
The Expression of Algorithms by Charts

J . B R U N O A N D K . S T E I G L I T Z

Princeton University, Princeton, New Jersey

ABSTRACT. This paper discusses the expression of algorithms by flowcharts, and in particular
by flowcharts without explicit go-to's (D-charts). For this purpose we introduce a machine
independent definition of algorithm which is broader than usual. Our conclusion is that D-
charts are in one technical sense more restrictive than general flowcharts, but not if one allows
the introduction of additional variables which represent a history of control flow.

KEY WORDS AND PHRASES : flowcharts, go-to-less programming, D-charts, algorithm expression

CR CATEGORIES: 5 .20 , 5 .24

1. Introduction

The t e rm " a l g o r i t h m " is used in m a n y different ways . Some t imes we speak of an
algori thm as a process in t he abs t r ac t , w i t hou t reference to a pa r t i c u l a r compute r .
I t is in th is sense, for example , t h a t we speak of t he " r ad ix exchange sor t a l g o r i t h m , "
or the "s implex a l g o r i t h m . " Of ten we iden t i fy an a lgo r i t hm wi th a p a r t i c u l a r se-
quence of ins t ruc t ions for a p a r t i c u l a r compu te r .

In th is p a p e r we shal l p r e sen t a new def in i t ion of a lgo r i t hm which emphas izes
the sequence of c o m m a n d s assoc ia ted wi th a p a r t i c u l a r " i n p u t . " W e t h e n define
the not ion "expres s ion" of a lgor i thms b y genera l f lowchar ts and f lowchar ts w i thou t
explicit go- to ' s (D - c h a r t s) . Some t h e o r e m s are given which exhib i t some of the rela-
tionships be tween a lgor i thms , f lowchar ts , and D-cha r t s .

2. Algorithms

Central to our d iscuss ion is t he no t ion of an a lgo r i t hm which is def ined i n d e p e n d e n t l y
of its express ion in a g iven language . One such def ini t ion of an a lgo r i t hm can be
given as follows:

Let N be a set of variables or names. If n E N, t h e n n t akes on values in a value
set V~. Le t C be a f inite set of "suff ic ient ly ba s i c " ope ra t ions cal led commands. All
members of C are of t he form y ~-- f (Y l , "'" , Y~), where k > 0, y, y l , " ' " , yk are
members of N , a n d f is some func t ion of t he va lues of t h e names Yl, • • • , Yk • A
function s which associa tes wi th each m e m b e r of N a va lue in t he co r respond ing
value set is cal led a state function; t h a t is, if for eve ry n C N, s(n) C V , , t h e n s

Copyright © 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of this material is granted,
provided that reference is made to this publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.
Authors' present addresses: J. Bruno, Computer Science Department, Pennsylvania State
University, State College, PA 16801; K. Steiglitz, Department of Electrical Engineering,
Brackett Hall, Engineering Quadrangle, Princeton University, Princeton, NJ 08540.
This work was supported by the National Science Foundation under grants GK-5535 and
GJ-965, and by US Army Research O•ce-Durham under contract DAHC04-69-C-0012.

Journal of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly 1972, pp. 517-525.

518 Z. B R U N O A N D K . STEIGLITZ

is called a state function. Let S denote a prechosen class of state functions called
initial state fu~clions. An algorithm A is a function which associates with each mem-
ber s C S a finite sequence A (s) of members of C (possibly the null sequence X).
The execution of A with respect to 8 E S is a finite sequence sOSl • • • s~, of state func-
tions determined by:

1 . 8 o = 8 .
2. Suppose y + - f (y l , • •. , yk) is the ith term in the sequence A (s) ; then s~(n) =

s i - l (n) for all n E (N - {y}) and s i (y) = f (s i - l (y i) , " . . , s i - l (yk)) .
3. u is equal to the number of terms in A (s) .
Example: Algorithm SEARCH. N = {M, list[], count[], i, x}. We are using

list[] (and count[]) to denote a countably infinite number of names; specifically
list[] is shorthand for the names list[l], list[2], list[3], S = {s I 8 (M) > 1}.
This algorithm searches list[l], . . . , list[M] for x. If it is found at position j, say,
count[j] is incremented by 1. If it is not found, it is appended to the list at position
M + 1, count[M + 1] is initialized

Let C = { c , , . . . , c8}.

cl g i~-- 1,

c2 a__ i + - i + 1,

c3 ~ count[/] ~ count[i] + 1,

SEARCH is given by

= t cI(c2)j-lc3
SEARCH(s) (c1(c2) ~(M) c4c5c6

at 1, and finally M is incremented by 1.

c4 & list[i] ~-- x,

c~ & count[i] ~-- 1,

c8 a_ M ~ - - i .

if s(x) = 8(list[j]), 1 _< j _< 8(M) , j is as small
as possible,

if s(x) ~ s(list[j]), 1 < j _< 8 (M) .

The above definition of an algorithm employs only the sequence of commands
to be carried out and says nothing about how one determines the appropriate com-
mand sequence for each initial state function. This allows us to discuss the idea of
having more than one expression for a given algorithm. Our primary concern is with
the finite expression of algorithms by charts which indicate in a schematic way the
"flow of control" from command to command.

3. Flowcharts and D-Charts

Clearly, if there are only a finite number of allowable initial state functions one
could simply catalog the appropriate command sequences of an algorithm. Com~
plications arise when there is an infinite, number of possible initial state functions.
We shall use a special class of flowcharts called D-charts as a means of expressing
algorithms.

By a flowchart F we mean a finite directed graph which satisfies the following:
1. Each of the vertices of F must be one of the following types:

(a) Start vertex:

F contains precisely one start vertex, and this vertex has exactly one edge
incident away from it and no edges incident toward it.
(b) Stop vertex:

Journal of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly 1972

The Expression of Algorithms by Charts 519

F contains precisely one stop vertex, and this vertex has one or more edges
incident toward it and no edges incident away from it.
(c) Command type:

s¢
c~ is a sequence of commands; there are one or more edges incident toward a
command vertex; exactly one edge is incident away.
(d) Decision type:

&
There are two edges leaving a decision vertex; one of these edges is labeled
with a quantifier@'ee predicate P and the other with ~ P , the negation of P;
there are one or more edges incident toward a decision vertex.

2. F is a connected graph (in the undirected sense).
We consider a quantifier-free predicate to consist of " a toms" which are combined

according to the rules of the propositional calculus. The atoms are relations of the
form R (y l , . . . , yk) where yi C N for i = 1, . . . , k; k > 0; and R takes oil the
value " t rue" or "false" when we substi tute the values of the variables yi
i n R (y l , . . . ,yk).

D-charts (after Di jks t ra [1]) are a rest.rieted class of flowcharts defined reeursively
by the following grammar:

< ~ 1 " > ~ <BLOO(>

A
~BI..O0~> ~ <BLOCK>

p '~p

<E~JME~AT)ON> ~ < . B L ~ > L_r___J

Note tha t the following conventions have been used:

(1) in the (E N U M E R A T I O N) rule we have used "~" for ~ , and

(2) in the (I T E R A T I O N) rule we have used

P for ~ P ~

It. should be dea r tha t this last convention causes no difficulty in determining
where to return after we have "executed" (BLOCK).

The quantities defined for algorithms in Section '2 are defined analogously for
flowcharts; thus we may speak of the set N of variables of a flowchart F, the set S

Journal of the Association for Comouting Machinery. Vol. 19. No. 3, July 1972

5 2 0 J. BRUNO AND K. STEIGLITZ

of in i t ia l s t a t e funct ions of F , and t h e set C of c o m m a n d s assoc ia ted wi th F . The
sequence of c o m m a n d s and s t a t e func t ions assoc ia ted wi th each s 6 S is deter-
mined b y F as follows: i n i t i a l l y , we have s 6 S as our cu r r en t s t a t e funct ion, a
c o m m a n d sequence c equal to X, and a s t a t e func t ion sequence a = s, and we are
pos i t ioned a t t he S T A R T ver tex of F .

Suppose we are a t a ve r t ex ~ ~ F, wi th t he cu r ren t s t a t e func t ion s' , cu r ren t com-
m a n d sequence c, and cu r ren t s t a t e func t ion sequence a. W e shall descr ibe how one
de t e rmines a new cur ren t s t a t e funct ion , u p d a t e s c and a, a n d chooses a new current
ve r t ex in F :

(1) I f ~, is t he S T A R T ver tex , s ' , c, and o" are unchanged and we move to the
un ique successor of the S T A R T ver tex .

(2) I f ~, is a c o m m a n d ve r t ex and o~ = clc2 . . . C m , t hen c becomes cclc~ . . . c m ,

s ' becomes Sm, and o" becomes as1 . . . s,~ ; where if ci ~- y ~ - - f (y l , . . . , y ~) , then
s i (n) = s i _ 1 (n) for all n 6 N - {y} a n d s i (y) = f (s ~ - l (y l) , . . . , s i - l (y k)) , and
where so = s' . W e move to t h e un ique successor of t he c o m m a n d ver tex .

(3) I f ~ is a decis ion ver tex , s ' , c, and a r e m a i n unchanged . W e eva lua t e P with

A D-chart which expresses Algorithm SEARCH:

~ i < - M A FOUND ,"NO"
F O ~ J N D ~ ~ x~li~ I l i O N

D

A flowchart which directly expresses Algorithm SEARCH:

i~-M i>M

P

A D-chart which directly expresses Algorithm SEARCH:

l i t III I (iJ It X A i~ld

FIG. 1

Journal of the Association for Computing Machinery, Vol. 19 No. 3, July 1972

The Expression of Algorithms by Charts 521

respect to s' and if P is " t rue" we move to the successor of ~ determined by the
edge labeled P, otherwise we move to the successor of ~ determined by the edge
labeled ~ P .

(4) If ~ is the STOP vertex we define F(s) = c and define the execution of F with
respect to s to be a.

Let F be a flowchart and let N', V,,' for each n C N', C', and S ' be associated
with F. Let A be an algorithm and the quantit ies N, V~ for each n C N, C, and S
be associated with A. We say tha t F directly expresses algorithm A if:

1. N = N ' , V~ = V,,' for each n C N, C = C', S = S' , and
2. for e a c h s C S F(s) = A (s) .
Let ed(A) denote the set of flowcharts which directly express algorithm A.
Direct expression of an algorithm does not always provide easily understood

flowcharts, and accordingly we say tha t F expresses algorithm A if:
1. N ~ N' , V~ = Vn' for n C N, C c C', S = S ' / N (S ' / N denotes the set

of functions obtained by restricting the members of S ' to the set N) , and
2. for each s C S, A(s) is a subsequence of F(s') where s' is any member of S '

whose restriction to N is equal to s, and the state functions in the execution of A
with respect to s are equal to the restrictions to N of the corresponding state func-
tions in the execution of F with respect to s'.

Let e(A) denote the set of flowcharts which express algorithm A. Since flow-
charts are necessarily finite, it may be tha t e(A) = ¢. Furthermore, ed(A) ~ e(A).
See Figure 1.

D-charts are as "powerful" as flowcharts in the following sense:
THEORE~ 1 (BShm and Jacopini [2]). I f F E e(A) then there exists a D-chart

D E ~(A).
PROOF. Label the S T A R T vertex in F with no and the STOP vertex with n= ,

and label all other vertices of F with the labels n~, . . . , n ~ . I f n~ is a command
vertex we construct a corresponding D-char t block as follows:

,o nj

l<_J~m o r j . m

If n~ is a decision vertex we construct a corresponding D-char t block as follows:

'o nj to n x

I <-j~-m ~ j = ~

I$ k ! m or k=m

If N is the set of variables of F we assume tha t Yl , " " " , Y m , V~: are not in N and
that these new variables take on values in {0, 1}. If ~i' is the D-char t block cor-
responding to vertex ni in F, we construct the D-char t shown in Figure 2, where we
assume tha t n1 is the vertex in F which directly succeeds the S T A R T vertex (1 _<
j _< m or j = ~) and m > 1 (if m = 0 then D = F) . I t is easy
to see tha t D E e(A). |

Suppose F C ed(A) and R is the set of all a toms used in the formation of pred-
icates associated with F. We say tha t a flowchart F ' is directly equivalent to F

J o u r n a l of t h e A s s o c i a t i o n fo r C o m p u t i n g M a c h i n e r y , Vo l . 19, N o . 3, J u l y 1972

522 J. BRUNO AND K. STEIGLITZ

~o
FIG. 2

with respect to A and the atoms R of F, if F ' C ed(A) and the predicates appearing
in F ~ are formed using only atoms in R.

The following theorem is analogous to a theorem of Knuth and Floyd [3].
THEORE~ 2. There exists an algorithm A and a flowchart F C e~(A) such that

there is no D-chart which is directly equivalent to F with respect to A and the atom8
R o f F .

PROOF. Consider the following algorithm A and flowchart F where F C ed(A).

N = {M, i}, VM = V, = {1, 2 , ' " } ,

z = { s i s (M) > 1, s (i) = 1}, C = {c~, c~}, R = {p},

cl a_ i ~ - - 2 M - - i ,

c2 A i ¢ - 2 M - 2 - i,

p a = i < M ,

~(c~c~)k; s (M) odd and k = Is(M) - 1]/2,
A (s) = ~c:(clc2)h; s (M) even and h = [s(M) - 2]/2.

~ P

F

M Sequence of values of t

(~ p) l (~ p)
(p)l(p)l(p)
(p)l(p)3(~-~p)3(~p)
(p)l (p)5 (~p)3 (p)3 (p)
(p)l(p)7(~p)3(p)5(~p)5(~p)
(p)l(p)U(~p)3(p)7(~p)5(p)5(p)
(p) l (p)11(~p)3(p)9(~p)5(p)7(~-~p)7(up)

The predicates in parentheses hold at their respective points in the sequence
Consider the following sequence of commands and predicates

a = (p) c2(~p) cl(p) c2(~p) c1(p) c2(-.~p) cl(p) c~(~--~p)

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

The Expression of Algorithms by Charts 523

We interpret the above sequence as a metadescription of the execution of F for
arbitrarily large M. Specifically, the subsequence of commands is the algorithm
A (s) for arbitrarily large s (M) ; the predicate following each command holds after
the corresponding command is executed, tha t is, (p) following cl means that i < M
after cl is executed, and (~ p) following c2 means that i > M after c2 is executed.

We make the assumption that there is a D-chart D which is directly equivalent to
F, and we shall show that this leads to a contradiction. Let us "follow" the execu-
tion of D(s) when s(M) is arbitrarily large; suppose I is the first vertex in D which
we visit for a second time. By the structure of D, I is an iteration vertex

T
' (q)

visl1~cll'the firsttwlcev~e~., l
-" : | PATH IN

~ I FIRST LOOP

The symbol (q) represents the atom (either p or ~ p) which was true when this
loop was entered for the first time, and (r) is the atom which was true when the
vertex I was reached for the second time. /

Assume that (q) = (p) and (r) = (~ p) . By inspection of a it is clear tha t

must appear on the path

One can choose s'(M) such that D(s') behaves exactly like D(s) until ~ is reached

for the first time, at which time in the execution of D (s ') , c~ causes p to be true and
this is in fact the last command executed for this value of s'(M). This results in
infinite looping and consequently (q) = (p) and (r) = (~ p) cannot hold. A similar
argument shows that (q) = (~-~p) and (r) = (p) cannot hold.

Assume tha t (q) = (p) and (r) = (p) .

(p)

In this case~and~must appear

m ~

;(p)

at least one t ime as consecutive command

vertices in the loop. Again by choosing s'(M) properly we can cause p to hold after
c2 is executed for the first t ime in this loop. This again implies infinite looping and
consequently (g) = (p) and (r) = (p) cannot hold. Similarly, (g) = (~ p) and
(r) = (~-~p) cannot hold. We are therefore forced to conclude that there is no re-
peated vertex in the execution of D(s) when s(M) is arbitrarily large. This is ira-

Journal of the Association for Computing Machinery, Vol. 19, No, 3, Ju ly 1972

5 2 4 J. BRUNO AND K. STEIGLITZ

possible since D is finite and we can conclude tha t there is no D-char t which is
directly equivalent to F. |

4. Flags

In the proof of Theorem 1 we introduced the variables vl in order to construct the
appropriate D-chart , as did BShm and Jacopini [2]. We can think of these variables
as "flags" or "signals" which tell us which sequence of commands to execute next.
We can make the notion of a "flag" more precise. Let N be the set of variables asso-
ciated with a flowchart F. We say tha t a variable x E N is a flag if x takes on values
in a finite set, and in each command of the form x ~ f (y l " • • ym), each of the
variables Yl, • • • , ym are flags. The variable F O U N D in the D-char t which expressed
Algorithm S E A R C H is a flag.

Intui t ively one would think tha t flags are unessential in a flowchart, and in fact
it is easy to show tha t they are dispensible in a certain sense. For example, suppose
we wanted to eliminate the flag F O U N D in the Example. Since F O U N D takes
on only two values we can make two copies of D (considered as a flowchart), one
with the value of F O U N D considered to be " N O " and the other with F O U N D set
to the value "YES." Any s ta tement which changes the value of F O U N D is replaced
by an appropriate transfer.

Figure 3 shows two copies of D, one for each of the possible values of FOUND.
The dotted edges are edges which have been omitted. A single S T A R T vertex has
been added, and it is immediately followed by a test to determine the appropriate
copy of D to begin with. Figure 3 can be reduced to a flowchart by successively
eliminating all vertices with no incoming edges, replacing all series edges by single
edges, replacing all parallel edges by single edges, and finally coalescing all the STOP
vertices into a single STOP vertex. This procedure applied to Figure 3 results in
the flowchart F in the Example.

We say tha t a set W of flags is complete if x ~--] (y l , • • • , yk) E C and x E W
imply y l , • • • , yk E W. From the above example it should be clear tha t :

THEOREM 3. Let F E ed(A) and W be a complete set of flags of F. For each s E S
let B (s) be the subsequence of A (s) obtained by dropping all commands of the form
x * - f (y l , " " , yk), where x E W. Then there is a flowchart F t which one can con-
struct f rom F such that F ' E ed(B).

/ S i 2 : z ! , i l

FOUND="NO" FOUNO="YES"

Fro. 3

The Expression of Algorithms by Charts 525

5. Summary

The theorems of the previous sections are examples of results which might be mis-
leading when applied to the problem of making an algorithm easy to understand.
Theorem 1 means tha t D-charts are as powerful as flowcharts if we are allowed to
add flags to a given flowchart. However, the form of the D-char t given in the proof
of the theorem is clearly not a desirable expression of an algorithm. The additional
flags in the D-char t merely represent the topology of the original flowchart, and this
encoding of all the topology into flags does not necessarily make understanding the
algorithm easy.

Theorem 3, on the other hand, shows tha t flags are superfluous since their effect
can always be accounted for in the topology of a flowchart. This extreme is equally
undesirable since a complex topology must be unraveled before an algorithm can
be understood.

Finally, Theorem 2 indicates tha t we must necessarily permit the use of flags in
D-charts if they are to be as powerful as arbi t rary flowcharts. This does not mean,
however, t ha t D-charts are an inadequate means of expression.

REFERENCES

1. DI~KSTR.~, E. Go to statement considered harmful. Comm. ACM 11, 3 (March 1968),
147 148.

2. BOHM, C., AND J:~COPIN1, G. Flow diagrams, Turing machines and languages with only
two formation rules. Comm. ACM 9, 5 (May 1966), 366-371.

3. KNUTH, D. E., .aND FLOYD, R.W. Notes on avoiding "GOTO" statements. TR-CS 148,
Comput. Sci. Dep., Stanford U., Stanford, Calif., JaB. 1970.

R E C E I V E D N O V E M B E R 1970; R E V I S E D J U L Y 1971

J o u r n a l of t h e Assnc la t lnn for C n m n , , t i n ~ M ~ o h ; n o r . Vn! 10 ~ 2 .I,,I., I07~

