The Expression of Algorithms by Charts

J. BRUNO AND K. STEIGLITZ

Princeton University, Princeton, New Jersey

aBsTRACT. This paper discusses the expression of algorithms by floweharts, and in particular
by flowcharts without explicit go-to's (D-charts). For this purpose we introduce a machine
independent definition of algorithm which is broader than usual. Our conclusion is that D-
charts are in one technical sense more restrictive than general flowcharts, but not if one allows
the introduction of additional variables which represent a history of control flow.

KEY WORDS AND PHRASES: flowcharts, go-to-less programming, fi-charts, algorithm expression

CR CATEGORIES: 5.20, 5.24

1. Introduction

The term “algorithm’ is used in many different ways. Sometimes we speak of an
algorithm as a process in the abstract, without reference to a particular computer.
It is in this sense, for example, that we speak of the “‘radix exchange sort algorithm,”
or the “simplex algorithm.” Often we identily an algorithm with a particular se-
quence of instructions for a particular computer.

In this paper we shall present a new definition of algorithm which emphasizes
the sequence of commands associated with a particular “input.” We then define
the notion ““expression’ of algorithms by general flowcharts and flowcharts without
explicit go-to’s (D-charts). Some theorems are given which exhibit some of the rela-
tionships between algorithms, floweharts, and D-charts.

2. Algorithms

Central to cur discussion is the notion of an algorithm which is defined independently
of its expression in a given language. One such definition of an algorithm can be
given as follows:

Let N be a sct of variables or names. If n € N, then n takes on values in a volue
set V., . Let € be a finite set of “‘sufficiently basic” operations called commands. All
members of ¢ arc of the form 3« f{y1, -+, ¥), where & 2> 0, ¥, 41, -+, Yr aTe
members of &, and J is some function of the values of the names 31, -+, ¥s . A
function & which associates with cach member of N a value in the eorrcsponding
value set i3 called a state function; that is, if for every n € N, s(n) € V,, then s

Copyright © 1972, Association for Computing Machinery, Inec.

General permission to republish, but not for profit, all or part of this material is granted,
provided that reference is made to this publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.
Authors’ present addresses: J. Bruno, Computer Science Depariment, Pennsylvania State
University, State College, PA 16801; K. Steiglitz, Department of Electrical Engineering,
Brackett Ilall, Engineering Quadrangle, Princeton University, Princeton, NJ 08540.

This work was supported by the National Seience Foundation under grants GK-5535 and
GJ-965, and by US Army Research Office-Durham under contract DAHC04-69-C-0012.

Journal of the Association for Computing Machiuery, Vol. 19, No. 3, July 1972, pp. 517-525.

518 J. BRUNO AND K. STEIGLITZ

is called a state funclion. Let S denote a prechosen class of state functions called
nilial state functions. An alyorithm A is o function which associates with each mem-
ber s € S a [inite sequence A(s) of members of ¢ (possibly the null sequenee \).

The execution of A with respect fo s € 5 is a linite sequence so51 - - - 8, of state func-
tions determined by:

1. 8 = s.

2. Suppose ¥« f(y1, - -, y) 18 the 7th term in the sequence A (8); then s;(n) =

sici(n) forall n € (N — ly)) and si{y) = flsea(ma), -+, si-alun)).

3. u is equal to the number of terms in A(s).

Example: Algorithm SEARCH. N = {M, list] |, count{], 7, z}. We are using
list[| (and count][1) to denote a countably infinite number of names; specifically
list| | is shorthand for the names list{1}, list[2], List[3], ---. 8 = {s|s(M) > 1}.
This algorithm searches list|1], -- -, Ust[d] for 2. 1f it is found at position j, say,
count[7] is ineremented by 1. If it is not found, it is appended to the list at position
M + 1, count[M + 1] is initialized at 1, and finally M is incremented by 1.

Let C = {¢, -+, .

a&ie—1, o & list[i] « z,
e Ei—i+1, ¢ 2 count[i] < 1,
c; & countl[i] «— count[¢] + 1, ¢ & M 4.
SEARCH is given by
eu(es) ey if s(x) = s(list[s]), 1 < 7 < s(M), 7 iz as small
SEARCH(s) = as possible,

nle) e if s(e) # s(list[i]), 1 £ 7 € s(M).

The above definition of an algorithm employs only the sequence of commands
to be carried out and says nothing about how one determines the appropriate com-
mand sequence for each initial state function. This allows us to discuss the idea of
having more than one expression for a given algorithm. Qur primary concern i with
the finite expression of algorithms by charts which indicate in a schematie way the
“flow of control” from command to command.

3. Flowcharts and D-Charts

Clearly, if there are only a finite number of allowable initial state funetions one
could simply catalog the appropriate command sequences of an algorithm. Com-
plications arise when there is an infinite number of possible initial state functions.
We shall use a special class of flowcharts called D-charts as a means of expressing
algorithms.
By a flewchart F we mean a finite directed graph which satisfies the following:
1. Kach of the vertices of F must be one of the following types:

{(a) Start verlex:

F contains precisely one start vertex, and this vertex has cxactly onc cdge
incident away from it and no edges incident toward it.
{(b) Slop verlex:

Journal of the Association for Computing Muchinery, Vol. 19, No. 3, July 1872

The Ezpression of Algorithms by Charts 519

F contains precisely one stop vertex, and this vertex has one or more edges
incident toward it and no edges incident away from it.
(¢} Command type:

o 15 a sequence of commands; there are one or more edges incident toward a
command vertex; exuctly one edge is incident away.

(d) Deciston lype:
oo

There are two cdges leaving a decision vertex; one of these edges is labeled
with a quaniifier-free predicate P and the other with ~ P, the negation of P;
there are one or more edges incident toward a decision vertex.

2. Fis a connected graph (in the undirected sense).

We congider a quantifier-free predicate to consist of “atems” which are eombined
aecording to the rules of the propositional calculus. The afoms are relations of the
form R{yr, ---, ys) wherey, ¢ Nfori =1, ---, k; k > 0; and R takes on the
value *“‘true” or ‘false” when we substitute the values of the wvariables y,
inR(ylw T, y’f)‘

D-charis (after Dijkstra [1]) are a restricted class of flowcharts defined recursively
by the following grammar:

<DCHART > —» <BLOCK>

<HLOCK> —+ <COMMANIDKENUMERATIONITERSTION>
oo

BUOCK> —= CBL(:)QO

o~ B

CENUMERATION> = GL&; <fo>
<ITERAMON>—+ ﬁ

P

Note that the following conventions have been used:
(1) in the (ENUMERATION} rule we have used Y for }Iﬁ , and

(2) in the ITERATION) rule we have used

P P
far AP
“~P <BLOCK> <BLOCK>

It should be clear that this last convention eauses no difficulty in determining
where to return after we have “executed” (BLOCIC).

The quantities defined for algorithms in Section 2 are defined analogously for
flowcharts; thus we may speak of the set N of variables of a flowehart F, the set S

Journal of the Association for Computing Machinery, Vol. 14, No. 3, July 1972

520 I. BRUNO AND K, STEIGLITZ

of initial state functions of F, and the set C of commands assoclated with F. The
sequence of commands and state functions associated with each s € S is deter-
mined by F as follows: iniwally, we have s € S as our current state function, a
command sequence ¢ equal ta N, and a state function sequence ¢ = s, and we are
positioned at the START vertex of F.

Suppose we are at a vertex » U F, with the current state function ¢, current com-
mand sequence ¢, and current state function sequence o. We shall describe how one
determines s new current state funection, updates ¢ and ¢, and chooses a new current
vertex in F';

(1) If » is the START vertex, ¢, ¢, and o are unchanged and we move to the
unigue successor of the START vertex.

(2) If »is 4 command vertex and & = ¢ty - -+ €m , then ¢ becomes eeice - -+ Cm,
s becomes s, , and ¢ becomes a8y - -+ 8 ; Where ¢, = y — f(3, -+, %), then
s;{n) = s;i_i(n) for all n € N — {y} and s:(y) = f(sizay), -+, 8ic1(we)), and

where s = §'. We move to the unique successor of the command vertex.
(3) If v is a decision vertex, &, ¢, and ¢ remain unchanged. We evaluate P with

A D-chart which cxpresses Algorithm SEARCH:

w
FOUND " YES FOLND = *No* cAlist i}

tist (iJe=x
ot (1% |
-

FOUND=-"YES"
count{iJe- count[i]+ |

D

tet {i)e-x
count [1]e |
Ma-i

st [)]¥ x A (=M

list (1]e-n
count ({] e court[1]+1 count [i}e-1
el

F16. 1

Journal of the Association for Computing Machinery, Vol. 19 No. 3, July 1972

The Expression of Algorithms by Charis 521

respect to 8’ and if P is “true’” we move to the suceessor of » determined by the
cdge labeled P, otherwise we move to the successor of » determined by the edge
labeled ~P.

(4) If vis the STOP vertex we dofine #{s) = ¢ and define the execution of F with
respect to sto be ¢.

Let F be a flowchart and let N/, V! for cach n ¢ N/, €7, and 8’ be assoceiated
with 7. Let A be an algorithm and the quantities N, V,, for eachn € N, C, and §
be associated with 4. We say that F directly expresses algorithm A if:

1. N=N,V,=V,/ foreachn ¢ N, C =, § = &, and

2. foreachs € 8 F(s) = A(s).

Let ex{d) denote the set of flowcharts which direetly express algorithm A.

Direct expression of an algorithm does not always provide easily understood
flowcharts, and accordingly we say that F erpresses algorithm A if:

IL.NCN, V.=V, forne N, CCC', 8= 8/N (8/N denotes the set
of functions obtained by restricting the members of 8’ to the set &), and

2, for each s € 8, A(s) is a subsequence of F{s') where s’ is any member of S’
whose restriction to N is equal to s, and the state functions in the execution of A
with respect to s are equal to the restrictions to N of the corresponding state func-
ticns in the execution of F with respect to ¢'.

Let (A4} denote the set of flowcharts which express algorithm A. Since flow-
charts are necessarily finite, it may be that €{4) = ¢. Furthermore, ¢;{A4) C e(4).
See Figure 1.

D-charts are as “powerful” as flowcharts in the following sense:

TaporEMm 1 (Bohm and Jacopini [2]). If F € e(A) then there exists a D-charl

D¢ elA).
Proor. Label the START vertex in # with »y and the STOP vertex with #e ,
and label all other vertices of F with the labels n;, - -, 7, . If #; is a command

vertex we eonstruct a corresponding [2-chart block as follows:

fo n; tony

I2jiSsmor j=o

12 hamor k*a

If N is the set of variables of F we assume that vy, - -+, ¢, v« are not in N and
that these new variables take on values in {0, 1}. If »;" is the D-chart block cor-
responding to vertex 7, in F, we construcet the D-chart shown in Figure 2, where we
assume that #; is the vertex in 77 which dircetly succeeds the START vertex (1 <
i<morj = o) andm > 1 (if m = 0 then I = F). It is easy
tosco that D € e(A). |

Supposc FF € e;(A) and B is the sct of all atoms used in the formation of pred-
icates associated with F. We say that a flowchart I is directly equivalent to F

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

522 J. BRUNO AND K. STEIGLITZ

F1q. 2

with respect to A and the atoms R of F, if F' € e;{A) and the predicates appearing
in F’ are formed using only atoms in R.

The following theerem is analogous to a theorem of Knuth and Floyd [3].

TrnroreM 2. There exists an algorithm A and a flowchart T € e(A) such thal
there is no D-chart which 1s directly equivalent to F 1with respect lo A and the atoms
RofT.

P'roor. Consider the following algorithm 4 and flowehart ¥ where I' € e;(A).

N={M4, Vie=V;=11,2 -},
S=1ls[s(M) 21 8(4) =1}, C={a,c}, R = {p},
e & i—2M — 14,

Co & 1e—2M — 2 — 1

p2i< M,

Afs) = {(czcl)’“; s(M) odd and & = [s(M) — 1)/2,
T les(eien)®s (M) evenand b = [s(M) — 2]/2.

(P)L(P)7{(~p)B(p)3(~p)5(~p}
(p)1(p)9(~p)3(p)7 (~p)3(p)5(p)
I {(~p)3 (I (~p)5 ()T (~p)T{~p)

M Sequence of values of 1
1 (~p)1(~p)

2 (2)1(2)1(p)

3 (p)1(p)3(~p)3(~p)

4 (PH(p)5(~p)3(p)3(p)

5

6

7

The predicates in parentheses hold at their respective points in the sequence
Consider the following sequence of commands and predicates

a = (p)a(~pla(p)e(~p)al(p)e(~p)al(p)ea(~p) - .

Journal of the Association for Computing Machinery, Vol. 19, Na. 3, July 1072

The Expression of Algorithms by Charts 523

We interpret the sbove secquence as a metadescription of the execution of F for
arbitrarily large M. Specifically, the subsequence of commands is the algorithin
A(s) for arbitrarily large (M) ; the predicate following each command holds after
the corresponding command is executed, that is, (p) following ¢; means that ¢ < M
after e; is executed, and (~p) following c; means that 7 > M after ¢ is executed.

We make the assumption that there is a D-chart D which is directly equivalent to
F, and we shall show that this leads to a contradiction. Let us “follow’ the execu-
tion of D(s) when s(M) is arbitrarily large; suppose [is the first vertex in D which
we visit for a second time. By the structure of D, I is an iteration vertex

. {q)
1,he First verte
vistted trics !

- H FATH 1N
H FIRST LOOP
o
The symbol (g¢) represents the atom (either p or ~p) which was true when this
loop was entered for the first time, and (r) is the atom which was true when the
vertex [was reached for the second time.

Assume that (¢} = (p) and () = {~p). By inspection of « it is clear that Elt']

must appear on the path

it
One can choose §'(3) such that D(s") behaves exactly like D(s) until E%] is reached

for the first time, at which time in the exeeution of D(s'), e causes p to be true and
this is in fact the last command executed for this value of s'(27). This results in
infinite looping and consequently (¢) = (p) and (r) = (~p) cannot hold. A similar
argument shows that (g) = (~p) and () = (p) cannot hold.

Aszume that (¢) = (p) and () = (p).

-
o

i(;d
In this case E;ﬂ and [ﬁiﬂ must appear at least onec time as consecutive command

vertices in the loop. Again by choosing ¢’ (M} properly we can cause p to hold after
¢z 15 exeeuted for the first time in this loop. This again implies infinite looping and
consequently {g) = (p) and (v) = (p) cunnot hold. Similarly, (4) = (~p) and
(r}) = (~p) eannot hold. We are therefore forced to conclude that there is no re-
peated vertex in the execution of D(s) when s(M) is arbitrarily large. This is im-

Journal of the Assotiation for Computing Machinery, Vol. 19, No. 3, July 1972

524 J. BRUNO AND K. STEIGLITZ

possible gince I ig finite and we can cenclude that there is no D-chart which is
directly equivalent to F. |

4. Flogs

In the proof of Theorem 1 we introduced the variables »; in order to construct the
appropriate D-chart, as did Béhm and Jacopini [2]. We can think of these variables
as “flags” or “signals’” which tell us which sequence of commands to execute next.
We can make the notion of a “flag” more precise. Let N be the set of variables asso-
ciated with a flowchart F. We say that a variable z € N is 4 flag if x takes on values
in a finite set, and in each command of the form z « f(y1 -+ yn), each of the
variables 41, - - -, ym are flags. The variable FOUND in the D-chart which expressed
Algorithm SEARCH is a flag.

Intuitively one would think that flags are unessential in » flowehart, and in fact
it is casy to show that they are dispensible in a certain sense. For example, suppose
we wanted to eliminate the flag FOUND in the Example. Since FOUND tukes
on only two values we can make two coples of D (considered as a flowchart), one
with the value of FOUND considered to be “NO* and the other with FOUND set
to the value “YES.” Any statement which changes the value of FOUND is replaced
by an appropriate transfer.

Figure 3 shows two copies of D, one for each of the possible values of FOUND.
The dotted edges are edges which have been omitted. A single START vertex has
been added, and it is immediately followed by a test to determine the appropriate
copy of D to begin with. Figure 3 can be reduced to a flowchart by suceessively
eliminating all vertices with no incoming edges, replacing all series edges by single
edges, replacing all parallel edges by single edges, and finally eoaleseing all the STOP
vertices Into a single STOP vertex. This procedure applied to Figure 3 results in
the flowchart F in the Example.

We say that a set W of flags is complete if x «— f(yh, -+,) € Candz € W
imply 41, - -+, ¥ € W. From the above example it should be elear that:

THEOREM 3. Let F € ¢,(A) and W be a complete set of flags of F. For each s € 8
let B(s) be the subsequence of A(s) oblained by dropping all commands of the form
x —f(yr, -, w), where x € W. Then there 1is a flowchart F' which one can con-
struct from I' such that F' € ei(B).

£ [niles
{ | countlile-1
h Me-i

i

st [i] & x
count il &= |
Mei

FOUND-"YES"

FOUND="NO"

Tanmma 1 ~f tha Assaniotinn fan Mamnntine Manhivaes Wal 10 Ka 8 Tule 1079

The Expression of Algorithms by Charts 525

5. Summary

The theorems of the previous sections are examples of results which might be mis-
leading when applied to the problem of making an algorithm easy to understand.
Theorem 1 means that D-charts are as powerful as flowcharts if we are allowed to
add flags to a given flowchart. However, the form of the D-chart given in the proof
of the theorem is clearly not a desirable expression of an algorithm. The additional
flags in the D-chart merely represent the topology of the original flowchart, and this
encoding of all the topology into flags does not necessarily make understanding the
algorithm easy.

Theorem 3, on the other hand, shows that flags are superfluous since their cffect
can always be accounted for in the topology of a flowchart. This extreme is equally
undesirable since a complex topology must be unraveled before an algorithm can
be understood.

Finally, Theorem 2 indicates that we must necessarily permit the use of flags in
D-charts if they are to be as powerful as arbitrary flowcharts. This does not mean,
however, that D-charts are an inadequate means of expression.

REFERENCES

1. Dukstra, E. Go to statement considered harmful. Comm. ACM 11, 3 (March 1968),
147-148.

2. Boum, C., anp JacoriNl, G. Flow diagrams, Turing machines and languages with only
two formation rules. Comm. ACM 9, 5 (May 1966), 366-371.

3. Kwnurn, D. E., anp Frovp, R. W. Notes on avoiding “GOTO”’ statements. TR-CS 148,
Comput. Sci. Dep., Stanford U., Stanford, Calif., Jan. 1970.

RECEIVED NOVEMBER 1970; REVISED JuLy 1971

Journal of the Association for Commitine Machinery Val 10 Nn R Tulv 1079

