted for in the topology of a flowchart. This extreme is equally 
undesirable since a complex topology must  be unraveled before an algorithm can 
be understood. 

Finally, Theorem 2 indicates tha t  we must necessarily permit  the use of flags in 
D-charts if they are to be as powerful as arbi t rary flowcharts. This does not mean, 
however, t ha t  D-charts  are an inadequate means of expression. 
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