
Privacy-Preserving Collaborative

Anomaly Detection

Haakon Andreas Ringberg

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Jennifer Rexford

September 2009

c© Copyright by Haakon Andreas Ringberg, 2009.

All Rights Reserved

Abstract

Unwanted traffic is a major concern in the Internet today. Unwanted traffic includes

Denial of Service attacks, worms, and spam. Identifying and mitigating unwanted

traffic costs businesses many billions of USD every year. The process of identifying

this traffic is called anomaly detection, and Intrusion Detection Systems (IDS’es)

are among the most prevalent techniques. IDS’es, such as Snort, allow users to

write “rules” that specify the properties of traffic that should be detected and the

corrective action to be taken in response. Unfortunately, applying these rules in

an online setting can be prohibitively expensive for large networks, such as Tier-

1 ISPs, which may have tens of thousands of links and many Gbps of traffic. In

the first chapter of this thesis we present a system that leverages machine learning

algorithms to detect the same type of unwanted traffic as Snort, but on summarized

data for faster processing. Our results demonstrate that this system can effectively

learn to classify many Snort rules with a high degree of accuracy.

Unfortunately, distinguishing good traffic from unwanted traffic is challenging

even in an offline setting because many types of unwanted traffic traffic, such as

network attacks, deliberately mimic the behavior of normal traffic. We therefore

propose that the targets of unwanted traffic should collaborate by correlating their

attack data, under the assumption that a given malicious host is likely to affect more

than one victim over time. That is, the senders of unwanted traffic will use individual

computers (i.e., malicious hosts) repeatedly for various nefarious purposes in order

to maximize their profits, and this repeated use will leave traces across networks. In

the second chapter of this thesis we present a measurement study that quantifies the

potential gain from this collaborative anomaly detection. Specifically, using traces

from operational networks, we calculate the fraction of detected network anomalies

iii

(viz., IP scans, port scans, and DoS attacks) that could have been mitigated if some

subset of the victims collaborated by sharing information about past perpetrators.

One major challenge with the proposed collaborative anomaly detection is that

the human owner/operators of participating networks are often hesitant to openly

share information about the hosts (customers) that use their services. In the third

chapter of the thesis we address this problem by proposing and evaluating the

efficiency of a novel cryptographic protocol that allows victims to collaborate in a

manner that protects their privacy. Our protocol allows participants to submit a

set of IP addresses that they suspect might be engaging in unwanted activity, and it

returns the set of IP addresses that existed in some fraction of all suspect sets (i.e.,

threshold set-intersection). The protocol preserves privacy because it never reveals

who suspected whom, and a submitted IP address is only revealed when more than

n participating networks suspect it. Our implementation of said protocol is able to

correlate millions of suspect IP addresses per hour when running on two quad-core

machines.

iv

Acknowledgements

I would not be where I am—or even who I am—without the help of a great many

people. I will thank a few of them.

Professional Benny Applebaum, for explaining cryptography to me; Matthew Cae-

sar, for excellent writing; Robert Calderbank, for serving on my pre-FPO commit-

tee; Mark Crovella & Anukool Lakhina, for generosity in time, energy, and software,

without which I would not have gotten off the ground; Cabernet Group Members,

for a motivating and collegial research group; Christophe Diot, for providing the

preciseness and push I needed, and for a great deal of subsequent support; Nicholas

Duffield, for being a great mentor at AT&T Labs and for serving as a thesis reader;

William Edgar, for inspiration and opening doors; Michael Freedman, for collabo-

rating on an interesting project and for serving as a thesis reader; Patrick Haffner,

for being a very helpful collaborator; Brian Kernighan, for demonstrating that bril-

liant people can also be wonderful people, and for serving on my thesis committee;

Balachander Krishnamurthy, for clear unfiltered insights; Craig Labovitz, for a re-

warding summer in Ann Arbor; Kai Li, for being the primary reason I went to

Princeton in the first place, and for consistently prioritizing what is best for me and

my research; Larry Peterson, for serving on my thesis committee; Augustin Soule,

for being my closest collaborator and a valued friend; Nicholas Sturgeon, for making

me realize how rewarding I find philosophical discourse;

This dissertation is based on joint research with numerous brilliant collaborators.

In particular: Chapter 2 is based on work with Nicholas Duffield, Patrick Haffner,

and Balachander Krishnamurthy; Chapter 3 is based on work with Matthew Caesar,

v

Jennifer Rexford, and Augustin Soule; and Chapter 4 is based on work with Benny

Applebaum, Matthew Caesar, Michael Freedman, and Jennifer Rexford.

I’d also like to acknowledge Thomson for generous financial support and the NSF

for grant CNS-0626771.

Friends Brian Alexander, for watching baseball with me when we both had “im-

portant” work to do; Elaine Auyeung, for doing my algorithms homework; Tim

Bavaro, for a shared appreciation of acerbic humor; Ramona Pousti Canan, for

being as close to a soul mate as I can imagine; Tony Capra, for a sharp intellect;

Melissa Carroll, for putting up with countless asinine arguments; Hubert Chao, for

bringing me into the 312 fold; Min Li Chan, for being interesting; Jamie Consuegra,

for smiling at me in English class; Amogh Dhamdhere, for being a fellow victim of

a harsh job market; Ariful Gani, for making me feel grateful to be a Yankee fan;

Ilya Ganusov, for being cool; Aleksey Golovinskiy, for being hilarious; Ji Gu, for

shelter; Runa Hald, for being a challenge; Maya Haridasan, for having the second

best smile in the world; Jiayue He, for four wonderful and delicious months in Paris

and many more to come in NYC; Frode Henriksen, for being intellectually refresh-

ing; Sigrid Holm, for never saying you didn’t like FOX; Jialu Huang, for making

me happy; Grunde Jomaas, for soccer; William Josephson, for more trips to NYC

than I wish to enumerate; Ahreum Kang, for being perhaps the most wonderful

person I know; Dhruva Karle, for being like a brother; Janek Klawe, for having the

best smile ever; Kelly Li, for an abundance of spunk; Xiaojuan Ma, for being a

great traveling companion; David Menestrina, for being a friend beyond reproach;

Radha Narayan, for moral evolutionism; Linda Nguyen, for inspiring me to become

vi

a better partner; Sarah Nguyen, for being a promising padawan; Kori Oliver, for

making me feel cool; Frances Perry, for paving the way; Ann Raldow, for having

the best memory of anyone I know; Aditya Rao, for being loyal to a fault; Sandeep

Ravindran, for always being fun to hang around; Senad Rebac, for being both a

coach and a friend; Michael Scullard, for being funny; Carl Christian Størmer, for

being a kindred spirit; Jeffrey Vaughan, for letting me be a substitute rabbi; Nick

Vlku, for intensely caffeinated conversations; Tracy Wang, for lots of shared mo-

ments; Lana Yarosh, for being fun; Harlan Yu, for fried chicken;

Family My parents, Tore Larsen and Unni Ringberg, whose impact is beyond words

and numbers. The mere thought of matching your parenting efforts is overwhelming.

My brother, Helge Ringberg. I am a big fan of the Friedrich Nietzsche quote “[that

which] doesn’t kill us makes us stronger.” I take some amount of personal pride in

making you as strong as you are today. By the same token, however, I apologize

for making you as strong as you are today. You’re a wonderful brother!

My grandmother, Margareth Larsen, whose generosity toward those less fortunate

is immensely inspirational. I hope to be equally intellectually sharp and active when

I’ve passed 80. My grandfather, Lars Larsen, for lying on the floor under a table

next to me drawing Santa Claus, ships, and cars.

My second set of parents, Bruce and Beverly Shriver. I cannot express how pro-

foundly grateful I am that you accepted me into your house and family almost 10

years ago. Since it is absurd to think that I could ever repay you, I only hope that

I can be equally generous to someone else in the future.

vii

Jennifer Rexford A few years ago a fellow advisee asked whether I’d be willing

to assist in an application to award Jen a faculty advisor award. I initially resisted

because I felt many of these faculty awards are either (a) granted in a round-robin

fashion, or (b) primarily a popularity contest: neither of which would do justice to

how uniquely qualified and dedicated Jen is. Jen is not only a totally selfless advisor

who cares only about her students, but she is also a great resource for lessons on

the direction and presentation of research. It goes without saying that no one has

been more important to my thesis and I could not have asked for a better advisor.

Too all: merci, thank you, & tusen takk.

viii

Contents

Abstract . iii

Acknowledgements . v

List of Tables . xii

List of Figures . xiii

1 Introduction 1

1.1 Why Unwanted Traffic is Here to Stay 2

1.2 Rule-Based Anomaly Detection on IP Flows 3

1.3 Evaluating the Potential for Collaborative Anomaly Detection . . . 5

1.4 Privacy-Preserving Collaborative Anomaly Detection 7

1.5 Thesis Contribution . 8

2 Rule-Based Anomaly Detection on IP Flows 10

2.1 Introduction . 10

2.1.1 Motivation . 10

2.1.2 Signature-based Detection on IP Flows 11

2.1.3 Contribution . 13

2.2 Related Work . 14

2.3 A Packet Signature Taxonomy . 15

ix

2.4 Packet and Flow Rules in Practice 16

2.5 Machine Learning Algorithms . 19

2.6 Data Description and Evaluation Setup 20

2.7 Detection Performance Criteria . 22

2.8 Experimental Results . 25

2.8.1 Baseline Behavior . 25

2.8.2 Data Drift . 25

2.8.3 Sampling of Negative Examples 26

2.8.4 Choosing an operating point 27

2.8.5 Detailed Analysis of ML Operation 28

2.9 Implementation Scenarios and Architecture 31

2.10 Computational Efficiency . 33

2.10.1 Costs, Implementations, and Parallel Computation 33

2.10.2 Initial Correlation of Flow and Snort Data 34

2.10.3 Learning Step . 34

2.10.4 Classification Step . 36

2.11 Conclusions . 36

3 Evaluating the Potential of Collaborative Anomaly Detection 41

3.1 Introduction . 41

3.2 Methodology . 44

3.2.1 Data Sources . 44

3.2.2 Anomaly Detectors . 46

3.3 Victim Collaboration . 48

3.3.1 Blacklist Duration . 49

x

3.3.2 Set of Collaborators . 51

3.4 Related Work . 55

3.5 Conclusions . 55

4 Privacy-Preserving Collaborative Anomaly Detection 57

4.1 Introduction . 57

4.2 Design Goals and Status Quo . 62

4.2.1 Design Goals . 62

4.2.2 Limitations of Existing Approaches 64

4.2.3 Security Assumptions and Definitions 67

4.3 Our PDA Protocol . 70

4.3.1 The Basic Protocol . 71

4.3.2 The Full-Fledged Protocol 75

4.3.3 Concrete Instantiation of the Cryptographic Primitives . . . 77

4.3.4 Efficiency of our Protocol 81

4.4 Distributed Implementation . 82

4.4.1 Proxy: Client-Facing Proxies and Decryption Oracles 82

4.4.2 Database: Front-end Decryption and Back-end Storage . . . 83

4.4.3 Prototype Implementation 84

4.5 Performance Evaluation . 85

4.5.1 Scaling and Bottleneck Analysis 88

4.5.2 Feasibility of Supporting Applications 93

4.6 Extended Protocol and Security Proof 95

4.7 Conclusions . 98

5 Conclusions 100

xi

List of Tables

2.1 Number of flows in millions per week 20

2.2 Number of flows in millions per protocol for Week 2 21

2.3 Number of flows and average precision per rule: baseline, drift, and

sampling . 38

2.4 Precision and Alarm rate at high recall for payload rules 39

2.5 The importance of each feature to a classifier as measured by the AP

if the feature is removed during detection 40

3.1 Anomaly Detectors . 47

4.1 Comparison of proposed schemes for privacy-preserving data aggre-

gation . 65

4.2 Breakdown of proxy resource usage 91

4.3 Breakdown of client resource usage 91

xii

List of Figures

2.1 Packet Rule Classification: FH (flow header), PP (packet payload),

MI (meta-information) indicate rule attributes according to predicate

classes; disjoint packet rule classification illustrated by different colors. 17

2.2 Precision vs. number of true positives for the EXPLOIT ISAKMP

rule training on week1 and testing on week2 23

2.3 Machine Learning Based Flow Alerting System 32

3.1 Distribution of “number of destination IP addresses contacted” within

15 minutes . 47

3.2 Effectiveness of victim collaboration as a function of ∆ 49

3.3 Effectiveness of victim collaboration with random victim selection . 51

3.4 Effectiveness of victim collaboration when victims are chosen based

on how often they are attacked . 53

3.5 Effectiveness of victim collaboration with a weighted random victim

selection . 54

4.1 High-level system architecture and protocol. Fs is a keyed hash func-

tion whose secret key s is known only to the proxy. 71

4.2 Distributed proxy and database architecture 81

xiii

4.3 Throughput as a function of number of keys 85

4.4 Throughput as a function of number of participants 86

4.5 Throughput as a function of number of proxy/DB replicas 86

xiv

Chapter 1

Introduction

The Internet is integral for human communication: news, financial transactions,

personal photographs, and video conferences, to name a few, are now frequently

routed through the Internet. In spite of its ubiquitousness and importance, the

Internet today is plagued by a great deal of unwanted traffic. Ironically, the same

openness that has made the Internet wildly successful also makes it impossible to

fully eradicate this unwanted traffic. In this dissertation we present an architecture

that helps mitigate the problem of unwanted traffic. Our approach provides three

essential properties: (1) scalable algorithms for the detection of unwanted traffic; (2)

accuracy of detections by promoting collaboration between the victims of this traffic;

and (3) protecting the privacy of collaborating networks via a novel cryptographic

protocol.

1

1.1 Why Unwanted Traffic is Here to Stay

The Internet’s precursors (NSFNet and ARPANET) were managed by a single entity

and set up for communication between mostly trusted parties such as different

branches of the US military or US universities. There was minimal concern that

these parties would themselves inject unwanted traffic into the network since they

had no motivation to do so. This “open access” policy was continued, and became

further entrenched, with the NSF’s efforts to commercialize the Internet in the

1990s.

Open access means that any network can join the Internet as long as it can

connect to another network in the Internet. This openness allowed the Internet

to grow from interconnecting thousands of computers to interconnecting billions of

computers. However, this openness also means that the Internet itself is merely the

cloud of interconnected networks: anyone can join and there is no central authority

to manage the masses. Much like any other social club, therefore, the Internet’s

open membership policy has supported growth but admitted the occasional bad

network apple. The bad networks, in turn, admit and tolerate bad end-hosts as

their customers, which means that open access extends all the way to end-users.

Moreover, these occasional bad end-users have plenty of economic incentive to

send various forms of traffic that is unwanted by destinations. Spam—unwanted

pieces of email—for example, often contain unsolicited advertisements, which are

profitable for those sending the spam. In order to maximize their profits, the nefar-

ious parties try to send as much spam as possible, which requires many computers.

Spam therefore indirectly leads to trolling for, hijacking, and commandeering vul-

nerable computers, possibly via Internet worms. Such compromised hosts are called

2

bots—because they are “robots” which can be controlled—and large collections of

bots are referred to as botnets [16]. Bots can be used for spam [31, 68], DoS at-

tacks [72], pump-and-dump schemes [1], click fraud [60, 51, 53], identity theft [8, 13],

and a slew of other illicit actions [24, 35, 5].

There is strong reason to believe that the status quo provides the three necessary

ingredients to ensure that the problem of unwanted traffic cannot be fully eradicated:

means, motive, and opportunity. A large number of skilled computer programmers

have the means to write software to perform the aforementioned illicit network acts;

motive is in plentiful supply given that actions such as identity theft and pump-

and-dump scams can be very profitable; and finally, the openness of the Internet

provides numerous opportunities for malicious parties to send unwanted traffic. In

this dissertation we therefore focus on algorithms that can help mitigate the problem

of unwanted traffic in an efficient manner.

1.2 Rule-Based Anomaly Detection on IP Flows

Computer networks have limited or no control of the networks (or end-users) that

send them traffic, and nor would it make business sense to block all traffic from

a large swath of networks. Networks are therefore in need of algorithms that can

detect unwanted traffic “on the fly”; we will refer to such detection algorithms as

“anomaly detectors.” One of the most prevalent set of anomaly detection techniques

rely on signatures of unwanted traffic. That is, most unwanted traffic serves a very

specific purpose for the originator, and can therefore contain telltale signs. Internet

worms, for example, take advantage of vulnerabilities in computer software in order

to take control of the end-hosts running this software; the IP packets spreading the

3

worm must therefore contain specific sequences of bytes in order to leverage the

vulnerability.

Signature-based intrusion detection systems (IDS) often provide a simple lan-

guage within which users can specify (A) the signature of some type of unwanted

traffic that should be detected (often called a rule); and (B) the corrective action

that should be taken in response (e.g., alerting, off-ramping for further analysis,

blocking). Their programmable and extensible nature have made such IDS’es very

popular for protecting the edges of enterprise networks. Large communities of users

have thus sprung up around these anomaly detectors; the members share their ex-

periences with, and the rules that they write for, these IDS’es with one another,

which make the IDS’es themselves even more appealing to new potential users.

One important drawback with the rule-based IDS’es, however, is that they do

not effectively scale up to the speeds required by large networks. It may simply

be infeasible to perform the deep-packet inspection (DPI) necessary to execute all

types of rules, especially if the rules themselves can be written as arbitrary regular

expressions. Furthermore, in order to protect the edge of large networks, all traffic

traversing thousands of links will have to be compared against potentially hundreds

of rules: a daunting task.

An intrusion detection system that could inspect every network packet would

be ideal, but is impractical. Signature based detection systems such as Snort have

been widely deployed by enterprises for network security, but are limited by the

scaling factors described above. We have therefore developed an architecture that

can translate many existing packet signatures to instead operate effectively on IP

flows, which characterize a set of IP packets between two end-points within some

fixed time interval. Flow statistics are compact and collected ubiquitously within

4

most ISPs’ networks, often in the form of NetFlow.

We wish to construct rules at the flow level that accurately reproduce the action

of packet-level rules. In other words, an alarm should ideally be raised for flows

that are derived from packets that would trigger packet-level rules. Our methods

are probabilistic in that the flow level rules do not reproduce packet level rules

with complete accuracy; this is the price we pay to be scalable. More precisely,

our architecture leverages Machine Learning (ML) algorithms in order to discover

the flow-level classifier that most successfully approximates a packet signature. The

essential advantage of ML algorithms is their ability to learn to characterize flows

according to predicates that were not included in the original packet-level signature.

1.3 Evaluating the Potential for Collaborative Anomaly

Detection

Our probabilistic methods to improve rule-based IDS’es trade off some accuracy

for a great deal of scalability—but we still want that accuracy back. Moreover,

even the “perfect” IDS’es are not perfect. That is, in many cases it may simply be

impossible for any individual edge-network in isolation to distinguish good traffic

from bad traffic. At a high level, the malicious parties that originate unwanted

traffic will be most effective in their aim if they elude detection, which they can do

by mimicking the behavior of normal traffic. The victim of a Distributed Denial

of Service (DDoS) attack—an attack where the malicious party tries to disrupt the

victim’s network’s services–for example, may not be able to distinguish requests

from users that are genuinely interested in the service from those requests whose

purpose is only to overwhelm the victim.

5

All is not lost, however. Recall that the malicious parties that control and origi-

nate unwanted traffic frequently have specific aims which revolve around maximizing

their profit. It is therefore reasonable to expect that each individual compromised

host—a.k.a. bot—will be used for multiple illicit actions over time. Therefore, if

the victims (e.g., networks or websites) of such attacks shared information about

the hosts that were present during attacks then likely compromised hosts could be

identified by being present in an unusually high number of attacks (“fool me once,

shame on you, fool me twice, shame on me”). In other words, collaborating by

combining their multiple vantage-points will allow the victims of unwanted traf-

fic to become increasingly confident in their set of identified bots by the repeated

appearance of certain hosts in attacks.

In order to understand the potential benefit of victim collaboration, it is im-

portant to study unwanted traffic from operational networks. Building this un-

derstanding requires studying what unwanted traffic looks like when viewed across

several vantage points, and precisely how these vantage points may monitor traffic

and exchange information to best isolate attacks. We accomplish this through a

measurement study where we apply standard network anomaly detectors to IP flow

traces from GEANT, a European ISP, to identify unwanted traffic, and analyze

the ability of a representative set of collaboration schemes to assist the victims in

isolating and mitigating these attacks. Our final results calculate the number and

percentage of attacks that could have been mitigated by a set of collaborating victim

end-hosts.

6

1.4 Privacy-Preserving Collaborative Anomaly De-

tection

The concern for privacy is a major obstacle for collaborative anomaly detection.

That is, the suspicions shared between collaborating networks would necessarily

include both legitimate customers and bona fide compromised malicious hosts (or

otherwise the collaboration would be unnecessary). Divulging information about le-

gitimate customers would be problematic for many potential participating networks.

Furthermore, participants would probably be uneasy with any other network know-

ing which hosts they suspected, as this could reveal information about customer or

traffic mix. Any collaboration scheme would therefore have to protect the privacy

of both the submitted suspects and of the participating networks themselves.

We present a cryptographic protocol and implementation that provides two es-

sential privacy properties: (1) suspect privacy ensures that no party should learn

anything about IP addresses that are below some minimum threshold t; and (2)

participant privacy ensures that no party should learn which suspect IP addresses

were submitted by which collaborating network. Our system is “semi-centralized”

in that the data analysis is split between two separate parties: a proxy and a

database. The proxy plays the role of obliviously blinding suspect IP addresses, as

well as transmitting blinded IP addresses to the database. The database, on the

other hand, builds a table that is indexed by the blinded IP address. Each blinded

IP address that ultimately is submitted by more than t networks is shared with the

proxy, which unblinds the IP address.

The resulting semi-centralized system provides strong privacy guarantees under

the assumptions that the proxy and the database do not collude. In practice, we

7

imagine that these two components will be managed either by the participants

themselves that do not wish to see their own information leaked to others, perhaps

even on a rotating basis, or third-party commercial or non-profit entities tasked with

providing such functionality. For example, Google (which already plays a role in bot

and malware detection [32]) or the EFF (which has funded anonymity tools such as

Tor [17]), which themselves have no incentive to collude. It should be emphasized

that the proxy and database are not treated as trusted parties: we only assume that

they will not collude.

Using a semi-centralized architecture greatly reduces operational complexity

and simplifies the liveness assumptions of the system. For example, clients can

asynchronously provide their suspicions without our system requiring any complex

scheduling. Despite these simplifications, the cryptographic protocols necessary to

provide strong privacy guarantees are still non-trivial. Specifically, our solution

makes use of oblivious pseudo-random functions [59, 25, 33], amortized oblivious

transfer [58, 36], and homomorphic encryption with re-randomization. Our ex-

periments show that the performance of our system scales linearly with computing

resources, making it easy to improve performance by adding more cores or machines.

For collaborative diagnosis of denial-of-service attacks, our system can handle mil-

lions of suspect IP addresses per hour when the proxy and the database each run

on two quad-core machines.

1.5 Thesis Contribution

When combined, the systems and protocols presented in this dissertation provide

a complete framework to help mitigate the problem of unwanted traffic: from

8

high-speed detection at individual networks to collaboration between networks in a

privacy-preserving manner. Our architecture provides three essential properties:

1. Scalability: We make the classification power and extensibility of rule-based

anomaly detectors available to very large networks, such as Tier-1 ISPs. We

increase speed by analyzing summarized data structures (IP flows) instead

of IP packets and retain a great deal of accuracy for many rules by leverag-

ing machine learning (ML) algorithms to discover latent correlations between

packet-level features and flow-level features.

2. Accuracy: In a measurement study we demonstrate that collaboration be-

tween victims of unwanted traffic can help improve detection accuracy because

individual compromised hosts are used repeatedly for different attacks.

3. Privacy Finally, we present a novel privacy-preserving collaboration proto-

col, which will allow victims to share data to become more confident in their

suspicions of potentially compromised hosts. Our protocol does this while pro-

tecting the privacy of (A) the participating networks, and (B) the submitted

suspects.

9

Chapter 2

Rule-Based Anomaly Detection on

IP Flows

2.1 Introduction

2.1.1 Motivation

Detecting unwanted traffic is a crucial task in managing data communications net-

works. Detecting network attack traffic, and non-attack traffic that violates network

policy, are two key applications. Many types of unwanted traffic can be identified

by rules that match known signatures. Rules may match on a packet’s header,

payload, or both. The 2003 Slammer Worm [55], which exploited a buffer overflow

vulnerability in the Microsoft SQL server, was matchable to a signature comprising

both packet header fields and payload patterns.

Packet inspection can be carried out directly in routers, or in ancillary devices

observing network traffic, e.g., on an interface attached to the network through

a passive optical splitter. Special purpose devices of this type are available from

10

vendors, often equipped with proprietary software and rules. Alternative software

systems such as Snort [74] can run on a general purpose computer, with a language

for specifying rules created by the user or borrowed from a community source.

In any of the above models, a major challenge for comprehensive deployment

over a large network, such as a Tier-1 ISP, is the combination of network scale and

high capacity network links. Packet inspection at the network edge involves deploy-

ing monitoring capability at a large number of network interfaces (access speeds

from OC-3 to OC-48 are common) whereas monitoring in the network core is chal-

lenging since traffic is concentrated through higher speed interfaces (OC-768 links

are increasingly being deployed). In either case, applying possibly many hundreds

of rules to the traffic at line-rate can be infeasible. Whereas fixed-offset matching

is cheap computationally and has known costs, execution of more complex queries

may hit computational bandwidth constraints. Even in cases where detection is

provided natively by the router, there may be large licensing costs associated with

its widespread deployment.

2.1.2 Signature-based Detection on IP Flows

An intrusion detection system that could inspect every network packet would be

ideal, but is impractical. Signature-based detection systems such as Snort have

been widely deployed by enterprises for network security, but are limited by the

scaling factors described above. We have therefore developed an architecture that

can translate many existing packet signatures to instead operate effectively on IP

flows. Flow statistics are compact and collected ubiquitously within most ISPs’

networks, often in the form of NetFlow [14].

Our work does not supplant signature-based detection systems, but rather ex-

11

tends their usefulness into new environments where packet inspection is either in-

feasible or undesirable. We wish to construct rules at the flow level that accurately

reproduce the action of packet-level rules. In other words, an alarm should ideally

be raised for flows that are derived from packets that would trigger packet-level

rules. Our methods are probabilistic in that the flow level rules do not reproduce

packet level rules with complete accuracy; this is the price we pay to be scalable.

The idea of deriving flow-level rules from the header portion of a packet-level rule

has been proposed in [49], but this technique only applies to rules that exclusively

inspect a packet’s header. What can be done for rules that contain predicates that

match on a packet’s payload? Ignoring the rule or removing the predicates are both

unsatisfactory options, as they will lead to heavily degraded detection performance

in general. Signatures that inspect a packet’s payload can still be effectively learned

if there is a strong association between features of the flow header produced by this

packet and the packet’s payload. For example, the Slammer Worm infects new

host computers by exploiting a buffer overflow bug in Microsoft’s SQL server; these

attack packets contain known payload signatures in addition to targeting a specific

UDP port on the victim host. The Snort signature to detect these packets utilizes

both these pieces of information to improve detection. An exhaustive system for

translating packet rules into flow rules must leverage these correlations between the

packet payload and flow header in order to mitigate the impact of losing payload

information.

Some signatures exhibit a strong association between payload and flow-header

information even though no correlation is implied in the original packet signature.

This can occur either because the human author of the signature was unaware of or

disregarded this piece of information (e.g., the unwanted traffic very frequently uses

12

a particular destination port, even though this was not specified in the packet signa-

ture), or because the association exists between the payload and flow-header features

that have no packet-header counterpart (e.g., flow duration). For this reason, our

architecture leverages Machine Learning (ML) algorithms in order to discover the

flow-level classifier that most successfully approximates a packet signature. The

essential advantage of ML algorithms is their ability to learn to characterize flows

according to predicates that were not included in the original packet-level signature.

2.1.3 Contribution

The primary contribution of this chapter is the ML-based architecture that can

detect unwanted traffic using flow signatures. These flow signatures are learned from

a reference set of packet signatures and joint packet/flow data. We evaluate our

system on traces from and signatures used by a medium-sized enterprise. Our results

show that ML algorithms can effectively learn many packet signatures including

some that inspect the packet payload. We also demonstrate that our system is

computationally feasible in that it: (1) can learn flow signatures fast enough to

keep up with inherent data drift; and (2) the learned classifiers can operate at very

high speeds. This is demonstrated both analytically and empirically.

We analyze our results with an emphasis on understanding why some signatures

can be effectively learned whereas others cannot. To this end, we also present

a taxonomy of packet signatures that a priori separates them into sets (A) that

our system will be able to learn perfectly, (B) that our system is likely to learn

very well, or (C) where the accuracy of our learned classifier varies based on the

nature of the signature. For signatures that fall into classes (B) or (C), where there

is a priori uncertainty regarding how well our system will perform, we detail the

13

properties of the signatures that are successfully learned using examples from our

set of signatures.

The rest of the chapter is organized as follows. We discuss related work in Sec-

tion 2.2. A taxonomy of packet signatures is presented in Section 2.3. In Section 2.4

we discuss the relevant aspects of how signature-based detection systems are used

in practice, including some specifics on Snort rules and of flow level features that we

employ. The operation of ML algorithms, and an algorithm that we find effective,

namely, Adaboost, are reviewed in Section 2.5. Section 2.6 describes our dataset

and experiment setup; our performance evaluation methodology is presented in Sec-

tion 2.7, including detection accuracy metrics we have used. This prepares for our

experimental evaluation results in Section 2.8, in addition to further analysis of

the signatures whose detection performance our a priori taxonomy cannot predict.

A proposal for how our system could fit into a distributed anomaly detection ar-

chitecture is then presented in Section 2.9. The computational efficiency of our

system, both in terms of learning and classifying flows according to given packet-

level signatures, is discussed in Section 2.10. before we present our conclusions in

Section 2.11.

2.2 Related Work

There is an extensive recent literature on automating the detection of unwanted

traffic in communications networks, most importantly, detection of email spam, de-

nial of service attacks and other network intrusions. Anomaly detection has been

used to flag deviations from baseline behavior of network traffic learned through

various unsupervised methods, including clustering, Bayesian networks, PCA anal-

14

ysis and spectral methods; see, e.g., [46, 73, 2, 76, 86, 6]. Our approach is different

from these: rather than alarming unknown unusual events based on deviation from

observed norms, we regard the set of events alerted by packet rules as representing

the most complete available knowledge. The function of ML is to determine how

best to reproduce the alerts at the flow level.

ML techniques have been used for traffic application classification. Approaches

include unsupervised learning of application classes via clustering of flow features

and derivation of heuristics for packet-based identification [9]; semi-supervised learn-

ing from marked flow data [22] and supervised learning from flow features [54, 37].

2.3 A Packet Signature Taxonomy

We adopt the following model and classification for packet rules. A packet rule is

specified by a set of predicates that are combined through logical AND and OR

operations. We classify three types of predicate: flow-header (FH), packet payload

(PP), and meta-information (MI) predicates.

FH predicates involve only packet fields that are reported exactly in any flow

record consistent with the packet key. This includes source and destination IP

addresses and UDP/TCP ports, but exclude packet header fields such as IP identi-

fication (not reported in a flow record) and packet length (only reported exactly in

single packet flows).

PP predicates involve the packet payload, i.e. excluding network and transport

layer headers present.

MI predicates involve only packet header information that is reported either

inexactly or not at all in the flow record (e.g., the IP ID field). From the above

15

discussion, packet length is MI, as are TCP flags, because being cumulative over

flows of packets, they are reported exactly only for single-packet flows.

Packet rules may contain multiple predicates, each of which may have different

types of (FH, PP, MI) associated with it. We give a single type to the rule itself

based on the types of predicates from which it is composed. We partition the set of

possible packet rules into disjoint classes based on the types of predicates present.

The classification sits well with the performance of our ML-method, in the sense

that rule class is a qualitative predictor of accuracy of learned flow-level classifiers.

Our packet rule classification is as follows

Header-Only Rules: comprise only FH predicates.

Payload-Dependent Rules: include at least one PP predicate.

Meta-Information Rules: include no PP predicates, do include MI predicates,

and may include FH predicates.

The relationship between the classification of packet rules and the classification

of the underlying predicates is illustrated in Figure 2.1; each circle illustrates the

set of rules with attributes corresponding to the predicate classification FH, PP,

and MI. The packet rule classification is indicated by colors.

2.4 Packet and Flow Rules in Practice

Snort [74] is an open-source IDS that monitors networks by matching each packet

it observes against a set of rules. Snort can perform real-time traffic and protocol

analysis to help detect various attacks and alert users in real time. Snort employs a

pattern matching model for detecting network attack packets using identifiers such

as IP addresses, TCP/UDP port numbers, ICMP type/code, and strings obtained

16

Figure 2.1: Packet Rule Classification: FH (flow header), PP (packet payload), MI

(meta-information) indicate rule attributes according to predicate classes; disjoint
packet rule classification illustrated by different colors.

in the packet payload. Snort’s rules are classified into priority classes, based on a

global notion of the potential impact of alerts that match each rule. Each Snort rule

is documented along with the potential for false positives and negatives, together

with corrective measures to be taken when an alert is raised. The simplicity of

Snort’s rules has made it a popular IDS. Users contribute rules when new types

of anomalous or malicious traffic are observed. A Snort rule is a boolean formula

composed of predicates that check for specific values of various fields present in the

IP header, transport header, and payload.

Our flow-level rules were constructed from the following features of flow records:

source port, destination port, #packets, #bytes, duration, mean packet size, mean

packet inter-arrival time, TCP flags, protocol, ToS, “source IP address is part of

Snort home net”, “destination IP address is part of Snort home net”, “source IP

17

address is an AIM server”, “destination IP address is an AIM server”. The Snort

home net is commonly configured to whatever local domain the operator desires to

protect from attacks originating externally.

We construct flow level predicates in the following ways:

(1) For categorical features like protocol or TCP flags, we use as many binary pred-

icates as there are categories. For example, if the protocol feature could only take

on the values {ICMP, UDP, TCP} then an ICMP packet would be encoded as the

predicate ICMP=1, UDP=0, and TCP=0.

(2) For numerical features such as #packets, we want to be able to finely threshold

them, so that a rule with a predicate specifying, e.g. an exact number of packets,

can be properly captured. Our predicates take the form “feature > threshold”.

Our system seeks to leverage ML algorithms in order to raise Snort alerts on

flow records. To train our ML algorithms we require concurrent flow and packet

traces so that the alerts that Snort raises on packets can be associated with the

corresponding flow record. “Correspondence” here means that the packets and flow

originate from the same underlying connection. In other words, if Snort has raised

an alert on a packet at time t then we locate the flow with the same IP 5-tuple,

start time ts, and end time te such that ts ≤ t ≤ te. We then associate the packet

alert with the flow. A single packet may raise multiple Snort alerts, and a single

flow will often correspond to a sequence of packets, which means that individual

flows can be associated with many Snort alerts.

18

2.5 Machine Learning Algorithms

Formally our task is as follows. For each Snort rule our training data takes the

form of a pair (xi, yi) where flow i has flow features xi, and yi ∈ {−1, 1} indicates

whether flow i triggered this Snort rule. Our aim is to attribute to each Snort rule

a score in the form of a weighted sum
∑

k wkpk(x) over the flow level predicates

pk(x) described in Section 2.4. When this score exceeds an operating threshold

θ, we have an ML Alarm. Since ML alarms should closely mimic the original

Snort alarms yi, the weights wk are chosen to minimize the classification error

∑

i I(yi 6= sign(
∑

k wkpk(x)−θ). However, deployment considerations will determine

the best operating threshold for a given operating point.

Supervised linear classifiers such as Support Vector Machines (SVMs) [79], Ad-

aboost [69] and Maximum Entropy [19] have been successfully applied to many such

problems. There are two primary reasons for this. First, the convex optimization

problem is guaranteed to converge and optimization algorithms based either on co-

ordinate or gradient descent can learn millions of examples in minutes (down from

weeks ten years ago). Second, these algorithms are regularized and seldom over-

fit the training data. This is what our fully automated training process requires:

scalable algorithms that are guaranteed to converge with predictable performance.

Preliminary experiments established that, on average, Adaboost accuracy was

significantly better than SVMs. In the remainder of this section we therefore high-

light the properties of Adaboost that make it well-suited for our application. A

linear algorithm like Adaboost works well here because the actual number of fea-

tures is large. In theory, each numerical feature (e.g., source port or duration)

may generate as many flow level predicates of the form “feature > threshold” (such

19

Flow type wk 1 wk 2 wk 3 wk 4
Neg:no alerts 202.9 221.8 235.9 251.6
Unique neg. 41.8 48.3 42.7 48.7
Pos:some alert 6.7 7.2 6.5 6.9
Unique pos 0.1 0.1 0.1 0.1

Table 2.1: Number of flows in millions per week

predicates are called stump classifiers) as there are training examples. In practice,

this potentially large set of predicates does not need to be explicitly represented.

Adaboost has an incremental greedy training procedure that only adds predicates

needed for finer discrimination [69].

Good generalization is achieved from classifiers that represent the “simplest” lin-

ear combination of flow-level predicates. Adaboost uses an L1 measure of simplicity

that encourages sparsity, a property that is well matched to our aim of finding a

small number of predicates that are closely related to the packet level rules. This

contrasts with the more relaxed L2 measure used by SVM’s, which typically pro-

duces more complex classifiers. Finally, while Adaboost is known for poor behavior

on noisy data, the low level of noise in our data makes the learning conditions ideal.

In preliminary experiments, we observe a similar behavior with L1-regularized Max-

imum Entropy[19], an algorithm that is much more robust to noise.

2.6 Data Description and Evaluation Setup

The data was gathered at a gateway serving hundreds of users during August–

September 2005. We examined all traffic traversing an OC-3 link attached to a

border router, gathered via an optical splitter. A standard Linux box performed

the role of a monitor reading packets via a DAG card. Simultaneously, unsampled

20

Protocol Flag value Alerts No alert
ICMP 1 .383 88.5
TCP 6 .348 55.3
UDP 17 6.79 77.1

Table 2.2: Number of flows in millions per protocol for Week 2

netflow records were also collected from the router. Snort rules in place at the site

were used for the evaluation. The traffic represented 5 Terabytes distributed over

1 Billion flows over 29 days, i.e., an average rate of about 2MBytes/second. The

average number of packets per flow was 14.5, and 55% of flows comprised 1 packet.

We split the data into 4 weeks. Week 1 is used for training only, week 2 for

both training and testing and weeks 3-4 for testing only. Table 2.1 reports the

number of flows each week. The 200–250 million examples collected each week

would represent a major challenge to current training algorithms. Fortunately,

the number of unique examples is usually 40–50 million per week, and of these

only about 100,000 contain an alert. These can train optimized implementations

of Adaboost or SVMs in a span of hours. Removing purely deterministic features

greatly simplifies the training problem by reducing the number of examples; it also

slightly improves performance. The two main deterministic features are:

source IP is part of local network: Snort rules usually assume that alerts can

only be caused by external flows, which means that they require this feature to be 0.

After computing unique flow statistics, there were 54 million local and 167 million

external flows which are not alerts, zero local and 7 million external flows which are

alerts. Making a boolean decision that all local flows are safe, prior to running the

classifier, reduces the training data by 54 million examples.

protocol: Snort rules only apply to a single protocol, so splitting the flows into

21

ICMP, TCP and UDP defines 3 smaller learning problems, minimizing confusion.

Table 2.2 shows how week 2 can be split into 3 subproblems, where the most complex

one (UDP) only has 6.79 million alert flows and 77.1 million no-alert flows.

Alerts of 75 different rules were triggered over the 4 week trace. We retained the

21 rules with the largest number of flows over weeks 1 and 2; the resulting rules are

listed in Table 2.3. The second column reports the total number of flows associated

with the rule over week 1 and 2, which range from 13 million to 1360 (note that

most rules are evenly distributed over the 4 weeks). The third column reports the

number of unique flows, which is representative of the complexity of a rule, being

the number of positive examples used in training. (The remaining columns are

discussed in Section 2.8).

2.7 Detection Performance Criteria

Each rule is associated with a binary classifier that outputs the confidence with

which the rule is detected on a given flow. A detection is a boolean action, however,

and therefore requires that an operating threshold is associated with each classi-

fier. Whenever the classifier outputs a confidence above the operating threshold, an

alarm is raised. It is customary in the machine learning literature to choose the op-

erating threshold that minimizes the classification error, but this is not necessarily

appropriate in our setting. For example, a network operator may choose to accept

a higher overall classification error in order to minimize the False Negative rate.

More generally, the network operators is best equipped to determine the appro-

priate trade-off between the False Positive (FP) and True Positive TP rates. The

Receiver Operating Characteristics (ROC) curve presents the full trade-off for

22

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

pr
ec

is
io

n

true positives

Best Effort
Subsample

Typical operating point

Figure 2.2: Precision vs. number of true positives for the EXPLOIT ISAKMP rule
training on week1 and testing on week2

binary classification problems by plotting the TP rate as a function of the FP rate.

Each point on the ROC curve is the FP and TP values for a specific confidence

(i.e., operating threshold) between 0 and 1.

The ROC curve is useful for network operators because it provides the full trade-

off between the FP and TP rates, but this also makes it a poor metric for us when

evaluating a number of rules in a number of different settings. For our purposes

we require a single threshold-independent number that must account for a range

of thresholds. The most studied such measure is the Area Under the ROC

Curve (AUC), but all our experiments return AUC values better than 0.9999.

Besides the fact that such values make comparisons problematic, they are often

meaningless. The Average Precision (AP), defined in (2.1) below, provides a

23

pessimistic counterpart to the optimistic AUC. When setting the threshold at the

value of positive example xk, the numbers of total and false positives are TPk =
∑n+

i=1
1xk≤xi

and and FPk =
∑n−

j=1
1xk≤zj

, where i and j label the n+ positive

examples and n− negative examples zj respectively. The precision at threshold xk

is the fraction of correctly detected examples TPk

TPk+FPk
and we compute its average

over all positive examples

AP =
1

n+

n+
∑

k=1

TPk

TPk + FPk
(2.1)

The AP reflects the negative examples which score above the positive examples,

and, unlike the AUC, ignores the vast majority of negative examples whose scores

are very low. A benefit of the AP metric is that it is more interpretable. Suppose

we run Snort until it detects a single alert, and then set up the detection threshold

at the classifier output for this alert. Assuming the alerts are I.I.D., an AP of p

means that, for each true positive, one can expect 1−p
p

false negatives.

Let us illustrate what AP means with an example drawn from the results detailed

in the next section. Figure 2.2 plots the precision as a function of the number of TP

for the EXPLOIT ISAKMP rule: the AP corresponds to the area under this curve.

We can see what a comparatively low AP of 0.58 for this rule means in terms of

the operating curve. We are able to alert on say 25,000 of the Snort events (about

2/3), while suffering the same number of false negatives, i.e. a precision of 0.5. We

will see in the next section that for many other rules we do far better, with AP

close to 1, leading to very small false positive rates. Moreover, we will explain how

a classifier with an AP of 0.5 can still be very useful to a network operator.

24

2.8 Experimental Results

2.8.1 Baseline Behavior

The average precisions of our learned flow detectors are reported in Table 2.3. We

have grouped alerts according to the taxonomy presented in Section 2.3. For each

category we perform a simple macro-average, where the AP for each rule is given

equal weight, which is reported in the average row beneath each rule group. The

baseline column in Table 2.3 reports the AP from training on one full week of data

and testing on the subsequent week. We perform two such experiments: the wk1-2

column uses week 1 for training and week 2 for testing whereas wk2-3 uses week

2 for training and week 3 for testing. For header and meta-information rules, the

baseline results give an AP of at least 0.99 in all cases. Payload rules exhibit greater

variability, ranging from about 0.4 up to over 0.99. Our analysis will illuminate the

different properties of rules that lead to this variation in ML performance.

There were two payload rules that exhibited dramatically lower AP than the

others; these are listed at the end of Table 2.3 and not included in the macro-

average. A detailed examination of the underlying Snort rules showed these to

be relatively complex and designed to alarm on a mixed variety of predicates. We

posit that the complexity of the Snort rules contributes to the difficulty in accurately

characterizing them based on flow features.

2.8.2 Data Drift

The main information provided in Table 2.3 concerns the dependence of the AP as

a function of the temporal separation between the training data and the test data.

Measuring how performance drifts over time is critical, as it determines how often

25

retraining should be applied. While our baseline corresponds to a 1-week drift,

wk1-3 indicates a 2 week drift: it can either be compared to wk1-2 (same training

data, drifted test data) or wk2-3 (drifted training data, same test data). In both

cases, the difference from a 1-week drift to a 2-week drift is often lower than the

difference between wk1-2 and wk2-3: this suggests that the impact of a 2-week drift

is too low to be measurable. On the other hand, the loss in performance after a

3 week drift (wk1-4) is often significant, in particular in the case of Payload and

Meta-Information rules.

2.8.3 Sampling of Negative Examples

Because the number of negative examples far exceeds the number of positive training

examples, (i.e., the vast majority of packets—and flows—do not raise any Snort

alarms), we expect that sampling to reduce the number of negative examples will

have minimal impact on detection accuracy, but will drastically reduce the training

time. We wish to preferentially sample examples whose features are more common,

or conversely, avoid the impact of noise from infrequently manifested features. For

this reason we group the negative examples into sets with identical features, then

apply Threshold Sampling [21] to each group as a whole. This involves selecting

the group comprising c examples with probability min{1, c/z} where z is chosen so

as to sample a target proportion of the examples.

The results for a sampling rate of 1 in 100 negative examples are shown in the

two columns labeled Sampling, rightmost in Table 2.3. When comparing either

the wk1-2 or the wk2-3 columns in the baseline and in the sampled case, there

is a measurable loss in performance. This loss is small relative to fluctuations

in performance from one week to another, however, which suggests that sampling

26

negative training examples is an effective technique. In this example, sampling

speeds up training by about a factor of 6. Without sampling, training a single rule

takes on average 1 hour on a single Xeon 3.4GHz processor, but can be reduced to

10 minutes with sampling.

2.8.4 Choosing an operating point

Choosing an appropriate operating threshold can be challenging. That is, above

which confidence do we trigger an ML alarm? We have introduced precision, which

is the proportion of ML alarms which are also Snort alarms. Another useful concept

is the recall, which is the proportion of Snort alarms which are also ML alarms. A

detector is perfect when both the precision and recall are 1, which in our case often

happens for header and meta-information rules.

The story is more complicated for payload rules. The first 2 columns in Table 2.4

report the precision for thresholds chosen to obtain a recall of 1 and 0.99, respec-

tively. We see that we can get both high precision and recall only for the “MS-SQL

version overflow attempt” and “ICMP PING CyberKit 2.2 Windows” rules. For all

the rules whose average precision is below 0.7, the precision falls to near 0 for high

recall values.

In cases where human post-processing is possible, high recall/low precision oper-

ating points can still be very useful, especially when the number of alarms is much

lower than the total number of examples. As we can see in the last 2 columns in

Table 2.4, even rules with comparatively low AP scores only raise alarms for a small

percentage of flows to guarantee a recall of 1 or 0.9. For instance, the “APACHE

WHITESPACE” rule, with an average precision below 0.6, can deliver a 0.99 recall

while alerting on only 0.1% of the flows. While human examination of false positives

27

is not possible in our case, one can imagine a scenario where Snort itself is run on

traffic that generates ML alarms. That is, the ML system is able to process data

efficiently but occasionally produces too many false positives; however, the slower

Snort could then process traffic for all alarms raised by the ML system (which would

still be a very small fraction of total traffic), which would remove the false positives.

This represents an interesting direction for future study but is beyond the scope of

this dissertation.

2.8.5 Detailed Analysis of ML Operation

In Section 2.3 we presented a taxonomy of Snort rules that distinguishes them ac-

cording to the types of packet fields they access. “Payload rules” contain at least

one predicate that inspects a packet’s payload, “header rules” contain only predi-

cates that can be exactly reproduced in a flow setting, and “meta rules” encompass

all other Snort rules. Given enough training examples, a ML algorithm will be able

to learn to perfectly classify flows according to header rules, whereas payload rules

are generally much more challenging. As our results indicate, however, there are

many meta rules that can be learned perfectly, and some payload rules as well.

We must delve deeper into the classifiers in order to understand the variability

of detection accuracy within the payload and meta groups. Recall from Section 2.5

that a trained classifier is a weighted sum over each predicate. Since each predicate

operates on a single feature (e.g., TCP port, packet duration), this weight can pro-

vide intuition into the relative importance of this predicate to the classifier. For

example, which of the destination port number or the flow duration is most impor-

tant in order to correctly classify Slammer traffic? The standard way to measure

the relative importance of each feature for a classifier is to measure the detection

28

accuracy when the feature is removed. Thus, we train the classifier using all fea-

tures, but then remove the given feature from consideration during classification:

if detection accuracy goes down then clearly this feature was important. Table 2.5

reports the results of doing precisely this: each column reports the AP when the

feature for that column is ignored during classification.

Table 2.5 demonstrates that Adaboost is able to correctly interpret (as opposed

to merely mimic) many header rules by prioritizing the proper fields: the destination

port, which encodes the ICMP code and type fields, is essential to each of the ICMP

rules. Moreover, the meta rules that are learned well tend to inspect packet-header

fields that are reported inexactly in flows, e.g., packet payload size or TCP flags.

The “SCAN FIN” rule is raised by Snort when only the FIN flag is set in a TCP

packet. When we inspected the exact classifier generated by Adaboost (i.e., this

includes the chosen thresholds) for this rule, we found that Adaboost learns to raise

this alarm whenever the aggregated TCP flags field in the flow header has a set

FIN flag either by itself, combined with SYN, or combined with SYN and RST. As

expected, no alarm is raised if the flow TCP flag field has FIN and ACK set.

Predicates that require access to packet payload information, on the other hand,

cannot be reproduced in a flow setting whatsoever. For payload rules to be learned

in a flow setting, therefore, the corresponding flow classifier must rely on some com-

bination of (A) other predicates of the original Snort rule, and (B) entirely new

predicates constructed by the ML algorithm to describe the packets/flows matching

these rules. Table 2.5 contains several instances of each, and we will further inves-

tigate two (viz. “ICMP PING CyberKit 2.2 Windows” and “MS-SQL version

overflow attempt”) by inspecting the precise classifier generated by Adaboost.

The MS-SQL rule has several predicates, including one that matches a specific

29

destination port number, one that inspects the size of the packet payload, and

one that looks for a string pattern in the payload itself. Adaboost learns the first

predicate exactly, but learns a mean packet size predicate that is more precise than

the Snort equivalent. That is, whereas Snort requires that the packet payload size

must be greater than 100 bytes, Adaboost requires that the mean packet size should

be 404 bytes, which in fact is the exact length of a SQL Slammer packet. (Indeed,

the corresponding rule has been used in some cases to help identify Slammer traffic

[55].) Combining this predicate and the destination port number, Adaboost learns

this rule with high accuracy.

CyberKit is another payload rule that is learned by Adaboost with a high degree

of accuracy. Table 2.5 shows that the important features for this classifier are (a)

the destination port number, (b) the mean packet size, and (c) whether or not the

target host is part of the configured local domain (“dest IP local”). The first and

last of these features are a part of the Snort specification, but the mean packet size

predicate is not. Adaboost tells us that flows that trigger this Snort alarm have a

mean packet size between 92 and 100 bytes per packet.

The ability of ML algorithms to generate predicates independent of the original

Snort specification is why ML algorithms are necessary over more rudimentary tech-

niques. For example, a technique that identifies and translates only the flow and

meta predicates from Snort rules (i.e., those predicates that can be translated ei-

ther exactly or approximately) would perform worse in the case of MS-SQL. While

such simpler techniques would perform equally well for header rules, they would be

ineffective for the majority of payload rules where only a ML approach has a chance

to perform well.

30

2.9 Implementation Scenarios and Architecture

We now describe how our approach could be exploited for flow alerting at net-

work scale, in an architecture illustrated in Figure 2.3, whose components we now

describe.

Flow Records: are collected from a cut set of interfaces across the network topology

(edge and/or core) so that all traffic traverses at least one interface at which flow

records are generated. The flow records are exported to a collector.

Packet Monitor / Alerter: a small number of packet monitors are located at sites

chosen so as to see a representative mix of traffic. Each is equipped with a set of

packet level rules which are applied to the observed packet stream. Alerts produced

by the packet rules are forwarded to the ML trainer.

Machine Learning Trainer: correlates packet alerts with flows generated from the

same traffic, and generates the set of flow level alerting rules. The rules are updated

periodically, or in response to observed changes in traffic characteristics.

Runtime Flow Classifier: applies flow-level rules to all flow records, producing flow-

level alerts.

Future Work. Section 2.10 investigates the scaling properties of computation re-

quired in this architecture. Now we consider the ML aspects that require further

study. Our evaluation used a single dataset for learning and testing. But the archi-

tecture requires that flow-level rules generated by ML on data gathered at a small

number of sites can accurately alarm on flows measured at other sites. We propose

to extend the study to multiple datasets gathered from different locations, training

and testing on different datasets. One question is whether differences in the distri-

bution of flow features such as duration, due, e.g., to different TCP dynamics across

31

Figure 2.3: Machine Learning Based Flow Alerting System

32

links of different speeds, could impair the accuracy of cross-site alarming. A further

matter is to investigate the effect on detection accuracy if using packet sampled flow

records for learning and classification.

2.10 Computational Efficiency

We analyze the computational speed of the three phases of our scheme: (i) corre-

lation of flow records with Snort alarms prior to training; (ii) the ML phase; (iii)

run-time classification of flows based on the learned flow rules. We combine analysis

with experimental results to estimate the resources required for the architecture of

Section 2.9. We consider two scenarios.

A: Scaling the interface rate: what resources are needed to perform correlation

and ML at a higher data rate? We consider traffic equivalent to a full OC48 link

(corresponding to a large ISP customer or data center). At 2.5Gbits/sec this is a

scale factor 150 larger than our test dataset; we assume the numbers of positive and

negative examples scale by the same factor.

B: Scaling classification across sites: Consider a set of network interfaces present-

ing traffic at rate of our data set; at 2MB/sec this represents medium sized ISP

customers. The flow rules are learned from traffic on one of the interfaces. What

resources are required to classify flows on the others?

2.10.1 Costs, Implementations, and Parallel Computation

We believe parallelization of correlation and learning steps is reasonable, since the

cost is borne only once per learning site, compared with the cost deploying Snort to

monitor at multiple locations at line rate. Parallelism for the classification step is

33

far more costly, since its scale the resources required for at monitoring point. The

implementations used here are not optimized, so the numerical values obtained are

conservative.

2.10.2 Initial Correlation of Flow and Snort Data

Our prototype system can correlate flow records with Snort alarms at a rate if 275k

flows per second on a 1.5 GHz Itanium 2 machine: about 15 minutes to correlate one

week’s data. Under our scaling scenario A, the hypothetical OC48 would require

about 33 hours of computation on the same single processor to correlate one week’s

data. This task is readily parallelized, the cost borne once prior to the learning

stage.

2.10.3 Learning Step

The time taken for Adaboost or the Maxent algorithm we considered [19] to learn

a given rule is proportional to the product of three quantities:

• the number of iterations Ni, which is fixed to the conservatively large number

of 200 in our problem.

• the total number of +ve and -ve examples Ne = n− + n+

• the number of candidate weak classifiers Nc that Adaboost must consider

For numerical features, the number of weak classifiers is the number of boundaries

that separate runs of feature values from positive and negative examples when

laid out on the real line. This is bounded above by the twice the number n+ of

positive examples. We computed the dependence of Nc on data size for sampled

34

subsets of the dataset; per rule, Nc scaled as nα
+ for some α < 1. These behaviors

suggest the following strategy to control computation costs for processing traffic

while maintaining learning accuracy:

• Use all positive examples;

• Use at most fixed number n0
− of negative examples.

Limiting the number of negative examples does not impair accuracy since we still

have more positive examples. Computation time is proportional to NiNeNc ≤

2Nin+(n+ + n0
−). While n+ is much less than n0

−—see Table 2.1— computation

time scales roughly linearly with the underlying data rate.

To see how this plays out in our hypothetical example, we take our dataset

with 1 in 10 sampling of positive examples as representing the reference operating

threshold. Hence, from Table 2.1, there are roughly n0
− = 4M unique negative

examples. For n+ we take the average number of unique positive examples per rule

per week, namely 8861, the average of the second numerical column in Table 2.3.

Scaling to OC48 scales n+ → 150n+ and hence n+(n+ +n0
−)→ 150n+(150n+ +n0

−).

Learning time increases by roughly a factor 200, lengthening the average time per

rule from 10 minutes to 33 hours. Although this may seem large, it is conservative

and likely unproblematic, since (i) it is far shorter that the data drift timescale of two

weeks which should not depend on link speed, and can be reduced by (ii) optimized

implementation; (iii) parallelization, once per learning site; and (iv) sampling the

positive examples. Sampling may be desirable to control training time for rules with

many positive examples, being precisely the rules for which sampling has the least

impact on accuracy.

35

2.10.4 Classification Step

The number of predicates selected by Adaboost is typically around 100: the number

of feature lookups and multiply-adds needed to test a rule. The same machine as

above is able to apply these predicates, i.e. perform flow classification, at a rate

of 57k flows/second. Our original dataset presented flows at a rate of about 530

flows/second, so this could nearly accommodate the 150 fold increase in flow rate

in Scenario A, or classify flows from 100 interfaces in Scenario B.

2.11 Conclusions

We proposed an ML approach to reproducing packet level alerts for anomaly detec-

tion at the flow level; Applying Snort rules to a single 4 week packet header trace,

we found:

• Classification of flow-level rules according to whether they act on packet

header, payload or meta-information is a good qualitative predictor of av-

erage precision.

• The ML approach is effective at discovering associations between flow and

packet level features of anomalies and exploiting them for flow level alerting.

• Drift was largely absent at a timescale of two weeks, far longer than the few

minutes required for learning.

We proposed and implemented a proof-of-concept architecture to exploit this at

network scale. We analyzed the computation complexity of our approach and argued

that computation remains feasible at network scale. Although our study focused on

single packet alarms produced by Snort, our approach could in principle we applied

36

to learn from flow records alone, alarms generated by multipacket/flow events of

the type monitored by Bro [62].

37

Alert message Number of flows Average Precision for wkA-B (week A=train, B=test)
over weeks 1-2 Baseline Drift Sampling
total unique wk1-2 wk2-3 wk1-3 wk1-4 wk1-2 wk2-3

Header

ICMP Dest. Unreachable Comm. Administratively Prohib. 154570 12616 1.00 1.00 1.00 1.00 1.00 1.00
ICMP Destination Unreachable Communication with 9404 3136 0.99 0.99 0.98 0.99 0.99 0.98

Destination Host is Administratively Prohibited
ICMP Source Quench 1367 496 1.00 1.00 1.00 1.00 1.00 1.00

average 1.00 0.99 0.99 0.99 1.00 0.99

Meta-information

ICMP webtrends scanner 1746 5 1.00 0.99 0.99 0.99 0.90 0.99
BAD-TRAFFIC data in TCP SYN packet 2185 2145 1.00 1.00 1.00 0.99 1.00 1.00
ICMP Large ICMP Packet 24838 1428 1.00 1.00 1.00 1.00 1.00 1.00
ICMP PING NMAP 197862 794 1.00 1.00 1.00 1.00 0.61 1.00
SCAN FIN 9169 7155 0.99 1.00 1.00 0.86 0.99 1.00
(spp stream4) STEALTH ACTIVITY (FIN scan) detection 9183 7169 1.00 1.00 1.00 0.87 1.00 1.00

average 1.00 1.00 1.00 0.95 0.92 1.00

Payload

MS-SQL version overflow attempt 13M 28809 1.00 1.00 1.00 1.00 1.00 1.00
CHAT AIM receive message 1581 1581 0.66 0.57 0.60 0.65 0.56 0.30
EXPLOIT ISAKMP 1st payload length overflow attempt 76155 65181 0.59 0.58 0.57 0.57 0.58 0.56
ICMP PING CyberKit 2.2 Windows 332263 299 1.00 1.00 1.00 1.00 1.00 1.00
ICMP PING speedera 46302 100 0.83 0.81 0.81 0.83 0.83 0.81
(http inspect) NON-RFC HTTP DELIMITER 13683 13653 0.41 0.54 0.57 0.30 0.37 0.50
(http inspect) OVERSIZE REQUEST-URI DIRECTORY 8811 8802 0.96 0.96 0.96 0.96 0.96 0.96
(http inspect) BARE BYTE UNICODE ENCODING 2426 2425 0.41 0.59 0.44 0.40 0.36 0.59
(http inspect) DOUBLE DECODING ATTACK 1447 1447 0.69 0.53 0.66 0.75 0.55 0.36
(http inspect) APACHE WHITESPACE (TAB) 1410 1409 0.47 0.60 0.53 0.59 0.40 0.59

average 0.70 0.72 0.71 0.70 0.66 0.67

(spp stream4) STEALTH ACTIVITY (unknown) detection 1800 1800 0.00 0.01 0.01 0.00 0.00 0.01
(snort decoder) Truncated Tcp Options 26495 25629 0.05 0.06 0.05 0.05 0.05 0.05

Table 2.3: Number of flows and average precision per rule: baseline, drift, and sampling

38

Alert message Precision Alert %
for recall of for recall of
1.00 0.99 1.00 0.99

MS-SQL version overflow 1.00 1.00 3.0 2.9
CHAT AIM receive message 0.02 0.11 0.0 0.0
EXPLOIT ISAKMP first payload 0.02 0.03 0.9 0.6

ICMP PING
CyberKit 2.2 Windows 1.00 1.00 0.1 0.0
ICMP PING speedera 0.02 0.83 0.5 0.0

(http inspect)
NON-RFC HTTP DELIMITER 0.00 0.01 1.3 0.6
OVERSIZE REQUEST-URI DIR. 0.01 0.20 0.1 0.0
BARE BYTE UNICODE ENC. 0.00 0.00 1.1 0.4
DOUBLE DECODING ATTACK 0.00 0.00 1.8 0.4
APACHE WHITESPACE (TAB) 0.00 0.00 1.1 0.1

Table 2.4: Precision and Alarm rate at high recall for payload rules

39

base dest src num num dura mean mean TCP IP dest
Rule line port port byte pack tion pack pack flag serv IP

size intval type local

Header

ICMP Dest. Unreachable Comm. Admin. Prohib. 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ICMP Destination Unreachable Comm. 0.99 0.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
with Dest. Host Administratively Prohib.
ICMP Source Quench 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.61
average 1.00 0.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.87

Meta-information

ICMP webtrends scanner 0.99 0.89 0.99 0.00 0.99 0.99 0.75 0.99 0.99 0.99 0.59
BAD-TRAFFIC data in TCP SYN packet 1.00 0.74 1.00 1.00 1.00 1.00 0.99 1.00 0.50 1.00 1.00
ICMP Large ICMP Packet 1.00 1.00 1.00 1.00 1.00 1.00 0.43 1.00 1.00 1.00 0.96
ICMP PING NMAP 1.00 1.00 1.00 1.00 1.00 1.00 0.02 1.00 1.00 1.00 0.50
SCAN FIN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.24 0.99 0.99
average 1.00 0.92 1.00 0.80 1.00 1.00 0.64 1.00 0.75 1.00 0.81

Payload

MS-SQL version overflow attempt 1.00 0.99 1.00 1.00 1.00 1.00 0.83 1.00 1.00 1.00 0.48
CHAT AIM receive message 0.61 0.64 0.61 0.49 0.55 0.42 0.33 0.54 0.29 0.51 0.51
EXPLOIT ISAKMP 1st payload length overflow 0.58 0.15 0.58 0.49 0.26 0.55 0.58 0.57 0.57 0.56 0.57
ICMP PING CyberKit 2.2 Windows 1.00 0.52 1.00 0.95 1.00 1.00 0.77 0.99 1.00 1.00 0.39
ICMP PING speedera 0.82 0.79 0.82 0.07 0.82 0.82 0.06 0.82 0.82 0.81 0.72
(http inspect) NON-RFC HTTP DELIM 0.48 0.02 0.34 0.15 0.47 0.24 0.22 0.32 0.22 0.42 0.42
average 0.75 0.52 0.72 0.52 0.68 0.67 0.46 0.71 0.65 0.72 0.52

Table 2.5: The importance of each feature to a classifier as measured by the AP if the feature is removed during
detection

40

Chapter 3

Evaluating the Potential of

Collaborative Anomaly Detection

3.1 Introduction

Unwanted traffic from malicious hosts is a serious problem in the Internet today.

DDoS attacks, exploit scanning, email and instant-message spam, click fraud, and

other forms of malicious behavior are a common occurrence [24, 35, 68]. Vulnera-

bilities in network software have led to the rapid proliferation of automated attack

methods (worms, botnets, viruses). It is estimated that 25% of all personal com-

puters may be infected by malware [80], and organizations are estimated to lose

billions of dollars per year as a result [63].

Defending against attack traffic can be extremely challenging. The stealthy

nature of many attacks, where malicious hosts emulate the characteristics of well-

behaved traffic, limits the ability of any one host or network to detect or filter

malicious activity in isolation. In order to counter this emerging threat, previous

41

work has proposed that victim sites collaborate to build a shared defense against

attacks [39, 56, 75, 4].

While the notion of victim collaboration has been previously proposed in the lit-

erature, the extent to which it improves our ability to detect and isolate malicious

traffic has not been rigorously evaluated. In order to design the most effective miti-

gation techniques, and to determine how existing collaborative architectures would

perform in practice, we need to build an understanding of the sorts of workloads

malicious hosts generate across different host sites. Building this understanding re-

quires studying malicious activity across several vantage points, and precisely how

these vantage points may monitor traffic and exchange information to best isolate

attacks. To the best of our knowledge, our work is the first to directly measure

the benefits of victim cooperation on ISP-level traffic traces. In particular, we ap-

ply standard network anomaly detectors to identify unwanted traffic, and analyze

the ability of a representative set of collaboration schemes to assist the victims in

isolating and mitigating these attacks.

Our measurement study is based on IP flow traces from GEANT, a European

ISP operated by a consortium of research and educational institutions. We studied

all traffic traversing the twenty routers that make up GEANT’s European back-

bone network, during August 2008. We applied standard anomaly detectors [5, 43]

to these traces in order to identify unwanted traffic that collaborating hosts and net-

works may wish to remove, including DoS, port scanning, and IP scanning events.

Our final results calculate the fraction of attacks that could have been mitigated by

a set of collaborating victim end-hosts.

To mitigate the possibility of false positives, we correlate our detected anomalous

events with a DNS blacklist [15]. That is, only anomalies that originated from source

42

IP addresses listed in the DNS blacklist were considered. We refreshed our local

copy of the DNS blacklist every 12 hours throughout our one-month measurement

window in order to minimize the probability of DHCP changes affecting our results.

Finally, we evaluated collaboration schemes where detected attackers are blocked

for a variable period of time, as contrasted with permanent blacklisting.

Our experiments show that the end-hosts and networks that are affected by

the unwanted traffic in the Internet have a great deal to gain by collaborating to

address their common problem. The potential benefit is phenomenally high for

anomaly types that are naturally one-to-many, such as IP scans that can affect

hundreds of thousands of victims within minutes. Across all our studied anomalies,

even a random selection of three thousand victims could potentially mitigate nearly

30% of detected anomalies. Moreover, our experiments also show that malicious

hosts often target a small number of victim hosts to attack repeatedly within a

short period of time. This means that much of the benefit of victim collaboration

can be had by blacklisting malicious hosts for a short period of time after the initial

attack. A blacklist duration of one hour captures over 90% of detected anomalies if

all victims collaborate.

Roadmap: We start by presenting our data sources, correlation methodology,

and anomaly detectors in in Section 3.2. In Section 3.3 we measure the potential

benefit that different collaboration schemes would have provided to the victims of

the attacks in our traces. We then briefly discuss related work in Section 3.4, before

concluding in Section 3.5.

43

3.2 Methodology

To evaluate the potential of victim collaboration for anomaly detection, we require

a large, representative set of unwanted traffic. We accomplish this by analyzing

the traffic of IP addresses listed in an amalgamation of DNS blacklists [15]. The

two types of traces and our methodology for correlating them are described in

Section 3.2.1. Moreover, we wish to characterize the benefit of victim collabora-

tion across multiple types of unwanted traffic, such as port scans and DoS attacks.

This necessitates classifying attack patterns from our IP flow traces. We lever-

aged anomaly detection techniques presented in previous work [5, 43] in order to

accomplish this, which is described in Section 3.2.2.

3.2.1 Data Sources

Our traffic traces are from the GEANT ISP network backbone [29]. The GEANT

network interconnects 30 National Research and Education Networks representing

34 countries across Europe. GEANT maintains multiple redundant connections to

the Internet and provides transit service to its customers. The network operation

center routinely collects flow and routing information and makes them available to

the research community. Each of the 20 GEANT routers samples 1-in-1000 packets

and exports the flow headers to a central collector using a NetFlow-like [14] format.

In this study we analyzed traces from all of August 2008. This data set represents

57 gigabytes of flow header information.

We wish to analyze the potential benefit of using victim collaboration to remove

unwanted traffic. We therefore limit our study to traffic originating from IP ad-

dresses that have been identified as malicious in a DNS blacklist (DNSBL). We use

44

the Composite Blocking List (CBL) [15], a widely-used DNSBL. The CBL is used

for the Spamhaus blocking list, which is maintained using several large spam traps.

The CBL currently receives over 85% of spam hitting large spamtraps [15].

As with any study measuring characteristics of per-host traffic, associating a flow

with a particular host represents a challenge. For example, a dynamically assigned

IP address may be used by a spam bot and a legitimate host at different periods

of time. To reduce the potential for false positives, we download snapshots of the

CBL every 12 hours, and apply the snapshot only to traffic traces for the 12 hours

following its download. The list we download at time t is therefore only used to

extract flows from our GEANT trace for 12 hours following its download, which

means that if a host’s IP disappears from the CBL, our methodology will quickly

reflect that fact. In other words, our list of hosts originating unwanted traffic is

actually a sequence of 62 lists for each of the 31 days in August 2008 (one for each

12 hour period), and the blacklist downloaded at time t is used during the period

[t, t + 12h〉.

In Section 3.3 we will also investigate the effectiveness of graylisting individual

malicious hosts that perform an attack. Specifically, instead of permanently block-

ing an IP address that has performed an attack at time t, the IP will be blocked

for a period of ∆ hours, i.e. during the interval 〈t, t + ∆]. We refer to ∆ as the

“blacklist duration” parameter. Such a blacklisting scheme is consistent with other

DNSBLs [77] and the associated analysis will allow us to (1) understand how rapidly

malicious hosts attack victims, and (2) set ∆ to a value smaller than the vast ma-

jority of DHCP lease times [83] while still providing most of the benefits of victim

collaboration.

45

3.2.2 Anomaly Detectors

We wish to evaluate the effectiveness of collaborative anomaly detection across a

range of specific types of unwanted traffic. In particular, we have chosen to study

the effectiveness of collaboration to mitigate DoS attacks, port scans, and IP scans.

In order to identify these attacks, we leverage detection techniques developed and

presented in previous work [5, 43]. The detectors we have chosen each incorporate

a well-defined specification of what constitutes an attack, which make our results

easier to understand and reproduce. Recall further that we are only analyzing

traffic from source IP addresses that were listed in the CBL DNS blacklist within

the past 12 hours, which means that only these addresses are detected as originating

unwanted traffic. This fact means that the chance of a falsely detected attack is

vastly reduced.

For example, a port scan is defined to occur whenever a given source IP address

contacts more than α different destination port numbers on a single destination IP

address within a δ-second time window. This model was presented in [5]. Our DoS

and IP scan detectors are designed in the same way, namely, a DoS attack is defined

as occurring whenever a source IP address opens more than β different connections

to a single 〈 destination IP address-destination port number 〉-pair, and an IP scan

occurs when a source IP address contacts more than γ different destination IP

address, also within a given δ-second time window.

Each of our detectors usees a threshold (namely, α for portscans, β for DoS

attacks, and γ for IP scans) that defines the separation between an attack and

normal traffic. Like any anomaly-detection-based approach, there is no universally

appropriate threshold. A network operator employing these detectors would choose

a threshold depending on the relative importance placed on avoiding false negatives

46

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000 100000 1e+06

F
re

qu
en

cy

destination IP addresses contacted

900 second window

Figure 3.1: Distribution of “number of destination IP addresses contacted” within
15 minutes

Type Threshold % Flows

DoS 1000 2.77E-4%
Port Scan 500 1.31E-3%
IP Scan 500 8.21E-3%

Table 3.1: Anomaly Detectors

versus the overhead of manually weeding out false positives. As we aim to study

the benefit of collaboration to mitigate unwanted traffic, we wish to ensure that

the traffic we define as unwanted is indeed so. We therefore prioritize having a low

false-positive rate, and use a relatively high threshold for each of our detectors.

To determine an appropriate threshold for our purposes, we study the overall

traffic distribution relative to a given detector. For example, recall that an IP

scan is defined to occur whenever a given source IP address contacts more than

γ destination IP addresses within a δ-second time window. By setting δ to be 15

minutes, we can study the distribution of “number of IP addresses contacted” by a

47

single source IP address within a 15 minute window. This distribution can be seen

in Figure 3.1 for our flow traces. We set the threshold γ to 500, which corresponds to

8.21E-3% of all flows. Recall again that we chose to study only anomalies originating

from IP addresses listed in the CBL, which means the fraction of studied flows is

even smaller. We tuned our other detectors in the same manner by studying their

distributions, and the chosen thresholds are specified in Table 3.1.

3.3 Victim Collaboration

The methodology presented in Section 3.2 ultimately gives us a timeseries of anoma-

lies. That is, once we apply the anomaly detectors described in 3.2.2 to the traffic

originating from IP addresses listed in the CBL DNS blacklist as described in 3.2.1,

we get a sequence of anomalies 〈χ, ν〉τt , where χ is the attacking IP address (hence-

forth referred to as the attacker), ν is the victim IP address (victim), t is the time

of the attack, and τ is the type of attack (either DoS, port scan, or IP scan).

We wish to evaluate the potential effectiveness of a victim collaboration scheme

that would block attacking IP addresses after such an attack. That is, we will

consider collaboration schemes where an attack of type τ by attacker χ on victim ν

at time t will be blocked for ∆ hours, i.e., the interval 〈t, t+∆], by the set of victims

V if ν ∈ V . In other words, attacks on any one participant in the collaboration

scheme means that the attacking IP address will be blocked by all participants in

the scheme for some period of time.

The central parameters in the above scheme are (1) the types of attacks τ cov-

ered by the collaboration scheme, (2) the set of victims V that participate in the

scheme, and (3) the duration ∆ hours that they block attacking IP addresses. In

48

10
−1

10
0

10
1

10
20

10

20

30

40

50

60

70

80

90

100

A
no

m
al

ou
s

flo
w

s
av

oi
de

d
[%

]

∆ [hour]

all
dos
ipscan
portscan

Figure 3.2: Effectiveness of victim collaboration as a function of ∆

the following section we will evaluate the importance of each of these parameters

to an effective collaboration scheme to mitigate unwanted traffic. The metric we

will use is the fraction of all attacks that could have been mitigated if the given

collaboration scheme was in place. In other words, any subsequent attack by χ

during the interval 〈t, t + ∆] on any νi ∈ V will be rendered mitigated, and we will

measure the fraction of mitigated attacks as a function of all attacks, regardless of

whether the attack targets a victim participating in the scheme.

3.3.1 Blacklist Duration

The “blacklist duration” parameter ∆ specifies how long an IP address is blocked

after being the source of an attack. More precisely, after an attack 〈χ, ν〉τt , if the

victim ν is a participant in the collaboration scheme (i.e., ν ∈ V) then attacker χ

will be blocked by all νi ∈ V during the interval 〈t, t + ∆]. We wish to measure the

significance of the ∆ parameter. Figure 3.2 plots the fraction of attacks that could

have been mitigated as a function of ∆. In this experiment we have chosen V to

49

be the universal set, i.e., all victims collaborate to block source IP addresses for ∆

hours after an attack.

Figure 3.2 shows this result. The figure has a separate line for each of our stud-

ied anomalies, and one curve titled “all” corresponding to the fraction of attacks

that can be blocked across all attack types. The line for DoS attacks, for example,

calculates the fraction of all DoS attacks that could have been rendered ineffective

if victims collaborated to blacklist attackers for ∆ hours. We found attacks that

are inherently one-to-many, such as IP scans where a single attacker probes a large

number of victim hosts, benefit the most from victim collaboration. This makes

sense because the first victim is able to warn all other victims, and there will neces-

sarily be more victims due to the nature of the attack. Also, the figure demonstrates

that a vast fraction of the anomalies we detected could have been mitigated with

victim collaboration. The figure is an unrealistic upper bound due to the fact that

all victims are assumed to participate (we investigate sensitivity to this assumption

shortly), but it demonstrates that attackers have a very high degree of fan-out. That

is, each malicious host engages in a great deal of malicious activity. A substantial

amount of that activity can potentially be mitigated by victim collaboration.

Finally, Figure 3.2 also tells us that much of the benefits of victim collaboration

can be had with a relatively short blacklist duration parameter ∆. In other words,

malicious hosts are typically highly active, but in brief bursts. The figure shows that

a blacklist duration parameter ∆ of approximately one hour achieves the majority

of the benefit of collaboration1. Note, however, that the exact point of increase for

the all, port scan, and DoS curves in Figure 3.2 is an artifact of our methodology

since we detect anomalies within a 15 minute time interval. It is likely that the

1A one hour blacklist duration is also smaller than the vast majority of DHCP lease times
presented in [83]

50

10
1

10
2

10
3

10
40

10

20

30

40

50

60

70

80

90

100

A
no

m
al

ou
s

flo
w

s
av

oi
de

d
[%

]

victims collaborating

all
dos
ipscan
portscan

Figure 3.3: Effectiveness of victim collaboration with random victim selection

“true” curves would have a smooth increase in the interval ∆ ∈ [0, 1] hours.

3.3.2 Set of Collaborators

In Section 3.3.1 we assumed that all hosts would participate in the collaboration

scheme while we altered the length of the blacklist duration. In this section we will

do the reverse in order to evaluate the impact that the composition of participating

hosts has on the effectiveness of a collaboration scheme. For these experiments we

have set the blacklist duration parameter ∆ to one hour.

Whereas the blacklist duration parameter ∆ is one-dimensional (i.e., it can

take on values [0,∞]) the composition of the victim collaborator set is inherently

multi-dimensional. This difference means that evaluating the importance of the

latter parameter is fundamentally more challenging. From an analytical perspective,

determining the composition of the set of collaborators can be separated into two

distinct parameters: (a) the number of hosts that participate in the scheme, and

(b) the distribution from which these hosts are chosen. This simplifies the process

51

somewhat, as (a) is one-dimensional, but (b) can still take on a very large number

of states. We have chosen to consider three different schemes in determining the

manner in which hosts are chosen, which we will discuss below.

Random: First, we randomly select the set of participating hosts, and plot results

in Figure 3.3. That is, for any given number of collaborating hosts on the x-axis,

the selection of participating hosts is randomly determined. Each data point is

the mean benefit of collaboration as specified in Section 3.3.1, averaged over ten

runs (each time selecting a random set of participants). One important difference

between this Figure and Figure 3.2 is that here the curve representing the benefit

of collaborating against IP scans is not always above the curves representing other

attack types. Rather, the fraction of mitigated IP scans is smaller when fewer

victims collaborate, but is greater than other types of attacks when more than 300

thousand victims collaborate. Recall that, because IP scans are inherently one-to-

many, any single IP scan event affects a great deal more victims than a DoS event.

For example, the one thousand victims that collaborate to mitigate 26% of IP scans

represent less than 1% of all IP scan victims whereas the one thousand victims that

collaborate against port scans encompass nearly all victims of port scans in our one

month trace. In other words, while IP scans need more total number of victims to

collaborate in order to achieve the same benefit as other attack types, the fraction

of IP scan victims that need to collaborate is smaller.

The second key observable difference between Figures 3.2 and 3.3 is that the

curve for mitigating “all” attacks is at the bottom in the latter figure. This show

that, for a random victim ν of a specific type of attack τ , ν is more likely to share

attackers with other victims of τ than ν is to share attackers with victims of any

type of attack. In other words, while malicious hosts engage in a wide variety of

52

10
1

10
2

10
3

10
40

10

20

30

40

50

60

70

80

90

100

A
no

m
al

ou
s

flo
w

s
av

oi
de

d
[%

]

victims collaborating

all
dos
ipscan
portscan

Figure 3.4: Effectiveness of victim collaboration when victims are chosen based on
how often they are attacked

different types of attacks over long time scales, they tend to perform only a single

type of attack within shorter time scales (i.e., one hour in our experiments).

Most victimized hosts: In a real deployment, it is unlikely that the distribution

of victims that choose to participate in the collaboration scheme is entirely random.

Rather, end-hosts that are attacked often may have a stronger incentive to partici-

pate, as they have the most to gain from doing so. Hence, here we consider the case

where the most-victimized hosts (the ones that are attacked most often) are the

first to join the collaboration scheme. Figure 3.4 plots the fraction of attacks that

could have been mitigated for each of our studied anomaly types as a function of the

number of participating victims, where the victims are chosen based on how often

they are attacked. The benefits of collaboration are understandably much higher

for this scenario compared to the random selection shown in Figure 3.3. Figure 3.4

demonstrates that, in addition to being able to affect a large number of victims in a

small amount of time (i.e., a high degree of fan-out), malicious hosts are also intense

repeat-offenders. That is, malicious hosts are able to do a great deal of damage very

53

10
1

10
2

10
3

10
40

10

20

30

40

50

60

70

80

90

100

A
no

m
al

ou
s

flo
w

s
av

oi
de

d
[%

]

victims collaborating

all
dos
ipscan
portscan

Figure 3.5: Effectiveness of victim collaboration with a weighted random victim
selection

quickly to their chosen targets. These victims bear a large fraction of the burden for

some of the attack types, and therefore a large fraction of attacks could potentially

be mitigated with only a small number of well-chosen participating victims.

Weighted random: For completeness, we explore the space between the random

and most-victimized approaches to host selection. We do this by considering a

weighted random selection strategy, where the probability of selecting a host is a

function both of a random variable, and the rate at which the host is attacked. In

particular, for Figure 3.5 the benefit of collaboration is reported as a function of

the number of victims collaborating, where a victim that is attacked twice as often

has twice the probability to be included in the scheme. Whereas Figure 3.3 tells

us that a random 1000 victims can expect to mitigate 12% of attacks, Figure 3.5

shows that a weighted random selection of 1000 victims could mitigate 25% of the

attacks in our trace.

54

3.4 Related Work

A great deal of research work has been done to allow enterprises and networks to

correlate observations from various vantage points in order to improve anomaly de-

tection. The majority of this work has analyzed traffic traces and leveraged general

statistical techniques, e.g., [45]. While these techniques have shown promise for in-

tranetwork anomaly detection, they have not been extended to cross-organizational

settings where there will be many more vantage points and thus the computational

expense of the correlation is much greater. The most well-known technique for such

victim collaboration is the sharing of spam blacklists, e.g., [77]. Recently researchers

have also proposed leveraging victim collaboration in response to other threats such

as worms [56] and self-propagating code [39]. See, for example, [4]. Our work es-

timates the expected benefit of such proposed schemes, thereby providing strong

impetus for their development and deployment. The only other work we are aware

of that investigates the degree of correlation in Internet attack traffic is [41], but

they focus on IDS traces as the underlying data whereas we correlate detections by

standard anomaly detectors applied to flow traces from an operational network.

3.5 Conclusions

Given the extreme challenges in identifying and filtering unwanted traffic, some

form of victim collaboration seems necessary. This chapter characterizes the ability

of victims to establish a shared defense against attacks, over a variety of attack

types. We show that malicious hosts often have a high degree of fan-out, affecting

a large number of victims. These victims therefore have a great deal to gain by

collaborating.

55

In Section 3.2 we explain that we are only interested in originators of unwanted

traffic and therefore limit our study to those IP addresses that engage in anomalous

activity and are listed in the CBL DNS blacklist. For our future work we wish to

investigate whether this biases our correlation results due to preexisting correlation

among IP addresses listed in the CBL.

56

Chapter 4

Privacy-Preserving Collaborative

Anomaly Detection

4.1 Introduction

Many important data-analysis applications must combine and analyze data collected

by multiple parties. Such distributed data analysis is particularly important in

the context of security. For example, victims of denial-of-service (DoS) attacks

know they have been attacked but cannot easily distinguish the malicious source IP

addresses from the good users who happened to send legitimate requests at the same

time. As demonstrated in Chapter 3, victims of attacks can improve their individual

detection accuracy by collaborating because compromised hosts often participate in

multiple attacks. Cooperation is also useful for Web clients to recognize they have

received a bogus DNS response or a forged self-signed certificate, by checking that

the information they received agrees with that seen by other clients accessing the

same Web site [64, 81]. Collaboration is also useful to identify popular Web content

57

by having Web users—or proxies monitoring traffic for an entire organization—

combine their access logs to determine the most frequently accessed URLs [3]. In

this chapter, we present the design, implementation, and evaluation of an efficient,

privacy-preserving system that supports these kinds of data-analysis operations.

Today, these kinds of distributed data-analysis applications lack privacy protec-

tions. Existing solutions often rely on a trusted (typically centralized) aggregation

node that collects and analyzes the raw data, thereby learning both the identity and

inputs of participants. There is good reason to believe this inhibits participation.

ISPs and Web sites are notoriously unwilling to share operational data with one

another, because they are business competitors and are concerned about compro-

mising the privacy of their customers. Many users are understandably unwilling

to install software from Web analytics services such as Alexa [3], as such software

would otherwise track and report every Web site they visit. Unfortunately, even

good intentions do not necessarily translate to good security and privacy protections,

only too-well demonstrated by the fact that large-scale data breaches have become

commonplace [65]. As such, we believe that many useful distributed data-analysis

applications will not gain serious traction unless privacy can be ensured.

Fortunately, many of these collaborative data-analysis applications have a com-

mon pattern, such as computing set intersection, finding so-called icebergs (items

with a frequency count above a certain threshold), or identifying items that in ag-

gregate satisfy some other statistical property. We refer to this problem as privacy-

preserving data aggregation (PDA). Namely, each participant pj has an input set of

key-value tuples, 〈ki, vi,j〉, and the protocol outputs a key ki if and only if some eval-

uation function f(∀j|vi,j) is satisfied. For example, the botnet anomaly-detection

application is an instance of the iceberg problem where the goal is to detect keys that

58

occur more than some threshold τ times across the n parties. In this scenario, the

keys ki refer to IP addresses, each value vi,j is 1, and f is defined to be
∑n

j=1
vi,j ≥ τ

(implemented, in fact, as simply keeping a running sum per key). In other words,

such a protocol performs the equivalent of a database join (union) across each par-

ticipant’s input (multi)set, and outputs those IP addresses that appear more than

τ times. In our system, keys can either be arbitrary-length bitstrings or can also

be drawn from a limited domain (e.g., the set of valid IP addresses). However, we

restrict our consideration of values to those drawn from a more restricted domain—

such as an alphanumeric score from 1 to 10 or A to F—a limitation for privacy

reasons we explain later. This f could as easily perform other types of frequency

analysis on keys, such as median, mode, or dynamically setting the threshold τ

based on the set of inputs—for example, if there exists some appropriate “gap”

between popular and unpopular inputs—as opposed to requiring τ be set a priori

and independent of the inputs.

Informally, PDA should provide two privacy properties: (1) Keyword privacy

requires that no party should learn anything about ki if its corresponding values

do not satisfy f . (2) Participant privacy requires that no party should learn which

key inputs (whether or not the key remains somehow blinded prior to satisfying f)

belongs to which participant. In our example of collaborating DoS victims, keyword

privacy means nobody learns the identity of good IP addresses or which Web sites

they frequent, and participant privacy means a Web site need not worry that its

mix of clients would be revealed. In our example of collaborating Web clients,

the privacy guarantees mean that a Web user need not worry that other users

know what Web sites he accesses, or whether he received a bogus DNS response

or a forged certificate. We believe these privacy properties would be sufficient to

59

encourage participants to collaborate to their mutual benefit, without concern that

their privacy (or the privacy of their clients) would be compromised. Our goal,

then, is to design a system that provably guarantees these properties, yet is efficient

enough to be used in practice.

Ideally, we would like a system that can handle hundreds or thousands of par-

ticipants generating thousands of key-value tuples. Unfortunately, fully-distributed

solutions do not scale well enough, and fully-centralized solutions do not meet our

privacy requirements. Simple techniques like hashing input keys [27, 4], while ef-

ficient, cannot ensure keyword and participant privacy. In contrast, the secure

multi-party computation protocols from the cryptographic literature [85, 23, 57, 47,

26, 25, 42, 50, 7] would allow us to achieve our security goals, but are not practical

at the scale we have in mind. [82] has a similar intent to our work, but provides

much weaker privacy properties (e.g., keys are known by the system) and was not

evaluated in a distributed setting. Finally, few of these systems have ever been

implemented [50, 28, 7], let alone operate in the real world [10] and at scale. So, a

meta-goal of our work is to help bring multi-party computation to life.

In this chapter, we design, implement, and evaluate a viable alternative: a “semi-

centralized” system architecture, and associated cryptographic protocols, that pro-

vides privacy-preserving data aggregation without sacrificing efficiency. Rather than

having a single aggregator node, the data analysis is split between two separate

parties—a proxy and a database. The proxy plays the role of obliviously blinding

client inputs, as well as transmitting blinded inputs to the database. The database,

on the other hand, builds a table that is indexed by the blinded key. For each row

of this table whose values satisfy f , the database shares this row with the proxy,

who unblinds the key. The database subsequently publishes its non-blinded data

60

for that key.

The resulting semi-centralized system provides strong privacy guarantees pro-

vided that the proxy and the database do not collude. In practice, we imagine that

these two components will be managed either by the participants themselves that do

not wish to see their own information leaked to others, perhaps even on a rotating

basis, or even third-party commercial or non-profit entities tasked with providing

such functionality. For example, in the case of cooperative DoS detection, ISPs

like AT&T and Sprint could jointly provide the service. Or, perhaps even better,

it could be offered by third-party entities like Google (which already plays a role

in bot and malware detection [32]) or the EFF (which has funded anonymity tools

such as Tor [17]), who have no incentive to collude. Such a separation of trust

appears in several cryptographic protocols [12], and even in some natural real-world

scenarios, such as Democrats and Republicans jointly comprising election boards in

the U.S. political system. It should be emphasized that the proxy and database are

not treated as trusted parties: we only assume that they will not collude. Indeed,

jumping ahead, our protocol does not reveal sensitive information to either party.

Using a semi-centralized architecture greatly reduces operational complexity and

simplifies the liveness assumptions of the system. For example, clients can asyn-

chronously provide their key-value tuples without our system requiring any complex

scheduling. Despite these simplifications, the cryptographic protocols necessary to

provide strong privacy guarantees are still non-trivial. Specifically, our solution

makes use of oblivious pseudorandom functions [59, 25, 33], amortized oblivious

transfer [58, 36], and homomorphic encryption with re-randomization.

We formally prove that our system guarantees keyword and participant privacy.

We first show a protocol that is robust in the honest-but-curious model (where,

61

informally, each party can perform local computation on its own view in an attempt

to break privacy, but still faithfully follows the protocol). Then, we show how, with

a few modifications to our original protocol, to defend against any coalition of

malicious participants. In addition, the protocols are robust in the face of collusion

between either proxy/database and any number of participants.

The remainder of the chapter is organized as follows. Section 4.2 defines our

system goals and discusses why prior techniques are not sufficient. Section 4.3

describes our PDA protocols and sketches the proofs of their privacy guarantees.

Section 4.4 describes our implementation, and Section 4.5 evaluates its performance.

We conclude the chapter in Section 4.7.

4.2 Design Goals and Status Quo

This section defines our goals for practical, large-scale privacy-preserving data aggre-

gation (PDA), and we discuss how prior proposals failed to meet these requirements.

We then expand on our security assumptions and privacy definitions.

4.2.1 Design Goals

In the privacy-preserving data aggregation (PDA) problem, a collection of partici-

pants (or clients) may autonomously make observations about values (vi) associated

with keys (ki). These observations may be, for example, the fact that an IP address

is suspected to have performed some type of attack (through DoS, spam, phishing,

and so forth), or the number of participants that associate a particular credential

with a server. The system jointly computes a two-column input table T. The first

column of T is a set comprised of all unique keys belonging to all participants (the

62

key column). The second column is comprised of a value T[ki] that is the aggrega-

tion or union of all participant’s values for ki (the value column). The system then

defines a particular function f to be evaluated over each row’s value(s). For simplic-

ity, we focus our discussion on the simple problem of over-threshold set intersection

for f : If clients’ inputs of the form 〈ki, 1〉 are aggregated as T[ki] ← T[ki] + 1, is

T[ki] ≥ τ?

A practical PDA system should provide the following:

• Keyword privacy:We say a system satisfies keyword privacy if, given the above

aggregated table T, at the conclusion of the protocol all involved parties learn

only the keys ki whose corresponding aggregate value T[ki] ≥ τ . In addition,

we might also have parties learn the values T[ki], i.e., the entire value column

of T, even if the corresponding keys remain unknown. We discuss later why

we may reveal the keyless value column (a histogram of frequencies in the

over-threshold set intersection example) in addition to those over-threshold

keys.

• Participant privacy: We say a system satisfies participant privacy if, at the con-

clusion of the protocol, nobody can learn the inputs {〈ki, vi,j〉} of participant

pj other than pj himself (except for information which is trivially deduced

from the output of the function). This is formally captured by showing that

the protocol leaks no more information than an ideal implementation that

uses a trusted third party. This convention is standard in secure multi-party

computation; further details can be found in [30].

• Efficiency: The system should scale to large numbers of participants, each

generating and inputting large numbers of observations (key-value tuples).

63

The system should be scalable both in terms of the network bandwidth con-

sumed (communication complexity) and the computational resources needed

to execute the PDA (computational complexity).

• Flexibility: There are a variety of computations one might wish to perform

over each key’s values T[ki], other than the sum-over-threshold test. These

may include finding the maximum value for a given key, or checking if the

median of a row exceeds a threshold. Rather than design a new protocol for

each function f , we prefer to have a single protocol that works for a wide

range of functions.

• Lack of coordination: Finally, the system should operate without requiring

that all participants coordinate their efforts to jointly execute some protocol

at the same time, or even all be online around the same time. Furthermore,

no set of participants should be able to prevent others from executing the

protocol and computing their own results (i.e., a liveness property).

As we discuss next, existing approaches fail to satisfy one or more of these goals.

4.2.2 Limitations of Existing Approaches

Having defined these five goals for PDA, we next consider several possible solutions

from the literature. We see that prior secure multi-party computation protocols

achieve strong privacy at the cost of efficiency, flexibility, or ease of coordination.

On the other hand, simple hashing or network-layer anonymization approaches fail

to satisfy our privacy requirements. Our protocol, which leverages insights from

both approaches, combines the best of both worlds. Table 4.1 summarizes the

discussion in this section.

64

Keyword Participant Lack of
Approach Privacy Privacy Efficiency Flexibility Coordination

Private Set Intersection Yes Yes Poor No No
Garbled-Circuit Evaluation Yes Yes Very Poor Yes No

Hashing Inputs No No Very Good Yes Yes
Network Anonymization No Yes Very Good Yes Yes

This paper Yes Yes Good Yes Yes

Table 4.1: Comparison of proposed schemes for privacy-preserving data aggregation

Set-Intersection Protocols. Freedman et al. [26] proposed a specially-designed

secure multi-party computation protocol to compute set intersection between the

input lists of two parties. It represented each party’s inputs as the roots of an

encrypted polynomial, and then had the other party evaluate this encrypted poly-

nomial on each of its own inputs. While asymptotically optimized for this setting,

a careful protocol implementation found two sets of 100 items each took 213 sec-

onds to execute (on a 3 GHz Intel machine) [28]. Kissner and Song [42] extended

and further improved this polynomial-based protocol for a multi-party decentral-

ized setting, yet their computational complexity remains O(nℓ2) and communication

complexity is O(n2ℓ), where n is the number of participants and ℓ is the number

of input elements per party. Furthermore, after a number of pairwise interactions

between participants, the system needed to coordinate a group decryption protocol

between all parties. Hence, this prior work on set-intersection faces scaling chal-

lenges on large sets of inputs or participants, and it also requires new protocol design

for each small variant of the set-intersection or threshold set-intersection protocol.

Secure Multi-Party Computations using Garbled Circuits. In 1982, Yao [85] pro-

posed a general technique for computing any two-party computation privately, by

building a “garbled circuit” in which one party encodes the function to be executed

and his own input, and the other party obliviously evaluates her inputs on this

65

circuit. Very recently, the Fairplay system [50, 7] provided a high-level program-

ming language for automatically compiling specified functions down into garbled

circuits and generating network protocol handlers to execute them. While such a

system would provide the privacy properties we require and offer the flexibility that

hand-crafted set-intersection protocols lack, this comes at a cost. These protocols

are even more expensive in both computation and communication, requiring careful

coordination as well.

Hashing Inputs. Rather than building fully decentralized protocols—with the coor-

dination complexity and quadratic overhead (in n) this entails—we could aggregate

data and compute results using a centralized server. One approach is to simply have

clients first hash their keys before submitting them to the server (e.g., using SHA-

256), so that a server only sees H(ki), not ki itself [4]. While it may be difficult to

find a pre-image of a hash function, brute force attacks are still always possible: In

our collaborating intrusion detection application, for instance, a server can simply

compute the hash values of all four billion IP addresses and build a simple lookup

table. Thus, while certainly efficient, this approach fails to achieve either of our

privacy properties. An alternative that prevents such a brute-force attack would

be for all participants (clients) to coordinate and jointly agree on some secret key

s, then use instead a keyed pseudorandom function on the input key, i.e., Fs(ki).

This would satisfy keyword privacy, until a single client decides to share s with the

server, a brittle condition for sure.

Network Anonymization through Proxying. In the previous proposal, the server

received inputs directly from clients. Thus, the server was always able to associate

a row of the database with a particular client, whether or not its key is known.

66

One solution would be to simply proxy a client’s request through one or more

intermediate proxies that hides the client’s identity (e.g., its own IP address), as

done in onion routing systems such as Tor [17]. Of course, this solution still does

not achieve keyword privacy.

Although the prior approaches have their limitations, they also offer important

insights that inform our design. First, a more centralized aggregation architecture

avoids distributed coordination and communication overhead. Second, proxying

can add participant privacy when interacting with a server. And third, a keyed

pseudorandom function (PRF) can provide keyword privacy. Now, the final insight

to our design is, rather than have all participants jointly agree on the PRF secret s,

let it be chosen by and remain known only to the proxy. After all, the proxy is already

trusted not to expose a client’s identity to the server (database), so let’s trust it not

to expose this secret s to the database as well. Thus, prior to proxying (roughly) the

tuple 〈Fs(ki), vi〉, the proxy executes a protocol with a client to blind its input key

ki with Fs. This blinding occurs in such a way that the client does not learn s and

the proxy does not learn ki.
1 This completes the loop, having a proxy play a role in

providing both keyword and participant privacy, while the database offers flexibility

in any computation over a key’s values T[ki] and scalability through traditional

replication and data-partitioning techniques (e.g., consistent hashing [40]).

4.2.3 Security Assumptions and Definitions

We now motivate and clarify some design decisions related to our security assump-

tions and privacy definitions. Roughly speaking, our final protocol defends against

1We note that oblivious pseudorandom function evaluation had been previously used in the set intersec-
tion context in [25] and [33].

67

malicious participants and non-colluding honest-but-curious databases and proxies.

Honest-but-curious parties. In our model, both proxy and database are expected to

act as honest-but-curious (also called semi-honest) participants. That is, each party

can perform local computation on its own view in an attempt to break privacy,

but is assumed to still faithfully follow the protocol when interacting with other

parties. We believe this model is very appropriate for our semi-centralized system

architecture. In many deployments, the database and proxy may be well-known

and trusted to act on their good intentions to the best of their abilities, as opposed

to simply another participant amongst a set of mutually distrustful parties. Thus,

other than fully compromising a server-side component and secretly replacing it

with an actively malicious instance, data breaches are not possible in this model,

as participants never see privacy-comprising data in the first place. In addition,

the honest-but-curious model is one of the two standard security models in multi-

party computation protocols—the other being the (obviously stronger) assumption

of full malicious behavior. Unfortunately, security against fully malicious behavior

comes at a great cost, as each party needs to prove at each step of the protocol

that it is faithfully obeying it. For example, the proxy would need to prove that

it does not omit any submitted inputs while proxying, nor falsely open blinded

keys at the end of the protocol; the database would need to prove that it faithfully

aggregates submitted values, and doesn’t omit any rows in T that satisfy f . These

proofs, typically done in zero-knowledge, greatly complicate the protocol and impact

efficiency.

We will, however, present a protocol that is robust against any coalition of

malicious participants. After all, the same trust assumptions that hold for the proxy

and database does not extend to the potentially large number of participants.

68

Security against coalitions. Another important aspect of security is the ability

to preserve privacy even when several adversarial players try to break security by

sharing the information they gained during the protocol. In this aspect, we insist

on providing security against any coalition of an arbitrary number of participants

together with the database. This is essential as otherwise the database can perform a

Sybil attack [18], i.e., create many dummy participants and use their views, together

with his own view, to reveal sensitive information. Similarly, we require security

against any coalition of the proxy and the participants. On the other hand, in order

to have an efficient and scalable system, we are willing to tolerate vulnerability

against a coalition of the database and the proxy, which could otherwise break

participant and keyword privacy.

Releasing the value column. Our protocol releases those keys whose values satisfy

f , but the database also learns the entire value column (T[ki], ∀i), even though it

learns no additional information about the corresponding ki’s. This asymmetric

design was chosen as revealing all T[ki] may be seen as a privacy violation.

That said, in other settings it may be acceptable to release the entire value col-

umn, so that all parties see identical information. This also serve another practical

purpose, as it may be hard to fully specify f a priori to collecting clients’ inputs.

For example, how should an anomaly detection system choose the appropriate fre-

quency threshold τ? In some attacks, 10 observations about a particular IP address

may be high (e.g., suspected phishing), while in others, 1000 observations may be

necessary (e.g., for bots participating in multiple DoS attacks). Furthermore, a

dataset may naturally expose a clear gap between frequency counts of normal and

anomalous behavior; the very reason data operators like to “play” with raw data in

the first place.

69

We also note that the acceptable set of input values and the system’s security

assumptions has some bearing here. If the domain D of possible values is large,

a client can try to “mark” a key k by submitting it together with an uncommon

value w ∈ D. If a value column that somehow includes w is revealed, the client

can discover other clients’ values for that same key. That said, a similar problem

exists when the value column is not released and one is concerned about collusions

between a client and database (who can search for the T[k] that includes w). This

problem does not arise when the domain is relatively small (e.g., when values are

grades over some limited scale).

We mention that this asymmetry and/or security issue can be completely elimi-

nated by first having participants encrypt their values under the public keys of both

proxy and database, and by then using additional cryptographic protocols for the

aggregation of the values. While these tools are relatively expensive, the structure

of our system allows us to employ them only for the two-party case (for the proxy

and database) which results in a significant efficiency improvement over other more

distributed solutions.

4.3 Our PDA Protocol

In this section, we describe our protocol and analyze its security. Section 4.3.1 de-

scribes a simplified version of the protocol that achieves somewhat weaker security

properties. This version will be extended to support a stronger notion of security

in Section 4.3.2. Our protocol employs several standard cryptographic tools (e.g.,

public-key encryption schemes, pseudorandom functions, and the oblivious evalu-

ation of a pseudorandom function). We will elaborate on these tools and suggest

70

!"#$%&'"()* !#+,-* .")"/"01*

!"#$%&'()*%+,#

-%.#)+*/,#0#

1"#$&234#56%&+.#

789:;.:0<<=#

789:7$>?:0<<#

@"#$&234#.6+A.#

B5)+A6A#)+*/,.C#

89#&6(2D6&.#;.:0<#

%+A#%AA.#,2#,%B56#

E"#89#A6,6&F)+6.#

)G#&2H#(2/+,#I#J#

K"#$&234#&6(2D6&.#

0#G&2F#7$>?:0<#

Figure 4.1: High-level system architecture and protocol.Fs is a keyed hash function
whose secret keys is known only to the proxy.

concrete instantiations in Section 4.3.3. More details about the extended protocol

and sketches of formal security proofs are given in the Appendix.

4.3.1 The Basic Protocol

Our protocol consists of four basic steps (see Figure 4.1). In the first two steps, the

proxy interacts with the participants to collect the blinded keys together with their

associated values encrypted under the database’s public-key, and then passes these

encrypted values on to the database. Then, in the third step, the DB aggregates

the blinded keys together with the associated values in a table and decides which

rows should be revealed according to a predefined function f . Finally, the DB asks

the proxy to unblind the corresponding keys. Since the blinding scheme Fs is not

necessarily invertible, the revealing mechanism uses some additional information

that is sent during the first phase.

• Parties: Participants, Proxy, Database.

• Cryptographic Primitives: A pseudorandom function F , where Fs(ki) de-

notes the value of the function on the input ki with a key s. A public-key

encryption E, where EK(x) denotes an encryption of x under the public key

71

K.

• Public Inputs: The proxy’s public key prx, the database’s public key db.

• Private Inputs. Participant: A list of key-value pairs 〈ki, vi〉. Proxy: key s

of PRF F and secret key for prx; Database: secret key for db.

1. Each participant interacts with the proxy as follows. For each entry 〈ki, vi〉

in the participant’s list, the participant and the proxy run a sub-protocol for

oblivious evaluation of the PRF (OPRF). At the end of this protocol, the

proxy learns nothing and the participant learns only the value Fs(ki) (and

nothing else, not even the key s of the PRF). The participant computes the

values Edb(Fs(ki)), Edb(vi), and Edb(Eprx(ki)), and it sends them to the

proxy. (The last entry will be used during the revealing phase.) The proxy

adds this triple to a list and waits until most/all participants send their inputs.

2. The proxy randomly permutes the list of triples and sends the result to the

DB. The DB uses its private key to decrypt all the entries of each triple. Now,

it holds a list of triples of the form
〈

Fs(ki), vi, Eprx(ki)
〉

. The DB inserts

these values into a table which is indexed by the (blinded) key Fs(ki). At the

end, the DB has a table of entries of the form
〈

Fs(ki), T[ki], E[ki]
〉

, where T[ki]

is (in general) a list of all the vi’s that appeared with this key (or simply the

number of times a client inputted ki in the case of threshold set intersection),

and E[ki] is a list of values of the form Eprx(k).

3. The DB uses some predefined function f to partition the table into two parts:

R, which consists of the rows whose keys should be revealed, and H, which

consists of the rows whose keys should remain hidden. Then, it sends all the

rows of R to the proxy.

72

4. The proxy goes over the received table R and replaces all the encrypted

Eprx(ki) entries with their decrypted key ki. Then it publishes the updated

table.

Variants. One may consider several variants in which different information is

released to the participants by the database. For example, it is possible to release

only the keys ki which are chosen by the function f without the corresponding

values T[ki]. On the other extreme, the DB can release more data by publishing

the pairs (ki, T[ki]) for the ki’s that are selected by f , together with the values T[ki]

of the keys that were not selected by f without the corresponding keys (i.e., the

entries T[ki] of the table H). This might be useful to the participants and, in some

scenarios, the additional information might not constitute a privacy violation (in

the “real-world” sense). Consider, for example, the case where the values are always

one, i.e., the participants only want to increment a counter for some key. In this

case, the table R simply consists of keys and their frequencies, and H is simply a

frequency table of all the unrevealed keys.

Security Guarantees. We claim that this protocol guarantees privacy against the

following attacks:

Coalition of honest-but-curious participants. Consider the view of an honest-but-

curious participant during the protocol. Due to the security of the OPRF sub-

protocol, a single participant sees only a list of pseudorandom values of the form

Fs(ki), and therefore it learns nothing beyond the output of the protocol (formally,

this view can be easily simulated by using truly random values). The same holds

for a coalition of participants.

73

In fact, this protocol achieves a reasonable level of security against malicious

participants as well. Recall that the interaction of the proxy with a participant

is completely independent of the inputs of other participants. Hence, even if the

participants are malicious, they still learn nothing about the data of other honest

participants. Furthermore, even malicious participants will be forced to choose

their inputs independently of the inputs of other honest participants. For example,

they cannot duplicate the input of some other honest participant. (Similar security

definitions were also considered in [58, 33].) However, malicious participants can

still violate the correctness of the above protocol. This issue will be fixed in the

extended protocol.

Honest-but-curious proxy. The proxy’s view consists of three parts: (1) the view

during the execution of the OPRF protocol—this gives no information due to the

security of the OPRF; (2) the tuples that the participants send—these values are

encrypted under the DB’s key and therefore reveal no information to the proxy;

and (3) the values that the DB sends during the last stage of the protocol—these

are just key-value pairs (encrypted under the proxy’s key) that should be revealed

anyway, and thus they give no additional information beyond the actual output of

the protocol.

Honest-but-curious coalition of proxy and participants. The above argument gen-

eralizes to the case where the proxy colludes with honest-but-curious participants.

Indeed, the joint view of such coalition reveals nothing about the inputs of the

honest participants.

Honest-but-curious database.The DB sees a blinded list of keys encrypted under

his public key db, without being able to relate the blinded entries to their owners.

74

For each blinded key Fs(ki), the DB also sees the list of its associated values T[ki]

and encryptions of the keys under the proxy’s key Eprx(k). Finally, the DB also

sees the output of the protocol. The values Fs(ki) and Eprx(k) bear no information

due to the security of the PRF and the encryption scheme. Hence, the DB learns

nothing but the value table of the inputs (i.e., the T[ki]’s for all ki’s).
2

4.3.2 The Full-Fledged Protocol

In the following, we describe how to immunize the basic protocol against stronger

attacks.

Honest-but-curious coalition of participants and database. A careful examination

of the previous protocol shows that it is vulnerable against such coalitions for two

main reasons.

First, a participant knows the blinded version Fs(ki) of its own keys ki, and,

in addition, the DB can associate all the values T[ki] to their blinded keys Fs(ki).

Hence, a coalition of a participant and a DB can retrieve all the values T[ki] that

are associated with a key ki that the participant holds, even if this key should not

be revealed according to f . To fix this problem, we modify the first step of the

protocol. Instead of using an OPRF protocol, we will use a different sub-protocol

in which the participant learns nothing and the proxy learns the value Edb(Fs(ki))

for each ki. This solves the problem as now that participant himself does not know

the blinded version of his own keys. To the best of our knowledge, this version of

encrypted-OPRF protocol (abbreviated EOPRF) has not appeared in the literature

before. Fortunately, we are able to construct such a protocol by carefully modifying

2Formally, we define a functionality in which this additionalinformation is given to the database as part
of its output. See the appendix for details.

75

the OPRF construction of [25] and combining it with El-Gamal encryption (see

Section 4.3.3).

Second, we should eliminate subliminal channels, as these can be used by par-

ticipants and the database to match the keys of a participant to their blinded

versions (that were forwarded to the DB by the proxy). Indeed, public-key encryp-

tion schemes use randomness (in addition to the public key) to encrypt a message,

and this randomness can be used as a subliminal channel. To solve this problem,

we use an encryption scheme that supports re-randomization of ciphertexts; that

is, given an encryption of x with randomness b, it should be possible to recompute

an encryption of y under fresh randomness b′ (without knowing the private key).

Now we eliminate the subliminal channel by asking the proxy to re-randomize the

ciphertexts—Edb(Fs(ki)), Edb(vi), and Edb(Eprx(ki))—which are encrypted un-

der the DB’s public key (at Step 1). Furthermore, we should be able to re-randomize

the internal ciphertext Eprx(ki) of the last entry as well (we will show that this

can be achieved through variant of El-Gamal encryption).

A coalition of malicious participants. As we already observed, malicious partic-

ipants can violate the correctness of our protocol. Specifically, they might try to

submit ill-formed inputs. Recall that the participant sends to the proxy triples

〈a, b, c〉, where in an honest execution we have a = Edb(Fs(ki)), b = Edb(vi) and

c = Edb(Eprx(ki)) for some ki and vi. However, a cheating participant might

provide an inconsistent tuple, in which a = Edb(Fs(ki)) while c = Edb(Eprx(k′
i))

for some k′
i 6= ki. We can prevent such an attack by asking the proxy to apply

a consistency check to R in the last step of the protocol and to make sure that

Eprx(k′
i) and Fs(ki) match. The proxy omits all the inconstant values (if there are

any) and asks the DB to check again if the corresponding row should be revealed

76

after the omission. (This modification suffices as long as the function f is local, i.e.,

it is applied to each row separately. See appendix for more details.)

Another thing that a cheating participant might do is to replace b with some

“garbage” value b′ = Edb(v′) for which he does not know the plaintext v′ (while

this might not seem to be beneficial in practice, we must prevent such an attack in

order to meet our strong definitions of security). To prevent such attack, we ask

the participant to provide a zero-knowledge proof that shows that he knows the

plaintext v to which that b decrypts. As seen in the next section, this does not add

too much overhead.

Finally, our sub-protocol for the EOPRF should be secure against malicious

participants in the following sense: a malicious participant should not be able to

generate a blinded value Edb(Fs(ki)) for a key ki that he does not know.

In the appendix, we show that our modifications guarantee full security against

malicious participants.

4.3.3 Concrete Instantiation of the Cryptographic Primitives

In the following section, we assume that the input keys are represented by m-bit

strings. We assume that m is not very large (e.g., less than 192–256); otherwise,

one can hash the input keys and apply the protocol to resulting hashed values.

Public Parameters. Our implementation mostly employs Discrete-Log based

schemes. In the following, g is a generator of a multiplicative group G of prime or-

der p for which the decisional Diffie-Hellman (DDH) assumption holds. We publish

(g, p) during initialization and assume the existence of algorithms for multiplication

(and thus also for exponentiation) in G. We let Zp denote the field of integers mod-

77

ulo p, the set {0, 1, . . . , p− 1} with multiplication and addition modulo p. We will

let Z∗
p denote the multiplicative group of the invertible elements Zp.

El-Gamal Encryption. We will use El-Gamal encryption over the group G. The

private key is a random element a from Z∗
p, and the public key is the pair (g, h = ga).

To encrypt a message x ∈ G, we choose a random b from Z
∗
p and compute (gb, x ·hb).

To decrypt the ciphertext (A, B), compute B/Aa = B·A−a (where −a is the additive

inverse of a in Zp). In case we wish to “double-encrypt” a message x ∈ G under

two different public-keys (g, h) and (g, h′), we will choose a random b from Z∗
p and

compute (gb, x · (h · h′)b). This ciphertext as well as standard ciphertexts can be

re-randomized by multiplying the first entry (resp. second entry) by gb′ (resp. hb′)

where b′ is chosen randomly from Z∗
p. Finally, a zero-knowledge proof for knowing

the decryption of a given ciphertext is described in [71]. The scheme adds only 3

exponentiations and does not increase the overall round complexity as it can be

applied in parallel to the EOPRF protocol.

Naor-Reingold PRF [59]. The key s of the function Fs : {0, 1}m → G contains m

values (s1, . . . , sm) chosen randomly from Z∗
p. Given m-bit string k = x1 . . . xm, the

value of Fs(k) is g
Q

xi=1
si, where the exponentiation is computed in the group G.

Oblivious-Transfer [66, 58]. To implement the sub protocol of Step 1, we will need

an additional cryptographic tool called Oblivious Transfer (OT). In an OT protocol,

we have two parties: sender and receiver. The sender holds two strings (α, β), and

the receiver has a selection bit c. At the end of the protocol, the receiver learns a

single string: α if c = 0, and β if c = 1. The sender learns nothing (in particular,

it does not know the value of the selector c).

78

The Encrypted-OPRF protocol

Our construction is inspired by a protocol for oblivious evaluation of the PRF F ,

which is explicit in [25] and implicit in [57, 58]. We believe that this construction

might have further applications.

• Parties: Participant, Proxy.

• Inputs. Participant: m-bit string k = (x1 . . . xm); Proxy: secret key s =

(s1, . . . , sm) of a Naor-Reingold PRF F .

1. Proxy chooses m random values u1, . . . , um from Z∗
p and an additional random

r ∈ Z∗
p. Then for each 1 ≤ i ≤ m, the proxy and the participant invoke the

OT protocol where proxy is the sender with inputs (ui, si · ui) and receiver

uses xi as his selector bit. That is, if xi = 0, the participant learns ui and

otherwise it learns si · ui. The proxy also sends the value ĝ = gr/Πui. (These

steps can be done in parallel.)

2. The participant multiplies together the values received in the OT stage. Let

M denote this value. Then, it computes ĝM = (gΠxi=1si)r = Fs(k)r. Finally,

the participant chooses a random element a from Z∗
p and encrypts Fs(k)r under

the public key db = (g, h) of the database. The participant sends the result

(ga, Fs(k)r · ha) to the proxy.

3. The proxy raises the received pair to the power of r′, where r′ is the multi-

plicative inverse of r modulo p. It also re-randomizes the resulting ciphertext.

Correctness. Recall that G has a prime order p. Hence, when the pair (ga, Fs(x)r ·

ha) is raised to the power of r′ = r−1, the result is (gar′, Fs(k) ·har′), which is exactly

Edb(Fs(k)). Thus, the protocol is correct.

79

Privacy. All the proxy sees is the random tuple (u1, . . . , um, r) and Edb(Fs(k)r).

This view gives no additional information except of Edb(Fs(k)). (Formally, the

view can be perfectly simulated given Edb(Fs(k)).) On the other hand, we claim

that all the participant sees is a sequence of random values and therefore it also

learns nothing. Indeed, the participant sees the vector (sx1

1 · u1, . . . , s
xm
m · um), whose

entries are randomly distributed over G, as well as the value ĝ = (g1/Πui)r. Since r

is randomly and independently chosen from Z∗
p, and since G has a prime order p,

the element ĝ is also uniformly and independently distributed over G. The protocol

supports security against malicious participants (in the sense that was described

earlier) as long as the underlying OT is secure against a malicious receiver.

Implementing Oblivious Transfer

In general, oblivious transfer is an expensive public-key operation (e.g., it may

take two exponentiations per single invocation). In the above protocol, then, we

execute an OT protocol for each bit of the participants input k (which would result,

for example, in 64 exponentiations just to input a single IP address). However,

Ishai et al. [36] show how to reduce the amortized cost of OT to be as fast as matrix

multiplication. This “batch OT” protocol uses a standard OT protocol as building

block. We implemented this batch OT protocol on top of the basic OT protocol

of [58].3

3The “batch OT” protocol also has a version which preserves security against a malicious receiver.
This increases the number of multiplications by a multiplicative factor, but does not affect the number of
expensive public-key operations.

80

!"#$%&'"()*+
,-&.()/0"%&(1+!#23&.*+

!#234+5.%#4'$2(+6#"%-.*+

0#2()/7(8+

59+:&.#+

9"%;/7(8+

59+<)2#"1.+

Figure 4.2: Distributed proxy and database architecture

4.3.4 Efficiency of our Protocol

In both the basic and extended protocol, the round complexity is constant, and

the communication complexity is linear in the number of items. The protocol’s

computational complexity is dominated by cryptographic operations. For each m-

bit input key, we have the following amortized complexity: (1) The participant who

holds the input key computes 3 exponentiations in the basic protocol (respectively

8 in the extended protocol), as well as O(m) modular multiplication / symmetric-

key operations in both versions. (2) The proxy computes 5 exponentiations in the

basic protocol (resp. 12 in the extended protocol) and O(m) modular multiplication

/ symmetric-key operations. (3) The database computes 3 exponentiations in the

basic protocol (resp. 5 in the extended protocol).

81

4.4 Distributed Implementation

In our system, both the proxy and database logical components can be physically

replicated in a relatively straightforward manner. In particular, our design can scale

out horizontally to handle higher loads, by increasing the number of proxy and/or

database replicas, and then distributing requests across these replicas. Our dis-

tributed architecture is shown in Figure 4.2. Our current implementation covers all

details described in the basic protocol, as well as some security improvements of the

extended version (e.g., including the EOPRF, but not ciphertext re-randomization,

proofs of knowledge, or the final consistency check).

4.4.1 Proxy: Client-Facing Proxies and Decryption Oracles

One administrative domain can operate any number of proxies. Each proxy’s func-

tionality may be logically divided into two components: handling client requests,

and serving as decryption oracles for the database when a particular key should

be revealed. None of these proxies need to interact, other than having all client-

facing proxies use the same secret s to key the pseudorandom function F and all

decryption-oracle proxies use the same public/private key prx. In fact, these two

proxies play different logical roles in our system and could even be operated by two

different administrative domains. In our current implementation, all proxies register

with a single group membership server, although a distributed group membership

service could be implemented for additional fault tolerance [11, 84].

To discover a client-facing proxy, a client contacts this group membership service,

which returns a proxy IP address in round-robin order (this could be replaced by

any technique for server selection, including DNS, HTTP redirection, or a local load

82

balancer). To submit its inputs, a client connects with this proxy and then executes

an amortized Oblivious Transfer (OT) protocol on its input batch. This results in

the proxy learning
〈

Edb(Fs(ki)), Edb(vi), Edb(Eprx(ki))
〉

for each input tuple,

which it pushes onto an internal queue. (While Section 4.3.3 only described the

use of ElGamal encryption, its special properties are only needed for Edb(Fs(ki));

the other public-key operations can be RSA, which we use in our implementation.)

When this queue reaches a certain length (10,000 in our implementation), the proxy

randomly permutes (shuffles) the items in the queue, and sends them to a database

server.

The database, upon determining that a key ki’s value satisfies f , sends Eprx(ki)

to a proxy-decryption oracle. The proxy-decryption oracle decrypts Eprx(ki) and

returns ki to the database for storage and subsequent release to other participants

in the system.

4.4.2 Database: Front-end Decryption and Back-end Storage

The database component can also be replicated. Similar to the proxy, we separate

database functionality into two parts: the front-end module that handles proxy

submissions and decrypts inputs, and a back-end module that acts as a storage

layer. Each logical module can be further replicated in a manner similar to the

proxy.

The servers comprising the front-end database tier do not need to interact, other

than being configured with the same public/private keypair db. Thus, any front-end

database can decrypt the Edb(Fs(ki)) input supplied by a proxy, and the proxies

can load balance input batches across these database servers.

The back-end database storage, on the other hand, needs to be more tightly

83

coordinated, as we ultimately need to aggregate all Fs(ki)’s together, no matter

which proxy or front-end database processed them. Thus, the back-end storage

tier partitions the keyspace of all 1024-bit strings over all storage nodes (using

consistent hashing [40]). All such front-end and back-end database instances also

register with a group membership server, which the front-end servers contact to

determine the list of back-end storage nodes. Upon decrypting an input, the front-

end node determines which back-end storage node is assigned the resulting key

Fs(ki), and sends the tuple
〈

Fs(ki), vi, Eprx(ki)
〉

to this storage node.

As these storage nodes each accumulate a horizontal portion of the entire table

T , they test the value column for their local table to see if any keys satisfy F .

For each such row, the storage node sends the tuple
〈

Fs(ki), T [ki], Eprx(ki)
〉

to a

proxy-decryption oracle.

4.4.3 Prototype Implementation

Our design is implemented in roughly 5,000 lines of C++. All communication

between system components—client, front-end proxy, front-end database, back-end

database storage, and proxy-decryption oracle—is over TCP using BSD sockets. We

use the GnuPG library for large numbers (bignums) and cryptographic primitives

(e.g., RSA, ElGamal, and AES). The Oblivious Transfer protocol (and its amortized

variant) were implemented from scratch, and comprised a total of 625 lines of code.

All RSA encryption used a 1024-bit key, and ElGamal used a corresponding 1024-

bit group size. AES-256 was used in the batch OT and its underlying OT primitive.

The back-end database simply stores table rows in memory, although we plan to

replace this with a durable key-value store (e.g., BerkeleyDB [61]).

84

keys

T
hr

ou
gh

pu
t (

ke
ys

 /
se

c)

0 2000 4000 6000 8000 10000
0

50

100

150

Proxy (Amortized OT)
DB
Proxy (OT Primitive)

Figure 4.3: Throughput as a function of number of keys

4.5 Performance Evaluation

We wish to evaluate our system along three primary dimensions. (a) Given fixed

computing resources, what is the throughput of our system as a function of the

size of the input set? (b) What are the primary factors limiting throughput? And,

(c) how does the throughput scale with increasing computing resources? In each

case, we are concerned with both (1) how long it takes for clients to send key-value

pairs to the proxy during the OT phase (proxy throughput) and (2) how long it

takes for the DB to decrypt and identify keys with values that satisfy the function

f (DB throughput). We have instrumented our code to measure both. For a given

experiment requiring the proxy to process n keys, proxy throughput is defined as n

divided by the time it takes between when the first client contacts any client-facing

proxy and when the last key is processed by some client-facing proxy. Similarly,

85

clients

T
hr

ou
gh

pu
t (

ke
ys

 /
se

c)

5 10 15 20 25 30 35
0

200

400

600

800

1000
Proxy
DB

Figure 4.4: Throughput as a function of number of participants

CPU cores

T
hr

ou
gh

pu
t (

ke
ys

 /
se

c)

2 3 4 5 6 7 8
0

500

1000

1500

2000

2500
Proxy
DB

Figure 4.5: Throughput as a function of number of proxy/DB replicas

86

database throughput is defined as the number of keys processed between when the

first client-facing proxy forwards keys to some DB front-end and when the DB

back-end storage processes the last submitted keys.

Our experiments were run on multiple machines. The servers (proxy and DB)

were run on HP DL160 servers (quad-core Intel Xeon 2 GHz machines with 4 GB

RAM running CentOS Linux). These machines can perform a 1024-bit ElGamal

encryption in 2.2 ms, ElGamal decryption in 2.5 ms, RSA encryption in 0.5 ms, and

RSA decryption in 2.8 ms. Due to a lack of homogeneous servers, the clients were

run on different machines depending on the experiment. The machines used for the

clients were either (A) of the same configuration as the servers, or one of either

(B) Sun SunFire X4100 servers with two dual-core 2.2 GHz Opteron 275 processors

(four 64-bit cores) with 16GB RAM running CentOS, or (C) Dell PowerEdge 2650

servers with two 2.2 GHz Intel Xeon processors and 5 GB of memory, also running

Linux.

As noted in the introduction, our system can be used in different contexts. One

of the most prominent is that of anomaly detection: specifically, networks collabo-

rating to identify attacking IP addresses—e.g., belonging to a botnet—with greater

confidence. Modern botnets can range up to roughly 100,000 unique hosts [67], and

we would like our system to be able to correlate suspicions of hundreds of partici-

pating networks within some numbers of hours. In order to support such a usage

scenario, our implementation will need to be able to process millions of keys in the

span of hours or many hundreds of keys per second. We will revisit the feasibility of

our implementation for our supporting applications in Section 4.5.2, but these num-

bers should provide rough expectations for the throughput numbers to be presented

in Section 4.5.1.

87

4.5.1 Scaling and Bottleneck Analysis

Effect of number of keys (Figure 4.3). The input trace to our system is parame-

terized by the number of clients and by the number of keys they each submit. In

Figure 4.3, we measure the throughput of our system as a function of the number of

keys. More precisely, we run a single client, a single proxy, and a single DB in order

to measure single-CPU-core proxy throughput and single-CPU-core DB through-

put. The top solid curve shows proxy throughput when the proxy and client utilize

the amortized OT protocol, the middle dashed curve shows DB throughput, and

the bottom partial curve shows proxy throughput when the proxy and client utilize

only the standard OT primitive, which does not include our amortization-based

extensions. The throughput of the OT primitive is exceedingly low (less than one

key per second), which is why it was not evaluated on the full range of x-values.

Proxy throughput scales well with the number of incoming keys when the client

and proxy utilize the amortized OT protocol. Throughput increases with increasing

numbers of keys per batch, as the amortized OT calls the primitive OT a fixed

number of k times regardless of the number of input keys n. With small n (e.g., up

to 1000), the cost of these calls to the primitive OT dominate overall execution time

and leave the proxy underutilized. However, as the size of the input set increases,

the cost of encrypting keys on the client becomes the primary bottleneck, which is

the plot shows minimal increase in throughput above n = 8000.

DB throughput, on the other hand, does not scale with the number of keys.

The reason for this is that the intensive work on the DB is decryption, which is

performed in batch, and it is therefore entirely CPU limited. The DB becomes

CPU limited at 10 keys and remains CPU limited at 10,000 keys (i.e., latency goes

88

up and throughput remains constant). We noted earlier that the machines on which

the DB and proxy run require 2.5 ms per decryption. Since the DB has to perform

3 decryptions per key, the DB therefore has a maximum throughput of 135 keys

per second on a single CPU core. Figure 4.3 shows that our DB implementation

achieves throughput of roughly 90 keys per second.

The amortized OT protocol [36] introduces a trade-off between the message

overhead and memory consumption. The memory footprint of this protocol per

client-proxy interaction for n keys is n × 32 × 2 × 1024/8 = 8196n bytes (i.e., we

assume 32 bits per key, the 2 values for the OT primitive, 1024-bit keys, and 8

bits per byte). For n = 10, 000 keys, for example, this requires 82 MB on both

the proxy and the client. A proxy communicating with 100 clients would therefore

require in excess of 8GB of memory. A user of the protocol could choose to execute

the amortized OT protocol in stages, however, by sending k keys at a time, which

would reduce the memory footprint. Our system is parameterized to support this,

and because Figure 4.3 shows that there is little to gain from batch sizes in excess

of 5,000 keys, the remainder of our experiments will use batch sizes of 5,000 keys.

Our architecture is designed to maximize throughput, not minimize latency. In

fact, providing a meaningful measure of latency is challenging for multiple reasons:

(a) the DB processes f
def
= T[ki] ≥ τ once every t seconds (i.e., not upon arrival,

which wouldn’t make sense unless τ = 1); (b) the proxy batches and randomly

permutes/shuffles key-value pairs for security; and (c) the substantial benefit of the

amortized OT (over the OT primitive: see again Figure 4.3) is lost if the client

submits only a 1 key-value pair, which is required for a “true” latency experiment.

These qualifiers notwithstanding, Figure 4.3 does provide a form of “mean” latency.

That is, a single client with 5000 keys would see mean proxy latency of 7.2 millisec-

89

onds per key and mean DB latency of 11.1 milliseconds per key.

Effect of number of participants (Figure 4.4). Here we evaluate the throughput of

our system as a function of the number of clients sending keys. In this experiment,

we limit the proxy and DB to one server machine each. Four client-facing proxy

processes are launched on one machine and four front-end DB processes are launched

on the other. They can therefore potentially utilize all eight cores on these two

machines. Figure 4.4 shows that the proxy scales well with the number of clients.

Proxy throughput increases by nearly a factor of two between 8 and 32 clients. This

signifies that, when communicating with a single client, a proxy spends a substantial

fraction of its time idling. The four proxies in this experiment are not CPU limited

until they handle 32 clients, at which time the throughput approaches 900 keys per

second. The DB, on the other hand, is CPU-bound throughout. It has a throughput

of about 350 keys per second, independent of the number of clients.

Effect of number of replicas (Figure 4.5). Finally, we wish to analyze how our

distributed architecture scales with the available computing resources. In this ex-

periment, we provide up to 8 cores across two machines to each of the proxy and

DB front-ends. While the proxy is evaluated on 64 clients, computing resource

constraints meant that the DB is evaluated on 32 clients.

Both our proxy and DB scale linearly with the number of CPU cores allocated

to them. Throughput for the DB with 2 cores when handling 32 clients was over 173

keys per second, whereas at 8 cores the throughput was 651 keys per second: a factor

of 3.75 increase in throughput for a factor of 4 increase in computing resources. The

proxy has throughput of 1159 keys per second when utilizing 4 cores and 2319 when

utilizing 8 cores: an exact factor of 2 increase in throughput for an equal increase

90

Global Within amortized OT
wait encrypt wait pow AES arith other OT
60% 1% 0% 16% 4% 4% 6% 7%

Table 4.2: Breakdown of proxy resource usage

Global Within amortized OT
wait encrypt wait pow AES arith other OT
0% 40% 31% 16% 2% 1% 3% 7%

Table 4.3: Breakdown of client resource usage

in computing resources. This clearly demonstrates that our protocol, architecture,

and implementation can scale up to handle large data sets. In particular, our entire

system could handle input sizes on the order of millions of keys in hours.

Micro-benchmarks. To gain a deeper understanding of the factors limiting the

scalability of our design, we instrumented the code to account for how the client

and proxy were spending their CPU cycles. While the DB is entirely CPU bound

due only to decryptions (i.e., its limitations are known), the proxy and client engage

in the oblivious OT protocol whose bottlenecks are less clear. In Tables 4.2 and

4.3, we therefore show the fraction of time the client and proxy, respectively, spend

performing various tasks needed for their exchange. In this experiment, we have a

single client send keys to a single proxy at the maximum achievable rate.

At the highest level, we split the tasks performed into (a) waiting (called “wait”),

(b) encrypting or decrypting values (“encrypt”), or (c) engaging in the amortized

OT protocol. We further split work within the amortized OT protocol into time

spent waiting, performing modulo exponentiations (“pow”), calling AES256, per-

forming basic arithmetic such as multiplication, division, or finding multiplicative

inverses (“arith”), calling the OT primitive (“OT”), and any other necessary tasks

(“other”) such as XOR’ing numbers, generating random numbers, allocating or de-

91

allocating memory, etc.

Table 4.2 shows that when communicating with a single client, the client-facing

proxy spends more than 60% of its time idling while waiting for the client—it is

more than 60% because some part of the 7% of time spent within the OT primitive

is also idle time. The 60% idle time is primarily due to waiting for the client to

encrypt ki and Fs(ki). The single largest computational expense for the proxy is

performing powmods at 16%; the remaining non-OT tasks add up to 15%. In order

to make the proxy more efficient, therefore, utilizing a bignum library with faster

exponentiation and basic arithmetic would be advantageous.

The client also spends a non-trivial amount of time waiting—31% of total ex-

ecution time—but substantially less than the proxy. It spends 40% of its time

encrypting values. The reason this 40% does not match up with the 60% idle time

of the proxy is because the proxy finishes its portion of the amortized OT before

the client does its portion. That is, 20 out of the proxy’s 60% idle time is due to

the client processing data sent by the proxy in the last stage of the amortized OT

protocol, and the remaining 40 is due to the client encrypting its values. A with

the proxy, the client would benefit from faster exponentiations, but encryption is

clearly the major bottleneck. We noted before that the GnuPG cryptographic li-

brary we use performed public-key operations in approximately 2.5–2.8 ms. On the

same servers, we benchmarked the Crypto++ library to perform RSA decryption

in only 1.2 ms, increasing speed by 130%. Crypto++ would also allow us to take

advantage of elliptic curve cryptography, which would increase system throughput.

In future work, we plan to modify our implementation to use this library.

92

4.5.2 Feasibility of Supporting Applications

In this section, we revisit several potential applications of our system. We consider

our results in light of their potential demands on request rate: the number of

requests per unit time that must be satisfied, the number of keys which must be

stored in the system, and the number of participants.

Anomaly detection. Network operators commonly run systems to detect and

localize anomalous behavior within their networks. These systems dynamically

track the traffic mix—e.g., the volume of traffic over various links or the degree

of fanout from a particular host—and detect behavior that differs substantially

from the statistical norm. For example, Mao et al. [52] found that most DDoS

attacks observed within a large ISP were sourced by fewer than 10,000 source IPs,

and generated 31,612 alarms over a four-week period (0.8 events per hour). In

addition, Soule et al. [75] found that volume anomalies occurred at a rate of four

per day on average, most of which involved fewer than several hundred source IPs.

Finally, Ramachandran et al. [68] found were able to localize 4,963 Bobax-infected

host IPs sending spam from a single vantage point. We envision our system could

be used to improve accuracy of these techniques by correlating anomalies across

ISP boundaries. We found our system could handle 10,000 IP addresses as keys,

with a request rate of several hundred keys per second, even with several hundred

participants. Given our system exceeds the requirements of anomaly detection, our

system may enable the participants to “tune” their anomaly detectors to be more

sensitive, and reduce false positive rates by leveraging other ISPs’ observations.

Cross-checking certificates. Multiple vantage points may be used to validate

authenticity of information (such as a DNS reply or ssh certificate [64, 81]) in the

93

presence of “man-in-the-middle” attacks. Such environments present potentially

larger scaling challenges due to the potentially large number of keys that could be

inserted. According to [38], most hosts execute fewer than 15 DNS lookups per

hour, and according to [70], ssh hosts rarely authenticate with more than 30 remote

hosts over long periods of time. Here, we envision our system could simplify the

deployment of such schemes, by reducing the amount of information revealed about

clients’ request streams. Under this workload (15 key updates per hour, with 30

keys per participating host), our system scales to support several hundred hosts

with only a single proxy. Extrapolating out to larger workloads, our system can

handle tens of thousands of clients storing tens of thousands of keys with under fifty

proxy/database pairs.

Distributed ranking. Search tools such as Alexa and Google Toolbar collect in-

formation about user behavior to refine search results returned to users. However,

such tools are occasionally labeled as spyware as they reveal information about the

contents of queries performed by users. Our tool may be used to improve privacy of

user submissions to these databases. It is estimated that Alexa Toolbar has 180,000

active users, and it is known that average web users browse 120 pages per day.

Here, the number of participants is large, but the number of keys they individually

store in the system is smaller. Extrapolating our results to 180,000 participants,

and assuming several thousands of keys, our system can still process several hun-

dred requests per second (corresponding to several hundred thousand clients) per

proxy/database pair.

94

4.6 Extended Protocol and Security Proof

Here, we describe the extended protocol of Section 4.3.2.

1. Each participant interacts with the proxy as follows. For each entry 〈ki, vi〉

in the participant’s list, the participant and the proxy run a sub-protocol

for encrypted oblivious evaluation of the PRF (EOPRF). At the end of this

protocol, the participant learns nothing and the proxy learns only the value

Edb(Fs(ki)). The participant sends the values Edb(Eprx(ki)) and Edb(vi)

together with a proof of knowledge (POK) for knowing the plaintext of the

last entry. If the POK succeeds, then the proxy re-randomizes the ciphertexts

and adds the triple to a list. Otherwise, if the POK fails, the proxy ignores

the triple.

2. Same as in the original protocol.

3. The DB builds the tables R and H as in the original protocol. For each row in

R, the DB sends to the proxy the value Fs(ki) together with the corresponding

list E[ki] which supposedly contains ciphertexts of the form Eprx(ki). The

DB also re-randomizes these ciphertexts.

4. The proxy goes over the received table. For each entry of the received table,

it decrypts all the values in the list E[ki] and verifies that the plaintext cor-

responds to the blinded key Fs(ki). It reports inconsistencies to the DB and

sends ki if it appears in the list E[ki].

5. For each row, the DB updates the list T[ki] by omitting the values vi for which

inconsistencies were found. Then, it applies f again to the updated row, checks

whether it should be released, and, if so, publishes the corresponding key ki

95

together with the updated list of values T[vi]. (The value ki was given by

the proxy as at least one of the ciphertexts in E[ki] was consistent with the

blinded key.)

We now sketch the proofs for the security of the protocol. First let us formally

define the functionality we consider. Consider all submitted key-value pairs as

a table, where each distinct key ki is associated with a list T̂[ki] of all values vi

submitted with it. Let R̂ be the sub-table that consists of all the rows that should

be revealed (according to f), and let Ĥ be the table that contains all the other

entries with the key column omitted. Our functionality outputs R̂ as a public value

and Ĥ as a private output for the DB. We prove that our protocol securely computes

this functionality.

Honest but curious coalition of participants and a proxy. The joint view of the

proxy and the honest-but-curious (HBC) participants contains the following: (1) the

inputs (ki, vi) of the HBC participants and the public outputs R̂; (2) the information

exchanged by the proxy and the HBC participants during the first stage; (3) the

view of the proxy when interacting with other participants in the first stage, which

consists of the proxy’s view of the sub-protocols (EOPRF and POK) as well as

triples of the ciphertexts Edb(vi), Edb(Fs(ki)), and Edb(Eprx(ki)); and (4) the

table R sent by the DB to the proxy at the “revealing” phase of the protocol.

This view can be simulated, given the corresponding inputs (ki, vi) and the

outputs R̂, as follows. Choose a random PRF key s, as well as public keys prx and

db. Simulate (1) and (2) in the natural way (all the information needed for these

computations is given). To simulate (3), use the simulators of the sub-protocols and

generate garbage ciphertexts Edb(0), Edb(0), Edb(0). To simulate (4), encrypt the

96

values in R̂ under prx and blind the keys under s.

Honest-but-curious coalition of participants and a DB. The joint view of the proxy

and the HBC participants contains the following: (1) the inputs (ki, vi) of the HBC

participants and the public outputs R̂; (2) the view of the HBC participants during

the interaction with the proxy, which consists of the view of the sub-protocols

(EOPRF and POK) as well as triples of ciphertexts Edb(vi), Edb(Fs(ki)), and

Edb(Eprx(ki)); and (3) the view of the DB when interacting with the proxy,

which consists of the tables R and H (encrypted under the DB’s public key).

Given the corresponding inputs (ki, vi), the public output R̂, and the DB’s private

output Ĥ, we show how to simulate the above view. First, choose a random PRF

key s, as well as public keys prx and db. Then, simulate (1) and (2) in the natural

way (all the information needed for these computations is now given). It remains

just to simulate R and H. The table R can be computed from R̂ and s. To simulate

H, we should somehow add blinded values to Ĥ (and encrypt the tuples under db).

We do this by building a key-value table for the inputs of the HBC participants.

Then, for each row ki, we choose a random consistent row in Ĥ and add the value

Fs(ki) as an additional blinded-key column. (A row is consistent with a key ki if

the list of values of the HBC’s that are associated with ki appear as part of the

value list of the row in Ĥ.) Finally, for those rows which are left with no blinded

key column, a random value is added.

Malicious coalition of participants. Let A be an adversarial strategy for a coalition

of cheating participants. We construct a simulator that achieves the same “cheating”

affect in the ideal-world. The simulator S chooses a key s for the PRF, as well

as pairs of private/public keys for the DB and proxy. It provides these keys to

97

A and executes A. For each iteration i, A generates a triple (ai, bi, ci), together

with a POK for knowing the plaintext encrypted in ci. (In an honest execution

ai = Edb(Fs(ki)), bi = Edb(Eprx(ki)), and ci = Edb(vi), for some ki and vi.)

The simulator S uses the POK to extract vi; if the POK fails, then S ignores the

triple. Finally, S checks (using all the above keys) whether ai and bi are consistent

(i.e., it decrypts ai to a′
i, decrypts bi to b′i, and then verifies that Fs(b

′
i) = ai). If the

check fails, S ignores the tuple. Otherwise, the simulator, which now knows both

ki and vi, passes these entries to the trusted party.

4.7 Conclusions

In this chapter, we presented the design, implementation, and evaluation of a col-

laborative data-analysis system that is both scalable and privacy preserving. Since

a fully-distributed solution would be complex and inefficient, our design divides re-

sponsibility between two independent parties—a proxy that obliviously blinds the

client inputs and a database that identifies the (blinded) keys that have values satis-

fying an evaluation function. The functionality of both the proxy and the database

can be easily distributed for greater scalability and reliability. Experiments with

our prototype implementation show that our system performs well under increas-

ing numbers of keys, participants, and proxy/database replicas. The performance is

well within the requirements of our motivating applications, such as collaborating to

detect the malicious hosts responsible for DoS attacks or to validate the authenticity

of information in the presence of man-in-the-middle attacks.

As part of our ongoing work, we plan to evaluate our system in the context of sev-

eral real applications—first through a trace-driven evaluation and later by extending

98

our prototype to run these applications. In addition, we plan to explore opportu-

nities to deploy our system in practice. A promising avenue is distributed Internet

monitoring infrastructures such as NetDimes [78] and the new M-Lab (Measurement

Lab) initiative [48]. We believe our system could lower the barriers to collaborative

data analysis over the Internet, enabling a wide range of new applications that could

improve Internet security, performance, and reliability.

99

Chapter 5

Conclusions

The preceding dissertation presented a complete collaborative anomaly detection

architecture, from the high-speed detection of unwanted traffic in each network to a

privacy-preserving protocol that allows these networks to increase their confidence

in detections via collaboration. The primary contributions can be summarized as:

1. A machine learning-based system that can translate many packet-level Snort

rules into flow-level rules with a high degree of accuracy. The flow-level rules

lead to more computationally efficient detection of unwanted traffic [20].

2. A measurement study that demonstrates that collaboration between victims of

unwanted traffic can help improve detection accuracy because many attackers

have a high degree of fan-out.

3. A novel cryptographic protocol that allows these victims to collaborate while

protecting the privacy both of the victims themselves and of the victims’

legitimate customers. Our implementation of this protocol is able to process

millions of suspect IP addresses within hours when running on two quad-core

100

machines.

More broadly, the thesis demonstrates that both machine learning algorithms

and cryptographic protocols can be leveraged efficiently in an online fashion. In

particular, our experiments and analysis indicates that the prototype system we

built to mimic Snort on IP flows in chapter 2 would be able to process traffic

from an OC48 link, and the distributed privacy-preserving collaboration system we

presented in chapter 4 could handle millions of suspect IP addresses in the span of

hours.

Moving forward, we see increased integration in industry and academia between

high-performance systems and both cryptography and machine learning. For ex-

ample, user privacy becomes increasingly important as the amount of data stored

about users’ online behavior explodes. Such privacy is important to end-users to

protect against identity theft, and it is important to corporations that wish to pro-

tect their reputations [44]. The companies’ desire for privacy is at odds with their

desire to monetize the data they keep on their customers, however, and therein lies

the challenge.

Consider the YouTube-Viacom suit [34], for example. Google—as the owner of

YouTube—wishes to keep some amount of data on users’ behavior, but does not

wish to reveal this information to third parties such as Viacom. We believe there are

interesting potential applications of secure multi-party computation to this problem

area. One possibility would be to split Google’s data set between multiple parties

S = {Google, P1, . . . , Pk} such that (A) Google retains the ability to perform some

set of relevant queries (e.g., “what videos do users tend to view after viewing video

X” or “how many videos do users watch at 3pm EDT”); but (B) no single member

of S can reconstruct the original data set currently stored by Google (indicating,

101

among other things, which user watched which video); and (C) the data stored by

any Pi does not give Pi “meaningful insights” into Google’s data set, according to

some privacy definition satisfactory to Google. Such a system would force a third

party such as Viacom to sue multiple members of S in order to gain access to

meaningful data. Moreover, it is not unreasonable to assume that other companies

facing similar challenges to Google (e.g., Microsoft, Yahoo!, Amazon) might be

willing to fill the roles of P1, . . . , Pk under a quid pro quo system. We leave the

exploration of this to future work.

102

Bibliography

[1] U.S. Securities and Exchange Commission: Pump and Dump Schemes. http:

//www.sec.gov/answers/pumpdump.htm.

[2] AHMED, T., ORESHKIN, B., AND COATES, M. J. Machine learning approaches

to network anomaly detection. In Workshop on Tackling Computer Systems

Problems with Machine Learning Techniques (2007).

[3] ALEXA THE WEB INFORMATION COMPANY, 2009. http://www.alexa.com/.

[4] ALLMAN , M., BLANTON , E., PAXSON, V., AND SHENKER, S. Fighting coordi-

nated attackers with cross-organizational information sharing. In Hot Topics

in Networks (HotNets) (November 2006).

[5] ALLMAN , M., PAXSON, V., AND TERRELL, J. A brief history of scanning. In

ACM Internet Measurement Conference (October 2007).

[6] BARFORD, P., KLINE , J., PLONKA , D., AND RON, A. A signal analysis of

network traffic anomalies. In Internet Measurement Workshop (2002).

[7] BEN-DAVID , A., NISAN, N., AND PINKAS, B. FairplayMP: A system for secure

multi-party computation. In ACM Conference on Computer and Communica-

tions Security (CCS) (October 2008).

103

[8] BERGHEL, H. Identity theft, social security numbers, and the web. Communi-

cations of the ACM 43, 2 (2000), 17–21.

[9] BERNAILLE , L., TEIXEIRA , R., AND SALAMATIAN , K. Early application iden-

tification. In Conference on Future Networking Technologies (2006).

[10] BOGETOFT, P., CHRISTENSEN, D. L., DAMGARD , I., GEISLER, M., JAKOBSEN,

T., KRØIGAARD, M., NIELSEN, J. D., NIELSEN, J. B., NIELSEN, K., PAGTER,

J., SCHWARTZBACH, M., AND TOFT, T. Multiparty computation goes live.

Cryptology ePrint Archive, Report 2008/068, 2008. http://eprint.iacr.

org/.

[11] BURROWS, M. The Chubby lock service for loosely-coupled distributed sys-

tems. In USENIX Symposium on Operating Systems and Implementation

(OSDI) (November 2006).

[12] CHOR, B., GOLDREICH, O., KUSHILEVITZ , E., AND SUDAN , M. Private infor-

mation retrieval. J. of the ACM 45, 6 (November 1998).

[13] CHOU, N., LEDESMA, R., TERAGUCHI, Y., AND M ITCHELL , J. C. Client-side

defense against web-based identity theft. In Network and Distributed System

Security Symposium (NDSS) (San Diego, CA, USA, February 2004).

[14] CISCO NETFLOW. http://www.cisco.com/en/US/products/ps6601/

products ios protocol group home.html.

[15] COMPOSITE BLOCKING L IST. http://cbl.abuseat.org/.

104

[16] DAGON, D., GU, G., LEE, C., , AND LEE, W. A taxonomy of botnet struc-

tures. In Annual Computer Security Applications Conference (Miami Beach,

FL, USA, 2007).

[17] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor: The second-

generation onion router. In USENIX Security Symposium (August 2004).

[18] DOUCEUR, J. R.The Sybil attack. In International Workshop on Peer-To-Peer

Systems (March 2002).

[19] DUDIK , M., PHILLIPS, S., AND SCHAPIRE, R. E. Performance Guarantees for

Regularized Maximum Entropy Density Estimation. In Conference on Learning

Theory (COLT) (Banff, Canada, 2004), Springer Verlag.

[20] DUFFIELD, N., HAFFNER, P., KRISHNAMURTHY, B., AND RINGBERG, H. Rule-

based anomaly detection on IP flows. In IEEE INFOCOM (Rio de Janeiro,

Brazil, 2009).

[21] DUFFIELD, N., LUND, C., AND THORUP, M. Charging from sampled network

usage. In Internet Measurement Workshop (2001), pp. 245–256.

[22] ERMAN , J., MAHANTI , A., ARLITT, M. F., COHEN, I., AND WILLIAMSON , C. L.

Offline/realtime traffic classification using semi-supervised learning. Perform.

Eval. 64, 9–12 (2007), 1194–1213.

[23] FAGIN , R., NAOR, M., AND WINKLER, P. Comparing information without

leaking it. Communications of the ACM 39, 5 (1996), 77–85.

105

[24] FRANKLIN , J., PAXSON, V., PERRIG, A., AND SAVAGE , S. An inquiry into the

nature and cause of the wealth of internet miscreants. In ACM Conference on

Computer and Communications Security (CCS) (October 2007).

[25] FREEDMAN, M. J., ISHAI, Y., PINKAS, B., AND REINGOLD, O. Keyword search

and oblivious pseudorandom functions. In Theory of Cryptography Conference

(TCC) (February 2005).

[26] FREEDMAN, M. J., NISSIM, K., AND PINKAS, B. Efficient private matching

and set intersection. In Advances in Cryptology - EUROCRYPT (May 2004).

[27] FRIEND-OF-A-FRIEND PROJECT, 2009. http://www.foaf-project.org/.

[28] GARRISS, S., KAMINSKY, M., FREEDMAN, M. J., KARP, B., MAZI ÈRES, D.,

AND YU, H. RE: Reliable email. In ACM Networked Systems Design & Imple-

mentation (NSDI) (May 2006).

[29] GEANT NETWORK. http://www.geant.net/.

[30] GOLDREICH, O. Foundations of Cryptography: Basic Applications. Cambridge

University Press, 2004.

[31] GOMES, L. H., CAZITA , C., ALMEIDA , J. M., ALMEIDA , V., AND MEIRA, JR.,

W. Characterizing a spam traffic. In ACM Internet Measurement Conference

(New York, NY, USA, 2004), pp. 356–369.

[32] GOOGLE SAFE BROWSING FOR FIREFOX, 2009. http://www.google.com/

tools/firefox/safebrowsing/.

106

[33] HAZAY, C., AND L INDELL , Y. Efficient protocols for set intersection and pattern

matching with security against malicious and covert adversaries. In Theory of

Cryptography Conference (TCC) (March 2008).

[34] HELFT, M. Viacom suit against google raises privacy concerns. The New York

Times (July 2008). http://www.nytimes.com/2008/07/04/technology/

04iht-youtube.1.14234592.html.

[35] IANELLI , N., AND HACKWORTH, A. Botnets as a vehicle for online crime. In

CERT Coordination Center (December 2005).

[36] ISHAI, Y., K ILIAN , J., NISSIM, K., AND PETRANK, E. Extending oblivious

transfers efficiently. In Advances in Cryptology - CRYPTO (August 2003).

[37] JIANG , H., MOORE, A. W., GE, Z., JIN , S., AND WANG, J. Lightweight ap-

plication classification for network management. In SIGCOMM Workshop on

Internet Network Management (2007).

[38] JUNG, J., SIT, E., BALAKRISHNAN , H., AND MORRIS, R. DNS performance

and the effectiveness of caching. IEEE/ACM Trans. Networking 10, 5 (October

2002).

[39] KANNAN , J., SUBRAMANIAN , L., STOICA, I., AND KATZ , R. Analyzing coop-

erative containment of fast scanning worms. In SRUTI (July 2005).

[40] KARGER, D., LEHMAN , E., LEIGHTON, T., PANIGRAHY, R., LEVINE, M., AND

LEWIN, D. Consistent hashing and random trees: Distributed caching protocols

for relieving hot spots on the world wide web. In ACM Symposium on Theory

of Computing (STOC) (1997).

107

[41] KATTI , S., KRISHNAMURTHY, B., AND KATABI , D. Collaborating against com-

mon enemies. In ACM Internet Measurement Conference (Berkeley, CA, USA,

2005), pp. 34–34.

[42] K ISSNER, L., AND SONG, D. Privacy preserving set operations. In Advances

in Cryptology - CRYPTO (August 2005).

[43] KOMPELLA, R. R., SINGH, S.,AND VARGHESE, G. On scalable attack detection

in the network. In ACM Internet Measurement Conference (2004).

[44] KREBS, B. Payment processor breach may be largest ever. The Washington

Post (January 2009). http://voices.washingtonpost.com/securityfix/

2009/01/payment processor breach may b.html.

[45] LAKHINA , A., CROVELLA , M., AND DIOT, C. Diagnosing network-wide traffic

anomalies. In ACM SIGCOMM (2004).

[46] LAKHINA , A., CROVELLA , M., AND DIOT, C. Mining anomalies using traffic

feature distributions. In ACM SIGCOMM (2005), pp. 217–228.

[47] L INDELL , Y., AND PINKAS, B. Privacy preserving data mining. In Advances

in Cryptology - CRYPTO (August 2000).

[48] M-L AB: WELCOME TO MEASUREMENT LAB, 2009. http://www.

measurementlab.net/.

[49] MADHYASTHA , H., AND KRISHNAMURTHY, B. A generic language for

application-specific flow sampling. Computer Communication Review (April

2008).

108

[50] MALKHI , D., NISAN, N., PINKAS, B., AND SELLA , Y. Fairplay: A secure two-

party computation system. In USENIX Security Symposium (August 2004).

[51] MANN , C. C. How click fraud could swallow the internet. WIRED (January

2006). http://www.wired.com/wired/archive/14.01/fraud.html.

[52] MAO, Z., SEKAR, V., SPATSCHECK, O., VAN DER MERWE, J.,AND VASUDEVAN,

R. Analyzing large DDoS attacks using multiple data sources. In SIGCOMM

Workshop on Large Scale Attack Defense (September 2006).

[53] METWALLY, A., AGRAWAL , D., AND EL ABBADI , A. Duplicate detection in

click streams. In International World Wide Web Conference (New York, NY,

USA, 2005), pp. 12–21.

[54] MOORE, A., AND ZUEV, D. Internet traffic classification using bayesian analy-

sis. In ACM SIGMETRICS (2005).

[55] MOORE, D., PAXSON, V., SAVAGE , S., SHANNON, C., STANIFORD, S., AND

WEAVER, N. Inside the slammer worm. IEEE Symposium on Security and

Privacy 1, 4 (2003), 33–39.

[56] MOORE, D., SHANNON, C., VOELKER, G., AND SAVAGE , S. Internet quaran-

tine: Requirements for containing self-propagating code. In IEEE INFOCOM

(San Francisco, CA, USA, 2003).

[57] NAOR, M., AND PINKAS, B. Oblivious transfer and polynomial evaluation. In

ACM Symposium on Theory of Computing (STOC) (May 1999).

[58] NAOR, M., AND PINKAS, B. Oblivious transfer with adaptive queries. In

Advances in Cryptology - CRYPTO (August 1999).

109

[59] NAOR, M., AND REINGOLD, O. Number-theoretic constructions of efficient

pseudorandom functions. In IEEE Symposium on Foundations of Computer

Science (FOCS) (October 1997).

[60] OLSEN, S. Click fraud roils search advertisers. CNet (March

2005). http://news.cnet.com/Click-fraud-roils-search-advertisers/

2100-1024 3-5600300.html.

[61] ORACLE. Berkeley DB, 2009. http://www.oracle.com/technology/

products/berkeley-db/.

[62] PAXSON, V. Bro: A System for Detecting Network Intruders in Real-Time.

Computer Networks 31 (December 1999), 2435–2463.

[63] PETERSON, P. The billion dollar problem (interview). In IT

Security (January 2007). http://www.itsecurity.com/interviews/

billion-dollar-problem-ironport-\malware-012607/.

[64] POOLE, L., AND PAI , V. S. ConfiDNS: Leveraging scale and history to improve

DNS security. In Workshop on Real, Large Distributed Systems (WORLDS)

(November 2006).

[65] PRIVACY RIGHTS CLEARINGHOUSE. A chronology of data breaches, January

2009. http://www.privacyrights.org/ar/ChronDataBreaches.htm.

[66] RABIN , M. How to exchange secrets by oblivious transfer. Tech. Rep. TR-81,

Harvard Aiken Computation Laboratory, 1981.

[67] RAJAB, M. A., ZARFOSS, J., MONROSE, F., AND TERZIS, A. My botnet is

bigger than yours (maybe, better than yours): why size estimates remain chal-

110

lenging. In Hot Topics in Understanding Botnets (HotBots) (Berkeley, CA,

USA, 2007).

[68] RAMACHANDRAN , A., AND FEAMSTER, N. Understanding the network-level

behavior of spammers. In ACM SIGCOMM (2006).

[69] SCHAPIRE, R. E., AND SINGER, Y. Improved boosting algorithms using

confidence-rated predictions. Machine Learning 37, 3 (1999), 297–336.

[70] SCHECHTER, S., JUNG, J., STOCKWELL, W., AND MCLAIN , C. Inoculating

SSH against address harvesting. In Network and Distributed System Security

Symposium (NDSS) (February 2006).

[71] SCHNORR, C.-P. Efficient signature generation by smart cards. Journal of

Cryptology 4, 3 (1991), 161–174.

[72] SCHUBA, C. L., KRSUL, I. V., KUHN, M. G., SPAFFORD, E. H., SUNDARAM ,

A., AND ZAMBONI , D. Analysis of a denial of service attack on TCP. In IEEE

Symposium on Security and Privacy (Washington, DC, USA, 1997).

[73] SHON, T., AND MOON, J. A hybrid machine learning approach to network

anomaly detection. Inf. Sci. 177, 18 (2007), 3799–3821.

[74] Snort. http://www.snort.org.

[75] SOULE, A., RINGBERG, H., SILVEIRA , F., REXFORD, J., AND DIOT, C. De-

tectability of traffic anomalies in two adjacent networks. Passive and Active

Measurement (PAM) (2007).

111

[76] SOULE, A., SALAMATIAN , K., AND TAFT, N. Combining filtering and statistical

methods for anomaly detection. In ACM Internet Measurement Conference

(2005), pp. 1–14.

[77] SPAMHAUS. http://www.spamhaus.org.

[78] THE DIMES PROJECT, 2009. http://www.netdimes.org/new/.

[79] VAPNIK , V. N. Statistical Learning Theory. John Wiley & Sons, 1998.

[80] WEBER, T. Criminals ’may overwhelm the web’. In BBC News (January 2007).

http://news.bbc.co.uk/1/hi/business/6298641.stm.

[81] WENDLANDT, D., ANDERSEN, D. G.,AND PERRIG, A. Perspectives: Improving

SSH-style host authentication with multi-path probing. In USENIX Annual

Technical Conference (2008).

[82] X IE, Y., REITER, M. K., AND O’HALLARON , D. Protecting privacy in key-

value search systems. In Annual Computer Security Applications Conference

(Washington, DC, USA, 2006), pp. 493–504.

[83] X IE, Y., YU, F., ACHAN, K., GILLUM , E., GOLDSZMIDT, M., AND WOBBER, T.

How dynamic are IP addresses? ACM SIGCOMM (2007).

[84] YAHOO! HADOOP TEAM. Zookeeper. http://hadoop.apache.org/

zookeeper/, 2009.

[85] YAO, A. C. Protocols for secure computations. In IEEE Symposium on Foun-

dations of Computer Science (FOCS) (November 1982).

112

[86] ZHANG, Y., GE, Z., GREENBERG, A., AND ROUGHAN, M. Network anomogra-

phy. In ACM Internet Measurement Conference (New York, NY, USA, 2005),

ACM, pp. 1–14.

113

