
SCALABLE AND EFFICIENT

SELF-CONFIGURING NETWORKS

CHANGHOON K IM

A D ISSERTATION

PRESENTED TO THEFACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: PROFESSORJENNIFER REXFORD

SEPTEMBER 2009

c© Copyright by Changhoon Kim, 2009. All rights reserved.

Abstract

Managing today’s data networks is highly expensive, difficult, and error-prone. At the

center of this enormous difficulty lies configuration: a Sisyphean task of updating opera-

tional settings of numerous network devices and protocols.Much has been done to mask

this configuration complexity intrinsic to conventional networks, but little effort has been

made to redesign the networks themselves to make them easierto configure.

As part of a broad effort torearchitect networks with ease of configuration in mind,

this dissertation focuses on enablingself-configurationin edge networks– corporate or

university-campus, data-center, or virtual private networks – which are rapidly grow-

ing and yet significantly under-explored. To ensure wide deployment, however, self-

configuring networks must be scalable and efficient at the same time. To this end, we first

identify three technical principles:flat addressing(enabling self-configuration),traffic in-

direction (enhancing scalability), andusage-driven optimization(improving efficiency).

Then, to demonstrate the benefits of these principles, we design, implement, and deploy

practical network architectures built upon the principles.

Our first architecture, SEATTLE, combines Ethernet’s self-configuration capability

with IP’s scalability and efficiency. Its key contribution is a novel host-information res-

olution system that leverages the strong consistency of a network-layer routing proto-

col. The resulting architecture is suitable for enterprises and campuses to build a large-

scale plug-and-play network. Extensive simulation and emulation tests, conducted by

replaying real-world traffic traces on various real networktopologies built with prototype

SEATTLE switches, confirm that SEATTLE efficiently handles network failures and host

mobility, while reducing control-plane overhead and staterequirements by roughly two

orders of magnitude compared with Ethernet bridging.

Our second solution, VL2, enables a plug-and-play network for a large cloud-computing

iii

data center. The core objective of a data-center network is to maintain the utilization

of the data-center servers at a uniformly high level, and doing so requires agility: the

ability to assign any available server to any service. VL2 ensures agility by establish-

ing reachability without addressing and routing configuration, and by furnishing huge

server-to-server capacity. Meanwhile, VL2 offers all these benefits with only commodity

IP and Ethernet functions without requiring any expensive high-performance component.

We built a prototype VL2 network using commodity Ethernet switches interconnecting

hundreds of servers. Tests with various real and synthetic traffic patterns confirm the

VL2 design can achieve 93% of the optimal utilization in the worst case. Our prototype

network will soon be expanded for a cloud-computing clustercomposed of more than a

thousand servers offering real-world service to customers.

Then we turn our focus to VPNs, networks that interconnect geographically dis-

tributed corporate sites through public carrier networks.VPNs today are built with an effi-

cient self-configuring architecture, which allows customer sites to autonomously choose

their own address blocks and communicate with one another through the shortest (i.e.,

most efficient) paths. This architecture, however, blindlyreplicates customers’ routing in-

formation at every router in the VPN provider network and thus rapidly depletes routers’

memory to cope with more customers, significantly impairingscalability. Our solution,

based on traffic indirection, lowers routers’ memory footprint by choosing a small num-

ber of hub routers in each VPN that maintain full routing information, and by allowing

non-hub routers to keep a single default route to a hub. This solution can be implemented

via a slight modification to the routers’ configuration without requiring router hardware

or software upgrade. Extensive evaluations using real traffic matrices, routing configu-

rations, and VPN topologies demonstrate that Relaying reduces routing tables by up to

90%, while hiding the increase of latency and workload due to indirection.

iv

v

Acknowledgments

I admit that working as a graduate student is not always the most fun thing to do. With

my adviser, Jennifer Rexford, however, it can be. I have absolutely no doubt that she

should be a role model of any adviser in our discipline. Jen has guided me with her in-

credible mind, amazing expertise on almost everything on networking, insatiable passion

on research, love for teaching and mentoring, fantastic communication skills, fathomless

patience, and – most importantly – incessant efforts to build a highly supportive environ-

ment for students. With all these, plus occasional feast with good wine, how can it not be

fun to work with her?

Matthew Caesar has been another awesome colleague and mentor. His sharp intellect

saved me from puddles many times, his diligence and passion showed me how to keep

myself focused, and his wonderful taste in research problems served as a good model.

I’ve been extremely lucky to work with and learn from Albert Greenberg. Impromptu

discussions with him were the sources of enlightenment. Hisinvaluable advice and feed-

back throughout the most important period in my graduate career also helped me find

right problems to work on, as well as exciting opportunitiesfor further research.

I would like to thank my mentors and collaborators, especially Dave Maltz, Parveen

Patel, and Sudipta Sengupta, during the extended internship at Microsoft Research. Dave

has offered me numerous motivating questions, showed me howto efficiently and ef-

fectively lead a research group, and shared with me the fun ofmanipulating gadgets.

Parveen’s opinions and ideas, derived from his seasoned experience and knowledge, was

one of the most valuable lessons. Sudipta has given me several awakening moments

with his sharp observations and solutions. I also appreciate all the good discussions with

Srikanth Kandula, James Hamilton, Parantap Lahiri, Navendu Jain, and John Dunagan.

I also met fantastic mentors at AT&T Labs: Alex Gerber, Shubho Sen, Dan Pei,

i

and Carsten Lund. Alex has continuously furnished me with challenging real problems,

highly critical operational perspectives, along with extremely valuable data to play with.

Shubho and Dan had lots of exciting discussions with me and offered me invigorating

feedback on my research, as well as on my career. Carsten has helped me better under-

stand the theoretic aspects of the Relaying work.

I’d love to thank Michael Freedman, Vivek Pai, and Margaret Martonosi for serving

on my thesis committee and giving me great feedback.

At Princeton, especially in our research group, I’ve been always surrounded with truly

bright people. From and with them, I received exceptionallygood feedback and sugges-

tions, learned various useful concepts and techniques, andshared lots of fun. Yi Wang

has showed me how much people skills are important, and how tolook around various

non-research issues, including business and management. Haakon Ringberg and Sharon

Goldberg have always helped me prepare for important talks with their sharp questions

and comments. I also thank other members of the systems and networking group – Ji-

ayue He, Elliott Karpilovsky, Rui Zhang-Shen, Wenjie Jiang, Eric Keller, Martin Suchara,

Minlan Yu, Yaping Zhu, Wonho Kim, Sunghwan Ihm, Anirudh Badam, Wyatt Lloyd, Sid

Sen, and Kyoungsoo Park – for fun conversations, pointed discussions, and for putting up

with my pestering questions. I also thank Mark McCann for being my mountain-biking

buddy in this boring – sorry, but that’s true – central Jerseyarea. I’ve been also lucky to

be with Yung Yi, my good old friend since university, who spared his good chunk of time

on my research work and career options.

I’m grateful to the National Science Foundation, AT&T Labs,and Microsoft Research

for their financial support. Specifically, this dissertation work was supported by NSF

grant CNS-0519885.

I will miss Small World Coffee, which provided me with a good dosage of caffeine

ii

and such a great place to work and chat.

I thank to my good old friend, Juli Scherer, for proofreadingthis dissertation.

My mother, late father, and brother have always been sourcesof comfort, refreshment,

and encouragement. Without their support, I really couldn’t have done it. Thank you,

mom, dad, and Jonghun.

Despite too many evenings and holidays without their husband and dad, my wife and

daughter have supported me with everything they could. Kyungle and Juni, I dedicate

this dissertation to you.

iii

Contents

Abstract . iii

1 Introduction 1

1.1 Re-designing Networks with Ease of Configuration in Mind. 3

1.1.1 Towards self-configuring networks 3

1.1.2 Making self-configuring networks practical 4

1.2 Principles for Scalable and Efficient Self-configuring Networks 6

1.3 Architectures for Enterprises, Data Centers, and Virtual Private Networks 8

1.3.1 SEATTLE: A scalable Ethernet architecture for large enterprises . 10

1.3.2 VL2: A scalable and flexible data-center network 12

1.3.3 Relaying: A scalable routing architecture for VPNs 13

1.4 How to Read This Dissertation .15

2 SEATTLE: A Scalable Ethernet Architecture for Large Enter prises 18

2.1 Motivation and Overview . 19

2.1.1 Ethernet’s simplicity + IP’s scalability and efficiency

⇒ SEATTLE . 21

2.1.2 Related work . 23

2.2 Today’s Enterprise and Access Networks 24

iv

2.2.1 Ethernet bridging . 25

2.2.2 Hybrid IP/Ethernet architecture 27

2.2.3 Virtual LANs . 29

2.3 Network-Layer One-hop DHT . 30

2.3.1 Scalable key-value management with a one-hop DHT 31

2.3.2 Responding to topology changes 34

2.3.3 Supporting hierarchy with a multi-level, one-hop DHT. 36

2.4 Scaling Ethernet with a One-hop DHT 37

2.4.1 Host location resolution . 37

2.4.2 Host address resolution . 39

2.4.3 Handling host dynamics . 40

2.5 Providing Ethernet-like Semantics 43

2.5.1 Bootstrapping hosts . 44

2.5.2 Scalable and flexible VLANs . 45

2.5.3 Methodology . 47

2.6 Simulations . 49

2.6.1 Control-plane scalability .49

2.6.2 Sensitivity to network dynamics53

2.7 Implementation . 55

2.7.1 Prototype design . 55

2.7.2 Experimental results . 57

2.8 Summary . 61

3 VL2: Scalable and Flexible Data-Center Networks 63

3.1 Motivation and Overview . 65

v

3.1.1 Principles and contributions of VL2 67

3.2 Background . 69

3.3 Measurements and Implications .. 72

3.3.1 Data center traffic analysis . 72

3.3.2 Flow distribution analysis . 73

3.3.3 Traffic matrix analysis . 74

3.3.4 Failure characteristics . 77

3.4 Virtual Layer Two Networking .78

3.4.1 Scalable oversubscription-free topology 80

3.4.2 VL2 routing . 82

3.4.3 Maintaining host information using VL2 directory system 88

3.5 Evaluation . 91

3.5.1 VL2 Uniform high capacity . 92

3.5.2 Performance isolation . 94

3.5.3 Convergence after link failures 99

3.5.4 Directory-system performance100

3.6 Discussion . 104

3.7 Related Work . 108

3.8 Summary . 109

4 Relaying: A Scalable Routing Architecture for Virtual Pri vate Networks 111

4.1 Motivation and Overview . 113

4.1.1 Relaying: Don’t keep it if you don’t need it 115

4.2 Background . 118

4.2.1 How MPLS VPN works . 118

vi

4.2.2 Desirable properties of a solution 120

4.3 Understanding VPNs . 123

4.3.1 Data sources . 123

4.3.2 Properties enabling memory saving124

4.4 Overview of Relaying . 126

4.4.1 Relaying through hubs . 126

4.4.2 Hub selection vs. hub assignment 127

4.5 Baseline Performance of Relaying 129

4.5.1 Selecting heavy sources or sinks as hubs 130

4.5.2 Performance of the hub selection131

4.6 Latency-constrained Relaying .. . 133

4.6.1 LCR problem formulation . 134

4.6.2 Algorithm to solve LCR . 137

4.6.3 Solutions with usage-based matrices 138

4.6.4 Solutions with full-mesh matrices 142

4.6.5 Robustness . 143

4.7 Latency-constrained, Volume-sensitive Relaying 144

4.7.1 LCVSR problem formulation 145

4.7.2 Algorithm to solve LCVSR . 146

4.7.3 Solutions with usage-based matrices 147

4.7.4 Solutions with full-mesh matrices 149

4.7.5 Robustness . 150

4.8 Implementation and Deployment .. 151

4.8.1 Implementing Relaying with BGP 152

4.8.2 Managing Relaying-enabled VPNs 154

vii

4.9 Related Work . 156

4.10 Summary . 157

5 Conclusion 160

5.1 Summary of Contributions . 160

5.1.1 Scalable and efficient self-configuring networks can be made prac-

tical . 161

5.1.2 Principles and applications .163

5.2 Future Work and Open Issues . 165

5.3 Concluding Remarks . 168

viii

List of Figures

2.1 Keys are consistently hashed onto resolver switches (si). 33

2.2 Hierarchical SEATTLE hashes keys ontoregions. 35

2.3 Packet forwarding and lookup in SEATTLE 38

2.4 (a) Effect of cache timeout inAP-largewith 50K hosts, (b) Table size

increase inDC, and (c) Control overhead inAP-large. Error bars in these

figures show confidence intervals for each data point. A sufficient number

of simulation runs reduced these intervals. 50

2.5 (a) Stretch across different cache sizes inAP-largewith 10K hosts, (b)

Path stability, and (c) Effect of switch failures inDC. 54

2.6 Effect of host mobility inCampus. 55

2.7 Implementation architecture. 57

2.8 Effect of network dynamics – (a) table size, (b) control overhead, and (c)

failover performance. 59

3.1 The conventional network architecture for data centers. 69

3.2 Mice are numerous; 99% of flows are smaller than 100 MB. However,

more than 90% of bytes are in flows larger than 100 MB. 74

ix

3.3 Number of concurrent connections has two modes: (1) 10 flows per node

more than 50% of the time and (2) 80 flows per node for at least 5%of

the time. 75

3.4 Lack of short-term predictability: The cluster to whicha traffic matrix

belongs, i.e., the type of traffic mix in the TM, changes quickly and ran-

domly. 76

3.5 Example Clos network between Aggregation and Intermediate switches

provides a broad and richly connected backbone well-suitedfor VLB.

Connectivity to the Internet is provided by Core Routers (CR). 81

3.6 VLB in an example VL2 network. SenderS sends packets to destination

D via a randomly-chosen intermediate switch using IP-in-IP encapsula-

tion. AAs are from20/8 and LAs are from10/8. H(ft) denotes a hash

of the five tuple. 85

3.7 VL2 Directory System Architecture 89

3.8 VL2 testbed comprising 80 servers and 10 switches. 92

3.9 Aggregate goodput during a 2.7TB shuffle among 75 servers. 93

3.10 Aggregate goodput of two services with servers intermingled on the TORs.

Service one’s goodput is unaffected as service two ramps traffic up and

down. 96

3.11 Aggregate goodput of service one as service two createsbursts containing

successively more short TCP connections. 97

3.12 Fairness measures how evenly flows are split to intermediate switches

from aggregation switches. Average utilization is for links between Ag-

gregation and Intermediate switches. 98

x

3.13 Aggregate goodput as all links to switches Intermediate1 and Interme-

diate2 are unplugged in succession and then reconnected in succession.

Approximate times of link manipulation marked with vertical lines. Net-

work re-converges in< 1s after each failure and demonstrates graceful

degradation. 99

3.14 The directory system provides high throughput and fastresponse time for

lookups and updates . 101

3.15 Three layouts for VL2: (a) Conventional DC floor layout,(b) Container-

based layout with intermediate switches part of DC infrastructure, and (c)

Fully “containerized” layout. (External connectivity, servers racks, and

complete wiring not shown.) . 107

4.1 (a) MPLS VPN service with three PEs; two customer VPNs (X, Y) exist,

(b) Direct reachability, (c) Reachability under Relaying.. 119

4.2 (a) CDFs of the proportion of active prefixes in a VRF, (b) CDFs of the

distance to thei-th percentile closest VRF 125

4.3 (a) Gain and cost (de facto asgn.), (b) Sum of the productsof volume and

additional distance, (c) CDF of additional distances (α = 0.1) 128

4.4 A sample serve-use relationship .. . 135

4.5 LCR performance with usage-basedC (a) CDF of additional distances,

(b) CDF of additional distances (zoomed in), (c) Gain and cost 136

4.6 (a) LCR performance withCfull, (b) Robustness results (costs), (c) Ro-

bustness results (CDF of additional distances withC) 139

4.7 A sample serve-use relationship with penalties 145

xi

4.8 LCVSR performance (a) Gain and cost (withC), (b) CDF of additional

distances (withC) (c) Gain and cost (withCfull) 148

4.9 Robustness results during test weeks 153

4.10 BGP configuration for Relaying .. 155

xii

List of Tables

1.1 Summary of network architectures this dissertation proposes 10

2.1 Per-packet processing time in micro-sec. 58

4.1 Proportions (in percentage) of hubs that remain as hubs across two win-

dows (averaged across all windows andθ) 155

5.1 Specific aspects of self-configuration, scalability, and efficiency in the

proposed architectures . 161

5.2 Key principles and the varying applications of the principles 164

xiii

Chapter 1

Introduction

Networked services, such as e-mail, Web, and on-line businesses, have become insepa-

rable from our everyday lives. Ensuring the performance andreliability of these critical

services requires managing the communication networks upon which the services are

running. This comprehensive activity, callednetwork management, encompasses vari-

ous operational tasks, including provisioning, running, monitoring, controlling, and trou-

bleshooting networking devices and networked software systems. While the high-level

goals and approaches of these management tasks differ from one another, carrying out

these tasks in today’s networks always involvesconfiguration– a process of determining

specific operational settings of networking devices and protocols, and applying them to

appropriate points in a network.

Although it does not look particularly daunting at a glance,configuration is indeed

the Sisyphean task of network management. Configuring a network introduces enormous

costs [1, 2], correctly configuring a network is notoriouslydifficult [3, 4, 5, 6], and yet,

configuration settings must be frequently and repeatedly updated just to maintain the

status quo, rather than build up value-added features for a network [7].

1

The reasons are many. Most importantly, configuration is a highly device-centric ad-

hoc task, retrofitted to diverse underlying devices and protocols. This makes it extremely

difficult to come up with an elegant unifying solution for configuration and thus forces

administrators to rely on domain-specific knowledge about various protocols, types of

devices, and proprietary configuration-support solutions[8, 9]. The process of configu-

ration can also be highly inefficient and labor-intensive because some configuration tasks

(e.g., bootstrapping routers) are inherently hard to automate or perform from a remote

location. Worse yet, all the distributed settings over a large number of heterogeneous

devices have to be frequently updated for various reasons, such as maintenance, failure

recovery, natural growth of the organization, and human-resource re-assignment. This

forces administrators to keep repeating the onerous configuration tasks. Finally, despite

the distributed and highly-dynamic nature of the task, all configuration settings have to

be semantically consistent in order to achieve a network-level goal. This requirement

steeply increases the configuration complexity and makes the network highly susceptible

to disruptions caused by configuration errors [3].

Unfortunately, the prospects are bleak. Network sizes are increasing very fast today,

inflating the configuration workload rapidly. Networks in large corporate or university

campuses easily contain tens of thousands of end hosts, large data-center networks are

built with hundreds of thousands of servers interconnectedvia tens of thousands of routers

and switches, and metro-area provider networks are targeting for more than a million sub-

scribers. Worse yet, networks themselves are becoming highly dynamic, due to technical

advances such as host mobility, virtualization, and cloud computing [10]. Since this

trend allows networks’ sizes and topologies to be frequently adjusted for varying input

workloads, the overall configuration overhead also increases substantially. Meanwhile,

networks are also being increasingly deployed in non-information-technology industries

2

and developing regions, where network management is considered only a supporting duty,

and thus technical and financial support for network management tends to be signifi-

cantly limited. All these observations lead us to conclude that ease of configuration is

paramount.

1.1 Re-designing Networks with Ease of Configuration

in Mind

This dissertation focuses on addressing these huge difficulties of network configuration.

Although we are not the first to look at this broad problem, ourgoal, approach, and

solutions are substantially different from previous work.

1.1.1 Towards self-configuring networks

The past decade has seen the proliferation of network-management solutions that aim to

facilitate configuration. Those conventional solutions range over approaches that try to

automate common configuration patterns [11, 12, 13], offer centralized views that help

administrators realize network-wide objectives [14, 15],or understand existing configura-

tion settings and diagnose syntactic or semantic errors present in them [6, 16]. While suc-

ceeding in offering some benefits, thosemanagement-layerapproaches (i.e., approaches

running upon existing un-modified networks) are less likelyto yield solutions with mo-

mentous improvement because they only mask the configuration complexity intrinsic to

the underlying networks. In fact, there has been relativelylittle effort on making the un-

derlying networks easy to configure in the first place, such as eliminating configuration

altogether.

3

This dissertation tackles the latter issue byre-designing the underlying network ar-

chitectures themselves while focusing on ease of configuration. Specifically, to cope

with the rapidly growing networks with low configuration overhead and cost, and to deal

with frequent network and host churns without configurationerrors, we put forwardself-

configuration– enabling networks to maintain basic reachability and performance in a

configuration-free (also known as plug-and-play) fashion –as the first-order technical

goal.

1.1.2 Making self-configuring networks practical

Attempting to realize a self-configuring network architecture useful for a wide variety of

environments is a highly ambitious task, especially if attempted in a single dissertation.

Hence, as part of on-going research, this dissertation focuses on two key issues towards

this broad goal.

Focus on edge networks

First, we focus onedge networks– networks that typically have little to no interdepen-

dence with other networks because they do not offer networking services for other net-

works. Corporate-campus networks, university-campus networks, data-center networks,

or virtual private networks are all good examples. There areseveral reasons for specifi-

cally looking at this kind of network. Most of all, network management rarely receives

sufficient attention in edge networks and, therefore, has tobe done correctly with only

limited technical and financial support. At the same time, due to little interdependence

with other networks, edge networks can easily (and are even willing to) adopt new net-

work architectures without consideration of interoperability with other networks. Addi-

tionally, edge networks are growing in size very quickly andyet are significantly under-

4

explored by the research community.

Emphasis on workable solutions

Second, we emphasizeworkable solutions. The huge workloads and difficulties of net-

work configuration are afflicting administrators in operational networks today. As such,

real-world deployment (or deployability at the least) mustbe considered the key measure

of success. Therefore, even though we propose new network “architectures”, we always

consider prototyping and testing with real-world traffic asintegral parts of design and

evaluation. By the same token, we sometimes deliberately move away from architec-

turally pure or clean-slate approaches, and we instead embrace substituting backwards-

compatible techniques, if doing so ensures more practicality.

Meanwhile, this emphasis on workable solutions also leads us to a more specific goal

of this dissertation. That is because self-configuration alone is not sufficiently practi-

cal for real-world deployment. For example, Ethernet bridging supports plug-and-play

networking by allowing hosts to communicate with each otherusing their own unique

and permanent identifiers – MAC (Media Access Control) addresses – regardless of their

locations in a network, and by letting a network self-learn hosts’ address and location

information. This mechanism, though effective in eliminating host-address configuration

(i.e., assigning location-dependent identifiers to hosts)and routing configuration (i.e.,

informing routers/switches of hosts’ identifiers and locations), does not permit the net-

work to grow beyond a small-scale deployment. This limitation arises from the fact that

the self-learning capability relies on frequent network-wide dissemination of individual

hosts’ information, known as broadcasting and flooding. Moreover, since broadcasting

over a physically-rich topology can lead to forwarding loops, an Ethernet network must

forward traffic only through a single spanning tree even whenseveral alternative paths

are available. This approach significantly lowers the scalability and efficiency (in terms

5

of path lengths, link utilization, etc.) of an Ethernet network as its size grows.

On the other hand, the Internet Protocol (IP) ensures scalability by hierarchically ag-

gregating host-address and routing information, and it achieves efficiency using the short-

est paths between routers. This approach makes it impossible to attain self-configuration,

however, because the hierarchy in a network must be specifically structured and also

frequently updated (for maintenance, supporting host mobility, etc.) by administrators.

In summary, networks today need self-configuration withoutsacrificing scalability

and efficiency. As such, this dissertation specifically attempts todesign, build, and deploy

architectural solutions that enable scalable and efficientself-configuring edge networks.

1.2 Principles for Scalable and Efficient Self-configuring

Networks

This dissertation makes two sets of contributions:principlesandapplications. The first

set of contributions includes generic technical principles useful for designing scalable

and efficient self-configuring networks. Additionally, thesecond set includes specific

edge-network architectures that are built upon those generic principles. We introduce the

principles first in this section and defer the discussion on applications to the next section.

While working on different edge networks with varying purposes, requirements, ca-

pabilities, and constraints, we were able to draw three key principles below that are highly

useful for various networks.

• Self-configuration via flat addressing: We allow hosts to autonomously choose

their own permanent location-independent identifiers, andthe network to self-learn

and replicate hosts’ identifiers and locations, as opposed to having administra-

6

tors specifically assign hierarchical addresses (i.e., location-dependent temporary

identifiers) at hosts and routing information (i.e., hierarchically-aggregated host-

address blocks) at network devices. This enables self-configuration and thus al-

lows administrators to forgo address and routing configuration to ensure reachabil-

ity. This approach, however, can significantly increase theoverhead for storing and

disseminating host information because such information is not aggregatable. The

following two principles offer solutions for this problem.

• Scalability via traffic indirection : Network devices deliver traffic indirectly

through a small number of intermediate devices – rather thanthrough shortest

paths – that are chosen either randomly or systematically. This mechanism seems

counter-productive at first glance, as using indirect pathsincreases, rather than de-

creases, the total amount of traffic carried through a network and the end-to-end

latency as well. While these costs do exist, in edge networks, the benefits of traf-

fic indirection often significantly exceed the costs for two main reasons. First,

on the cost side, the indirection penalty is often negligible (as detour paths are

only slightly longer in edge networks) and easily avoidable(as one can deliberately

choose only highly-popular traffic sources and sinks as intermediaries, or forward

only a small fraction of traffic through the intermediaries by employing caching –

our third technical principle explained below). Second, interms of benefits, traffic

indirection enables a network to grow very large without requiring a concomitantly

large amount of resources and thus enhances scalability. Specifically, traffic indi-

rection exempts non-intermediate devices from the overhead of storing and dissem-

inating the information for all hosts because those devicesneed to maintain just the

information about other network devices (or just the intermediate devices), but not

7

about all the hosts. Traffic indirection is also useful for spreading traffic over a

large number of paths and thus enables a network to cope with huge and skewed or

drastically-varying traffic patterns without requiring excessive link capacities that

are mostly squandered.

• Efficiency via usage-driven optimization: Network devices populate routing and

host information only when and where it is needed by actual traffic and cache

only frequently-used information, rather than blindly disseminating the informa-

tion across the entire network. This approach improves efficiency by allowing

network devices to maintain only popular host and routing information and yet

make it possible to offer direct communication paths for popular communication

patterns. Since in most edge networks only a small fraction of hosts are highly pop-

ular, caching only those popular hosts’ information often substantially improves a

network’s efficiency in terms of the usage of expensive network resources (e.g.,

fast-access memory to store host information).

1.3 Architectures for Enterprises, Data Centers, and

Virtual Private Networks

By building upon the principles introduced in the previous section, this dissertation pro-

poses three architectures which are customized for different types of edge networks –

enterprise networks, data-center networks, and virtual private networks (VPNs). An en-

terprise network, as we define it in this dissertation, is built and administered by a single

organization and offers networking service only to the hosts in that organization. Often

this type of network covers a limited geographical area, such as a corporate campus, a

8

university campus, a few residential/commercial districts, or a government organization.

Nonetheless, it is technically possible to construct an enterprise network that spans mul-

tiple geographically distributed campuses (sites) by interconnecting them via VPNs –

networks that offer dedicated and protected wide-area connectivity among the distributed

sites through large public carrier networks (i.e., the Internet). A data-center network is a

specialized enterprise network that interconnects a largenumber (typically tens to hun-

dreds of thousands) of servers located in a data center. Compared to ordinary enterprise

networks, data-center networks are more regular – in terms of topology and components

– and usually aim to ensure a higher degree of performance andreliability.

The reasons we explore specifically these three types of networks are many and var-

ious. First, by offering solutions for different types of networks, we intend to show the

generality of our key principles upon which the solutions are built. Second, while there

are certainly other types of networks that can adopt these principles, we believe that these

three types of networks represent the most important kinds of edge networks existing to-

day. Third, the problem of ensuring scalability, efficiency, and self-configuration for non-

edge networks, most importantly for service-provider backbones or the Internet, has been

actively investigated by various previous and ongoing research work [17, 18, 19, 20, 21].

We briefly introduce each of these network architectures in this section and defer

thorough explanation of the architectures to Chapters 2 to 4. For a quick overview, we

summarize key issues and design features of each architecture in Table 1.1.

9

Table 1.1: Summary of network architectures this dissertation proposes

SEATTLE VL2 Relaying
(Chapter 2) (Chapter 3) (Chapter 4)

Target Enterprise Data-center VPN-provider
networks networks networks

Self-configuration is Self-configuration VPN providers are
paramount in enterprises, improves scalability in dire need of

Motivation because support for and agility (i.e. capability memory capacity
network management of assigning any resources to cope with fast-growing

is often highly to any services) of a cloud- numbers and sizes
limited in those networks computing data center of customer VPNs

Problems Self-configuring Poor agility and Replicating every
with networks do not scale; limited server-to-server customer site’s

existing scalable and efficient capacity lower servers’ information at every
architecture networks bear huge and links’ utilization customer-facing router

configuration overhead in a data center impairs scalability
Combine IP’s scalability Offer the image of Reduce routers’ memory

(low overhead to maintain a huge layer-2 switch footprint required for
Goal hosts’ state) and furnishing full storing customers’

efficiency (shortest-path non-blocking capacity information without
forwarding) with Ethernet’s among servers and harming end-to-end

self-configuration support for agility performance
Key Huge heterogeneity of Limited programmability Need for immediate

constraint end-host environments at switches and routers deployment and
transparency to customers

Approach Clean slate on network Clean slate on hosts Backwards-compatible
Several independent Are expected to be Passed pre-deployment

Deployment prototypes are built by deployed for a large tests and are expected
different research groups public cloud-computing to be deployed for large

infrastructure customer VPNs

1.3.1 SEATTLE: A scalable Ethernet architecture for large enter-

prises

For most enterprises (especially those in non-IT sectors),network management in essence

is a supporting duty, rather than a core, value-generating duty. Administrators of those

networks, therefore, suffer most from a huge configuration workload because techni-

10

cal and financial support for network management is often highly limited. Our first ar-

chitecture, SEATTLE, precisely addresses this problem. SEATTLE allows enterprises

to build a large-scale plug-and-play network that ensures reachability entirely by itself,

without requiring any addressing and routing configurationby administrators. Mean-

while SEATTLE employs shortest-path forwarding and thus ensures traffic-forwarding

efficiency equivalent to that of existing IP networks.

To ensure these features, SEATTLE proposesi) a highly-scalable host-information

resolution system leveraging the consistency offered by a network-layer routing protocol,

ii) a traffic-driven host-information resolution and cachingmechanism taking advantage

of strong traffic locality in enterprise networks, andiii) a scalable and prompt cache-

update protocol ensuring eventual consistency of host information in a highly dynamic

network. Despite these novel mechanisms, SEATTLE still remains compatible with ex-

isting applications and protocols – Address Resolution Protocol (ARP), Dynamic Host

Configuration Protocol (DHCP), link-local broadcast, Virtual LAN (VLAN), etc. – run-

ning at end hosts.

SEATTLE is available as several independent prototypes implemented by different

research groups (for example, the system by De Carli, et. al.[22]), including our own

prototype built with open-source routing platforms [23]. When instantiated as a Linux

kernel-thread module, this prototype SEATTLE switch can handle the high-speed links

(gigabits per second) commonly used in corporate and university campuses today. To

attain this level of practicality, we deliberately adjusted our design to the unique require-

ments, technical constraints, and available options in enterprise networks. First, to ensure

fast prototyping and easier deployment, SEATTLE re-uses many existing network-layer

functions (e.g., link-state routing, encapsulation/decapsulation) simply by re-factoring

and re-arranging them in a novel fashion. Second, we deliberately choose to modify only

11

network devices, offering exactly the same simple semantics as Ethernet. This is because

enterprise networks often have significant host-level heterogeneity; each department in a

university has numerous custom applications that work onlyon certain versions of host

operating systems, and corporations often use diverse kinds of devices and operating

systems for various historical, business, and management purposes. By taking a purely

network-based approach, SEATTLE substantially lowers theoverall design and imple-

mentation complexity of the system and enables rapid and inexpensive development and

deployment as well.

1.3.2 VL2: A scalable and flexible data-center network

Many features of SEATTLE are also useful for other types of networks, most importantly

for large cloud-computing service providers whose ultimate goal is administering their

data centers in a configuration-free fashion. We address this crucial issue by proposing

a highly scalable network architecture for cloud-computing data centers, called VL2. In

addition to eliminating configuration for addressing and routing, this architecture also

allows administrators to forgo sophisticated and frequentconfiguration for traffic engi-

neering – a task of controlling the amount of traffic flowing through each link to avoid

congestion – by delivering traffic through a large number of randomly-chosen indirect

paths. Additionally, this approach can substantially reduce the cost of building a data-

center network because spreading traffic over multiple paths enables a network to cope

with highly skewed or drastically-varying traffic workloads with only a huge aggregate

capacity (i.e., with a large number of inexpensive commodity components), rather than

with huge individual links (i.e., expensive high-performance components). Together, the

plug-and-play capability and the low-cost high-bandwidthserver-to-server capacity en-

able administrators to assign any available servers to any services sharing the cloud-

12

computing infrastructure, and thus can substantially increase the statistical multiplexing

gain (i.e., utilization) of a data center.

Despite these novel features, VL2 requires only network-layer technologies avail-

able today and thus is immediately deployable. In fact, we have implemented a VL2

prototype network serving an 80-server cluster using only low-cost commodity Ethernet

switches. Our pre-deployment tests in this test setting demonstrate that the prototype net-

work can offer a uniformly high capacity among servers (93% of optimal), and the way

the prototype network achieves this performance is directly applicable to up to hundreds

of thousands of servers. VL2 is also expected to be rolled outfor real-world deployment

for a large cloud-service provider.

To attain this level of practicality, VL2 leverages add-on functions in end hosts’ op-

erating systems without requiring any novel functions in a network, server hardware, or

application software. Our observations on common data-center designs and operational

settings justify this design decision. Unlike general enterprise networks, host operating

systems in data centers are already highly customized for data-center-specific needs (e.g.,

virtualization), and adding a few more novel functionalities for VL2 in the host operating

systems is relatively straight-forward and convenient. Additionally, end-hosts’ environ-

ments are highly homogeneous in a data center and offer uniformly rich programmability

at a relatively low cost.

1.3.3 Relaying: A scalable routing architecture for VPNs

Finally, we turn our focus to VPN, a fast-growing networkingservice used by corporate

customers to interconnect geographically distributed sites. The conventional network ar-

chitecture to support VPNs over a service-provider networkallows provider routers to

receive customer sites’ addresses (i.e., route prefixes) from customer routers. Provider

13

routers then exchange this information with one another. This approach ensures self-

configuration, as the customer sites can autonomously assign and announce their own

address blocks, and the provider routers self-learn and blindly disseminate this varying

information across the entire provider network without anyspecific changes to their con-

figuration settings. The problem, however, is that this mechanism unnecessarily replicates

customer routing information at a huge number of provider routers and thus significantly

impairs the provider’s scalability to cope with the rapidlygrowing sizes and number of

customer VPNs; more specifically, routers consume too much high-speed memory to

store the routing information about all sites.

We solve this problem via a novel routing architecture called Relaying. The Relaying

architecture substantially lowers routers’ memory footprint by allowing routers connected

to highly-popular customer sites (namely hub routers) to maintain complete routing in-

formation about all customer sites, while letting routers connected to less-popular sites

(namely spoke routers) maintain only a single routing-table entry pointing to a hub router.

Thus any hub router can reach any customer site directly through the shortest paths, while

spoke routers can reach other customer sites only through a hub router. Since the traffic

distribution of customer sites is highly skewed (i.e., a small number of highly popular

sites generate and receive most traffic in a VPN), choosing only those small number of

routers connected to popular sites as hubs can significantlyreduce the amount of routing

information stored in expensive memory and yet ensure fairly good end-to-end perfor-

mance for most traffic as well. To help administrators make informed decisions, we also

design a number of optimization algorithms. Given traffic patterns among customer sites

and the locations of customer-facing routers, these algorithms can choose the smallest

number of hub routers, such that the increase of end-to-end latency due to indirection is

bounded above by a certain parameter. We also develop a decision-support tool imple-

14

menting these algorithms.

The dire scalability problem that VPN providers experiencetoday demands a solution

that is immediately deployable; implementing Relaying should rely only on router mech-

anisms readily available today. Meanwhile, service-levelagreements (SLAs) between a

provider and customers require that a solution is transparent to customers; the impact of

Relaying must be unnoticeable in terms of perceived end-to-end performance. Satisfying

these requirements, our Relaying design can be implementedwith only slight modifica-

tion to conventional router-configuration settings for VPNs, without requiring any new

router hardware or software. Relaying has passed pre-deployment laboratory tests (in-

cluding experiments to examine line-rate packet-relayingperformance at a hub router)

by a large tier-1 carrier in the U.S. and is expected to be deployed for large corporate

VPNs served by the carrier.

1.4 How to Read This Dissertation

In the remainder of this dissertation, we describe the detailed design, implementation,

and evaluation results of the three network architectures briefly introduced in the previous

section. We begin with SEATTLE in Chapter 2 as it provides readers with background

knowledge on typical edge networks. It also describes how weuse the key technical

principles (introduced in Section 1.2) to enable self-configuration in a large yet famil-

iar network, without unnecessarily delving into advanced networking issues covered in

the subsequent chapters. While Chapter 2 focuses mainly on ensuring reachability and

control-plane scalability in a plug-and-play fashion, we present VL2 in Chapter 3 and thus

also deal with issues of avoiding congestion and enabling data-plane scalability in a plug-

and-play fashion. Finally, we describe Relaying in Chapter4. In addition to introducing

15

a highly-scalable routing architecture that preserves theself-configuring semantics of the

VPN service, this work also studies the question of how to optimally deploy the new

architecture in an operational network.

While solving the same high-level problem via the same set oftechnical principles,

these architectures also reflect on various strategic approaches chosen for different types

of networks under investigation. Understanding the broad context of these different ap-

proaches will help readers with different backgrounds and interests to efficiently navigate

through the chapters of this dissertation.

The SEATTLE and the Relaying work aim to improve the scalability of existingself-

configuring networks (i.e., Ethernet and VPNs respectively). On the other hand, the VL2

work intends to present a novel architecture for anemergingtype of network: huge cloud-

computing data-center networks.

This difference leads to the varying backwards-compatibility decisions made in this

dissertation. SEATTLE ensures complete backwards-compatibility with existing hosts,

as they are designed for “existing” networks. By the same token, Relaying works without

requiring any modification to customer sites (address reassignment, software or hard-

ware upgrade on customer routers, etc.). On the other hand, VL2 deliberately employs

programmability available at end hosts – mostly because cloud-computing data-center

networks are being built today – and thus has significant freedom to incorporate new end-

host primitives. Note, however, that VL2 does not require existing applications (running

on data centers) to be modified, simplifying VL2’s deployment.

While both SEATTLE and Relaying rely on new mechanisms (i.e., routing and for-

warding) running inside the network, we decides to choose a clean-slate approach in

SEATTLE (i.e., proposing a new type of network device different both from IP routers

and Ethernet bridges), whereas in Relaying we choose a design that can be realized with

16

existing router functions only. These decisions are related to how urgent the challenges

each type of network faces are. In enterprises, though, a scalable Ethernet is highly

desirable, administrators can get by with a short-term patch solution – for example, inter-

connecting small Ethernet networks with IP routers – while waiting for SEATTLE or any

other fundamental solutions to become available. Unfortunately, VPN providers are left

with no interim solution but extremely inefficient over-provisioning. As such, they need

a solution that works immediately on existing routers, without requiring any hardware or

software upgrade. This also affects our research directionin the Relaying work, as VPN

providers are as much interested in management-support algorithms and tools needed to

deploy and run Relaying as the Relaying architecture itself.

17

Chapter 2

SEATTLE: A Scalable Ethernet

Architecture for Large Enterprises

IP networks today require massive effort to configure and manage. Ethernet is vastly

simpler to manage, but does not scale beyond small local areanetworks. This chapter

describes an alternative network architecture called SEATTLE that achieves the best of

both worlds: the scalability of IP combined with the simplicity of Ethernet. SEATTLE

provides plug-and-play functionality via flat addressing,while ensuring scalability and

efficiency through shortest-path routing and hash-based resolution of host information. In

contrast to previous work on identity-based routing, SEATTLE ensures path predictability

and stability and simplifies network management.

We begin by motivating this work in Section 2.1. Before plunging into the detailed

designs, we summarize how conventional enterprise networks are built in Section 2.2.

Then we describe our main contributions in Sections 2.3 where we introduce a highly-

scalable and flexible host-information management system.Subsequently in Section 2.4,

we show how we can use this system to build a scalable network architecture that ensures

18

the same semantics as Ethernet bridging. Next in Section 2.5, we enhance existing Eth-

ernet mechanisms to make our design backwards-compatible with conventional Ethernet.

We then evaluate our protocol using simulations in Section 2.6 and an implementation

in Section 2.7. Our results show that SEATTLE scales to networks containing two or-

ders of magnitude more hosts than a traditional Ethernet network. Additionally, it also

demonstrates that SEATTLE efficiently handles network failures and host mobility while

reducing control overhead and state requirements by roughly two orders of magnitude

compared with Ethernet bridging.

2.1 Motivation and Overview

Ethernet stands as one of the most widely used networking technologies today. Due to

its self-configuring capability, wide availability, and low cost, many enterprise and access

provider networks utilize Ethernet as an elementary building block. Each host in an

Ethernet is assigned a persistent MAC address, and Ethernetbridges automatically learn

host addresses and locations. These “plug-and-play” semantics simplify many aspects of

network configuration. Flat addressing simplifies the handling of topology changes and

host mobility without requiring administrators to reassign addresses.

However, Ethernet is facing revolutionary challenges. Today’s layer-2 networks are

being built on an unprecedented scale and with highly demanding requirements in terms

of efficiency and availability. Large data centers are beingbuilt, comprising hundreds

of thousands of computers within a single facility [24], andmaintained by hundreds of

network operators. To reduce energy costs, these data centers employ virtual machine

migration and adapt to varying workloads, placing additional requirements on agility

(e.g., host mobility and fast topology changes). Additionally, large metro Ethernet de-

19

ployments contain over a million hosts and tens of thousandsof bridges [25]. Ethernet is

also being increasingly deployed in highly dynamic environments, such as backhaul for

wireless campus networks, and transport for developing regions [26].

While an Ethernet-based solution becomes all the more important in these environ-

ments because it ensures service continuity and simplifies configuration, conventional

Ethernet has some critical limitations. First, Ethernet bridging relies on network-wide

flooding to locate end hosts. This results in large state requirements and control mes-

sage overhead that grows with the size of the network. Second, Ethernet forces paths to

comprise aspanning tree. Spanning trees perform well for small networks which often

do not have many redundant paths anyway, but introduce substantial inefficiencies on

larger networks that have more demanding requirements for low latency, high availabil-

ity, and traffic engineering. Finally, popular bootstrapping protocols, such as Address

Resolution Protocol (ARP) and Dynamic Host Configuration Protocol (DHCP), rely on

broadcasting. This not only consumes excessive resources, but also introduces security

vulnerabilities and privacy concerns.

Network administrators sidestep Ethernet’s inefficiencies today by interconnecting

small Ethernet LANs using routers running the Internet Protocol (IP). IP routing ensures

efficient and flexible use of networking resources via shortest-path routing. It also has

control overhead and forwarding-table sizes that are proportional to the number of sub-

nets (i.e., prefixes), rather than the number of hosts. However, introducing IP routing

breaks many of the desirable properties of Ethernet. For example, network administra-

tors must now subdivide their address space to assign IP prefixes across the topology,

and update these configurations when the network design changes. Subnetting leads to

wasted address space, and laborious configuration tasks. Although DHCP automates host

address configuration, maintaining consistency between DHCP servers and routers still

20

remains challenging. Moreover, since IP addresses are not persistent identifiers, ensur-

ing service continuity across location changes (e.g., due to virtual machine migration or

physical mobility) becomes more challenging. Additionally, access-control policies must

be specified based on the host’s current position, and updated when the host moves.

Alternatively, operators may use Virtual LANs (VLANs) to build IP subnets indepen-

dently of host location. While the overhead of address configuration and IP routing may

be reduced by provisioning VLANs over a large number of, if not all, bridges, doing so

reduces benefits of broadcast scoping, and worsens data-plane efficiency due to larger

spanning trees. Efficiently assigning VLANs over bridges and links must also consider

hosts’ communication and mobility patterns, and hence is hard to automate. Moreover,

since hosts in different VLANs still require IP to communicate with one another, this

architecture still inherits many of the challenges of IP mentioned above.

2.1.1 Ethernet’s simplicity + IP’s scalability and efficiency

⇒ SEATTLE

In this chapter, we address the following question:Is it possible to build a protocol that

maintains the same configuration-free properties as Ethernet bridging, yet scales to large

networks?To answer, we present a Scalable Ethernet Architecture for Large Enterprises

(SEATTLE). Specifically, SEATTLE offers the following features:

A one-hop, network-layer DHT:SEATTLE forwards packets based on end-host MAC

addresses. However, SEATTLE doesnot require each switch to maintain state for every

host, nor does it require network-wide floods to disseminate host locations. Instead,

SEATTLE uses the global switch-level view provided by a link-state routing protocol to

form a one-hop DHT [27], which stores thelocationof each host. We use this network-

21

layer DHT to build a flexible directory service which also performs address resolution

(e.g., storing the MAC address associated with an IP address), and more flexible service

discovery (e.g., storing the least loaded DNS server or printer within the domain). In

addition, to provide stronger fault isolation and to support delegation of administrative

control, we present a hierarchical, multi-level one-hop DHT.

Traffic-driven location resolution and caching: To forward packets along shortest

paths and to avoid excessive load on the directory service, switches cache responses to

queries. In enterprise networks, hosts typically communicate with a small number of

other hosts [28], making caching highly effective. Furthermore, SEATTLE also provides

a way to piggyback location information on ARP replies, which eliminates the need for

location resolution when forwarding data packets. This allows data packets to directly

traverse the shortest path, making the network’s forwarding behavior predictable and sta-

ble.

A scalable, prompt cache-update protocol:Unlike Ethernet which relies on timeouts

or broadcasts to keep forwarding tables up-to-date, SEATTLE proposes an explicit and

reliable cache update protocol based on unicast. This ensures that all packets are delivered

based on up-to-date state while keeping control overhead low. In contrast to conventional

DHTs, this update process is directly triggered by network-layer changes, providing fast

reaction times. For example, by observing link-state advertisements, switches determine

when a host’s location is no longer reachable, and evict those invalid entries. Through

these approaches, SEATTLE seamlessly supports host mobility and other dynamics.

Despite these features, our design remains compatible withexisting applications and

protocols running at end hosts. For example, SEATTLE allowshosts to generate broad-

cast ARP and DHCP messages, and internally converts them into unicast queries to a

directory service. SEATTLE switches can also handle general (i.e., non-ARP and non-

22

DHCP) broadcast traffic through loop-free multicasting. Tooffer broadcast scoping and

access control, SEATTLE also provides a more scalable and flexible mechanism that al-

lows administrators to create VLANs without trunk configuration.

2.1.2 Related work

Our quest is to design, implement, and evaluate a practical replacement for Ethernet that

scales tolarge and dynamicnetworks. Although there are many approaches to enhance

Ethernet bridging, none of these are suitable for our purposes. RBridges [29, 30] lever-

age a link-state protocol to disseminate information aboutboth bridge connectivity and

host state. This eliminates the need to maintain a spanning tree and improves forwarding

paths. CMU-Ethernet [31] also leverages link-state and replaces end-host broadcasting

by propagating host information in link-state updates. Viking [32] uses multiple span-

ning trees for faster fault recovery, which can be dynamically adjusted to conform to

changing load. SmartBridges [33] allows shortest-path forwarding by obtaining the net-

work topology, and monitoring which end host is attached to each switch. However, its

control-plane overheads and storage requirements are similar to Ethernet, as every end

host’s information is disseminated to every switch. ThoughSEATTLE was inspired by

the problems addressed in these works, it takes a radically different approach thatelim-

inatesnetwork-wide dissemination of per-host information. Thisresults in substantially

improved control-plane scalability and data-plane efficiency. While there has been work

on using hashing to support flat addressing conducted in parallel with our work [34, 35],

these works do not promptly handle host dynamics, require some packets to be detoured

away from the shortest path or be forwarded along a spanning tree, and do not support

hierarchical configurations to ensure fault/path isolation and the delegation of adminis-

trative control necessary for large networks.

23

The design we propose is also substantially different from recent work on identity-

based routing (ROFL [21], UIP [36], and VRR [37]. Our solution is suitable for building

a practical and easy-to-manage network for several reasons. First, these previous ap-

proaches determine paths based on a hash of the destination’s identifier (or the identifier

itself), incurring a stretch penalty (which is unbounded inthe worst case). In contrast,

SEATTLE doesnot perform identity-based routing. Instead, SEATTLE uses resolution

to map a MAC address to a host’s location, and then uses the location to deliver packets

along theshortest pathto the host. This reduces latency and makes it easier to control

and predict network behavior. Predictability and controllability are extremely important

in real networks, because they make essential management tasks (e.g., capacity planning,

troubleshooting, traffic engineering) possible. Second, the path between two hosts in

a SEATTLE network does not change as other hosts join and leave the network. This

substantially reduces packet reordering and improves constancy of path performance. Fi-

nally, SEATTLE employs traffic-driven caching of host information, as opposed to the

traffic-agnostic caching (e.g., finger caches in ROFL) used in previous works. By only

caching information that is needed to forward packets, SEATTLE significantly reduces

the amount of state required to deliver packets. However, our design also consists of

several generic components, such as the multi-level one-hop DHT and service discovery

mechanism, that could be adapted to the work in [21, 36, 37].

2.2 Today’s Enterprise and Access Networks

To provide background for the remainder of the chapter, and to motivate SEATTLE,

this section explains why Ethernet bridging does not scale.Then we describe hybrid

IP/Ethernet networks and VLANs, two widely-used approaches which improve scalabil-

24

ity over conventional Ethernet, but introduce management complexity, eliminating the

“plug-and-play” advantages of Ethernet.

2.2.1 Ethernet bridging

An Ethernet network is composed ofsegments, each comprising a single physical layer1.

Ethernetbridgesare used to interconnect multiple segments into a multi-hopnetwork,

namely a LAN, forming a singlebroadcast domain. Each host is assigned a unique 48-bit

MAC (Media Access Control) address. A bridge learns how to reach hosts by inspecting

the incoming frames, and associating the source MAC addresswith the incoming port. A

bridge stores this information in aforwarding tablethat it uses to forward frames toward

their destinations. If the destination MAC address is not present in the forwarding table,

the bridge sends the frame on all outgoing ports, initiatinga domain-wide flood. Bridges

also flood frames that are destined to a broadcast MAC address. Since Ethernet frames

do not carry a TTL (Time-To-Live) value, the existence of multiple paths in the topology

can lead tobroadcast storms, where frames are repeatedly replicated and forwarded along

a loop. To avoid this, bridges in a broadcast domain coordinate to compute aspanning

tree [38]. Administrators first select and configure a singleroot bridge; then, the bridges

collectively compute a spanning tree based on distances to the root. Links not present in

the tree are not used to carry traffic, causing longer paths and inefficient use of resources.

Unfortunately, Ethernet-bridged networks cannot grow to alarge scale due to following

reasons.

Globally disseminating every host’s location:Flooding and source-learning introduce

two problems in a large broadcast domain. First, the forwarding table at a bridge can

1In modern switched Ethernet networks, a segment is just a point-to-point link connecting an end host
and a bridge, or a pair of bridges.

25

grow very large because flat addressing increases the table size proportionally to the total

number of hosts in the network. Second, the control overheadrequired to disseminate

each host’s information via flooding can be very large, wasting link bandwidth and pro-

cessing resources. Since hosts (or their network interfaces) power up/down (manually,

or dynamically to reduce power consumption), and change location relatively frequently,

flooding is an expensive way to keep per-host information up-to-date. Moreover, mali-

cious hosts can intentionally trigger repeated network-wide floods through, for example,

MAC address scanning attacks [39].

Inflexible route selection: Forcing all traffic to traverse a single spanning tree makes

forwarding more failure-prone and leads to suboptimal paths and uneven link loads. Load

is especially high on links near the root bridge. Thus, choosing the right root bridge is

extremely important, imposing an additional administrative burden. Moreover, using a

single tree for all communicating pairs, rather than shortest paths, significantly reduces

the aggregate throughput of a network.

Dependence on broadcasting for basic operations:DHCP and ARP are used to assign

IP addresses and manage mappings between MAC and IP addresses, respectively. A

host broadcasts a DHCP-discovery message whenever it believes its network attachment

point has changed. Broadcast ARP requests are generated more frequently, whenever a

host needs to know the MAC address associated with the IP address of another host in

the same broadcast domain. Relying on broadcast for these operations degrades network

performance. Moreover, every broadcast message must be processed by every end host;

since handling of broadcast frames is often application or OS-specific, these frames are

not handled by the network interface card, and instead must interrupt the CPU [40]. For

portable devices on low-bandwidth wireless links, receiving ARP packets can consume a

significant fraction of the available bandwidth, processing, and power resources. More-

26

over, the use of broadcasting for ARP and DHCP opens vulnerabilities for malicious hosts

as they can easily launch ARP or DHCP floods [31].

2.2.2 Hybrid IP/Ethernet architecture

One way of dealing with Ethernet’s limited scalability is tobuild enterprise and access

provider networks out of multiple LANs interconnected byIP routing. In thesehybrid

networks, each LAN contains at most a few hundred hosts that collectively form anIP

subnet. Communication across subnets is handled via certain fixed nodes calleddefault

gateways. Each IP subnet is allocated anIP prefix, and each host in the subnet is then

assigned an IP address from the subnet’s prefix. Assigning IPprefixes to subnets, and

associating subnets with router interfaces is typically a manual process, as the assign-

ment must follow the addressing hierarchy, yet must reduce wasted namespace, and must

consider future use of addresses to minimize later reassignment. Unlike a MAC address,

which functions as a hostidentifier, an IP address denotes the host’s currentlocation in

the network.

The biggest problem of the hybrid architecture is its massive configuration overhead.

Configuring hybrid networks today represents an enormous challenge. Some estimates

put 70% of an enterprise network’s operating cost as maintenance and configuration, as

opposed to equipment costs or power usage [7]. In addition, involving human adminis-

trators in the loop increases reaction time to faults and increases potential for misconfig-

uration.

Configuration overhead due to hierarchical addressing:An IP router cannot function

correctly until administrators specify subnets on router interfaces, and direct routing pro-

tocols to advertise the subnets. Similarly, an end host cannot access the network until it

is configured with an IP address corresponding to the subnet where the host is currently

27

located. DHCP automates end-host configuration, but introduces substantial configura-

tion overhead for managing the DHCP servers. In particular,maintaining consistency

between routers’ subnet configuration and DHCP servers’ address allocation configura-

tion, or coordination across distributed DHCP servers are not simple. Finally, network

administrators must continually revise this configurationto handle network changes.

Complexity in implementing networking policies:Administrators today use a collection

of access controls, QoS (Quality of Service) controls [41],and other policies to control

the way packets flow through their networks. These policies are typically defined based

on IP prefixes. However, since prefixes are assigned based on the topology, changes to

the network design require these policies to be rewritten. More significantly, rewriting

networking policies must happen immediately after networkdesign changes to prevent

reachability problems and to avoid vulnerabilities. Ideally, administrators should only

need to update policy configurations when thepolicy itself, not thenetwork, changes.

Limited mobility support: Supporting seamless host mobility is becoming increasingly

important. In data centers, migratable virtual machines are being widely deployed to im-

prove power efficiency by adapting to workload, and to minimize service disruption dur-

ing maintenance operations. Large universities or enterprises often build campus-wide

wireless networks, using a wired backhaul to support host mobility across access points.

To ensure service continuity and minimize policy update overhead, it is highly desirable

for a host to retain its IP address regardless of its locationin these networks. Unfortu-

nately, hybrid networks constrain host mobility only within a single, usually small, sub-

net. In a data center, this can interfere with the ability to handle load spikes seamlessly;

in wireless backhaul networks, this can cause service disruptions. One way to deal with

this is to increase the size of subnets by increasing broadcast domains, introducing the

scaling problems mentioned in Section 2.2.1.

28

2.2.3 Virtual LANs

VLANs address some of the problems of Ethernet and IP networks. VLANs allow ad-

ministrators to group multiple hosts sharing the same networking requirements into a

single broadcast domain. Unlike a physical LAN, a VLAN can bedefinedlogically, re-

gardless of individual hosts’ locations in a network. VLANscan also be overlapped by

allowing bridges (not hosts) to be configured with multiple VLANs. By dividing a large

bridged network into several appropriately-sized VLANs, administrators can reduce the

broadcast overhead imposed on hosts in each VLAN, and also ensure isolation among

different host groups. Compared with IP, VLANs simplify mobility, as hosts may retain

their IP addresses while moving between bridges in the same VLAN. This also reduces

policy reconfiguration overhead. Unfortunately, VLANs introduces several problems:

Trunk configuration overhead:Extending a VLAN across multiple bridges requires the

VLAN to be trunked (provisioned) at each of the bridges participating in the VLAN.

Deciding which bridges should be in a given VLAN must consider traffic and mobility

patterns to ensure efficiency, and hence is often done manually.

Limited control-plane scalability:Although VLANs reduce the broadcast overhead im-

posed on a particular end host, bridges provisioned with multiple VLANs must maintain

forwarding-table entries and process broadcast traffic foreveryactive host ineveryVLAN

visible to themselves. Unfortunately, to enhance resourceutilization and host mobility,

and to reduce trunk configuration overhead, VLANs are often provisioned larger than

necessary, worsening this problem. A large forwarding table complicates bridge design,

since forwarding tables in Ethernet bridges are typically implemented using Content-

Addressable Memory (CAM), an expensive and power-intensive technology.

Insufficient data-plane efficiency:Larger enterprises and data centers often have richer

29

topologies, for greater reliability and performance. Unfortunately, a single spanning tree

is used in each VLAN to forward packets, which prevents certain links from being used.

Although configuring a disjoint spanning tree for each VLAN [32, 42] may improve

load balance and increase aggregate throughput, effectiveuse of per-VLAN trees requires

periodically moving the roots and rebalancing the trees, which must be manually updated

as traffic shifts. Moreover, inter-VLAN traffic must be routed via IP gateways, rather than

shortest physical paths.

2.3 Network-Layer One-hop DHT

The goal of a conventional Ethernet is to route packets to a destination specified by a

MAC address. To do this, Ethernet bridges collectively provide end hosts with a service

that maps MAC addresses to physical locations. Each bridge implements this service by

maintaining next-hop pointers associated with MAC addresses in its forwarding table, and

relies on domain-wide flooding to keep these pointers up to date. Additionally, Ethernet

also allows hosts to look up the MAC address associated with agiven IP address by

broadcastingAddress Resolution Protocol(ARP) messages.

In order to provide the same interfaces to end hosts as conventional Ethernet, SEAT-

TLE also needs a mechanism that maintains mappings between MAC/IP addresses and

locations. To scale to large networks, SEATTLE operates a distributed directory service

built using aone-hop, network-level DHT. We use aone-hopDHT to reduce lookup com-

plexity and simplify certain aspects of network administration such as traffic engineering

and troubleshooting. We use anetwork-levelapproach that stores mappings at switches,

so as to ensure fast and efficient reaction to network failures and recoveries, and avoid

the control overhead of a separate directory infrastructure. Moreover, our network-level

30

approach allows storage capability to increase naturally with network size, and exploits

cachingto forward data packets directly to the destination withoutneeding to traverse

any intermediate DHT hops [43, 44].

2.3.1 Scalable key-value management with a one-hop DHT

Our distributed directory has two main parts. First, running a link-state protocol ensures

each switch can observe all other switches in the network, and allows any switch to route

any other switch along shortest paths. Second, SEATTLE usesa hash functionto map

host information to a switch. This host information is maintained in the form of (key,

value). Examples of these key-value pairs are (MAC address, location), and (IP address,

MAC address).

Link-state protocol maintaining switch topology

SEATTLE enables shortest-path forwarding by running a link-state protocol. However,

distributingend-hostinformation in link-state advertisements, as advocated inprevious

proposals [31, 29, 33, 30], would lead to serious scaling problems in the large networks

we consider. Instead, SEATTLE’s link-state protocol maintains only theswitch-level

topology, which is much more compact and stable. SEATTLE switches use the link-state

information to compute shortest paths for unicasting, and multicast trees for broadcasting.

To automate configuration of the link-state protocol, SEATTLE switches run a dis-

covery protocol to determine which of their links are attached to hosts, and which are

attached to other switches. Distinguishing between these different kinds of links is done

by sending control messages that Ethernet hosts do not respond to. This process is similar

to how Ethernet distinguishes switches from hosts when building its spanning tree. To

identify themselves in the link-state protocol, SEATTLE switches determine their own

31

Figure 2.1: Keys are consistently hashed onto resolver switches (si).

uniqueswitch IDswithout administrator involvement. For example, each switch does

this by choosing the MAC address of one of its interfaces as its switch ID.

Hashing key-value pairs onto switches

Instead of disseminating per-host information in link-state advertisements, SEATTLE

switches learn this information in an on-demand fashion, via a simple hashing mecha-

nism. This information is stored in the form of(key= k,value= v) pairs. Apublisher

switchsa wishing to publish a(k, v) pair via the directory service uses a hash function

F to mapk to a switch identifierF(k) = rk, and instructs switchrk to store the map-

ping (k, v). We refer tork as theresolverfor k. A different switchsb may then look up

the value associated withk by using the same hash function to identify which switch is

k’s resolver. This works because each switch knows all the other switches’ identifiers via

link-state advertisements from the routing protocol, and henceF works identically across

all switches. Switchsb may then forward a lookup request tork to retrieve the valuev.

Switchsb may optionally cache the result of its lookup, to reduce redundant resolutions.

All control messages, including lookup and publish messages, are unicast with reliable

delivery.

32

Reducing control overhead with consistent hashing:When the set of switches changes

due to a network failure or recovery, some keys have to be re-hashed to different re-

solver switches. To minimize this re-hashing overhead, SEATTLE utilizes Consistent

Hashing[45] for F . This mechanism is illustrated in Figure 2.1. A consistent hashing

function maps keys tobinssuch that the change of the bin set causes minimal churn in

the mapping of keys to bins. In SEATTLE, each switch corresponds a bin, and a host’s

information corresponds to a key. Formally, given a setS = {s1, s2, ..., sn} of switch

identifiers, and a keyk,

F(k) = argmin∀si∈S{D(H(k),H(si))}

whereH is a regular hash function, andD(x, y) is a simple metric function computing

the counter-clockwise distance fromx to y on the circular hash-space ofH. This means

F maps a key to the switch with the closest identifier not exceeding that of the key on the

hash space ofH. As an optimization, a key may be additionally mapped to the next m

closest switches along the hash ring, to improve resilienceto multiple failures. However,

in our evaluation, we will assume this optimization is disabled by default.

Balancing load with virtual switches:The scheme described so far assumes that all

switches are equally powerful, and hence low-end switches will need to service the same

load as more powerful switches. To deal with this, we proposea new scheme based

on running multiplevirtual switcheson each physical switch. A single switch locally

creates one or more virtual switches. The switch may then increase or decrease its load by

spawning/destroying these virtual switches. Unlike techniques used in traditional DHTs

for load balancing [44], it isnotnecessary for our virtual switches to be advertised to other

physical switches. To reduce size of link-state advertisements, instead of advertising

33

every virtual switch in the link-state protocol, switches only advertise the number of

virtual switches they are currently running. Each switch then locally computes virtual

switch IDs using the following technique. All switches use the same functionR(s, i) that

takes as input a switch identifiers and a numberi, and outputs a new identifier unique

to the inputs. A physical switchw only advertises in link-state advertisements its own

physical switch identifiersw and the numberL of virtual switches it is currently running.

Every switch can then determine the virtual identifiers ofw by computingR(sw, i) for

1 ≤ i ≤ L. Note that it is possible to automate determining a desirable number of virtual

switches per physical switch [46].

Enabling flexible service discovery:This design also enables more flexible service dis-

covery mechanisms without the need to perform network-widebroadcasts. This is done

by utilizing the hash functionF to map a string defining the service to a switch. For

example, a printer may hash the string“PRINTER” to a switch, at which it may store its

location or address information. Other switches can then reach the printer using the hash

of the string. Services may also encode additional attributes, such as load or network lo-

cation, as simple extensions. Multiple servers can redundantly register themselves with a

common string to implement anycasting. Services can be named using techniques shown

in previous work [47].

2.3.2 Responding to topology changes

The switch-level topology may change if a new switch/link isadded to the network, an

existing switch/link fails, or a previously failed switch/link recovers. These failures may

or may notpartition the network into multiple disconnected components. Link failures

are typically more common than switch failures, and partitions are very rare if the network

has sufficient redundancy.

34

Figure 2.2: Hierarchical SEATTLE hashes keys ontoregions.

In the case of a link failure/recovery that does not partition a network, the set of

switches appearing in the link-state map does not change. Since the hash functionF is

defined with the set of switches in the network, the resolver aparticular key maps to will

not change. Hence all that needs to be done is to update the link-state map to ensure

packets continue to traverse new shortest paths. In SEATTLE, this is simply handled by

the link-state protocol.

However, if a switch fails or recovers, the set of switches inthe link-state map

changes. Hence there may be some keysk whose old resolverrold
k differs from a new

resolverrnew
k . To deal with this, the value(k, v) must be moved fromrold

k to rnew
k . This

is handled by having the switchsk that originally publishedk monitor the liveness of

k’s resolver through link-state advertisements. Whensk detects thatrnew
k differs from

rold
k , it republishes(k, v) to rnew

k . The value(k, v) is eventually removed fromrold
k after

a timeout. Additionally, when a valuev denotes a location, such as a switch ids, ands

goes down, each switch scans the list of locally-stored(k, v) pairs, and remove all entries

whose valuev equalss. Note this procedure correctly handles network partitionsbecause

the link-state protocol ensures that each switch will be able to see only switches present

35

in its partition.

2.3.3 Supporting hierarchy with a multi-level, one-hop DHT

The SEATTLE design presented so far scales to large, dynamicnetworks [48]. How-

ever, since this design runs a single, network-wide link-state routing protocol, it may

be inappropriate for networks with highly dynamic infrastructure, such as networks in

developing regions [26]. A single network-wide protocol may also be inappropriate if

network operators wish to provide stronger fault isolationacross geographic regions, or

to divide up administrative control across smaller routingdomains. Moreover, when a

SEATTLE network is deployed over a wide area, the resolver could lie far both from the

source and destination. Forwarding lookups over long distances increases latency and

makes the lookup more prone to failure. To deal with this, SEATTLE may be configured

hierarchically, by leveraging amulti-level, one-hop DHT. This mechanism is illustrated

in Figure 2.2.

A hierarchical network is divided into severalregions, and abackboneproviding con-

nectivity across regions. Each region is connected to the backbone via its ownborder

switch, and the backbone is composed of the border switches of all regions. Information

about regions is summarized and propagated in a manner similar toareasin OSPF. In par-

ticular, each switch in a region knows the identifier of the region’s border switch, because

the border switch advertises its role through the link-state protocol. In such an environ-

ment, SEATTLE ensures that only inter-region lookups are forwarded via the backbone

while all regional lookups are handled within their own regions, and link-state advertise-

ments are only propagated locally within regions. SEATTLE ensures this by defining a

separateregionalandbackbonehash ring. When a(k, v) is inserted into a regionP and

is published to a regional resolverrP
k (i.e., a resolver fork in regionP), rP

k additionally

36

forwards(k, v) to one of the regionP ’s border switchesbP . ThenbP hashesk again onto

the backbone ring and publishes(k, v) to another backbone switchbQ
k , which is a back-

bone resolver fork and a border switch of regionQ at the same time. SwitchbQ
k storesk’s

information. If a switch in regionR wishes to lookup(k, v), it forwards the lookup first

to its local resolverrR
k , which in turn forwards it tobR, andbR forwards it tobQ

k . As an

optimization to reduce load on border switches,bQ
k may hashk and store(k, v) at a switch

within its own regionQ, rather than storing(k, v) locally. Since switch failures are not

propagated across regions, each publisher switch periodically sends probes to backbone

resolvers that lie outside of its region. To improve availability, (k, v) may be stored at

multiple backbone resolvers (as described in Section 2.3.1), and multiple simultaneous

lookups may be sent in parallel.

2.4 Scaling Ethernet with a One-hop DHT

The previous section described the design of a distributed network-level directory service

based on a one-hop DHT. In this section, we describe how the directory service is used to

provide efficient packet delivery and scalable address resolution. We first briefly describe

how to forward data packets to MAC addresses in Section 2.4.1. We then describe our

remaining contributions: an optimization that eliminate the need to look up host location

in the DHT by piggy-backing that information on ARP requestsin Section 2.4.2, and a

scalable dynamic cache-update protocol in Section 2.4.3.

2.4.1 Host location resolution

Hosts use the directory service described in Section 2.3 to publish and maintain mappings

between their MAC addresses and their current locations. These mappings are used to

37

Figure 2.3: Packet forwarding and lookup in SEATTLE

forward data packets, using the procedure shown in Figure 2.3. When a hosta with MAC

addressmaca first arrives at its access switchsa, the switch must publisha’s MAC-to-

location mapping in the directory service. Switchsa does this by computingF(maca) =

ra, and instructingra to store(maca, sa). We refer tora as thelocation resolverfor

a. Then, if some hostb connected to switchsb wants to send a data packet tomaca, b

forwards the data packet tosb, which in turn computesF(maca) = ra. Switchsb then and

forwards the packet tora. Sincera may be several hops away,sb encapsulates the packet

with an outer header withra’s address as the destination. Switchra then looks upa’s

locationsa, and forwards the packet on towardssa. In order to limit the number of data

packets traversing the resolver,ra also notifiessb thata’s current location issa. Switch

sb then caches this information. While forwarding the first fewpackets of a flow via a

resolver switch increases path lengths, in the next sectionwe describe an optimization that

allows data packets to traverse only shortest paths, by piggy-backing location information

on ARP replies.

Note SEATTLE manages per-host information via reactive resolution, as opposed to

the proactive dissemination scheme used in previous approaches [31, 29, 33]. The scal-

38

ing benefits of this reactive resolution increase in enterprise/data-center/access provider

networks because most hosts communicate with a small numberof popular hosts, such

as mail/file/Web servers, printers, VoIP gateways, and Internet gateways [28]. To pre-

vent forwarding tables from growing unnecessarily large, the access switches can apply

various cache-management policies. For correctness, however, the cache-management

scheme must not evict the host information of the hosts that are directly connected to the

switch or are registered with the switch for resolution. Unlike Ethernet bridging, cache

misses in SEATTLE do not lead to flooding, making the network resistant to cache poi-

soning attacks (e.g., forwarding table overflow attack) or asudden shift in traffic. More-

over, those switches that are not directly connected to end hosts (i.e., aggregation or core

switches) do not need to maintain any cached entries.

2.4.2 Host address resolution

In conventional Ethernet, a host with an IP packet first broadcasts an ARP request to

look up the MAC address of the host owning the destination IP address contained in the

request. To enhance scalability, SEATTLE avoids broadcast-based ARP operations. In

addition, we extend ARP to return both thelocationand the MAC address of the end host

to the requesting switch. This allows data packets following an ARP query to directly

traverse shortest paths.

SEATTLE replaces the traditional broadcast-based ARP withan extension to the one-

hop DHT directory service. In particular, switches useF with an IP address as the key.

Specifically, when hosta arrives at access switchsa, the switch learnsa’s IP addressipa

(using techniques described in Section 2.5.1), and computesF(ipa) = va. The result of

this computation is the identifier of another switchva. Finally, sa informs va of (ipa,

maca). Switchva, theaddress resolverfor hosta, then uses the tuple to handle future

39

ARP requests foripa redirected by other remote switches. Note that hosta’s location

resolver (i.e.,F(maca)) may differ froma’s address resolver (i.e.,F(ipa)).

Optimizing forwarding paths via ARP:For hosts that issue an ARP request, SEATTLE

eliminates the need to perform forwarding via the location resolver as mentioned in Sec-

tion 2.4.1. This is done by having the address resolver switchva also maintain the location

of a (i.e.,sa) in addition tomaca. Upon receiving an ARP request from some hostb, the

address resolverva returns bothmaca andsa back tob’s access switchsb. Switchsb then

cachessa for future packet delivery, and returnsmaca to hostb. Any packets sent byb to

a are then sent directly along the shortest path toa.

It is, however, possible that hostb already hasmaca in its ARP cache and immediately

sends data frames destined tomaca without issuing an ARP request in advance. Even in

such a case, as long as thesb also maintainsa’s location associated withmaca, sb can

forward those frames correctly. To ensure access switches cache the same entries as

hosts, the timeout value that an access switch applies to thecached location information

should be larger than the ARP cache timeout used by end hosts2. Note that, even if the

cache and the host become out of sync (due to switch reboot, etc.), SEATTLE continues

to operate correctly because switches can resolve a host’s location by hashing the host’s

MAC address to the host’s location resolver.

2.4.3 Handling host dynamics

Hosts can undergo three different kinds of changes in a SEATTLE network. First, a

host may change location, for example if it has physically moved to a new location (e.g.,

wireless handoff), if its link has been plugged into a different access switch, or if it is a

2The default setting of the ARP cache timeout in most common operating systems ranges 10 to 20
minutes.

40

virtual machine and has migrated to a new hosting system thatallows the VM to retain

its MAC address. Second, a host may change its MAC address, for example if its NIC

card is replaced, if it is a VM and has migrated to a new hostingsystem that requires the

VM to use the host’s MAC address, or if multiple physical machines collectively acting

as a single server or router (to ensure high availability) experience a fail-over event [49].

Third, a host may change its IP address, for example if a DHCP lease expires, or if

the host is manually reconfigured. In practice, multiple of these changes may occur

simultaneously. When these changes occur, we need to keep the directory service up-to-

date, to ensure correct packet delivery.

SEATTLE handles these changes by modifying the contents of the directory service

via insert, delete, andupdateoperations. An insert operation adds a new(k, v) pair to the

DHT, a delete operation removes a(k, v) pair from the DHT, and the update operation

updates the valuev associated with a given keyk. First, in the case of a location change,

the hosth moves from one access switchsold
h to anothersnew

h . In this case,snew
h inserts

a new MAC-to-location entry. Sinceh’s MAC address already exists in the DHT, this

action will updateh’s old location with its new location. Second, in the case of aMAC

address change,h’s access switchsh inserts an IP-to-MAC entry containingh’s new

MAC address, causingh’s old IP-to-MAC mapping to be updated. Since a MAC address

is also used as a key of a MAC-to-location mapping,sh deletesh’s old MAC-to-location

mapping and inserts a new mapping, respectively with the oldand new MAC addresses

as keys. Third, in the case of an IP address change, we need to ensure that future ARP

requests forh’s old IP address are no longer resolved toh’s MAC address. To ensure

this, sh deletesh’s old IP-to-MAC mapping and insert the new one. Finally, if multiple

changes happen at once, the above steps occur simultaneously.

Ensuring seamless mobility:As an example, consider the case of a mobile hosth mov-

41

ing between two access switches,sold
h andsnew

h . To handle this, we need to updateh’s

MAC-to-location mapping to point to its new location. As described in Section 2.4.1,

snew
h inserts(mach, s

new
h) into rh upon arrival ofh. Note that the location resolverrh se-

lected byF(mach) doesnot change whenh’s location changes. Meanwhile,sold
h deletes

(mach, s
old
h) when it detectsh is unreachable (either via timeout or active polling). Addi-

tionally, to enable prompt removal of stale information, the location resolverrh informs

sold
h that(mach, s

old
h) is obsoleted by(mach, s

new
h).

However, host locations cached at other access switches must be kept up-to-date as

hosts move. SEATTLE takes advantage of the fact that, even after updating the infor-

mation atrh, sold
h may receive packets destined toh because other access switches in the

network might have the stale information in their forwarding tables. Hence, whensold
h

receives packets destined toh, it explicitly notifies ingress switches that sent the mis-

delivered packets ofh’s new locationsnew
h . To minimize service disruption,sold

h also

forwards those misdelivered packetssnew
h .

Updating remote hosts’ caches:In addition to updating contents of the directory service,

some host changes require informing otherhostsin the system about the change. For

example, if a hosth changes its MAC address, the new mapping(iph, macnew
h) must

be immediately known to other hosts who happened to store(iph, macold
h) in their local

ARP caches. In conventional Ethernet, this is achieved by broadcasting agratuitous ARP

requestoriginated byh [50]. A gratuitous ARP is an ARP request containing the MAC

and IP address of the host sending it. This request is not a query for a reply, but is instead

a notification to update other end hosts’ ARP tables and to detect IP address conflicts

on the subnet. Relying on broadcast to update other hosts clearly does not scale to large

networks. SEATTLE avoids this problem by unicasting gratuitous ARP packets only to

hosts with invalid mappings. This is done by havingsh maintain aMAC revocation list.

42

Upon detectingh’s MAC address change, switchsh inserts(iph, macold
h , macnew

h)

in its revocation list. From then on, wheneversh receives a packet whose source or

destination(IP, MAC) address pair equals(iph, macold
h), it sends aunicastgratuitous

ARP request containing(iph, macnew
h) to the source host which sent those packets. Note

that, when bothh’s MAC address and location change at the same time, the revocation

information is created ath’s old access switch byh’s address resolvervh = F(iph).

To minimize service disruption,sh also informs the source host’s ingress switch of

(macnew
h , sh) so that the packets destined tomacnew

h can then be directly delivered to

sh, avoiding an additional location lookup. Note this approach to updating remote ARP

caches does not requiresh to look up each packet’s IP and MAC address pair from the

revocation list becausesh can skip the lookup in the common case (i.e., when its revoca-

tion list is empty). Entries from the revocation list are removed after a timeout set equal

to the ARP cache timeout of end hosts.

2.5 Providing Ethernet-like Semantics

To be fully backwards-compatible with conventional Ethernet, SEATTLE must act like a

conventional Ethernet from the perspective of end hosts. First, the way that hosts inter-

act with the network to bootstrap themselves (e.g., acquireaddresses, allow switches to

discover their presence) must be the same as Ethernet. Second, switches have to support

traffic that uses broadcast/multicast Ethernet addresses as destinations. In this section, we

describe how to perform these actions without incurring thescalability challenges of tra-

ditional Ethernet. For example, we propose to eliminate broadcasting from the two most

popular sources of broadcast traffic: ARP and DHCP. Since we described how SEATTLE

switches handle ARP without broadcasting in Section 2.4.2,we discuss only DHCP in

43

this section.

2.5.1 Bootstrapping hosts

Host discovery by access switches:When an end host arrives at a SEATTLE network,

its access switch needs to discover the host’s MAC and IP addresses. To discover a

new host’s MAC address, SEATTLE switches use the same MAC learning mechanism as

conventional Ethernet, except that MAC learning is enabledonly on the ports connected

to end hosts. To learn a new host’s IP address or detect an existing host’s IP address

change, SEATTLE switches snoop on gratuitous ARP requests.Most operating systems

generate a gratuitous ARP request when the host boots up, thehost’s network interface

or links comes up, or an address assigned to the interface changes [50]. If a host does not

generate a gratuitous ARP, the switch can still learn of the host’s IP address via snooping

on DHCP messages, or sending out an ARP request only on the port connected to the host.

Similarly, when an end host fails or disconnects from the network, the access switch is

responsible for detecting that the host has left, and deleting the host’s information from

the network.

Host configuration without broadcasting:For scalability, SEATTLE resolves DHCP

messages without broadcasting. When an access switch receives a broadcast DHCP dis-

covery message from an end host, the switch delivers the message directly to a DHCP

server via unicast, instead of broadcasting it. SEATTLE implements this mechanism us-

ing the existing DHCP relay agent standard [51]. This standard is used when an end host

needs to communicate with a DHCP server outside the host’s broadcast domain. The

standard proposes that a host’s IP gateway forward a DHCP discovery to a DHCP server

via IP routing. In SEATTLE, a host’s access switch can perform the same function with

44

Ethernet encapsulation. Access switches can discover a DHCP server using a similar

approach to the service discovery mechanism in Section 2.3.1. For example, the DHCP

server hashes the string “DHCPSERVER” to a switch, and then stores its location at that

switch. Other switches then forward DHCP requests using thehash of the string.

2.5.2 Scalable and flexible VLANs

SEATTLE completely eliminates flooding of unicast packets.However, to offer the same

semantics as Ethernet bridging, SEATTLE needs to support transmission of packets sent

to abroadcast address. Supporting broadcasting is important because some applications

(e.g., IP multicast, peer-to-peer file sharing programs, etc.) rely on subnet-wide broad-

casting. However, in large networks to which our design is targeted, performing broad-

casts in the same style as Ethernet may significantly overload switches and reduce data

plane efficiency. Instead, SEATTLE provides a mechanism which is similar to, but more

flexible than, VLANs.

In particular, SEATTLE introduces a notion ofgroup. Similar to a VLAN, a group is

defined as a set of hosts who share the same broadcast domain regardless of their loca-

tion. Unlike Ethernet bridging, however, a broadcast domain in SEATTLE does not limit

unicast layer-2 reachability between hosts because a SEATTLE switch can resolve any

host’s address or location without relying on broadcasting. Thus, groups provide several

additional benefits over VLANs. First, groups do not need to be manually assigned to

switches. A group is automatically extended to cover a switch as soon as a member of

that group arrives at the switch3. Second, a group is not forced to correspond to a sin-

gle IP subnet, and hence may span multiple subnets or a portion of a subnet, if desired.

3The way administrators associate a host with correspondinggroup is beyond the scope of this disser-
tation. For Ethernet, management systems that can automatethis task (e.g., mapping an end host or flow to
a VLAN) are already available [52], and SEATTLE can employ the same model.

45

Third, unicast reachability in layer-2 between two different groups may be allowed (or

restricted) depending on the access-control policy — a ruleset defining which groups can

communicate with which — between the groups.

The flexibility of groups ensures several benefits that are hard to achieve with conven-

tional Ethernet bridging and VLANs. When a group is aligned with a subnet, and unicast

reachability between two different groups is not permittedby default, groups provide ex-

actly the same functionality as VLANs. However, groups can include a large number of

end hosts and can be extended to anywhere in the network without harming control-plane

scalability and data-plane efficiency. Moreover, when groups are defined as subsets of

an IP subnet, and inter-group reachability is prohibited, each group is equivalent to a pri-

vate VLAN (PVLAN), which are popularly used in hotel/motel networks [53]. Unlike

PVLANs, however, groups can be extended over multiple bridges. Finally, when unicast

reachability between two groups is allowed, traffic betweenthe groups takes the shortest

path, without traversing default gateways.

Multicast-based group-wide broadcasting:Some applications may rely on subnet-wide

broadcasting. To handle this, all broadcast packets withina group are delivered through

a multicast tree sourced at a dedicated switch, namely abroadcast root, of the group.

The mapping between a group and its broadcast root is determined by usingF to hash

the group’s identifier to a switch. Construction of the multicast tree is done in a manner

similar to IP multicast, inheriting its safety (i.e., loop freedom) and efficiency (i.e., to

receive broadcast only when necessary). When a switch first detects an end host that is a

member of groupg, the switch issues a join message that is carried up to the nearest graft

point on the tree towardg’s broadcast root. When a host departs, its access switch prunes

a branch if necessary. When an end host ing sends a broadcast packet, its access switch

marks the packet withg and forwards it alongg’s multicast tree.

46

Separating unicast reachability from broadcast domains:In addition to handling broad-

cast traffic, groups in SEATTLE also provide a namespace uponwhich reachability poli-

cies for unicast traffic are defined. When a host arrives at an access switch, the host’s

group membership is determined by its access switch and published to the host’s re-

solvers along with its location information. Access control policies are then applied by a

resolver when a host attempts to look up a destination host’sinformation.

In this section, we start by describing our simulation environment. Next, we de-

scribe SEATTLE’s performance under workloads collected from several real operational

networks. We then investigate SEATTLE’s performance in dynamic environments by

generating host mobility and topology changes.

2.5.3 Methodology

To evaluate the performance of SEATTLE, we would ideally like to have several pieces

of information, including complete layer-two topologies from a number of representative

enterprises and access providers, traces of all traffic senton every link in their topolo-

gies, the set of hosts at each switch/router in the topology,and a trace of host movement

patterns. Unfortunately, network administrators (understandably) were not able to share

this detailed information with us due to privacy concerns, and also because they typically

do not log events on such large scales. Hence, we leveraged real traces where possible,

and supplemented them with synthetic traces. To generate the synthetic traces, we made

realistic assumptions about workload characteristics, and varied these characteristics to

measure the sensitivity of SEATTLE to our assumptions.

In our packet-level simulator, we replayed packet traces collected from the Lawrence

Berkeley National Lab campus network by Pang et. al. [54]. There are four sets of

traces, each collected over a period of 10 to 60 minutes, containing traffic to and from

47

roughly 9,000 end hosts distributed over 22 different subnets. The end hosts were running

various operating systems and applications, including malware (some of which engaged

in scanning). To evaluate sensitivity of SEATTLE to networksize, we artificially injected

additional hosts into the trace. We did this by creating a setof virtual hosts, which

communicated with a set of random destinations, while preserving the distribution of

destination-level popularity of the original traces. We also tried injecting MAC scanning

attacks and artificially increasing the rate at which hosts send [39].

We measured SEATTLE’s performance on four representative topologies.Campusis

the campus network of a large (roughly 40,000 students) university in the United States,

containing 517 routers and switches.AP-small(AS 3967) is a small access provider

network consisting of 87 routers, andAP-large(AS 1239) is a larger network with 315

routers [55]. Because SEATTLE switches are intended to replace both IP routers and

Ethernet bridges, the routers in these topologies are considered as SEATTLE switches in

our evaluation. To investigate a wider range of environments, we also constructed a model

topology calledDC, which represents a typical data center network composed offour

full-meshed core routers each of which is connected to a meshof twenty one aggregation

switches. This roughly characterizes a commonly-used topology in data centers [24].

Our topology traces were anonymized, and hence lack information about how many

hosts are connected to each switch. To deal with this, we leveraged CAIDA Skitter

traces [56] to roughly characterize this number for networks reachable from the Internet.

However, since the CAIDA skitter traces form a sample representative of the wide-area,

it is not clear whether they apply to the smaller-scale networks we model. Hence forDC

andCampus, we assume that hosts are evenly distributed across leaf-level switches.

Given a fixed topology, the performance of SEATTLE and Ethernet bridging can vary

depending on traffic patterns. To quantify this variation werepeated each simulation run

48

25 times, and plot the average of these runs with 99% confidence intervals. For each run

we vary a random seed, causing the number of hosts per switch,and the mapping between

hosts and switches to change. Additionally for the cases of Ethernet bridging, we varied

spanning trees by randomly selecting one of the core switches as a root bridge. Our

simulations assume that all switches are part of the same broadcast domain. However,

since our traffic traces are captured in each of the 22 different subnets (i.e., broadcast

domains), the traffic patterns among the hosts preserve the broadcast domain boundaries.

Thus, our simulation network is equivalent to a VLAN-based network where a VLAN

corresponds to an IP subnet, and all non-leaf Ethernet bridges are trunked with all VLANs

to enhance mobility.

2.6 Simulations

2.6.1 Control-plane scalability

Sensitivity to cache eviction timeout:SEATTLE caches host information to route packets

via shortest paths and to eliminate redundant resolutions.If a switch removes a host-

information entry before a locally attached host does (fromits ARP cache), the switch

will need to perform a location lookup to forward data packets sent by the host. To

eliminate the need to queue data packets at the ingress switch, those packets are forwarded

through a location resolver, leading to a longer path. To evaluate this effect, we simulated

a forwarding table management policy for switches that evicts unused entries after a

timeout. Figure 2.4a shows performance of this strategy across different timeout values

in the AP-largenetwork. First, the fraction of packets that require data-driven location

lookups (i.e., lookups not piggy-backed on ARPs) is very lowand decreases quickly

49

1 30 60 120 180 240 300
Time-out values for ingress caching (sec)

0

4

8

12

16

C
tr

l m
sg

s
pe

r
sw

itc
h

pe
r

se
c

Ctrl overhead (right)

1e-05

1e-04

0.001

0.01

F
ra

c.
 o

f p
kt

s
re

qu
iri

ng
 lo

ca
tio

n
re

so
lu

tio
n

(lo
g)

Location resolution prob. (left)

100

200

300

400

500

T
ab

le
 s

iz
eTable size (right axis)

(a)

10K 20K 30K 40K 50K
Number of hosts

100

500

1K

5K

10K

T
ab

le
 s

iz
e

(lo
g)

Eth-max
Eth-avg
SEA_CA-max
SEA_CA-avg
SEA_NOCA-max
SEA_NOCA-avg

(b)

10K 20K 30K 40K 50K
Number of hosts

0.01

0.1

1

10

100

1000

C
on

tr
ol

 o
ve

rh
ea

d
pe

r
sw

itc
h

pe
r

se
co

nd
 (

lo
g)

Eth (Num. of flooded packets)
SEA_CA (# of control messages)
SEA_NOCA (# of control messages)

(c)

Figure 2.4: (a) Effect of cache timeout inAP-largewith 50K hosts, (b) Table size in-
crease inDC, and (c) Control overhead inAP-large. Error bars in these figures show
confidence intervals for each data point. A sufficient numberof simulation runs reduced
these intervals.

50

with larger timeout. Even for a very small timeout value of60 seconds, over99.98% of

packets are forwarded without a separate lookup. We also confirmed that the number of

data packets forwarded via location resolvers drops to zerowhen using timeout values

larger than600 seconds (i.e., roughly equal to the ARP cache timeout at end hosts).

Also control overhead to maintain the directory decreases quickly, whereas the amount

of state at each switch increases moderately with larger timeout. Hence, in a network with

properly configured hosts and reasonably small (e.g., less than2% of the total number of

hosts in this topology) forwarding tables, SEATTLE always offers shortest paths.

Forwarding table size: Figure 2.4b shows the amount of state per switch in theDC

topology. To quantify the cost of ingress caching, we show SEATTLE’s table size with

and without caching (SEACA and SEANOCA respectively). Ethernet requires more

state than SEATTLE without caching, because Ethernet stores active hosts’ information

entries at almost every bridge. In a network withs switches andh hosts, each Ethernet

bridge must be provisioned to store an entry for each destination, resulting inO(sh)

state requirements across the network. SEATTLE requires only O(h) state since only

the access and resolver switches need to store location information for each host. In this

particular topology, SEATTLE reduces forwarding-table size by roughly a factor of22.

Although not shown here due to space constraints, we find thatthese gains increase to a

factor of64 in AP-largebecause there are a larger number of switches in that topology.

While the use of caching drastically reduces the number of redundant location resolutions,

we can see that it increases SEATTLE’s forwarding-table size by roughly a factor of1.5.

However, even with this penalty, SEATTLE reduces table sizecompared with Ethernet

by roughly a factor of16. This value increases to a factor of41 in AP-large.

Control overhead: Figure 2.4c shows the amount of control overhead generated by

SEATTLE and Ethernet. We computed this value by dividing thetotal number of control

51

messages over all links in the topology by the number of switches, then dividing by the

duration of the trace. SEATTLE significantly reduces control overhead as compared to

Ethernet. This happens because Ethernet generates network-wide floods for a significant

number of packets, while SEATTLE leverages unicast to disseminate host location. Here

we again observe that use of caching degrades performance slightly. Specifically, the use

of caching (SEACA) increases control overhead roughly from0.1 to 1 packet per sec-

ond as compared toSEANOCAin a network containing30K hosts. However,SEACA’s

overhead still remains a factor of roughly1000 less than in Ethernet. In general, we found

that the difference in control overhead increased roughly with the number of links in the

network.

Comparison with id-based routing approaches:We implemented the ROFL, UIP, and

VRR protocols in our simulator. To ensure a fair comparison,we used a link-state pro-

tocol to construct vset-paths [37] along shortest paths in UIP and VRR, and created a

UIP/VRR node at a switch for each end host the switch is attached to. Performance

of UIP and VRR was quite similar to performance of ROFL with anunbounded cache

size. Figure 2.5a shows the average relative latency penalty, or stretch, of SEATTLE

and ROFL [21] in theAP-largetopology. We measured stretch by dividing the time the

packet was in transit by the delay along the shortest path through the topology. Overall,

SEATTLE incurs smaller stretch than ROFL. With a cache size of 1000, SEATTLE of-

fers a stretch of roughly1.07, as opposed to ROFL’s4.9. This happens becausei) when a

cache miss occurs, SEATTLE resolves location via a single-hop rather than a multi-hop

lookup, andii) SEATTLE’s caching is driven by traffic patterns, and hosts in an enter-

prise network typically communicate with only a small number of popular hosts. Note

that SEATTLE’s stretch remains below5 even when a cache size is0. Hence, even with

worst-case traffic patterns (e.g., every host communicateswith all other hosts, switches

52

maintain very small caches), SEATTLE still ensures reasonably small stretch. Finally, we

comparepath stabilitywith ROFL in Figure 2.5b. We vary the rate at which hosts leave

and join the network, and measure path stability as the number of times a flow changes

its path (the sequence of switches it traverses) in the presence of host churn. We find that

ROFL has over three orders of magnitude more path changes than SEATTLE.

2.6.2 Sensitivity to network dynamics

Effect of network changes:Figure 2.5c shows performance during switch failures. Here,

we cause switches to fail randomly, with failure inter-arrival times drawn from a Pareto

distribution withα = 2.0 and varying mean values. Switch recovery times are drawn

from the same distribution, with a mean of30 seconds. We found SEATTLE is able to

deliver a larger fraction of packets than Ethernet. This happens because SEATTLE is able

to use all links in the topology to forward packets, while Ethernet can only forward over

a spanning tree. Additionally, after a switch failure, Ethernet must recompute this tree,

which causes outages until the process completes. Althoughforwarding traffic through a

location resolver in SEATTLE causes a flow’s fate to be sharedwith a larger number of

switches, we found that availability remained higher than that of Ethernet. Additionally,

using caching improved availability further.

Effect of host mobility: To investigate the effect of physical or virtual host mobility on

SEATTLE performance, we randomly move hosts between accessswitches. We drew

mobility times from a Pareto distribution withα = 2.0 and varying means. For high

mobility rates, SEATTLE’s loss rate is lower than Ethernet (Figure 2.6). This happens

because when a host moves in Ethernet, it takes some time for switches to evict stale

location information, and learn the host’s new location. Although some host operating

53

0 1 10 100 1000 10000
Maximum cache size per switch (entries) (log)

0

2

4

6

8

10

12

14

La
te

nc
y

st
re

tc
h

ROFL
SEATTLE

(a)

100 200 500 1000 2000 5000 10000
Num. of host join/leave events during a flow (log)

0

20

40

60

80

100

120

N
um

. o
f p

at
h

ch
an

ge
s

ROFL (AP_large)
ROFL (DC)
SEATTLE (AP_large)
SEATTLE (DC)

(b)

0.01 0.02 0.1 0.2 1
Switch failure rate (fails/min) (log)

0

10%

20%

30%

40%

50%

P
ac

ke
t l

os
s

ra
te

Eth (loss)
SEA_NOCA (loss)
SEA_CA (loss)

0.1

1

10

100

1K

10K

C
on

tr
ol

 o
ve

rh
ea

d
pe

r
sw

itc
h

pe
r

se
c

(lo
g)

Eth (ctrl ovhd)
SEA_CA (ctrl ovhd)
SEA_NOCA (ctrl ovhd)

(c)

Figure 2.5: (a) Stretch across different cache sizes inAP-largewith 10K hosts, (b) Path
stability, and (c) Effect of switch failures inDC.

54

0.2 1 2 10 20 100 200
Mobility rate (num. of moving hosts per sec)

0.1%

0.5%

1%

5%

10%

P
ac

ke
t l

os
s

ra
te

 (
lo

g)

Eth
SEA_CA
SEA_NOCA

Figure 2.6: Effect of host mobility inCampus.

systems broadcast a gratuitous ARP when a host moves, this increases broadcast over-

head. In contrast, SEATTLE provides both low loss and broadcast overhead by updating

host state via unicasts.

2.7 Implementation

To verify SEATTLE’s performance and practicality through areal deployment, we built

a prototype SEATTLE switch using two open-source routing software platforms: user-

levelClick [57] andXORP[58]. We also implemented a second version of our prototype

using kernel-level Click [23]. Section 2.7.1 describes thestructure of our design, and

Section 2.7.2 presents evaluation results.

2.7.1 Prototype design

Figure 2.7 shows the overall structure of our implementation. SEATTLE’s control plane

is divided into two functional modules:i) maintaining the switch-level topology, andii)

managing end-host information. We used XORP to realize the first functional module,

55

and used Click to implement the second. We also extended Click to implement SEAT-

TLE’s data-plane functions, including consistent hashingand packet encapsulation. Our

control and data plane modifications to Click are implemented as theSeattleSwitchele-

ment shown in Figure 2.7.

SEATTLE control plane: First, we run a XORP OSPF process at each switch to main-

tain a complete switch-level network map. The XORP RIBD (Routing Information Base

Daemon) constructs its routing table using this map. RIBD then installs the routing ta-

ble into the forwarding plane process, which we implement with Click. Click uses this

table, namelyNextHopTable, to determine a next hop. The FEA (Forwarding Engine Ab-

straction) in XORP handles inter-process communication between XORP and Click. To

maintain host information, a SeattleSwitch utilizes aHostLocTable, which is populated

with three kinds of host information: (a) the outbound port for every local host; (b) the

location for every remote host for which this switch is a resolver; and (c) the location

for every remote host cached via previous lookups. For each insertion or deletion of a

locally-attached host, the switch generates a corresponding registration or deregistration

message. Additionally, by monitoring the changes of the NextHopTable, the switch can

detect whether the topology has changed, and host re-registration is required accordingly.

To maintain IP-to-MAC mappings to support ARP, a switch alsomaintains a separate

table in the control plane. This table contains only the information of local hosts and

remote hosts that are specifically hashed to the switch. Whenour prototype switch is

first started up, a simple neighbor-discovery protocol is run to determine which interfaces

are connected to other switches, and over each of these interfaces it initiates an OSPF

session. The link weight associated with the OSPF adjacencyis by default set to be the

link latency. If desired, another metric may be used.

SEATTLE data plane: To forward packets, an ingress switch first learns an incoming

56

Figure 2.7: Implementation architecture.

packet’s source MAC address, and if necessary, adds the corresponding entry in Host-

LocTable. Then the switch looks up the destination MAC address in the HostLocTable

and checks to see ifi) the host is locally attached,ii) the host is remote, and its location is

cached, oriii) the host is explicitly registered with the switch. In the case ofiii) the switch

needs to send a host location notification to the ingress. In all cases, the switch then for-

wards the packet either to the locally attached destination, or encapsulates the packet and

forwards it to the next hop toward the destination. Intermediate switches can then simply

forward the encapsulated packet by looking up the destination in their NextHopTables.

In addition, if the incoming packet is an ARP request, the ingress switch executes the

hash functionF to look up the corresponding resolver’s id, and re-writes the destination

to that id, and delivers the packet to the resolver for resolution.

57

2.7.2 Experimental results

Next, we evaluate a deployment of our prototype implementation on Emulab. To ensure

correctness, we cross-validated the simulator and implementation with various traces and

topologies, and found that average stretch, control overhead, and table size from imple-

mentation results were within3% of the values given by the simulator. We first present

a set of microbenchmarks to evaluate per-packet processingoverheads. Then, to eval-

uate dynamics of a SEATTLE network, we measure control overhead and switch state

requirements, and evaluate switch fail-over performance.

Packet processing overhead:Table 2.1 shows per-packet processing time for both SEAT-

TLE and Ethernet. We measure this as the time from when a packet enters the switch’s

inbound queue, to the time it is ready to be moved to an outbound queue. We break this

time down into the major components. From the table, we can see that an ingress switch

in SEATTLE requires more processing time than in Ethernet. This happens because the

ingress switch has to encapsulate a packet and then look up the next-hop table with the

outer header. However, SEATTLE requires less packet processing overhead than Ether-

net at non-ingress hops, as intermediate and egress switches do not need to learn source

MAC addresses, and consistent hashing (which takes around2.2 us) is required only for

ARP requests. Hence, SEATTLE requires less overall processing time on paths longer

than3.03 switch-level hops. In comparison, we found the average number of switch-level

hops between hosts in a real university campus network (Campus) to be over4 for the

vast majority of host pairs. Using our kernel-level implementation of SEATTLE, we were

able to fully saturate a1 Gbps link.

Effect of network dynamics:To evaluate the dynamics of SEATTLE and Ethernet, we

instrumented the switch’s internal data structures to periodically measure performance

58

0 100 200 300 400 500 600
Time in sec

0

5K

10K

15K

20K

N
um

. o
f e

nt
rie

s
ac

ro
ss

 a
ll

sw
itc

he
s

Eth
SEA_CA
SEA_NOCA

(a)

0 100 200 300 400 500 600
Time in sec

1

10

100

10e3

10e4

N
um

. o
f m

es
sa

ge
s

ac
ro

ss
 a

ll
sw

itc
he

s
(lo

g)

Eth
SEA_CA
SEA_NOCA

Scans

(b)

(c)

Figure 2.8: Effect of network dynamics – (a) table size, (b) control overhead, and (c)
failover performance.

59

Table 2.1: Per-packet processing time in micro-sec.

learn look-up encap look-up Total
src host tbl nexthop tbl

SEA-ingress 0.61 0.63 0.67 0.62 2.53
SEA-egress - 0.63 - - 0.63
SEA-others - - - 0.67 0.67

ETH 0.63 0.64 - - 1.27

information. Figures 2.8a and 2.8b show forwarding-table size and control overhead, re-

spectively, measured over one-second intervals. We can seethat SEATTLE has much

lower control overhead when the systems are first started up.However, SEATTLE’s

performance advantages do not come from cold-start effects, as it retains lower control

overhead even after the system converges. As a side note, theforwarding-table size in

Ethernet is not drastically larger than that of SEATTLE in this experiment because we

are running on a small four node topology. However, since thetopology has ten links

(including links to hosts), Ethernet’s control overhead remains substantially higher. Ad-

ditionally, we also investigate performance by injecting host scanning attacks [39] into

the real traces we used for evaluation. Figure 2.8b includesthe scanning incidences oc-

curred at around 300 and 600 seconds, each of which involves asingle host scanning

5000 random destinations that do not exist in the network. InEthernet, every scanning

packet sent to a destination generates a network-wide flood because the destination is not

existing, resulting in sudden peaks on it’s control overhead curve. In SEATTLE, each

scanning packet generates one unicast lookup (i.e., the scanning data packet itself) to a

resolver, which then discards the packet.

Fail-over performance: Figure 2.8c shows the effect of switch failure. To evaluate

SEATTLE’s ability to quickly republish host information, here we intentionally disable

caching, induce failures of the resolver switch, and measure throughput of TCP when all

60

packets are forwarded through the resolver. We set the OSPF hello interval to 1 second,

and dead interval to 3 seconds. After the resolver fails, there is some convergence delay

before packets are sent via the new resolver. We found that SEATTLE restores con-

nectivity quickly, typically on the order of several hundred milliseconds after the dead

interval. This allows TCP to recover within several seconds, as shown in Figure 2.8c-i.

We found performance during failures could be improved by having the access switch

register hosts with the next switch along the ring in advance, avoiding an additional re-

registration delay. When a switch is repaired, there is alsoa transient outage while routes

move back over to the new resolver, as shown in Figure 2.8c-ii. In particular, we were

able to improve convergence delay during recoveries by letting switches continue to for-

ward packets through the old resolver for a grace period. In contrast, optimizing Ethernet

to attain low (a few sec) convergence delay exposes the network to a high chance of

broadcast storms, making it nearly impossible to realize ina large network.

2.8 Summary

Operators today face significant challenges in managing andconfiguring large networks.

Many of these problems arise from the complexity of administering IP networks. Tra-

ditional Ethernet is not a viable alternative (except perhaps in small LANs) due to poor

scaling and inefficient path selection. We believe that SEATTLE takes an important first

step towards solving these problems, by providing scalableself-configuring routing. Our

design provides effective protocols to discover neighborsand operates efficiently with its

default parameter settings. Hence, in the simplest case, network administrators can en-

sure reachability without any configuration settings on network devices. However, SEAT-

TLE also provides add-ons for administrators who wish to customize network operation.

61

Experiments with our initial prototype implementation show that SEATTLE provides ef-

ficient routing with low latency, quickly recovers after failures, and handles host mobility

and network churn with low control overhead.

Moving forward, we are interested in investigating the deployability of SEATTLE in

various other types of networks. We are also interested in ramifications on switch archi-

tectures, and how to design switch hardware to efficiently support SEATTLE. Finally,

to ensure deployability, this chapter assumes Ethernet stacks at end hosts are not modi-

fied. It would be interesting to consider what performance optimizations are possible if

end host software can be changed. We intend to answer some of these questions in the

following chapters.

62

Chapter 3

VL2: Scalable and Flexible

Data-Center Networks

We introduced in the previous chapter a scalable and efficient plug-and-play network ar-

chitecture for conventional corporate-campus or university-campus networks. Moving

forward, we are interested in what other types of networks can benefit by employing the

SEATTLE architecture, or the technical principles used in SEATTLE. At the same time,

we are also curious about what other configuration tasks, in addition to those for address-

ing and routing, can be handled in a plug-and-play fashion. Most notably, we are specif-

ically interested in the configuration activity aiming to ensure networking performance

in general, such as traffic engineering. While we deliberately chose a network-based im-

plementation in the previous chapter, we also recognize that modifying end hosts might

be recommended, or even unavoidable, in some other types of networks. Motivated by

all these questions, in this chapter, we present VL2, an innovative yet practical network

architecture that meets the needs of huge data centers.

To be cost effective, data centers must enable any server to be assigned to any ser-

63

vice. The VL2 network architecture meets the three objectives required for this agility:

uniform high capacity between servers, performance isolation between services, and Eth-

ernet layer-2 semantics. VL2 provides (1) flat addressing toallow service instances to

be placed anywhere in the network, (2) Valiant Load Balancing (VLB) that uses ran-

domization to spread traffic uniformly across network paths, (3) a new end-system-based

address resolution service to achieve layer-2 Ethernet semantics while scaling to large

server pools. To build a scalable and reliable network architecture, VL2 leverages proven

network technologies that are already available at low costin high-speed hardware im-

plementations. As a result, VL2 networks can be deployed today, and we have built a

working prototype. Our VL2 prototype shuffles 2.7 TB of data among 75 servers in 395

seconds - 93% of the optimal utilization.

We begin in Section 3.1 by giving an overview of cloud-computing data centers and

motivating our research. Subsequently in Section 3.2, we give a brief introduction to

conventional data-center networks and clarify our technical goals. Then in Section 3.3,

we present detailed measurements of traffic and fault data from a large operational cloud

service provider. Based on these data, we derive our design and implementation in Sec-

tion 3.4. In Section 3.5, we evaluate the merits of the VL2 design using measurement,

analysis, and experiments. Subsequently, in Section 3.6, we address various operational

issues on VL2, from concerns on the effectiveness of VLB in a data center, to the es-

timated cost of deploying and operating a VL2 network. Finally we summarize related

work in Section 3.7 and conclude this chapter in Section 3.8.

64

3.1 Motivation and Overview

Cloud services are driving the creation of huge data centers, holding tens to hundreds

of thousands of servers, that concurrently support a large and dynamic number of dis-

tinct services (web apps, email, map-reduce clusters, etc.). The case for cloud service

data centers depends on a scale-out design: reliability andperformance achieved through

large pools of inexpensive resources that can be rapidly reassigned between services as

needed. With data centers being built that house over 100,000 servers, at an amortized

cost approaching $12 million per month [59], the most desirable property for a data cen-

ter is agility — the ability to assign any server to any service. Anything less inevitably

results in stranded resources and wasted money.

Unfortunately, the data center network is not up to the task,falling short in several

ways. First, existing architectures do not provide enough capacity between the servers

they interconnect. Conventional architectures rely on tree-like network configurations

built from high-cost hardware. Due to the cost of the equipment, the capacity between

different branches of the tree is typically oversubscribedby factors of 1:5 or more, with

paths through the highest levels of the tree oversubscribedby factors of 1:80 to 1:240.

This limits communication between servers to the point it fragments the server pool —

congestion and computation hot-spots are prevalent even when spare capacity is avail-

able elsewhere in the data center. Second, while data centers host multiple services, the

network does little to prevent a traffic flood in one service from affecting the other ser-

vices around it — when one service experiences a traffic flood,it is common for all those

sharing the same network subtree to suffer collateral damage. Third, the routing design

in conventional networks achieves scale by assigning servers topologically significant IP

addresses and dividing servers up among VLANs (i.e., IP subnets). However, this creates

65

an enormous configuration burden when servers must be reassigned among services fur-

ther fragmenting the resources of the data center, and the human involvement typically

required in these reconfigurations limits the speed of the process.

Cloud-service application owners do not want to be forced toalter their services to

work around the structure or limitations of the data center network, as they frequently

are doing today. Rather, they want to work with a mental modelthat all the servers

currently assigned to their service, and only those servers, are connected by a single

non-blocking Ethernet switch — aVirtual Layer 2. Realizing this vision for the data

center network concretely translates into building a network that meets the following

objectives: First, the network should provideuniform high capacitybetween all servers,

meaning the maximum rate of a flow should be limited only by theavailable capacity

on the network interface cards of the sending and receiving servers and there is no need

to consider network topology when adding servers to a service. Second, the data center

needsperformance isolation- the traffic of one service should be unaffected by the traffic

handled by any other service, just as if each service was connected by a separate physical

switch. Third, the network should providelayer-2 semantics, just as if the servers were

on a LAN. Because LANs have flat addressing, where any IP address can be connected to

any port of an Ethernet switch, data center management software can assign any server to

any service and configure that server with whatever IP address the service expects. The

network configuration of each server should be identical to what it would be if connected

via a LAN, and features like link-local broadcast that many legacy applications depend

on should work.

66

3.1.1 Principles and contributions of VL2

In this chapter we design, implement and evaluate VL2, a network architecture for data

centers that meets these three objectives and thereby provides agility. The design is mo-

tivated by extensive measurements of the traffic in existingproduction data centers. In

crafting VL2, we used four design principles that distinguish our work from other re-

search efforts.

Randomizing to Cope with Volatility: Our measurements show data centers have

tremendous volatility in their workload, their traffic, andtheir failure patterns. Our re-

sponse is to create large pools of resources and then spread work over them randomly,

trading off some performance on the best-cases to improve the worst-case to the aver-

age case. We choose a Clos topology for VL2 because of the extensive path diversity it

possesses, and we route flows across it using the Valiant LoadBalancing technique of in-

directing through randomly chosen nodes to obtain the hotspot-free guarantees it offers.

Through application of this principle we are able to achieveboth the uniform capacity

and performance isolation objectives.

Embracing End Systems: The software and operating systems on data centers

servers are already extensively modified for use inside the data center, for example, to cre-

ate hypervisors for virtualization or blob filesystems to store data across servers. Rather

than limit ourselves from altering the software on servers,we embrace the opportunity

to leverage the programmability they offer. We instead limit ourselves from making any

changes to the hardware of the switches or servers, and we require that legacy applica-

tions work unmodified. By using software on the servers to work within the limitations

of the low-cost switch ASICs currently available, we are able to create a design that can

be built and deployed today. For example, we eliminate the scalability problems created

by broadcast ARP packets by intercepting ARP requests on theservers and converting

67

them into lookup requests to a directory system, rather thanattempting to control ARPs

via software or hardware changes on the switches.

Separating Names from Locations: As many have recognized [17], separating

names from locations creates a degree of freedom that can be used to implement new

features. We leverage this principle to enable agility in the data center and to improve

utilization by reducing fragmentation that the binding between addresses and locations

had previously caused. Combining this principle with the previous one enables VL2 to

meet the layer-2 semantics objective: allowing developersto assign IP addresses without

regard for the network topology and without having to reconfigure their applications or

the switches.

Building on proven networking technology: As a pragmatic issue, we have found

that reusing network technologies that have robust, matureimplementations in network

switches both simplifies the design of VL2 as well as increases operator willingness to

deploy it. For example, VL2’s design reduces the load on the directory system by lever-

aging the link-state routing protocols already implemented on the switches to hide certain

failures from servers. This principle supports all three objectives.

In the remainder of this chapter we will make the following contributions, in roughly

this order.

• A first of its kind study of the traffic patterns in production data center. We find that

there is tremendous volatility in the traffic, cycling among50-60 different patterns

during a day and spending less than 100 s in each pattern at the50th percentile.

• We present the design of VL2 and the components that compriseit.

• Every component of VL2 has been built and deployed in an 80-server cluster. Us-

ing the cluster, we experimentally validate that VL2 has theproperties set out as

68

���������� ���� �� ��	�	

����������������������

		 � 		 ������
��������������� ���

!"#
•$%&�'$���%�()��
•
�%&�'�**�++%�()��

•
��&�������,�)*-

•
�&���,�)*-

•.�%&.�/0�10%�*2�,�)*-345678978: 345678978: �345678978: 345678978:
�� ��

Figure 3.1: The conventional network architecture for datacenters

objectives, such as uniform capacity and performance isolation. We also demon-

strate the speed of the network, such as its ability to shuffle2.7 TB of data among

75 servers in 395 s.

• We apply Valiant Load Balancing in a new context, the inter-switch fabric of a data

center, and show that flow level traffic splitting achieves almost identical split ratios

(within 1% of optimal fairness index) on realistic data center traffic and it smoothes

utilization while eliminating persistent congestion.

• We justify the design trade-offs made in VL2, analyze the cost of the network, and

describe how it can be cabled for both open floor plan data centers and containers.

69

3.2 Background

In this section, we first explain the dominant design patternfor data center architecture

today. Then we discuss why this architecture is insufficientto serve large cloud-service

data centers.

As shown in Figure 3.1, the network is a hierarchy reaching from a layer of servers

in racks at the bottom to a layer of core routers at the top. There are typically 20 to 40

servers per rack, each singly connected to a Top of Rack (ToR)switch with 1 Gbps links.

ToRs connect to two aggregation switches for redundancy, and these switches aggregate

further eventually connecting to access routers.

At the top of the hierarchy, core routers carry traffic between access routers and man-

age traffic into and out of the data center. All links use Ethernet as a physical-layer

protocol, with a mix of copper and fiber cabling. All the switches below each pair of

access routers form a single layer-2 domain. The number of servers that can be con-

nected to a single layer-2 domain is typically limited to a few hundred due to Ethernet

scaling overheads (packet flooding and ARP broadcasts). To limit these overheads and

to isolate different services or logical server groups (e.g., email, search, web front ends,

web back ends), servers are partitioned into virtual LANs (VLANs) placed into distinct

layer-2 domains.

Unfortunately this conventional design suffers from the following fundamental limi-

tations:

Limited server-to-server capacity: As we go up the hierarchy we are confronted

with steep technical and financial barriers in sustaining high bandwidth. Thus, as traffic

moves up through the layers of switches and routers, the over-subscription ratio increases

rapidly. For example, typically servers have 1:1 over-subscription to other servers in the

70

same rack; i.e., they can communicate at the full rate (e.g.,1 Gbps) of their interfaces. We

found that up-links from ToRs are typically 1:5 to 1:20 oversubscribed (i.e., 1 to 4 Gbps

of up-link for 20 servers), and paths through the highest layer of the tree can be 1:240

oversubscribed. This large over-subscription factor severely limits the entire data-center’s

performance.

Fragmentation of resources: As the cost and performance of communication de-

pends on distance in the hierarchy, the conventional designencourages service planners

to cluster servers proximately in the hierarchy. Moreover,spreading service outside a sin-

gle layer-2 domain frequently requires the onerous task of reconfiguring IP addresses and

VLAN trunks, since the IP addresses used by servers are topologically determined by the

access routers above them. Collectively, this contributesto the squandering of computing

resources across the data center. The consequences are egregious. Even if there is plen-

tiful spare capacity throughout the data center, it is ofteneffectively reserved by a single

service (and not shared), so that this service can scale out to proximate servers quickly to

respond rapidly to spikes in demand or to failures. In fact, the growing resource needs of

one service have forced data center operations to evict other services in the same layer 2

domain, incurring significant cost and disruption.

Poor reliability and utilization : Above the ToR, the basic resilience model is 1:1.

For example, if an aggregation switch or access router fails, there must be sufficient

remaining idle capacity on the counterpart device to carry the load. This forces each

device and link to be run only at most 50% of its maximum utilization. Inside a layer-2

domain, use of the Spanning Tree Protocol means that even when multiple paths between

switches exist, only a single one is used. In the layer-3 portion, Equal Cost Multipath

(ECMP) is typically used: when multiple paths of the same length are available to a

destination, each router uses a hash function to spread flowsevenly across the available

71

next hops. However, the conventional topology offers at most two paths.

3.3 Measurements and Implications

In order to design VL2, we first needed to understand the data center environment in

which it would operate. Interviews with architects, developers, and operators led to the

objectives described in Section 3.1, but selecting the technical mechanisms on which to

build the network requires a quantitative understanding ofthe traffic matrix (who sends

how much data to whom and when) and churn (how often does the state of the network

change due to switch/link failures and recoveries, etc.). We analyzed these aspects by

studying production data centers of a large cloud service provider, and we use the results

to justify our choices in designing VL2 and in generating workloads to stress the VL2

testbed.

Our measurement studies found two key results with implications for the network

design. First, the traffic patterns inside a data center are highly divergent (as even over

50 representative traffic matrices only loosely cover the actual traffic matrices seen) and

change rapidly and unpredictably. Second, the hierarchical spanning tree topology is

intrinsically unreliable — even with a huge effort and expense to increase the reliability

of the network devices close to the top of the hierarchy, we still see failures on those

devices resulting in significant downtimes.

3.3.1 Data center traffic analysis

Analysis of Netflow and SNMP data from the data centers reveals several macroscopic

trends. First, the internal to external traffic volume ratiotoday is typically about 4:1

(except for CDN applications). Second, data center computation is focused where high

72

speed access to data on memory or disk is fast and cheap. Although data is distributed

across multiple data centers, intense computation and communication on data does not

straddle data centers due to the cost of long-haul links. Third, an increasing fraction of

the computation in data centers involves back-end computations driving the demands for

network bandwidth and storage.

To uncover the exact nature of traffic inside a data center, weinstrumented a highly

utilized 1,500 node cluster in a data center that supports data mining on petabytes of data.

The servers are distributed roughly evenly across 75 top of rack (ToR) switches, which

are connected in a hierarchical fashion, as shown in Figure 3.1. We collected socket-level

event logs from all machines over a period of two months.

3.3.2 Flow distribution analysis

Distribution of flow size: Figure 3.2 illustrates the nature of flows within the monitored

data center. The flow size statistics (marked as ‘+’s) show that the majority of flows

are small (few KB); discussions with developers revealed most of these small flows to

be hellos and meta-data requests to the distributed file system. To bring out what is

going on with longer flows, we provide a statistic termedtotal bytes(marked as ‘o’s), by

weighting each flow size by its number of bytes. Total bytes tells us, for a random byte,

the distribution of the flow size it belongs to. Almost all thebytes in the data center are

transported in flows whose lengths vary from about 100 MB to a few GB. The mode at

around 100 MB springs from the fact that the distributed file system breaks long files into

100-MB-long chunks.

Similar to Internet flow characteristics [60], we find that there are myriad small flows

(mice). On the other hand, as compared with Internet flows, the distribution is simpler

and more uniform. The reason is that in data centers, internal flows arise in an engineered

73

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 1 100 10000 1e+06 1e+08 1e+10 1e+12

P
D

F

Flow Size (Bytes)

Flow Size PDF
Total Bytes PDF

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 100 10000 1e+06 1e+08 1e+10 1e+12

C
D

F

Flow Size (Bytes)

Flow Size CDF
Total Bytes CDF

Figure 3.2: Mice are numerous; 99% of flows are smaller than 100 MB. However, more
than 90% of bytes are in flows larger than 100 MB.

environment driven by careful design decisions (e.g., the 100-MB-long chunk size is

driven by the need to amortize disk-seek times over read times) and by strong incentives

to use storage and analytic tools with well understood resilience and performance.

Number of Concurrent Flows: Figure 3.3 shows the probability density function

(as a fraction of time) for the number of concurrent flows going in and out of a machine,

computed over all 1,500 monitored machines for a representative day’s worth of flow

data. There are two modes. More than 50% of the time, an average machine has about

ten concurrent flows, but for at least 5% of the time an averagemachine has greater than

80 concurrent flows. We almost never see more than 100 concurrent flows.

We use these statistics on flow size distribution and number of concurrent flows to

drive VL2 evaluation in Section 3.5.

74

 0

 0.01

 0.02

 0.03

 0.04

 1 10 100 1000
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

ct
io

n
of

 T
im

e

C
um

ul
at

iv
e

Number of Concurrent flows in/out of each Machine

PDF
CDF

Figure 3.3: Number of concurrent connections has two modes:(1) 10 flows per node
more than 50% of the time and (2) 80 flows per node for at least 5%of the time.

3.3.3 Traffic matrix analysis

Distinct traffic patterns: Next, we ask the question:Is there some degree of regularity

in the traffic that might be advantageously exploited through careful measurement and

traffic engineering? If traffic in the DC were to follow a few simple patterns, then a

few snapshots of the traffic between all pairs of servers (termed the traffic matrix or TM)

would represent these patterns. Further, optimizing on those few representative TMs

would yield a routing design that would be capacity-efficient for most traffic.

A technique due to Zhang et al. [61] quantifies the variability in traffic matrices by

the approximation error arising when clustering similar TMs. In short, the technique

recursively collapses the traffic matrices that aremost similar to each otherinto a cluster,

where the distance (i.e., similarity) reflects how much traffic needs to be shuffled to make

one TM look like the other. We then choose a representative TMfor each cluster, such

that any routing that can deal with the representative TM performs no worse on every TM

in the cluster. Using a single representative TM per clusteryields a fitting error (quantified

by the distances between representative TMs and the actual TMs they represent), which

quickly decreases as the number of clusters increases but does not dip beyond a certain

75

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 100 200 300 400 500 600 700 800 900In
de

x
of

 th
e

C
on

ta
in

in
g

C
lu

st
er

Traffic Matrix Index

Figure 3.4: Lack of short-term predictability: The clusterto which a traffic matrix be-
longs, i.e., the type of traffic mix in the TM, changes quicklyand randomly.

knee point. Finally, we find the fewest number of clusters that reduces the fitting error

below the knee point. The resulting set of clusters and theirrepresentative TMs indicates

the number of distinct types of traffic matrices present in the set. Surprisingly, we find the

number of representative traffic matrices in our data centeris quite large — even when

approximating with50 − 60 clusters, the fitting error remains high (0.6) and decreases

moderately even beyond that point. For comparison, in an ISPnetwork with a comparable

TM dimension (AT&T’s PoP level topology), only 12 representative traffic matrices yield

a good approximation (i.e., fitting error< 0.25) [62].

Instability of traffic patterns: Given the significant variability in traffic, one might

wonder whether traffic is predictable in the near term:Does traffic in the next minute look

similar to the traffic now?Traffic predictability enhances the ability of an operator to

engineer network routing as traffic demand changes. To measure the ability to predict the

traffic pattern in the network, Figure 3.4 plots the index (which denotes the types of the

top-40 traffic matrices, see above) for each 100-sec-long traffic matrix over the day. The

figure shows the traffic pattern changes nearly constantly, with no periodicity that could

help predict the future. Computing the run lengths (how longthe network follows the

same matrix), we find the median run length is 1 (i.e., the network changes matrix every

76

100 s or faster): only 1% of the time does the network retain the same matrix for> 800 s.

The lack of predictability stems largely from fundamental mechanisms used to im-

prove performance of data center applications: randomness. For example, the distributed

file system spreads data chunks randomly across servers for load distribution and redun-

dancy. Similarly, the servers assigned to each job are chosen more or less randomly from

the pool of available servers.

3.3.4 Failure characteristics

To design VL2 to tolerate failures and churn found in data centers, we collected failure

logs over an year from eight data centers in-production comprising hundreds of thou-

sands of servers and hosting 100+ cloud services that serve millions of active users. We

analyzed both hardware and software failures using SNMP polling/traps, syslogs, server

alarms, and transaction monitoring frameworks for about 36M error events resulting in

300k alarm tickets.

How frequent are network element failures? We define a failure as an event that

occurs when a system or component is unable to perform its required function and that

lasts over 30 s. We find that as expected, most failures are small in size (e.g., 95% of

network device failures involve< 20 devices) while large correlated failures are rare

(e.g., 3700 servers fail within 10 minutes). Further, downtimes can be significant: 95%

of failures are resolved in 10 min, 98% in< 1 hour, 99.6% in< 1 day, but 0.09% last>

10 days.

What is the pattern of element failure? As discussed in Section 3.2, conventional

data center networks apply 1+1 redundancy to improve reliability at higher layers of the

spanning tree topology. However, these techniques are still insufficient — we find that

in 0.3% of failures, all redundant components in a network device group became un-

77

available (e.g., the pair of switches that comprise each node in the conventional network

(Figure 3.1) or both the uplinks from a switch). In one incident, the failure of a core

switch (due to a faulty supervisor card) affected ten million users for about four hours.

We found the main causes of these downtimes are network misconfigurations, firmware

bugs, and faulty components (e.g., ports). With no obvious way to prevent all failures

from the top of the hierarchy, VL2’s approach is to broaden the topmost levels of the net-

work so that the impact of failures is muted and performance degrades gracefully, moving

from 1+1 redundancy to n+m redundancy.

3.4 Virtual Layer Two Networking

Before describing our design in detail, we briefly revisit our design principles and preview

how they will be used in the VL2 design.

Randomizing to Cope with Volatility : The huge divergence and unpredictabil-

ity of data-center traffic matrices suggest that optimization-based approaches will not

be very effective at avoiding congestion. Instead, VL2 usesValiant Load Balancing

(VLB): destination-independent (e.g., random) traffic spreading across multiple inter-

mediate nodes. The theory behind VLB offers provably hot-spot-free performance for

arbitrary traffic matrices, subject only to ingress/egress capacity bounds [63] as in the

hose traffic model [64]. In our context, the ingress/egress constraints correspond to server

line-card speeds. Additionally, traffic spreading allows us to offer huge server-to-server

capacities at a modest cost because doing so requires only a network with a hugeag-

gregatecapacity, which can be easily built with a large number of inexpensive devices.

We introduce our network topology suited for traffic spreading in Section 3.4.1. The

topology offers a huge bisection bandwidth through a large number of equal-cost paths

78

between servers. Then we present our routing mechanism to randomly spread traffic

(more specifically, flows) in Section 3.4.2.

VLB, in theory, ensures anon-interferingpacket switched network [65] (the coun-

terpart of a non-blocking circuit switched network) as longas i) the offered traffic pat-

terns conform to the hose model, andii) traffic spreading ratios are uniform. While our

mechanisms to realize VLB do not perfectly meet both these conditions, we show in

Section 3.5.1 that our scheme’s performance is close to the optimum.

We also study specifically how this loose enforcement of the conditions above affects

our system’s performance. To meet condition-i, we rely on TCP’s end-to-end conges-

tion control mechanism to enforce the hose model on offered traffic. Unfortunately, in

cloud-computing data centers, non-TCP (e.g., UDP, or any sorts of non-TCP-compliant)

traffic co-exists with TCP traffic. We conduct experiments inSection 3.5.2 to see how our

design works under such situations. Satisfying condition-ii is even harder in practice for

two reasons. First, to avoid out-of-order delivery, we spread flows – not packets. Unfor-

tunately flows differ in size. Second, for state-less trafficspreading, werandomly– rather

than uniformly – associate flows with paths. We conduct experiments in Section 3.5.2 to

quantify how this factor manifests itself in practice.

Separating names from locators: To enable agility (such as hosting any service on

any server, dynamically growing and shrinking a server pool, and migrating virtual ma-

chines), we use an addressing scheme that separates servers’ names, termed application-

specific addresses (AAs), from their locators, termed location-specific addresses (LAs).

VL2 uses a directory system to maintain the mappings betweennames and locators in

a scalable and reliable fashion. A shim layer running in the networking stack on ev-

ery server, called the VL2 agent, invokes the directory system’s resolution service. We

evaluate the performance of the directory system in Section3.5.4.

79

Embracing End Systems: In a data center, the rich and homogeneous programma-

bility available at end systems provides a mechanism to rapidly realize any new func-

tionality. For example, the VL2 agent enables fine-grained path control by adjusting the

randomization used in VLB. In addition, to realize the separation of names and locators,

the agent replaces Ethernet’s ARP functionality with queries to the VL2 directory sys-

tem. The directory system itself is also realized on servers, rather than switches, and thus

offers flexibility, such as fine-grained, context-aware server access control, or dynamic

service re-provisioning.

Building on proven networking technology: While embracing end-system func-

tionality, VL2 also leverages the mature and robust IP routing and forwarding tech-

nologies already available in commodity switches. Those include the link-state rout-

ing protocol, equal-cost multi-path (ECMP) forwarding, IPanycasting, and IP multi-

casting. VL2 employs a link-state routing protocol to maintain the switch-level topol-

ogy, but not to disseminate end hosts’ information. This protects switches from needing

to learn the huge, frequently-changing host information and thus substantially improves

the network’s control-plane scalability. Furthermore, through a routing design that uti-

lizes ECMP forwarding along with anycast addresses shared by multiple switches, VL2

spreads traffic over multiple paths and hides network churnsfrom the directory system

and end hosts as well.

We next describe each aspect of the VL2 system and how they work together to im-

plement a virtual layer-2 network. These aspects include the network topology, the ad-

dressing design, the routing design, and the directory system that manages name-locator

mappings.

80

3.4.1 Scalable oversubscription-free topology

. . .

. . .

ToR

20
Servers

Int

. . .

. . . .

Aggr

DA/2 x 10G

DA/2 x 10G

DI x10G

2 x10G DADI/4 x ToR Switches
DI x Aggregate Switches

20(DADI/4) x Servers

CR CR. . .

Internet
Link-state network
carrying only LAs

(e.g., 10/8) DA/2 x Intermediate Switches

Fungible pool of
servers owning AAs

(e.g., 20/8)

Figure 3.5: Example Clos network between Aggregation and Intermediate switches pro-
vides a broad and richly connected backbone well-suited forVLB. Connectivity to the
Internet is provided by Core Routers (CR).

As described in Section 3.3, the way conventional data-center networks concentrate

traffic into a few devices at the highest levels restricts thetotal bisection bandwidth and

also significantly impacts the network when the devices fail. Instead, we choose a topol-

ogy driven by our principle to use randomization for coping with traffic volatility. Rather

thanscale upindividual network devices with more capacity and features, we scale out

the devices — build a broad network offering hugeaggregatecapacity using a large num-

ber of simple, inexpensive devices, as shown in Figure 3.5. This is an example of a folded

Clos network [65] where the links between the Intermediate switches and the Aggrega-

81

tion switches form a complete bipartite graph. As in the conventional topology, ToRs

connect to two Aggregation switches, but the large number ofpaths between any two

Aggregation switches means that if there aren Intermediate switches, the failure of any

one of them reduces the bisection bandwidth by only1/n — a desirable property we call

graceful degradation of bandwidth, evaluated in Section 3.5.3. Further, it is easy and

less expensive to build a Clos network for which there is no over-subscription (further

discussion on cost is given in Section 3.6). For example, in Figure 3.5, we useDA-port

Aggregation andDI-port Intermediate switches, and connect these switches such that the

capacity between each layer isDIDA/2 times the link capacity.

The Clos topology is exceptionally well suited for VLB in that by indirectly forward-

ing traffic through an Intermediate switch at the top tier or “spine” of the network, the

network can provide bandwidth guarantees for any traffic matrices subject to the hose

model. Meanwhile, routing is extremely simple and resilient on this topology — take a

random path up to a random intermediate switch and a random path down to a destination

ToR switch.

3.4.2 VL2 routing

This section explains the motion of packets in a VL2 network,and how the topology,

routing design, VL2 agent, and directory system combine to virtualize the underlying

network fabric and create the illusion for the network layer, and anything above it, that

the host is connected to a big, non-interfering data-center-wide layer-2 switch.

Address resolution and packet forwarding

To implement the principle of separating names from locators, VL2 uses two differentIP-

addressfamilies. Figure 3.5 illustrates this separation. The network infrastructure oper-

82

ates using location-specific addresses (LAs); all switchesand interfaces are assigned LAs,

and switches run an IP-based (i.e., layer-3) link-state routing protocol that disseminates

only these LAs. This allows switches to obtain the complete knowledge about the switch-

level topology, as well as forward any packets encapsulatedwith LAs along the shortest

paths. On the other hand, applications operate using permanent application-specific ad-

dresses (AAs), which remain unaltered no matter how servers’ locations change due to

virtual-machine migration or re-provisioning. Each AA (server) is associated with an

LA, the identifier of the ToR switch to which the servers is connected. The VL2 directory

system stores the mapping of AAs to LAs, and this mapping is created when application

servers are provisioned to a service and assigned an AA IP address.

The crux of offering the layer-2 semantics is having serversbelieve they share a single

large IP subnet (i.e., the entire AA space) with other servers in the same service, while

eliminating the ARP and DHCP scaling bottlenecks that plague large Ethernets.

Packet forwarding: Since AA addresses are not announced into the routing protocols

of the network, for a server to receive a packet the packet’s source must first encapsulate

the packet (Figure 3.6), setting the destination of the outer header to the LA of the ToR

under which the destination server (i.e., the destination AA) is located. Once the packet

arrives at its destination ToR, the ToR switch decapsulatesthe packet and delivers it based

on the destination AA in the inner header.

Address resolution: Servers in each service are configured to believe that they all

belong to the same IP subnet, so when an application sends a packet to an AA for the

first time, the networking stack on the host generates a broadcast ARP request for the

destination AA. The VL2 agent running in the source host’s networking stack intercepts

the ARP request and converts it to a unicast query to the VL2 directory system. The

directory system answers the query with the LA of the ToR to which packets should be

83

tunneled.

Inter-service access control by directory service:Servers cannot send packets to an

AA if they cannot obtain the LA of the ToR to which they must tunnel packets for that AA.

This means the directory service can enforce access-control policies on communication.

When handling a lookup request, the directory system knows which server is making

the request, the services to which both source and destination belong, and the isolation

policy between those services. If the policy is “deny”, the directory server simply refuses

to provide the LA. An advantage of VL2 is that, when inter-service communication is

allowed, packets flow directly from sending server to receiving server, without being

detoured to an IP gateway as is required to connect two VLANs in the conventional

architecture.

These addressing and forwarding mechanisms were chosen fortwo main reasons.

First, they make it possible to utilize low-cost switches, which often have small routing

tables (typically just16K entries) that can hold only LA routes, without concern for the

huge number of AAs. Second they allows the control plane to support agility with very

little overhead; the design obviates frequent link-state advertisements to disseminate host-

state changes and host/switch reconfiguration.

Random traffic spreading over multiple paths

To offer hot-spot-free performance for arbitrary traffic matrices without any esoteric traf-

fic engineering or optimization, VL2 utilizes two related mechanisms: VLB and ECMP.

The goals of both are similar — VLB distributes traffic acrossmultiple intermediate

nodes chosen independently of destinations (e.g., randomly), and ECMP across multiple

equal-cost paths so as to offer larger capacity. When using these mechanisms, VL2 uses

flows, rather than packets, as the basic unit of traffic spreading and thus avoids out-or-

84

IP subnet with AAs (20/8)

Link-state network with LAs (10/8)

IP subnet with AAs (20/8)
S (20.0.0.55)

Int
(10.1.1.1)

D (20.0.0.56)

Payload
20.0.0.55 20.0.0.56
H(ft) 10.0.0.6
H(ft) 10.1.1.1

Payload
20.0.0.55 20.0.0.66

(10.0.0.6)
ToR

(20.0.0.1)

(10.0.0.4)
ToR

(20.0.0.1)

Int
(10.1.1.1)

Int
(10.1.1.1).

Payload
20.0.0.55 20.0.0.56
H(ft) 10.0.0.6
H(ft) 10.1.1.1

Payload
20.0.0.55 20.0.0.56
H(ft) 10.0.0.6

Figure 3.6: VLB in an example VL2 network. SenderS sends packets to destinationD
via a randomly-chosen intermediate switch using IP-in-IP encapsulation. AAs are from
20/8 and LAs are from10/8. H(ft) denotes a hash of the five tuple.

order delivery. As explained below, VLB and ECMP are complementary in that each can

be used to overcome limitations in the other.

Realizing the benefits of VLB requires forcing traffic to bounce off a randomly-

chosen Intermediate switch. Figure 3.6 illustrates trafficforwarding in an example VL2

network. The VL2 agent on each sender implements this “bouncing” function by encap-

sulating each packet to an Intermediate switch, wrapped around the header that tunnels

the packet to the destination’s ToR. Hence the packet is firstdelivered to one of the Inter-

mediate switches, decapsulated by the switch, delivered tothe ToR’s LA, decapsulated

again, and finally sent to the destination server.

While encapsulating packets to a specific, but randomly chosen, Intermediate switch

correctly realizes VLB, it would require updating a potentially huge number (e.g., 100K)

of VL2 agents whenever an Intermediate switch’s availability changes due to switch/link

failures or recoveries. Instead, we assign the same LA address to all Intermediate

85

switches, and the directory systems returns thisanycast addressto agents as part of the

lookup results. Since all Intermediate switches are exactly three hops away from a source

host, now ECMP simply takes care of delivering packets encapsulated with the anycast

address to any one of the active Intermediate switches. Uponswitch or link failures,

ECMP will react, eliminating the need to notify agents and ensuring scalability. ECMP

mechanisms in modern switches choose next hops in a destination-independent fashion

(e.g., based on the hash of five-tuple values), satisfying the VLB semantics.

In practice, however, the use of ECMP leads to two “technical” problems. First,

switches today only support up to 16-way ECMP, with 256-way ECMP being released by

some vendors this year. If there should be more paths available than ECMP can use, then

VL2 defines several anycast addresses, each associated withonly as many Intermediate

switches as ECMP can accommodate. When an Intermediate switch fails, VL2 reassigns

the anycast addresses from that switch to other Intermediate switches so that all anycast

addresses remain live and servers can remain unaware of the network churn. Second,

inexpensive commodity switches cannot correctly retrievethe five-tuple values when a

packet is encapsulated with multiple IP headers. As a solution, the agent at the source

computes a hash of the five-tuple values and writes that valueinto a header field the switch

does use in making an ECMP-forwarding decision. VL2 uses thesource IP address field,

and the type-of-service (ToS) is another option.

A final issue for both ECMP and VLB is the chance that uneven flowsizes and random

spreading decisions will cause transient congestion on some links. Our evaluation did not

find this to be a problem on data center workloads (Section 3.5.2), but should it occur, the

sender can change the path its flows take through the network by altering the value of the

fields that ECMP uses to select a next-hop. Initial results show the VL2 agent can detect

and deal with such situations with simple mechanisms, such as re-hashing the large flows

86

periodically or when TCP detects a severe congestion event (e.g., a full window loss or

Explicit Congestion Notification).

Backwards-compatibility

To ensure complete layer-2 semantics, the routing and forwarding solutions must also

be backwards compatible and transparent to the existing data-center applications. This

section describes how a VL2 networks handle external traffic(from and to the Internet),

as well as general layer-2 broadcast traffic.

Interaction with hosts in the Internet: 20% of the traffic handled in our cloud-

computing data centers is to or from the Internet, so the network must be able to handle

these large volumes. Since VL2 employs a layer-3 routing fabric to implement a virtual

layer-2 network, the external traffic can directly flow across the high-speed silicon of the

switches that make up VL2, without being forced through gateway servers to have their

headers rewritten, as required by some designs (e.g., Monsoon [10]).

Servers that need to be directly reachable from the Internet(e.g., front-end web

servers) are assigned two addresses: an LA in addition to theAA used for intra-data-

center communication with back-end servers. This LA is drawn from a pool that is an-

nounced via BGP and is externally reachable. Traffic from theInternet can then directly

reach the server, and traffic from the server to external destinations will be routed toward

the core routers while being spread across the available links and core routers by ECMP.

Handling Broadcast: VL2 provides layer-2 semantics to applications for backwards

compatibility, and that includes supporting broadcast andmulticast. VL2’s approach

is to eliminate the most common sources of broadcast completely, such as ARP and

DHCP. ARP is handled by the mechanism described above, and DHCP messages are

intercepted at the ToR using conventional DHCP relay agentsand unicast forwarded to

87

DHCP servers. To handle other general layer-2 broadcast traffic, every service is assigned

an IP multicast address, and all broadcast traffic in that service is handled via IP multicast

using the service-specific multicast address. The VL2 agentrate-limits broadcast traffic

to prevent storms.

3.4.3 Maintaining host information using VL2 directory system

The VL2 directory system is a scalable, reliable and high performance store designed for

data center workloads. It provides two key functionalities: (1) lookupsandupdatesfor

AA-to-LA mappings, and (2) a reactive cache update mechanism that supports latency-

sensitive operations, such as live virtual machine migration.

Characterizing requirements

We expect the lookup workload for the directory system to be frequent and bursty. As

discussed in Section 3.3.1, servers can communicate with upto hundreds of other servers

in a short time period with each flow generating a lookup for anAA-to-LA mapping. For

updates, the workload is driven by failures and server startup events. As discussed in

Section 3.3.4, most failures are small in size and large correlated failures are rare.

Performance requirements: The bursty nature of workload implies that lookups

require high throughput and low response time to quickly establish a large number of

connections. Since lookups are a replacement for ARP, theirresponse time should match

that of ARP, i.e., tens of milliseconds. For updates, however, the key requirement is

reliability, and response time is less critical. Further, since updates are typically scheduled

ahead of time, high throughput can be achieved by batching updates.

Consistency requirements: In a conventional L2 network, ARP provides eventual

consistency due to ARP timeout. In addition, a host can announce its arrival by issuing

88

;<=
><

;<=
><

;<=
><

?@ABC
DDD

?@ABC
DDDDDD EFGHIJKGLMHGNHGO
PMQMHGNHGO

RSTUVWXRSTUVWX YSZ[[\]V_̂̀ àbcd eSfg\
RShUi jSfg\klSmnooUpnqriUs

tSTUVWngriU
YSuVvriÛwcxyz{d

Figure 3.7: VL2 Directory System Architecture

a gratuitous ARP [66]. As an extreme example, consider live virtual machine (VM) mi-

gration in a VL2 network. VM migration requires fast update of stale mappings (AA-to-

LA) as its primary goal is to preserve on-going communications across location changes.

These considerations imply that weak or eventual consistency of AA-to-LA mappings is

acceptable as long as we provide a reliable update mechanism.

Directory-system design

Our observations that the performance requirements and workload patterns of lookups

differ significantly from those of updates led us to a two-tiered directory system ar-

chitecture shown in Figure 3.7. Our design consists of (1) a modest number (50-100

servers for 100K servers) of read-optimized, replicated directory servers that cache AA-

to-LA mappings and that communicate with VL2 agents, and (2)a small number (5-10

servers) of write-optimized, asynchronous replicated state machine (RSM) servers offer-

ing a strongly consistent, reliable store of AA-to-LA mappings. The directory servers

89

ensure low latency, high throughput, and high availabilityfor a high lookup rate. Mean-

while, the RSM servers ensure strong consistency and durability, using the Paxos [67]

consensus algorithm, for a modest rate of updates.

Each directory server caches all the AA-to-LA mappings stored at the RSM servers

and independently replies to lookups from agents using the cached state. Since strong

consistency is not a requirement, a directory server lazilysynchronizes its local mappings

with the RSM on a regular basis (e.g., every 30 secs). To achieve high availability and low

latency at the same time, an agent sends a lookup tok (two in our prototype) randomly-

chosen directory servers. If multiple replies are received, the agent simply chooses the

fastest reply and stores it in its cache.

Directory servers also handle updates from network provisioning systems. For con-

sistency and durability, an update is sent to only one randomly-chosen directory server

and is always written through to the RSM servers. Specifically, on an update, a directory

server first forwards the update to the RSM. The RSM reliably replicates the update to

every RSM server and then replies with an acknowledgment to the directory server, which

in turn forwards the acknowledgment back to the originatingclient. As an optimization

to enhance consistency, the directory server can optionally disseminate the acknowledged

updates to a small number of other directory servers. If the originating client does not

receive an acknowledgment within a timeout (e.g., 2s), the client sends the same update

to another directory server, trading response time for reliability and availability.

Ensuring eventual consistency: Since AA-to-LA mappings are cached at directory

servers and at VL2 agents’ cache, an update can lead to inconsistency. To resolve in-

consistency without wasting server and network resources,our design employs a reactive

cache-update mechanism to ensure both scalability and performance at the same time.

The cache-update protocol leverages a key observation: a stale host mapping needs to

90

be corrected only when that mapping is used to deliver traffic. Specifically, when a

stale mapping is used, some packets arrive at a stale LA – a ToRwhich does not host

the destination server anymore. ToRs forward such non-deliverable packets to a direc-

tory server, triggering the directory server to selectively correct the stale mapping in the

source server’s cache via unicast.

3.5 Evaluation

In this section we evaluate VL2 using a prototype running on an 80 server testbed and

commodity switches. Our goals are two-fold. First, we want to show that VL2 can be built

from components available today and Second, our implementation meets the objectives

described in Section 3.1.

The testbed is built using a Clos network topology, similar to Figure 3.5, consist-

ing of 3 Intermediate switches, 3 Aggregation switches and 4ToRs. The Aggregation

and Intermediate switches have 24 10Gbps Ethernet ports, ofwhich 6 ports are used on

the Aggregation switches and 3 ports on the Intermediate switches. The ToRs switches

have 4 10Gbps ports and 24 1Gbps ports. Each ToR is connected to two Aggregation

switches via 10Gbps links, and to 20 servers via 1Gbps links.Internally, the switches

use commodity merchant silicon ASICs: Broadcom ASICs 56820and 56514. To enable

detailed analysis of the TCP behavior seen during experiments, the servers’ kernels are

instrumented to log TCP extended statistics [68] (e.g., congestion window (cwnd) and

smoothed RTT) after each socket buffer is sent (typically 128KB in our experiments).

This logging does not affectgoodput, i.e., useful information delivered per second to the

application layer.

We first investigate VL2’s ability high uniform network bandwidth between servers,

91

Figure 3.8: VL2 testbed comprising 80 servers and 10 switches.

then analyze performance isolation and fairness between traffic flows, measure conver-

gence after link failures, and finally, quantify address resolution performance. Overall,

our evaluation shows that VL2 provides an effective substrate for a scalable data center

network: VL2 achieves (1) 93% optimal network capacity, (2)a TCP fairness index of

0.995, (3) graceful degradation under failures with fast reconvergence, and (4) handles

50K lookups/sec under 10ms for fast address resolution.

3.5.1 VL2 Uniform high capacity

A central objective of VL2 is uniform high capacity between any two servers in the data

center. How closely does the performance and efficiency of a VL2 network match that of

a Layer 2 switch with 1:1 over-subscription?

92

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

Time (s)

A
gg

re
ga

te
 g

oo
dp

ut
 (

G
bp

s)

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

A
ct

iv
e

flo
w

s

Aggregate goodput
Active flows

Figure 3.9: Aggregate goodput during a 2.7TB shuffle among 75servers.

To answer this question, we consider an all-to-alldata shufflestress test: all servers

simultaneously initiate TCP transfers to all other servers. This data shuffle pattern arises

in large scale sorts, merges and join operations in the data center. We chose this test

because, in our interactions with application developers,we learned that many use such

operations with caution, because the operations are highlyexpensive in today’s data cen-

ter network. However, data shuffles are required and if data shuffles can be efficiently

supported, it could have large impact on the overall algorithmic and data storage strategy.

We create an all-to-all data shuffle traffic matrix involving75 servers. Each of 75

servers must deliver 500MB of data to each of the 74 other servers - a shuffle of 2.7 TB

from memory to memory.1

Figure 3.9 shows how the sum of the goodput over all flows varies with time during

a typical run of the 2.7 TB data shuffle. All data is carried over TCP connections, all

of which attempt to connect beginning at time 0. VL2 completes the shuffle in 395 s.

During the run, the sustained utilization of the core links in the Clos network is about

86%. For the majority of the run, VL2 achieves an aggregate goodput of 58.8 Gbps. The

goodput is very evenly divided among the flows for most of the run, with a fairness index

1We chose 500MB files rather than 100MB files (the most common flow size seen in our measurements)
to extend the period during which all 5,550 flows are sending simultaneously – some flows start late due to
connection timeout on first attempt.

93

between the flows of 0.995 [69] where 1.0 indicates perfect fairness (mean goodput per

flow 11.4 Mbps, standard deviation 0.75 Mbps). This goodput is more than an order of

magnitude improvement over our existing network constructed using traditional design.

How close is VL2 to the maximum achievable throughput in thisenvironment?To

answer this question, we compute the goodput efficiency for this data transfer. The good-

put efficiency of the network for any interval of time is defined as the ratio of the sent

goodput summed over all interfaces divided by the sum of the interface capacities. An

efficiency of 1.0 would mean that all the capacity on all the interfaces is entirely used

carrying useful bytes from the time the first flow starts to when the last flow ends.

To calculate the goodput efficiency, two sources of inefficiency must be accounted

for. First, to achieve a performance efficiency of 1.0, the server network interface cards

must be completely full-duplex: able to both send and receive 1 Gbps simultaneously.

Measurements show our interfaces are able to support a sustained rate of 1.8 Gbps (sum-

ming the sent and received capacity), introducing an inefficiency of 1.8/2.0 = 10%. The

sources of this inefficiency include TCP ack overhead and artifacts of operating system

and device driver implementations. In addition, there is the overhead of packet headers.

In the VL2 design, packet headers (including the encapsulation headers) account for 6%

inefficiency for standard Ethernet MTU of 1,500 Bytes. Therefore, our current testbed

has an intrinsic inefficiency of 16% resulting in maximum achievable goodput for our

testbed of 84%.

Taking the above into consideration the VL2 network achieves an efficiency of (75 *

.84) / 58.8 = 93%. This combined with the fairness index of .995 demonstrates that VL2

promises to achieve uniform high bandwidth across all servers in the data center.

94

3.5.2 Performance isolation

One of the primary objectives of VL2 isagility, which we define as the ability to assign

any server, anywhere in the data center to any service (3.1).Achieving agility critically

depends on providing sufficient performance isolation between services so that if one ser-

vice comes under attack or a bug causes its servers to spray packets, it does not adversely

impact the performance of other services.

The promise of performance isolation in VL2 rests on the mathematics of Valiant

Load Balancing — that any traffic matrix that obeys the hose model is sprayed evenly

across the network (through randomization) to prevent any persistent hot spots. Rather

than have VL2 perform admission control or rate shaping to ensure the traffic offered

to the network conforms to the hose model, we instead rely on TCP to ensure that each

flow offered to the network is rate-limited to its fair share of its bottleneck. Further, VL2

relies on ECMP to split traffic in equal ratios to intermediate switches. Because ECMP

does flow-level splitting, coexisting elephant and mice flows might get split unevenly at

smaller time scales.

Thus, the two key questions for performance isolation are — whether TCP reacts

sufficiently quickly to control the offered rate of flows, andwhether our implementation

of Valiant Load Balancing splits traffic evenly across the network. In the following, we

describe experiments that evaluate these two aspects of VL2’s design.

Does TCP obey the hose model?

In this experiment, we add two services to the network. The first service has 18 servers

allocated to it and each server starts a single TCP transfer to one other server at time 0

and these flows last for the duration of the experiment. The second service starts with one

server at 60 seconds and a new server is assigned to it every 2 seconds for a total of 19

95

60 80 100 120 140 160 180 200 220
0

5

10

15

A
gg

re
ga

te
 g

oo
dp

ut
 (

G
bp

s)

Time (s)

Service 1
Service 2

Figure 3.10: Aggregate goodput of two services with serversintermingled on the TORs.
Service one’s goodput is unaffected as service two ramps traffic up and down.

servers. Every server in service two starts an 8GB transfer over TCP as soon as it starts

up. Both the services’ servers are intermingled among the 4 TORs to demonstrate agile

assignment of servers.

Figure 3.10 shows the aggregate goodput of both services as afunction of time. As

seen in the figure, there is no perceptible change to the aggregate goodput of service one

as the flows in service two start up or complete, demonstrating performance isolation

when the traffic consists of large long-lived flows. Through extended TCP statistics, we

inspected the congestion window size (cwnd) of service one’s TCP flows, and found that

the flows fluctuate around their fair share momentarily due toservice two’s activity but

then stabilize quickly.

We would expect that a service sending unlimited rate UDP traffic might violate the

hose model and hence performance isolation. We do not observe such UDP traffic in our

data centers, although, techniques such as STCP to make UDP “TCP friendly” are well

known if needed [70]. However, large numbers of short TCP connections (mice), which

are common in DCs (Section 3.3), have the potential to cause problems similar to UDP

as each flow can transmit small bursts of packets as it begins slow start. Intuitively, the

bursts of small connections threaten to reduce goodput of long lived flows, as the mice

96

50 60 70 80 90 100 110 120 130
0

5

10

15

20

A
gg

re
ga

te
 g

oo
dp

ut
 (

G
bp

s)

Time (s)

50 60 70 80 90 100 110 120 130
0

500

1000

1500

2000

m

ic
e

st
ar

te
d

Aggregate goodput
mice started

Figure 3.11: Aggregate goodput of service one as service twocreates bursts containing
successively more short TCP connections.

may capture an unfairly large fraction of the small buffers in VL2’s switches.

To evaluate this aspect, we conduct a second experiment withservice one sending

long lived TCP flows, as in experiment one. Servers in servicetwo create bursts of short

TCP connections (1 to 20 KB), each burst containing progressively more connections.

Figure 3.11 shows the aggregate goodput of the service one’sflows along with the to-

tal number of TCP connections by service two versus time. Again, service one’s goodput

is unaffected by service two’s activity. We inspected the cwnd of service one’s TCP flows

and found only brief fluctuations due to service two’s activity.

The above two experiments demonstrate TCP’s natural enforcement of the hose

model. Even though service one’s flows could have taken more bandwidth in the net-

work, TCP limited them to their receivers’ interface capacity, thereby leaving spare ca-

pacity in the network for service two to ramp up and down without impacting service

one’s goodput.

VLB fairness

To evaluate the effectiveness VL2’s implementation of Valiant Load Balancing in splitting

traffic evenly across the network, we created an experiment on our 75-node testbed with

97

0 100 200 300 400 500 600
0.9

0.92

0.94

0.96

0.98

1

1.02

Time (s)

F
ai

rn
es

s

Agg1
Agg2
Agg3

Figure 3.12: Fairness measures how evenly flows are split to intermediate switches from
aggregation switches. Average utilization is for links between Aggregation and Interme-
diate switches.

traffic characteristics extracted from the DC workload of Section 3.3. Each server initially

picks a value from the distribution of number of concurrent flows and maintains this

number of flows throughout the experiment. At the start, or after a flow completes, it

picks flow rate(s) from the associated distribution and starts the flow(s). Because of flow

aggregation happening at the Aggregation switches, it is sufficient to check the split ratios

at each Aggregation switch to each Intermediate switch. We do this by collecting SNMP

counters at 10 second intervals for all links from Aggregation to Intermediate switches.

In Figure 3.12, for each Aggregation switch, we plot Jain’s fairness index [69] for

the traffic to Intermediate switches as a time series. The average utilization of links was

between 10% and 20%. As shown in the figure, the average VLB split ratio fairness index

is greater than .98 for all Aggregation switches over the duration of this experiment. We

get such high fairness because there are enough flows at the Aggregation switches that

randomization benefits from statistical multiplexing. This evaluation validates that our

implementation of VLB is an effective mechanism for preventing hot spots in a data

center network.

In summary, the even splitting of traffic in VLB, when combined with TCP’s confor-

98

mance of the hose model, provides sufficient performance isolation to achieve agility.

3.5.3 Convergence after link failures

As discussed in Section 3.3, interface flaps account for 28% of network failures. Our

discussions with network engineers revealed that many of these are due to software and

hardware bugs, which manage to slip through processes for testing and hardening the

system. VL2 mitigates the threat of such bugs by simplifyingthe network control and

data plane and relying on existing, mature OSPF routing implementation. In this section,

we evaluate VL2’s response when a link or a switch failure does happen, which could be

the result of the routing protocol or the network managementprocess converting a link

flap to a link failure.

We begin an all-to-all data shuffle and then disconnect linksbetween Intermediate

and Aggregation switches until only one Intermediate switch remains connected and the

removal of one additional link would partition the network.According to our study of

failures, this type of mass link failure has never occurred in our data centers, but we use

it as an illustrative stress test.

Figure 3.13 shows a time series of the aggregate goodput achieved by the flows in

the data shuffle, with the times at which links were disconnected and then reconnected

marked by vertical lines. The figure shows OSPF is re-converging quickly (sub-second)

after each failure. Both Valiant Load Balancing and ECMP work as expected, and the

maximum capacity of the network gracefully degrades. OSPF timers delay restoration

after links are reconnected, but restoration does not interfere with traffic and the aggregate

goodput returns to its previous level.

This experiment also demonstrates the behavior of VL2 when the network is struc-

turally oversubscribed (meaning the Clos network has less capacity than the capacity of

99

failing links restoring links

Figure 3.13: Aggregate goodput as all links to switches Intermediate1 and Intermediate2
are unplugged in succession and then reconnected in succession. Approximate times of
link manipulation marked with vertical lines. Network re-converges in< 1s after each
failure and demonstrates graceful degradation.

the links from the ToRs). For the over-subscription ratios between 1:1 and 3:1 created

during this experiment, the VL2 continues to carry the all-to-all traffic at roughly 90% of

maximum efficiency, indicating that the traffic spreading inVL2 is making full use of the

available capacity.

3.5.4 Directory-system performance

Finally, we evaluate the performance of the VL2 directory system which provides the

equivalent semantics of ARP in layer 2. We perform this evaluation through macro- and

micro-benchmark experiments on the directory system. We run our prototype on up to 50

machines: 3-5 RSM nodes, 3-7 directory server nodes, and theremaining nodes emulat-

ing multiple instances of VL2 agents generating lookups andupdates. In all experiments,

the system is configured so that an agent sends a lookup request to two directory servers

chosen at random and accepts the first response. An update request is sent to a directory

server chosen at random. The response timeout for lookups and updates is set to two

seconds to measure the worst-case latency. To stress test the directory system, the VL2

100

|}||}~|}�
|}�|}��}|
|}� �}| �|}| �||}| �|||}|�����������

������
������������������� ��¡

¢£¤¥£¤ ¦£¤¥£¤§̈©ªª«¬®

(a)

°̄̄̄°±̄°²̄
°³̄°́µ°̄
µ°̄ µ̄°̄ µ̄̄°̄ µ̄̄ °̄̄¶·̧¹º»¼½¼¾

¿ÀÁ̧ºÂÃ
ÄÅÆÇÈÉÊÇÈÉËÌÍÎÏÐÉÌÑÒÊÓÔ

ÕÖ×ØÖ× ØÖ×ÙÚÛÜÜÝÞßà
áÖ×

(b)

âãââãäâãå
âãæâãçèãâ
èãâ èâãâ èââãâ èâââãâéêëìíîïðïñ

òóôëíõö
÷øùúûüýûùþûÿ��ûùþ����ûþ��ÿøý

(c)

Figure 3.14: The directory system provides high throughputand fast response time for
lookups and updates

101

agent instances generate lookups and updates following a bursty random process, emu-

lating storms of lookups and updates. Each directory serverretrieves all the mappings

(100K) from the RSM every 30 seconds.

Our evaluation supports four main conclusions. First, the directory system provides

high throughput and fast response time for lookups; three directory servers can handle

50K lookups/sec with latency under 10ms (99th percentile latency). Second, the directory

system can handle updates at rates significantly higher thanexpected churn rate in typical

environments: three directory servers can handle 12K updates/sec within 600ms (99th

percentile latency). Third, our system is incrementally scalable; each directory server

increases the processing rate by about 17K for lookups and 4Kfor updates. Finally, the

directory system is robust to component (directory or RSM servers) failures and offers

high availability under network churns.

Throughput: In the first micro-benchmark, we vary the lookup and update rate and

observe the response latencies (1st, 50th and 99th percentile). We observe that a directory

system with three directory servers handles 50K lookups/sec within 10ms which we set

as the maximum acceptable latency for an “ARP request”. Up to40K lookups/sec, the

system offers a median response time of< 1ms. Updates, however, are more expensive,

as they require executing a consensus protocol [67] to ensure that all RSM replicas are

mutually consistent. Since high throughput is more important than latency for updates,

we batch updates over a short time interval (e.g., 50ms). We find that three directory

servers backed by three RSM servers can handle 12K updates/sec within 600ms and

about 17K updates/sec within 1s.

Scalability: To understand the incremental scalability of the directorysystem, we mea-

sured the maximum lookup rates (ensuring sub-10ms latency for 99% requests) with 3,

5, and 7 directory servers. The result confirmed that the maximum lookup rates increases

102

linearly with the number of directory servers (with each server offering a capacity of

17K lookups/sec). Based on this result, we estimate the worst case number of directory

servers needed for a 100K server data center. Using the concurrent flow measurements

(Figure 3.3), we use the baseline of 10 correspondents per server in a 100s window. In

the worst case, all 100K servers may perform 10 simultaneouslookups at the same time

resulting in a million simultaneous lookups per second. As noted above, each directory

server can handle about 17K lookups/sec under 10ms 99th percentile. Therefore, han-

dling this worst case will require a modest-sized directorysystem of about 60 servers

(0.06% of the entire servers).

Resilience and availability:We examine the effect of directory server failures on latency.

We vary the number of directory servers while keeping the workload constant at a rate

of 32K lookups/sec and 4K updates/sec (a higher load than expected for three directory

servers). In Figure 3.14(a), the lines for one directory server show that it can handle

60% of the lookup load (19K) within 10ms. The spike at two seconds is due to the

timeout value of 2s in our prototype. The entire load is handled by two directory servers,

demonstrating the system’s fault tolerance. Additionally, the lossy network curve shows

the latency of three directory servers under severe (10%) packet losses between directory

servers and clients (either requests or responses), showing the system ensures availability

under network churns.

For updates, however, the performance impact of the number of directory servers is

higher than updates because each update is sent to a single directory server to ensure

correctness. Figure 3.14(b) shows that failures of individual directory servers do not

collapse the entire system’s processing capacity to handleupdates. The step pattern on

the curves is due to a batching of updates (occurring every 50ms). We also find that the

primary RSM server’s failure leads to only about 4s delay forupdates until a new primary

103

is elected, while a primary’s recovery or non-primary’s failures/recoveries do not affect

the update latency at all.

Fast reconvergence and robustness:Finally, we evaluate the convergence latency

of updates i.e., the time between when an update occurs untila lookup response reflects

that update. As described in Section 3.4.3, we minimize convergence latency by having

each directory server pro-actively send its committed updates to other directory servers.

Figure 3.14(c) shows that the convergence latency is within100ms for 70% updates and

99% of updates have convergence latency within 530 ms.

3.6 Discussion

In this section, we address several remaining concerns about the VL2 architecture, in-

cluding whether other traffic engineering mechanisms mightbe better suited to the DC

than Valiant Load Balancing; the cost of a VL2 network; and the cost and viability of

cabling VL2.

Optimality of VLB: As noted in Section 3.4, VLB uses randomization to cope with

volatility, potentially sacrificing some performance for abest-case traffic pattern by turn-

ing all traffic patterns (including both best-case and worst-case) into the average case.

This performance loss will manifest itself as the utilization of some links being higher

than they would under a more optimal traffic engineering system. To quantify the in-

crease in link utilization VLB will suffer, we compare VLB’smaximum link utilization

with that achieved by other routing strategies on a full day’s traffic matrices (TMs) from

the DC traffic data reported in Section 3.3.1.

We first compare toadaptive routing, which routes each TM separately so as to min-

imize the maximum link utilization for that TM — essentiallyupper-bounding the best

104

performance that real-time adaptive traffic engineering could achieve. Second, we com-

pare tobest oblivious routingover all TMs so as to minimize the maximum link utiliza-

tion. (Note that VLB is just one among many oblivious routingstrategies.) For adaptive

and best oblivious routing, the routings are computed usingrespective linear programs

in Cplex. The overall utilization for a link in all schemes iscomputed as the maximum

utilization over all routed TMs.

The results show that for the median utilization link in eachscheme, VLB per-

forms about the same as the other two schemes. For the most heavily loaded link in

each scheme, VLB’s link capacity usage is about 17% higher than that of the other two

schemes. Thus, evaluations on actual data center workloadsshow that the simplicity and

universality of VLB costs relatively little capacity when compared to much more complex

traffic engineering schemes.

Cost and Scale:With the range of low-cost commodity devices currently available,

the VL2 topology can scale to create networks with no over-subscription between all the

servers of even the largest data centers. For example, switches with 144 ports (D = 144)

are available today for $75K, enabling a network that connects 100K servers using the

topology in Figure 3.5 and up to 200K servers using a slight variation. Using switches

with D = 24 ports (which are available today for $10K each), we can connect about 3K

servers. Comparing the cost of a VL2 network for 35K servers with a conventional one

found in one of our data centers shows that a VL2 network with no over-subscription can

be built for the same cost as the current network that has 1:240 over-subscription. Build-

ing a conventional network with no over-subscription wouldcost roughly 14x the cost of

a equivalent VL2 network with no over-subscription. We find the same ballpark factor of

14-20 cost difference holds across a range of over-subscription ratios from 1:1 to 1:23.

(We use street prices for switches in both architectures andleave out ToR and cabling

105

costs.) There is some savings to be had by building an oversubscribed VL2 network, as a

VL2 network with 1:23 over-subscription costs 70% less thana non-oversubscribed VL2

network, but the savings is probably not worth the loss in performance.

Cabling and Deployment:A major concern for every network topology is the ability

to realize the cabling required. The VL2 topology in Figure 3.5 maps easily to a number

of common and anticipated deployment scenarios. Consider the use of 10G SFP+ fiber

optic cables for all network links (the cost of each cable is roughly $190, dominated by

the cost of the SFP+ optical transceiver at each end). Given that the 10G end-ports of a

link cost about $500 each, we estimate the cabling cost to be190/1000 = 19% of total

system cost. Actual calculations show that for each of thesedeployment scenarios, the

total cabling cost is 12% of the network equipment cost(including ToR costs).

Layout Designs:Figure 3.15(a) shows a layout of a VL2 network into a conventional

open floor plan data center. The ToRs and server racks surround a central “network cage”

and connect using copper or fiber cables, just as they do todayin conventional data center

layouts. The aggregation and intermediate switches are laid out in close proximity inside

the network cage, allowing use of copper cables for their interconnection (copper cable

is lower cost, thicker, and has low distance reach vs. fiber).The number of cables inside

the network cage can be reduced by a factor of 4 (and their total cost by a factor of about

2) by bundling together four 10G links into a single cable using the QSFP+ standard.

Modularization of the data center via containerization is arecent trend [71]. Figure

3.15(b) shows how the server racks, ToRs, and pairs of Aggregation switches can be pack-

aged into containers that plug into the Intermediate switches, the latter forming part of the

DC infrastructure. This design requires bringing one cablebundle from each container

to the data center spine. As the next logical step, we can movethe Intermediate switches

into the containers themselves to realize a fully “infrastructure-less” and “containerized”

106

. . .

. . .

. . .

. . .ToR

Network Cage
. . .

Aggr

ToR

Int

(a)
DC Infrastructure

Pluggable Containers

Containers plug into DC infra

¨ToR

Aggr

¨ToR

Aggr

¨ToR

Aggr

. . .Int

(b)

¨ ToR

Aggr

Pluggable
Container

Containers
plug into
others

Int

(c)

Figure 3.15: Three layouts for VL2: (a) Conventional DC floorlayout, (b) Container-
based layout with intermediate switches part of DC infrastructure, and (c) Fully “con-
tainerized” layout. (External connectivity, servers racks, and complete wiring not shown.)

107

data center – this layout is shown in Figure 3.15(c). This design requires running one

cable bundle between each pair of containers C1 and C2 – the bundle will carry links that

connect the aggregation switches in C1 to the intermediate switch in C2 and vice-versa.

3.7 Related Work

Commercial Networks: Data Center Ethernet (DCE) [72] by Cisco and other switch

manufacturers share the goal of increasing network capacity through multi-path with

VL2. However, these industry efforts are primarily focusedon consolidation of IP and

storage area network (SAN) traffic, which is rare in cloud-service data centers, as they are

built on distributed file systems. Due to the requirement to support loss-less traffic, their

switches need much bigger buffers (tens of MBs) than commodity Ethernet switches do

(tens of KBs), hence driving their cost higher.

Scalable routing: Locator/ID Separation Protocol [17] from IETF proposes “map-

and-encap” as a key principle to achieve scalability and mobility in Internet routing.

VL2’s control-plane takes a similar approach (i.e., demand-driven host-information res-

olution and caching) but adapted to data center environmentand implemented on end

hosts.

SEATTLE [73] proposes a distributed host-information resolution system running on

switches to enhance Ethernet’s scalability. VL2 takes an end host based approach to this

problem, which allows its solution to be implemented today,independent of the switches

being used. Furthermore, SEATTLE does not provide scalabledata plane primitives,

such as multi-path, which are critical for scalability and increasing utilization of network

resources.

Data-center network designs:DCell [74] proposes a highly-dense interconnection

108

network for data centers by incorporating end systems with multiple network interfaces

into traffic forwarding and routing. VL2 shares a similar philosophy of leveraging design

options available at servers, however, uses servers only tocontrol the way traffic is routed

but not for forwarding. Furthermore, DCell incurs significant cabling complexity that

may limit incremental growth.

Fat-tree [75] and Monsoon [10] also propose building a data center network using

commodity switches and a Clos topology. Monsoon is designedon top of layer 2 and

reinvents fault-tolerant routing mechanisms already established at layer 3. Fat-tree relies

on a customized routing primitive that does not yet exist in commodity switches. VL2,

in contrast, achieves hot-spot-free routing and scalable layer-2 semantics using forward-

ing primitives available today and minor, application-compatible modifications to host

operating systems. Further, our experiments using traffic patterns from a real data center

show that random flow spreading leads to a network utilization fairly close to the opti-

mum, obviating the need for a complicated and expensive optimization scheme suggested

by Fat-tree.

Valiant Load Balancing: Valiant introduced VLB as a randomized scheme for

communication among parallel processors interconnected in a hypercube topology [65].

Among its recent applications, VLB has been used inside the switching fabric of a

packet switch [76]. VLB has also been proposed, with modifications and generalizations

[63, 62], for oblivious routing of variable traffic on the Internet under the hose traffic

model [64].

109

3.8 Summary

The key to creating economical data centers is enabling agility – the ability to assign any

server to any service – but the network in today’s data centers directly inhibits agility.

We argue that to enable agility, the network should meet three objectives: uniform high

capacity, performance isolation, and layer-2 semantics.

In this chapter we present the VL2 network architecture thatmeets these objectives. It

gives each service the illusion that all its servers are plugged into a single layer 2 switch,

regardless of where the servers are actually connected in the topology. VL2 provides

high throughput, hot-spot free routing, and performance isolation through Valiant Load

Balancing on a Clos topology. The VL2 directory system achieves high throughput and

fast response times, and only requires about 60 nodes for a data center of 100K servers.

VL2 embraces the opportunity to customize the server operating system in the data center

which allows us to build VL2 by leveraging robust networkingtechnologies working

today.

We implemented all components of VL2 and created a working prototype intercon-

necting 80 servers using commodity switches. Experiments with two data-center services

showed that churns (e.g., dynamic re-provisioning of servers, change of link capacity,

and micro-bursts of flows) have little impact on TCP goodput.Using the flow statistics

measured in an operational 1,500-server cluster to drive the workload, we validated that

VL2’s implementation of Valiant Load Balancing splits flowsevenly and VL2 achieves

high TCP fairness. Our prototype network shuffles 2.7 TB of data across 75 servers in

395 seconds, achieving an efficiency of 93% with a TCP fairness index of 0.995 showing

that VL2 delivers high uniform capacity.

110

Chapter 4

Relaying: A Scalable Routing

Architecture for Virtual Private

Networks

In Chapters 2 and 3, we proposed network architectures that require novel functions to be

implemented in routers, switches, or end hosts. While beinghelpful on a mid- to long-

term basis, such an approach offers little help to network administrators who want to turn

an existing operational network into a scalable and efficient self-configuring onetoday.

Addressing this kind of problem requires different approaches. First, it is critical to

ensure that a new solution (i.e., network architecture) canbe built with router/switch/end-

host functions available today. Second, more importantly,a substantial amount of ef-

fort has to be spent on facilitating the deployment and operation of the new solution.

This encompasses various tasks, including offering mechanisms that ensure backwards-

compatibility (with end hosts and neighboring networks), devising algorithms that help

administrators to make optimal operational decisions, building tools that implement such

111

algorithms, and evaluating the algorithms and tools with real data from a target network.

Taking virtual private networks as an example, this chapteraddresses all these questions

on immediately-available, scalable, and self-configuring network architectures.

Enterprise customers are increasingly adopting VPN service that offers direct any-

to-any reachability among the customer sites via a providernetwork. Unfortunately this

direct reachability model makes the service provider’s routing tables grow very large

as the number of VPNs and the number of routes per customer increase. As a result,

router memory in the provider’s network has become a key bottleneck in provisioning

new customers.

This chapter proposesRelaying, a scalable VPN routing architecture that the provider

can implement simply by modifying the configuration of routers in the provider network,

without requiring changes to the router hardware and software. Relaying substantially

reduces the memory footprint of VPNs by choosing a small number of hub routers in

each VPN that maintain full reachability information, and by allowing non-hub routers to

reach other routers through a hub.

Deploying Relaying in practice, however, poses a challenging optimization problem

that involves minimizing router memory usage by having as few hubs as possible, while

limiting the additional latency due to indirect delivery via a hub. We first investigate the

fundamental tension between the two objectives and then develop algorithms to solve the

optimization problem by leveraging some unique propertiesof VPNs, such as sparsity

of traffic matrices and spatial locality of customer sites. Extensive evaluations using real

traffic matrices, routing configurations, and VPN topologies demonstrate that Relaying

is very promising and can reduce routing-table usage by up to90%, while increasing the

additional distances traversed by traffic by only a few hundred miles, and the backbone

bandwidth usage by less than10%.

112

We begin this chapter in Section 4.1 by giving an overview of the conventional VPN

architecture, as well as motivating Relaying. Then in Section 4.2, we offer a brief in-

troduction to the problem background and desirable properties that any solutions for the

problem should offer. Subsequently we present our measurement results and motivate

Relaying in Section 4.3. Then we describe our baseline Relaying scheme in Section 4.4

and explore the broad solution space with the baseline Relaying scheme in Section 4.5.

In Sections 4.6 and 4.7, we formulate problems of finding practical Relaying configura-

tion, propose algorithms to solve the problems, and evaluate the algorithms. Finally, we

discuss the implementation and deployment issues in Section 4.8, briefly review related

work in Section 4.9, and conclude the chapter in Section 4.10.

4.1 Motivation and Overview

VPN service allows enterprise customers to interconnect their sites via dedicated, secure

tunnels that are established over a provider network. Amongvarious VPN architectures,

layer-3 MPLS VPN [77] offers direct any-to-any reachability among all sites of a cus-

tomer without requiring the customer itself to maintain full-mesh tunnels between each

pair of sites. This benefit of any-to-any reachability makeseach customer VPN highly

scalable and cost-efficient, leading to the growth of the MPLS VPN service at an ex-

tremely rapid pace. According to the market researcher IDC,the MPLS VPN market was

worth $16.4 billion in 2006 and is still growing fast [78]. By2010, it is expected that

nearly all medium-sized and large businesses in the United States will have MPLS VPNs

in place.

The any-any reachability model of MPLS VPNs imposes a heavy cost on the

providers’ router memory resources. Each provider edge (PE) router in a VPNprovider

113

network (see, e.g., Figure 4.1a) is connected to one or more different customer sites, and

each customer edge (CE) router in a site announces its own address blocks (i.e., routes)

to the PE router it is connected to. To enabledirect any-to-any reachability over the

provider network, for each VPN, each PE router advertises all routes it received from the

CE routers that are directly connected to it, to all other PEsin the same VPN. Then, the

other PEs keep those routes in their VPN routing tables for later packet delivery. Thus,

the VPN routing tables in PE routers grow very fast as the number of customers (i.e.,

VPNs) and the number of routes per customer increase. As a result, router memory space

required for storing VPN routing tables has become a key bottleneck in provisioning new

customers.

We give a simple example to illustrate how critical the memory management problem

is. Consider a PE with a network interface card with OC-12 (622 Mbps) bandwidth that

can be channelized into 336 T1 (1.544 Mbps) ports - this is a very common interface

card configuration for PEs. This interface can serve up to 336different customer sites.

It is not unusual that a large company has hundreds or even thousands of sites. For

instance, a large convenience store chain in the U.S. has 7,200 stores. Now, suppose the

PE in question serves one retail store of the chain via one of the T1 ports. Since each of

the 7,200 stores announces at least two routes (one for the site, and the other for the link

connecting the site and the backbone), that single PE has to maintain at least 14,400 routes

just to maintain any-any connectivity to all sites in this customer’s VPN. On the other

hand, a router’s network interface has a limited amount of memory that is specifically

designed for fast address look-up. Today’s state-of-the-art interface card can store at

most 1 million routes, and a mid-level interface card popularly used for PEs can hold at

most200 to 300K routes. Obviously, using7.2% (14, 400/200K) of the total memory

for a single site that accounts for only at most0.3% of the total capacity (1 out of 336

114

T1 ports) leads to very low utilization; having only14 customers that are similar to the

convenience store can use up the entire interface card memory, while 322 other ports are

still available. Even if interface cards with larger amounts of memory become available

in the future, since the port-density of interfaces also grows, this resource utilization gap

remains.

4.1.1 Relaying: Don’t keep it if you don’t need it

Fortunately, in reality, every customer site typically does not communicate with every

other site in the VPN. This is driven by a number of factors including i) most network-

ing applications today are predominantly client-server applications, and the servers (e.g.,

database, mail, file servers, etc.) are almost always centrally located at a few customer

sites, andii) enterprise communications typically follow corporate structures and hierar-

chies. In fact, a measurement study based on traffic volumes in a large VPN provider’s

backbone shows that traffic matrices (i.e., matrices of traffic volumes between each pair

of PEs) in VPNs are typically very sparse, and have a clear hub-and-spoke communica-

tion pattern [79, 80]. We also observed similar patterns by analyzing our own flow-level

traffic traces. Hence, PE routers nowadays install more routes than they actually need,

perhaps much more than they frequently need.

This sparse communication behavior of VPNs motivates a router-memory saving ap-

proach thatinstalls only a smaller number of routesat a PE, while stillmaintains any-to-

any connectivity between customer sites. In this chapter, we proposeRelaying, a scalable

VPN routing architecture. Relaying substantially reducesthe memory footprint of VPNs

by selecting a small number of hub PEs that maintain full reachability information, and

by allowing non-hub PEs to reach other routers only through the hubs.To be useful in

practice, however, Relaying needs to satisfy the followingrequirements:

115

• Bounded penalty:The performance penalty associated with indirect delivery(i.e.,

detouring through a hub) should be properly restricted, so that the service quality

perceived by customers does not get noticeably deteriorated and that the workload

posed on the provider’s network does not significantly increase either. Specifically,

bothi) additional latency between communicating pairs of PEs, and ii) the increase

of load on the provider network should be insignificant on average and be strictly

bounded within the values specified in SLAs (Service Level Agreements) in the

worst case.

• Deployability: The solution should be immediately deployable, work in the con-

text of existing routing protocols, require no changes to router hardware and soft-

ware, and be transparent to customers.

To bound the performance penalty and to reduce the memory footprint of routing

tables at the same time, we need to choose asmall number of hub PEs out of all PEs,

where the hub PEs originate or receivemost traffic within the VPN. Specifically, we

formulate this requirement as the following optimization problem. For each VPN whose

traffic matrices, topology, and indirection constraints (e.g., maximum additional latency,

or total latency) are given,select as small a number of hubs as possible, such that the

total number of routes installed at all PEs is minimized, while the constraints on indirect

routing are not violated. Note that, unlike conventional routing studies that typically

limit overall stretch (i.e., the ratio between the length ofthe actual path used for delivery

and the length of the shortest path), we instead bound the additional (or total) latency

of eachindividual path. This is because an overall stretch is often not quite useful in

directly quantifying the performance impact on applications along each path, and hence

hard to be derived from SLAs. Moreover, most applications are rather tolerant to the

116

small increase of latency, but the perceived quality of those applications drastically drops

beyond a certain threshold which can be very well specified byan absolute maximum

latency value, rather than a ratio (i.e., stretch).

To solve this optimization problem, we first explore the fundamental trade-off rela-

tionship between the number of hubs and the cost due to the relayed delivery. Then, we

propose algorithms that can strictly limit the increase of individual path lengths and can

reduce the number of hubs at the same time. Our algorithms exploit some unique prop-

erties of VPNs, such as sparse traffic matrices and spatial locality of customer sites. We

then perform extensive evaluations using real traffic matrices, route advertisement con-

figuration data, and network topologies of hundreds of VPNs at a large provider. The

results show that Relaying can reduce routing table sizes byup to90%. The cost for this

large saving is the increase of individual communication’sunidirectional latency only by

at most2 to 3 ms (i.e., the increase of each path’s length by up to a few hundred miles),

and the increase of backbone resource utilization by less than10%. Moreover, even when

we assume a full any-to-any conversation pattern in each VPN, rather than the sparse pat-

terns that are monitored during a measurement period, our algorithms can save more than

60% of memory for moderate penalties.

This chapter makes four contributions:i) We propose Relaying, a new routing archi-

tecture for MPLS VPNs that substantially reduces memory usage of routing tables;ii) we

formulate an optimization problem of determining a hub set,and assigning hubs to the

remaining PEs in a VPN;iii) we develop practical algorithms to solve the hub selection

problem; andiv) we extensively evaluate the proposed architecture and algorithms with

real traffic traces, routing configuration, and topologies from hundreds of operational

VPNs.

117

4.2 Background

In this section, we first provide some background on MPLS VPN and then introduce terms

we use in later sections. We also describe what properties a memory saving solution for

VPNs should possess. Finally we briefly justify our Relayingarchitecture.

4.2.1 How MPLS VPN works

Layer 3 MPLS VPN is a technology that creates virtual networks on top of a shared

MPLS backbone. As shown in Figure 4.1a, a PE can be connected to multiple Customer

Edge (CE) routers of different customers. Isolating trafficamong different customers

is achieved by having distinct Virtual Routing and Forwarding (VRF) instances in PEs.

Thus, one can conceptually view a VRF as a virtual PE that is specific to a VPN1. Given a

VPN, each VRF locally populates its VPN routing table eitherwith statically configured

routes (i.e., subnets) pointing to incident CE routers, or with routes that are learned from

the incident CE routers via BGP [81]. Then, these local routes are propagated to other

VRFs in the same VPN via Multi-Protocol Border Gateway Protocol (MP-BGP) [82].

Once routes are disseminated correctly, each VRF learns allcustomer routes of the VPN.

Then, packets are directly forwarded from a source to a destination VRF through a label-

switched path (i.e., tunnel). PEs in a region are physicallylocated at a single POP (Point

of Presence) that houses all communication facilities in the region.

Figure 4.1b illustrates an example VPN provisioned over fivePEs. Each PE’s routing

table is shown as a box by the PE. We assume that PEi is connected to CEi which

announces prefixi. PEi advertises prefixi to the other PEs via BGP, ensuring reachability

to CEi. To offer the direct any-to-any reachability, each PE stores every route advertised

1We also use “PE” to denote “VRF” when we specifically discuss about a single VPN.

118

(a)

(b)

(c)

Figure 4.1: (a) MPLS VPN service with three PEs; two customerVPNs (X, Y) exist, (b)
Direct reachability, (c) Reachability under Relaying.

119

by the other PEs in its local VRF table. In this example, thus,each PE keeps five route

entries, leading to25 entries in total across all PEs. The arrows illustrate a traffic matrix.

Black arrows represent active communications between pairs of PEs that are monitored

during a measurement period, whereas gray ones denote inactive communications.

Specifically, our Relaying architecture aims to reduce the size of a FIB (Forwarding

Information Base), a data structure storing route entries.A FIB is also called a forward-

ing table and is optimized for fast look-up for high speed packet forwarding. Due to

performance and scalability reasons, routers are usually built with several FIBs each of

which is located in a very fast memory on a line card (i.e., network interface card). Un-

fortunately, the size of a line-card memory is limited, and increasing its size is usually

very hard due to various constraints, such as packet forwarding rate, power consumption,

heat dissipation, spatial restriction, etc. For example, some line-card models use a special

hardware, such as TCAM (Ternary Content Addressable Memory) or SRAM [83], which

is much more expensive and hard to be built in a larger size than regular DRAMs are.

Even if a larger line-card memory was available, upgrading all line cards in the network

with the large memory may be extremely costly. In MPLS VPN, a VRF is a virtual FIB

specific to a VPN and resides in a line-card memory along with other VRFs configured

on the same card. Beside the VRFs, line-card memory also stores packet filtering rules,

counters for measurement, and sometimes the routes from thepublic Internet as well,

which collectively make the FIB-size problem even more challenging.

4.2.2 Desirable properties of a solution

To ensure usefulness, a router memory saving architecture for VPNs should satisfy the

following requirements.

120

1. Immediately deployable: Routing table growth is an imminent problem to

providers; a solution should make use of router functions (either in software or

hardware) and routing protocols that are available today.

2. Simple to implement: A solution must be easy to design and implement. For

management simplicity, configuring the solution should be intuitive as well.

3. Transparent to customers: A solution should not require modifications to cus-

tomer routers.

We deliberately choose Relaying as a solution because it satisfies these requirements.

Relaying satisfies goal1 because the provider can implement Relaying only via router

configuration changes (see Section 4.8 for details). It alsomeets goal3 since a hub

maintains full reachability, allowing spoke-to-spoke traffic to be directly handled at a hub

without forwarding it to a customer site that is directly connected to the hub. Ensuring

goal2, however, shapes some design principles of Relaying which we will discuss in the

following sections. Here we briefly summarize those detailsand justify them.

Relaying classifies PEs into just two groups (hubs and spokes) and applies a simple

“all-or-one” table construction policy to the groups, where hubs maintain “all” routes

in the VPN, and spokes store only “one” default route to a hub (the details are in Sec-

tion 4.4). Although we could save more memory by allowing each hub to store a disjoint

fraction of the entire route set, such an approach inevitably increases complexity because

the scheme requires a consistency protocol among PEs.

For the same reason, we do not consider incorporating cache-based optimizations.

When using route caching, each spoke PE can store a small fraction of routes (in addition

to the default route, or without the default route) that might be useful for future packet

delivery. Thus any conversation whose destination is foundin the cache does not take

121

an indirect path. Despite this benefit, a route caching scheme is very hard to implement

because we have to modify routers, violating goal1. Specifically, we need to design

and implementi) a resolution protocol to handle cache misses, andii) a caching archi-

tecture (e.g., route eviction mechanism) running in routerinterface cards. Apart from

the implementation issues, the route caching mechanism itself is generally much harder

to correctly configure than Relaying is, violating goal2. For example, to actually re-

duce memory usage, we need to fix a route cache’s size. However, a fixed-sized cache

is vulnerable to a sudden increase of the number of popular routes due to the changes

in the customer side or malicious attempts to poison a cache (e.g., scanning). To avoid

thrashing in these cases we have to either dynamically adjust cache size, or have to allow

some slackness to buffer the churns; neither is satisfactory because the former introduces

complexity, and the latter lowers memory saving effect.

Goal 2 also leads us to another important design decision, namely individual opti-

mization of VPNs. That is, in our Relaying model, a set of Relaying configuration (i.e.,

the set of hubs) for a VPN does not depend on other VPNs. Thus, for example, we do not

select a VRF in a PE as a hub at the expense of making other VRFs in the same PE spokes,

neither do we choose a VRF as a spoke to make other VRFs in the same PE hubs. This de-

sign decision is critical because VPNs are dynamic. If we allowed the dependency among

different VPNs, having a new VPN customer or deleting an existing customer might alter

the Relaying configuration of other VPNs, leading to a large re-configuration overhead.

Moreover, this independence condition also allows networkadministrators to customize

each VPN differently by applying different optimization parameters to different VPNs.

122

4.3 Understanding VPNs

In this section, we first briefly describes the data set used throughout the chapter. Then

we present our measurement results from a large set of operational VPNs. By analyzing

the results, we identify key observations that motivate Relaying.

4.3.1 Data sources

VPN configuration, VRF tables, and network topology: We use configuration and

topology information of a large VPN service provider in the U.S. which has, at least,

hundreds of customers. VPNs vary in size and in geographicalcoverage; smaller ones

are provisioned over a few PEs, whereas larger ones span overhundreds of PEs. The

largest VPN installs more than20, 000 routes in each of its VRFs. Specifically, from this

VPN configuration set, we obtain the list of PEs with which each VPN is provisioned,

and the list of prefixes each VRF advertises to other VRFs. We also obtain the list of

routes installed in each VRF under the existing routing configuration. From the topology,

we obtain the location of each PE and POP, the list of PEs in each POP, and inter-POP

distances.

Traffic matrices: We use traffic matrices each of which describes PE-to-PE traffic vol-

umes in a VPN. These matrices are generated by analyzing realtraffic traces captured

in the provider backbone over a certain (usually longer thana week) period. The traffic

traces are obtained by monitoring the links of PEs facing thecore routers in the backbone

using Netflow [84]. Thus, the source PE of the flow is obvious, while the destination is

also available from the tunnel end point information in flow records. Unless otherwise

specified, the evaluation results shown in the following sections are based on a week-long

traffic measurements obtained in May, 2007.

123

4.3.2 Properties enabling memory saving

Through the analysis of the measurement results, we make thefollowing observations

about the MPLS VPNs. These properties allow us to employ Relaying to reduce routing

tables.

Sparse traffic matrices: A significant fraction of VPNs exhibithub-and-spoketraffic

patterns, where a majority of PEs (i.e., spokes) communicatemostlywith a small number

of highly popular PEs (i.e., hubs). Figure 4.2a shows the distributions of the number of ac-

tive prefixes (i.e., destination address blocks that are actually used during a measurement

period) divided by the number of total prefixes in a VRF. We measure the distributions

during four different measurement periods, ranging from a week to a month. The curves

show that, for most VRFs, the set of active prefixes is much smaller than the set of total

prefixes. Across all measurement periods, roughly80% (94%) of VRFs use only10%

(20%) of the total prefixes stored. The figure also confirms that the sets of active prefixes

are stable over different measurement periods. By processing these results, we found out

that the actual amount of memory required to store the activeroute set is only3.9% of the

total amount. Thus, if there was an ideal memory saving scheme that precisely maintain

only those prefixes that are used during the measurement period, such a scheme would

reduce memory usage by96.1%. This number sets a rough guideline for our Relaying

mechanism.

Spatial locality of customer sites:Sites in the same VPN tend to be clustered geographi-

cally. Figure 4.2b shows the distributions of the distance from a VRF to itsi-th percentile

closest VRF. For example, the25th percentile curve shows that80% of VRFs have25%

of the other VRFs in the same VPN within630 miles. According to the50-th percentile

curve, most (81%) VRFs have at least half of the other VRFs in the same VPN within

124

0 10% 20% 30%
Num. of active routes / Num. of total routes

0

0.2

0.4

0.6

0.8

1
F

ra
ct

io
n

of
 V

R
F

s

2007/May
2007/May/13-19
2007/Jul
2007/Jul/23-29

(a)

0 1000 2000 3000 4000 5000 6000
Distance (in miles)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 P
E

s

25th percentile
50th
75th
95th
100th

(b)

Figure 4.2: (a) CDFs of the proportion of active prefixes in a VRF, (b) CDFs of the
distance to thei-th percentile closest VRF

125

1, 000 miles. Thus, a single hub can serve a large number of nearby PEs, leading to the

decrease of additional distances due to Relaying.

PE’s Freedom to selectively install routes:A PE can choose not to store and advertise

every specific route of a VPN to a CE as long as it maintains reachability to all the other

sites (e.g. via a default route). Indeed, this does not affect a CE’s reachability to all other

sites because a CE’s only way to reach other sites is via its adjacent PE(s) of the same

(and sole) VPN backbone. Furthermore, this CE does not have to propagate all the routes

to other downstream customers. However, a CE might still be connected to multiple PEs

for load-balancing or backup purpose. In that case, the sameload-balancing or backup

goals are still achieved if all the adjacent PEs are selectedas hubs or all are selected as

spokes at the same time so that all the PEs announce the same set of routes to the CE.

Note that this property does not hold for the routers participating in the Internet routing,

where it is common for customers to be multi-homed to multiple providers or to be transit

providers themselves.

4.4 Overview of Relaying

The key properties of VPN introduced in the previous sectioncollectively form a foun-

dation for Relaying. In this section, we first define the Relaying architecture, and then

introduce detailed variations of the Relaying mechanism.

4.4.1 Relaying through hubs

In Relaying, PEs are categorized into two different groups:hubsandspokes. A hub PE

maintains full reachability information, whereas a spoke PE maintains the reachability

for the customer sites that are directly attached to it and asingle default routepointing to

126

one of the hub PEs. When a spoke needs to deliver packets destined to non-local sites, the

spoke forwards the packets to its hub. Since every hub maintains full reachability, the hub

that received the relayed packets can then directly deliverthem to correct destinations.

Multi-hop delivery across hubs is not required because every hub maintains the same

routing table.

This mechanism is illustrated in Figure 4.1c. Assuming the traffic pattern shown in

Figure 4.1b is stable, one may choose PE1 and PE3 as hubs. This leads to16, rather

than25, route entries in total. Although the paths of most active communications remain

unaffected (as denoted by solid edges), this Relaying configuration requires some com-

munications (dotted edges) be detoured through hubs, offering indirect reachability. This

indirect delivery obviously inflates some paths’ length, leading to the increase of latency,

additional resource consumption in the backbone, and larger fate sharing. Fortunately,

reducing this side effect is possible when one can build a setof hubs that originates or re-

ceive most traffic within the VPN. Meanwhile, reducing the memory footprint of routing

tables requires the hub set to be as small as possible. In the following sections, we show

that composing such a hub set is possible.

4.4.2 Hub selection vs. hub assignment

Relaying is composed of two different sub-problems:hub selectionandhub assignment

problems. Given a VPN, ahub selectionproblem is a decision problem of selecting each

PE in the VPN as a hub or a spoke. On the other hand, ahub assignmentproblem is a

matter of deciding which hub a spoke PE should use as its default route. A spoke must

use a single hub consistently because, by definition, a PE cannot change its default route

for each different destination. To implement Relaying, we let each hub advertise a default

route (i.e.,0.0.0.0/0) to spoke PEs via BGP. Thus, in practice, the BGP routing logic

127

0 0.2 0.4 0.6 0.8 1
Volume threshold (alpha)

0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
n

reduction in num. of prefixes
vol relayed / vol total
vol*add_dist / vol*dir_dist

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
Volume threshold (alpha)

0

0.1

0.2

0.3

P
ro

po
rt

io
n

random
de facto
optimal

(b)

0 1000 2000 3000 4000 5000 6000
Additional distance (in miles)

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 c
on

ve
rs

at
io

ns

optimal
de facto
random

(c)

Figure 4.3: (a) Gain and cost (de facto asgn.), (b) Sum of the products of volume and
additional distance, (c) CDF of additional distances (α = 0.1)

128

running at each PE autonomously solves the hub assignment problem. Since all updates

for the default route are to be equivalent for simplicity, each PE chooses the closest hub

in terms of IGP (Interior Gateway Protocol) distance. We call this model thede factohub

assignment strategy.

In order to assess the effect of the de facto strategy on path inflation, we compare

it with some other hub assignment schemes, including random, optimal, and algorithm-

specific assignment. Therandomassignment model assigns a random hub for each non-

local destination. In theoptimal assignment scheme, we assume that each PE chooses

the best hub (i.e., the one minimizing the additional distance) for each non-local desti-

nation. Note that this model is impossible to realize because it requires global view on

routing. Finally, thealgorithm-specificassignment is the assignment plan that our algo-

rithm generates. This plan is realistic because it assumes asingle hub per spoke, not per

destination.

4.5 Baseline Performance of Relaying

To investigate fundamental trade-off relationship between the gain (i.e., memory saving)

and cost (i.e., increase of path lengths and the workload in the backbone due to detour-

ing), we first explore a simple, light-weight strategy to reduce routing tables. Despite

its simplicity, this strategy saves router memory substantially with only moderate penal-

ties. Note that the Relaying schemes we propose in later sections aim to outperform this

baseline approach.

129

4.5.1 Selecting heavy sources or sinks as hubs

The key problem of Relaying is building a right set of hubs. Fortunately, spatial locality

of traffic matrices hints us that forcing a spoke PE to communicate only through a hub

might increase memory saving significantly, without increasing the path lengths of most

conversations. Thus, we first investigate the following simple hub selection strategy,

namelyaggregate volume-based hub selection, leveraging the sparsity of traffic matrices.

For a PEpi in VPN v, we measure the aggregate traffic volume to and from the PE.

We denoteain
i to be the aggregated traffic volume received bypi from all customer sites

directly connected topi, andaout
i to be the aggregated traffic volume sent bypi to all

customer sites directly attached topi. In VPN v, if ain
i ≥ α

∑
j ain

j or aout
i ≥ α

∑
j aout

j

whereα is a tunable parameter between0 and1 inclusively, then we choosepi as a hub

in v.

Although we could formulate this as an optimization problemto determine the opti-

mal value ofα (for a certain VPN or for all VPNs) minimizing a multi-objective function

(e.g., a weighted sum of routing table size and the amount of traffic volume relayed via

hubs), this approach lead us to two problems. First, it is hard to determine a general,

but practically meaningful multi-objective utility function especially when each of the

objectives has a different meaning. Second, the objectives(e.g., memory saving) are not

convex, making efficient search impossible. Instead, we perform numerical analysis with

varying values ofα and show how table size and the amount of relayed traffic volume

varies across differentα values. Since there are hundreds of VPNs available, exploring

each individual VPN with varyingα values broadens the solution space impractically

large. Thus we apply a commonα value for all VPNs.

130

4.5.2 Performance of the hub selection

Performance metrics: To assess Relaying performance, we measure four quantities:

metric-i) the number of routing table entries reduced,metric-ii) the amount of traffic

that is indirectly delivered through hubs,metric-iii) the sum of the products of traffic vol-

ume and additional distance by which the traffic has to be detoured, andmetric-iv) the

additional distance of each conversation’s forwarding path. For easier representation, we

normalize the first three metrics.Metric-i is normalized by the total number of routing

entries before Relaying,metric-ii is normalized by the amount of total traffic in the VPN,

andmetric-iii is normalized by the sum of the products of traffic volume and direct (i.e.,

shortest) distance. We consistently use these metrics throughout the rest of the chapter.

The meanings of these metrics are as followings.Metric-i quantifies our scheme’s

gain in memory saving, whereasmetric-ii, iii andiv denote itscost. Specifically,ii andiii

show the increase of workload on the backbone. On the other hand, iv shows the latency

inflation of individual PE-to-PE communications. Note thatwe measure the latency in-

crease in distance (i.e., miles) because, in the backbone ofa large tier-one network, prop-

agation delay dominates a path latency. Due to the speed of light and attenuation, a mile

in distance roughly corresponds to11.5 usec of latency in time. Thus, increasing a path

length by1000 (or 435) miles lead to the increase of unidirectional latency roughly by

11.5 (5) msec.

Relaying results:Figure 4.3a shows the gain and cost of the aggregate volume-based hub

selection scheme across different values of the volume thresholdα. As soon as we apply

Relaying (i.e.,α > 0), all three quantities increase because the number of hubs decreases

asα increases. Note, however, that the memory saving increasesvery fast, whereas the

amount of relayed traffic and its volume-mile product increases modestly. If we assume

131

a sample utility function that is an equally weighted sum of the memory saving and the

relayed traffic volume, the utility value (i.e., the gap between the gain and the cost curves)

is maximized whereα is around0.1 to 0.2. Whenα passes0.23, however, the memory

saving begins to decrease fast because a large value ofα fails to select hubs in some

VPNs, making those VPNs revert to the direct reachability architecture between every

pair of PEs. This also makes the cost values decrease as well.

Figure 4.3b shows how different hub assignment schemes affect the cost (specifically,

the increase of workload on the backbone manifested by the sum of the products of vol-

ume and additional distance). Note that we do not plot the gain curve because it remains

identical regardless of which hub assignment scheme we use.First, the graph shows

that the overall workload increased by Relaying with eitherthe de facto or the optimal

assignment is generally low (less than14% for any α). Second, the de facto assign-

ment only slightly increases the workload on the backbone (around2%) in the sweet spot

(0.1 < α < 0.2), compared to the optimal (but impractical) scheme. The increase hap-

pens because the de facto scheme forces a spoke to use the closest hub consistently, and

that closest hub might not be the spoke’s popular communication peer. Nevertheless, this

result indicates that choosing the closest hub is effectivein reducing the path inflation.

Although the sum of the volume-mile products is reasonably small, the increased

path lengths can be particularly detrimental to someindividual traffic flows. Figure 4.3c

shows, for all communicating pairs in all VPNs, how much additional distances the Re-

laying scheme incurs. The figure shows latency distributions when using Relaying (with

α = 0.1) for three different hub assignment schemes: optimal, de facto, and random.

For example, when using Relaying with the de facto assignment scheme, roughly70%

of the communicating pairs still take the shortest paths, whereas around94% of the pairs

experience additional distances of at most1000 miles (i.e., the increase of unidirectional

132

latency by up to11.5 msec). Unfortunately this means that some6% of the pairs suf-

fer from more than1000 miles of additional distances, which can grow in the worst

case larger than5000 miles (i.e., additional60 msec or more unidiretionally). To those

communications, this basic Relaying scheme might be simplyunacceptable, as some ap-

plications’ quality may drastically drop. Unfortunately,the figure also shows that even

the optimal hub assignment scheme does not help much in reducing the particularly large

additional path lengths.To remove the heavy tail, we need a better set of hubs.

4.6 Latency-constrained Relaying

Relaying requires spoke-to-spoke traffic to traverse an indirect path, and therefore in-

creases paths’ latency. However, many VPN applications such as VoIP are particularly

delay-sensitive and can only tolerate a strictly-bounded end-to-end latency (e.g., up to

250 ms for VoIP). SLAs routinely specify a tolerable maximum latency for a VPN, and

violations can lead to adverse business consequences, suchas customers’ loss of revenue

due to business disruptions and corresponding penalties onthe provider.

The simple baseline hub selection scheme introduced in Section 4.5 does not factor

in the increase of path latencies due to relaying. Thus, we next formulate the following

optimization problem, namelylatency-constrained Relaying (LCR) problem, of which

goal is to minimize the memory usage of VPN routing tables subject to aconstraint on

the maximum additional latency of each path. Note that we deliberately bound individual

paths’ additional latency, rather than the overall stretch, because guaranteeing a certain

hard limit in latency is more important for applications. For example, increasing a path’s

latency from30 msec (a typical coast-to-coast latency in the U.S.) to60 leads to the stretch

of only 2, whereas the additional30 msec can intolerably harm a VoIP call’s quality. On

133

the other hand, increasing a path’s latency from2 msec to10 may be nearly unnoticeable

to users, even though the stretch factor in this case is5.

4.6.1 LCR problem formulation

We first introduce the following notation. LetP denote the set of PE routersP =

{p1, p2, ..., pn} in VPN v. We define two matrices:i) Conversation matrixC = (ci,j)

that captures the historical communication between the routers inP , whereci,j = 1 if

i 6= j andpi has transmitted traffic topj during the measurement period, andci,j = 0

otherwise; andii) latency matrixL = (li,j) whereli,j is unidirectional communication

latency (in terms of distance) frompi to pj. li,i = 0 by definition. LetH = {h1, ..., hm}

(m ≤ n) be a subset ofP denoting the hub set. Finally, we define mappingM : P → H

that determines a hubhj ∈ H for eachpi ∈ P .

LCR is an optimization problem of determining a smallestH (i.e., hub selection) and

a corresponding mappingM (i.e., hub assignment), such that in the resulting Relayingso-

lution, every communications between a pair of VRFs adhere to the maximum allowable

additional latency (in distance) thresholdθ. Formally,

min |H|

s.t. ∀s, d whosecsd = 1,

ls,M(s) + lM(s),d − ls,d ≤ θ

Other variations of the above formulation include boundingeither the maximum total

one-way distance, or both the additional and the total distances. We do not study these

variations due to the following reasons. First, bounding the additional distance is a stricter

condition than bounding only the total distance is. Thus, our results in the following sec-

tions provide lower bounds of memory saving and upper boundsof indirection penalties.

134

Figure 4.4: A sample serve-use relationship

Second, when bounding total and additional distances, the total distance threshold must

be larger than the maximum direct distance. However, this maximum direct distance of-

ten results from a small number of outlier conversations (e.g., communication between

Honolulu and Boston in the case of the U.S.), making the totaldistance bound ineffective

for most common conversations.

Considering the any-to-any reachability model of MPLS VPNs, we could accommo-

date the possibility that any PE can potentially communicate with any other PEs in the

VPN, even if they have not in the past. Thus, we can solve the LCR problem using afull-

meshconversation matrixCfull = (cfull
i,j), where∀i, j (i 6= j) cfull

i,j = 1, cfull
i,i = 0. There

is trade-off between using the usage-based matrices (C) and full-mesh matrices (Cfull).

UsingCfull imposes stricter constraints, potentially leading to lower memory saving. The

advantage of this approach, however, is that the hub selection would be oblivious to the

changes in communication patterns among PEs, obviating periodical re-adjustment of the

hub set.

Unfortunately, the LCR problem is NP-hard, and we provide this proof in the paper

containing the extended version of this chapter [85]. Hence, we propose an approximation

135

0 200 400 600 800 1000
Additional distance (in miles)

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 c
on

ve
rs

at
io

ns

theta = 0 mile
theta = 0 mi (de facto)
theta = 200 mi
theta = 200 mi (de facto)
theta = 400 mi
theta = 400 mi (de facto)
theta = 800 mi
theta = 800 mi (de facto)

(a)

0 400 800 1200 1600 2000
Additional distance (in miles)

0.97

0.98

0.99

1

F
ra

ct
io

n
of

 c
on

ve
rs

at
io

ns

theta = 0 mile
0 mi (de facto)
200 mi
200 mi (de facto)
400 mi
400 mi (de facto)
800 mi
800 mi (de facto)

(b)

0 200 400 600 800 1000
Maximum additional distance, theta (in miles)

0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
n

reduction in num. of prefixes
vol relayed / vol total
vol*add_dist / vol*dir_dist

(c)

Figure 4.5: LCR performance with usage-basedC (a) CDF of additional distances, (b)
CDF of additional distances (zoomed in), (c) Gain and cost

136

algorithm explained in the following subsection.

4.6.2 Algorithm to solve LCR

In this section, we outline our solution to theLCR problem. The pseudo-code of this

algorithm is also given in our extended version [85]. We solve a LCR problem through

a two-staged approach. The first stage buildsserve-userelationships among PEs. Given

a pair of PEs(pi, pj) ∈ P , we say thatpi canservepj , or conversely, thatpj canusepi,

if all conversations inC from pj to other PEs in the VPN can be routed viapi as a hub

without violating the latency constraint. For each PEpi in P , we builds two sets:i) the

servesetSi composed of PEs thatpi can serve as a hub, andii) theusesetUi composed

of PEs thatpi, as a spoke, can use for relaying. The serve-use relationships among PEs

can be represented as a bipartite graph. Figure 4.4 shows a sample serve-use relationship

graph of a VPN with five PEs. Each node on the left bank represents pi ∈ P in its role

as a possible hub, and on the right bank, each node representspi in its role as a potential

spoke. The existence of serve-use relationship between(pi, pj) ∈ P is represented by an

edge betweenpi on the left bank andpj on the right bank.

Our original LCR problem now reduces to finding the smallest number of nodes on

the left bank (i.e., hubs) that can serve every node on the right bank. This is an instance

of the set cover problem, which is proven to be NP-complete [86], and we use a simple

greedy approximation strategy to solve this. At each step, the LCR algorithmi) greedily

selectspi from the left bank whose serve setSi is the largest,ii) removepi from the left

bank,iii) remove allpj (j ∈ Si) from the right bank and update the mapping functionM

to indicate thatpj ’s assigned hub ispi, andiv) revise the serve-use relationships for the

remaining PEs in the graph. The above step is repeated until no PE remains on the right

bank.

137

The LCR algorithm can be easily extended to solve the alternative problems men-

tioned above (i.e., bounding total latency, or both additional and total latency) only by

re-defining the semantics of “serve” and “use” relationship. Note also that the LCR al-

gorithm assigns a single hub for each spoke PE, and each spokePE is assumed to use

the single hub consistently for all packets. Thus, the hub assignment plan generated by

the LCR algorithm is implementable, if not as simple as the defacto assignment scheme

based on BGP anycasting as described in Section 4.4. For example, a VPN provisioning

system can configure each spoke PE’s BGP process to choose a specific route advertise-

ment from a corresponding hub.

4.6.3 Solutions with usage-based matrices

We run the LCR algorithm individually for each VPN. The results shown in later sections

are the aggregate of individual solutions across all VPNs.

Bounding additional distances: Figure 4.5a shows the CDFs of additional distances

of all conversation pairs inC across all VPNs for varyingθ values. Solid lines show

the additional distance distributions when using the algorithm-specific hub assignment

decisions (i.e., assignment plans computed by the LCR algorithm), whereas the dotted

lines represent the distributions when spoke PEs choose theclosest hubs in terms of the

IGP metric (i.e., the de facto hub assignment). Note, however, that for a givenθ, both

solid and dotted curves are generated with the same hub set. For some spoke PEs, the

hub determined by the LCR algorithm might be different from the closest hub that the de

facto assignment scheme would choose. Thus, when one uses the hub sets selected by

the LCR algorithm accompanied with the de facto hub assignment scheme, some pairs of

PEs might experience additional distances larger thanθ. This is why solid lines always

conform theθ values, whereas dotted lines have tails extending beyond theta.

138

0 200 400 600 800 1000
Maximum additional distance, theta (in miles)

0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
n

reduction in num. of prefixes
vol relayed / vol total
vol*add_dist/ vol*dir_dist

(a)

0 200 400 600 800 1000
Maximum additional distance, theta (in miles)

0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
n

vol_relayed / vol_total (test)
vol*add_dist / vol*dir_dist (test)
vol_relayed / vol_total (model)
vol*add_dist / vol*dir_dist (model)

(b)

0 200 400 600 800 1000
Additional distance (in miles)

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 c
on

ve
rs

at
io

ns

theta = 0 mile
0 mi (de facto)
200 mi
200 mi (de facto)
400 mi
400 mi (de facto)
800 mi
800 mi (de facto)

(c)

Figure 4.6: (a) LCR performance withCfull, (b) Robustness results (costs), (c) Robust-
ness results (CDF of additional distances withC)

139

However, the fraction of PE pairs experiencing additional distances larger thanθ is

small. We re-scale Figure 4.5a to magnify the tails and present it as Figure 4.5b. For a

reasonable value ofθ (e.g., additional400 miles, which are commensurate with5 msec

increase in latency), only1.3% of PE pairs experience additional distances larger thanθ.

Meanwhile, the fraction of pairs exposed to unbearably larger additional distances (e.g.,

1000+ miles, or more than11.5 msec in latency) is only0.2%, which amounts to a few

tens of pairs. These results suggest that in practice, administrators can use the simpler

de facto assignment scheme in general and can configure only those small number of

exceptional PEs as per specific assignment plans dictated bythe LCR algorithm.

Memory saving: We next investigate the memory saving from our latency constrained

hub selection. Figure 4.5c shows the gain (i.e., memory saving) and cost (i.e., the increase

of workload in the backbone) under LCR for a range ofθ. Both the gain and cost curves

increase withθ because a larger value ofθ makes it possible for a smaller number of hubs

to serve all the spokes.

The results convey a number of promising messages. For example, to achieve roughly

80% memory saving, a conversation (i.e., VRF pairs) need to tolerate additional distance

of only up to320 miles, which corresponds to the increase of unidirectionallatency by

just 3 ms. Moreover, when conversations can bear at most1000 miles of path inflation,

Relaying can reduce routing table memory by roughly88%. Note that this amount of

memory saving is only8% worse than that of the ideal memory saving scheme men-

tioned in Section 4.3.2, and is better than that of the aggregate volume-based scheme

(Figure 4.3a) with any choices of the volume thresholdα.

A surprising result is that, even if we do not allow any additional distance (i.e.,θ = 0),

the relaying scheme can reduce routing table memory consumption by around a hefty

54%. By specifically analyzing these penalty-free cases, we found out three reasons

140

for this huge, free-of-charge benefit. First, a significant number of PEs communicate

mostly with a hub PE. In the case of the traffic whose source or destination is a hub, our

relaying scheme does not introduce any additional distancepenalty as long as the hubs

are correctly identified and assigned. This case accounts for roughly 45% of the entire

penalty-free conversations. Second, a hub can sometimes belocated on the shortest path

from a source to a destination (38%). For example in the United States, relaying traffic

between San Diego and San Francisco through Los Angeles might not incur any detour in

effect because physical connectivity between the two cities might be already configured

that way. Third, for availability purposes, a VPN is often provisioned over multiple PEs

located at the same POP (17%). Thus if one of the PEs in a POP is chosen as a hub, all

the other PEs at the same POP can use the hub PE for relaying andavoid any (practically

meaningful) distance penalties.

Indirection penalty: Figure 4.5c shows that the latency-constrained Relaying requires

substantially more traffic to be relayed compared to the baseline relaying scheme shown

in Figure 4.3a. (Note that we use the same metrics described in Section 4.5.2.) This is

because the LCR algorithm does not take into account the relative traffic volumes associ-

ated with the different PE-to-PE conversations while making either the hub selection or

hub assignment decisions; the LCR algorithm selects a PE as ahub as long as the PE can

relay the largest number of other PEs without violating the latency constraint. However,

Figure 4.5c also shows that the sum of the relayed volume and additional distance prod-

ucts is a relatively small compared to the corresponding sumof the volume and direct

distance products. This is because, even when relaying is needed, the algorithm limits

the additional distances below the smallθ values. Hence, thepractical impactof relaying

(e.g., the increase of resource usage in the provider network) is much less severe than it

is suggested by the sheer amount of relayed traffic. Also, we confirmed that using the

141

de facto hub assignment, rather than the LCR algorithm’s hubassignment plan, increases

the aggregate costs very little. This is because the LCR algorithm does not necessarily

choose heavy sources or sinks as hubs, leaving only little room to improve/worsen the

indirection penalties via different hub assignments.

4.6.4 Solutions with full-mesh matrices

We next consider the performance of the LCR when using the full-mesh conversation

matrices. Figure 4.6a shows the gain and the cost curves. While we select the hubs based

on the full-mesh matrices, to evaluate the penalties due to relaying we use the historical

PE-to-PE conversations (including volumes) that are monitored during the measurement

period (May 13 - 19, 2007).

The results are encouraging, even though the conversation matrices are much denser

in this case. At the expense of incurring additional distances of up to roughly480

miles (corresponding only to roughly5 ms in unidirectional latency), we can reduce the

memory consumption by nearly70%. Interestingly, we can still save roughly23% of

memory even with no additional distance. This is is because,given a PE, it is sometimes

possible to have a hub lying on every shortest path from the PEto each other PE. For

example, on a graph showing the physical connectivity of a VPN, if a spoke PE has only

one link connecting itself to its neighbor, and the neighboris the hub of the spoke PE,

delivering traffic through the neighbor does not increase any paths’ lengths originating

from the spoke PE. We also note that the aggregate costs (i.e., relayed traffic volume

and its volume-mile product) are slightly reduced comparedto the results derived from

usage-based matrices. This is because hub sets for full-mesh matrices are bigger than

those for usage-based matrices. We also confirmed that the lengths of individual paths

are correctly bounded withinθ for all cases.

142

For network administrators, these full-mesh results are particularly encouraging for

the following reasons. First, even when customers’ networking patterns drastically

change from todays hub-and-spoke style to a more peer-to-peer-like style (e.g., by per-

vasively deploying VoIP or P2P-style data sharing applications), the relaying scheme can

still save significant amount of memory. Second, it has the additional attraction that the

relaying solution needs to be computed and implemented onlyonce and for all. There

would be no need to track the changing conversation matrices, unlike the usage-based

case.

4.6.5 Robustness

We next explore how our solution performs under traffic dynamics. Figure 4.6b shows

the results when we apply afixedsolution set derived from the traffic measurements in a

particularmodelweek (May 13 - 19, 2007) to the traffic for8 differenttestweeks in May

to August, 2007. We assume that VRFs added later on after the model week maintains

full reachability.

The solid curves in Figure 4.6b depict the aggregate cost during the test weeks. We

apply the usage-based solutions – both the hub selection andassignment results – from the

model week to the traffic matrices of the test weeks. Error bars represent the maximum

and minimum cost across all8 weeks with each value ofθ, whereas the curve connects

the averages. For comparison, we also plot the cost curves for the model week using

dotted lines. We do not plot the gain curves because we use thesame hub set for all the

weeks. The results are promising; the aggregate cost curvesfor the test weeks are close to

those of the model week for all choices ofθ except0. The exception whenθ = 0 occurs

because the strict latency condition leads to a solution setthat is very sensitive to traffic

pattern changes. The tight error bars show that the aggregate cost is stable with little

143

variance across the8 test weeks. We found similar results with the full-mesh solution of

the model week, and omit the graphs in the interest of space.

Figure 4.6c shows the distribution of additional distanceswhen we apply the usage-

based solutions from the model week to one (July 23 - 29, 2007)of the test weeks. The

solid lines show the additional distances when we use both the hub selection and assign-

ment plans of the model week. The dotted lines represent the distances when combining

the hub selection results with de facto hub assignment. The graph is similar to Figure 4.5a,

meaning that the site-to-site latency distribution remains fairly stable over the test weeks.

However, the fraction of communication pairs whose additional distance is larger than

the specifiedθ increases by at most3%, leaving heavier tails. Note that, due to traffic dy-

namics, just using the hub assignment results of the model week (i.e., solid curves) does

not guarantee the conformance toθ in subsequent weeks because the conversation matrix

changes. However, the fraction of such cases is small. In thecase ofθ = 400, only less

than2.5% of conversation pairs do not meet the latency constraint. We verified that these

tails are removed when using the full-mesh solutions of the test week. In conclusion, the

latency-constrained hub selection and assignment scheme generates robust solutions.

4.7 Latency-constrained, Volume-sensitive Relaying

In addition to bounding additional latency within a threshold, we also want to reduce

additional resource consumption in the backbone required for Relaying. We view the sum

of volume and additional distance products is one of the relevant metrics to measure the

load a backbone has to bear. This requirement motivates another optimization problem,

namelylatency-constrained, volume-sensitive Relaying (LCVSR).

144

Figure 4.7: A sample serve-use relationship with penalties

4.7.1 LCVSR problem formulation

To formulate this problem, we define a volume matrixV = (vi,j) of a VPN wherevi,j

denotes the amount of traffic volume thatpi sends topj. Obviously,vi,j = 0 when

ci,j = 0. Now we consider the following problem:

min |H|,
∑

∀s,d vs,d · (ls,M(s) + lM(s),d − ls,d)

s.t. ∀s, d whosecs,d = 1,

ls,M(s) + lM(s),d − ls,d ≤ θ

To provide robust solutions for the worst case, we can also utilize the full-mesh con-

versation matrixCfull. Note, however, that we still need to use the usage-based volume

matrix V as well because we cannot correctly assume the volumes of theconversations

that have never taken place. Thus, a hub set generated by thisformulation can serve

traffic between any pairs of PEs without violating the latency constraint, and keeps the

amount of relayed volume relatively small as long as the volume matrices considered are

similar to the usage-based matrices. Hence, assuming that the future communication be-

tween two PEs who have never spoken to each other in the past generates relatively small

amount of traffic, this full-mesh solution might still work effectively.

145

4.7.2 Algorithm to solve LCVSR

We outline our LCVSR algorithm in this section. The pseudo-code is given in [85]. Min-

imizing |H| conflicts with minimizing
∑

∀s,d vs,d · (ls,M(s) + lM(s),d − ls,d), making the

problem hard to solve. For example, to reduce the additionalresource consumption to

zero, every PE should become a hub, leading to the maximum value of |H|. Note, how-

ever, that this does not mean that the additional resource consumption can be minimized

only and if only the hub set is maximal. In fact, for someC, it is possible to minimize the

additional resource consumption with a very small|H| – one trivial example is the case

where there is only one popular PE, and all the other PEs communicate only with the pop-

ular PE. Although we cannot minimize both the objectives at the same time in general,

coming up with a unified objective function composed of the two objectives functions

(e.g., a weighed sum of the two objectives) is not a good approach either because the two

objectives carry totally different meanings. Thus, we propose a simple heuristic to build

a reasonably small hub set that reduces the relayed volume.

Our algorithm for LCVSR works similarly to the algorithm forthe LCR problem.

Thus, the first stage of the algorithm builds the same serve-use relationships among PEs.

However, during the process, the algorithm also computes apenaltyvalue for each PE.

The penaltyXi of PEpi is defined to be the sum of the volume and additional distance

products of all conversations inC, assumingpi is a sole hub in the VPN. That is,Xi =

∑
∀s,d vs,d · (ls,i + li,d − ls,d). Figure 4.7 illustrates a sample serve-use relationship graph

with five PEs, where each PE is annotated with its penalty value. With these serve-use

relationships along with penalties, the algorithm chooseshubs.

Due to the two conflicting objectives, at each run of the hub selection process, the

algorithm has to make a decision that reduces either one of the two objectives, but not

necessarily both. We design our algorithm to choose a PE fromthe server side (i.e.,

146

the left bank) that hasthe smallest penalty value, rather than the largest serve set size.

The intuition behind this design is that choosing a PE with the smallest penalty is often

conducive to reducingbothobjectives, if not always. By definition, a penalty valueXi of

PEpi decreases when each product (i.e.,vs,d · (ls,i + li,d − ls,d)) becomes smaller. Now

suppose a PE that communicates with a large number of other PEs; we call such a PE

has a highspan. The penalty of the high-span PE is usually lower because thehigh-span

PE is on the shortest path of many conversations, making manyof the volume-distance

products zero. Thus, our algorithm tends to choose PEs with higher spans. The key is

that, fortunately, a PE with a higher spanalsohas a large serve set (i.e.,Si) because it can

serve as a hub a large number of PEs it communicates without violating the additional

distance constraint. The remaining part (removing the chosen PE, and revising the serve-

use relationships) is identical to the previous algorithm.We repeat the process until no

PE remains on the user side.

4.7.3 Solutions with usage-based matrices

The benefit of LCVSR over LCR is shown in Figure 4.8a. The figureindicates that

LCVSR algorithm significantly reduces indirection penalties compared to the LCR algo-

rithm. The amount of relayed traffic volume increases much more slowly than does it

with the LCR algorithm and never exceed40% of the total volume for anyθ below1000

miles. In comparison, in Figure 4.5c, the same cost curve lies above the40% line for

almost allθ, reaching nearly70% whenθ = 1000. This decrease in relayed volume also

reduces the sum of volume and additional distance products.For a reasonable choice of

θ (e.g.,400 miles), the sum of the volume and additional mile products isonly 1.2% of

the corresponding total.

Figure 4.8a also shows the LCVSR can still substantially reduce router memory us-

147

0 200 400 600 800 1000
Maximum additional distance, theta (in miles)

0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
n reduction in num. of prefixes

vol relayed / vol total
vol*add_dist / vol*direct_dist

(a)

0 200 400 600 800 1000
Additional distance (in miles)

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 c
on

ve
rs

at
io

ns

theta = 0 mile
0 mi (de facto)
200 mi
200 mi (de facto)
400 mi
400 mi (de facto)
800 mi
800 mi (de facto)

(b)

0 200 400 600 800 1000
Maximum additional distance, theta (in miles)

0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
n

reduction in num. of prefixes
vol relayed / vol total
vol*add_dist / vol*direct_dist

(c)

Figure 4.8: LCVSR performance (a) Gain and cost (withC), (b) CDF of additional dis-
tances (withC) (c) Gain and cost (withCfull)

148

age, and also that the amount of memory saving is marginally lower than the results of

LCR. Specifically, a comparison with Figure 4.5c reveals that the saving for eachθ is

lower by only1 to 3%. While, the lower saving is somewhat expected given that LCVSR

does not explicitly aim to minimize|H|, the small difference in saving suggests that the

LCVSR is still very effective in identifying memory-efficient solutions.

In conclusion, the LCVSR scheme results in very modest increase of backbone work-

load, while enabling dramatic memory saving. We also confirmed that combining the

LCVSR with the simpler-to-implement de facto assignment scheme, instead of the as-

signment dictated by the algorithm, marginally affects theaggregate cost.

We also note that the distribution of path lengths is biased towards lower values for

the LCVSR compared to the LCR, as evidenced by comparing the each CDF curve in

Figure 4.8b to the corresponding curve in Figure 4.5a. In particular we note that for any

given θ, a significantly larger fraction of communications have no path inflation. This

reduced inflation is probably a consequence of the LCVSR algorithm tending to choose

PEs with higher span values, rather than those PEs whose locations are qualified to serve

a larger number of other PEs, as hubs. Using the de facto assignment scheme, however,

also adversely impacts a few (e.g.,0.9% of the total communication pairs in the case of

θ = 400) individual pairs, leading to the increase of additional distances beyondθ.

4.7.4 Solutions with full-mesh matrices

Here we compare LCVSR with LCR, both using full-mesh conversation matrices. Recall

that a full-mesh conversation matrix of a VPN factor in the latency for conversations

between every PE pair. Hence, for a given PE, the number of hubPEs that can serve

the given PE tends to be smaller than the corresponding number with the usage-based

conversation matrix. This in turn suggests that hub sets aregenerally larger in the full-

149

mesh case. This intuition is confirmed in Figure 4.8c which shows that the hub set size

indeed increases. However, we can still save a substantial22 to 75% of memory for

reasonable values ofθ in the few hundred miles range. This corresponds to marginally

lower (about1 − 5%) memory saving compared to the LCR algorithm (see Figure 4.6a).

On the other hand, the cost of Relaying reduces significantlyunder LCVSR (about50%

in terms of the amount of relayed volume, and75 to 95% in terms of the sum of volume

and additional distance products) compared to LCR.

4.7.5 Robustness

We next evaluate how a specific LCVSR solution (i.e., a hub selection and assignment re-

sults generated by the LCVSR algorithm) performs as conversation and volume matrices

change over time. We use data from the same model and test weeks as in Section 4.6.5.

Figure 4.9 presents the aggregate cost during the test weekswith the solid curves

and error bars. We apply the usage-based solution (both hub selection and assignment

results) derived from the model week to the conversation andvolume matrices of the test

weeks. For comparison, dotted curves show the corresponding indirection penalties for

the model week. First, the figure shows that the increase of backbone workload (i.e., the

sum of volume and additional distance products), while still higher than the model week,

is quite small and has low variability. For all values ofθ, this quantity remains below12%

(below9% whenθ ≤ 800). Hence, the actual additional network load in the test weeks is

still very low. However, the results also indicate that the amount of relayed traffic volume

itself can be substantially higher in the test weeks compared to that in the model week.

For example forθ = 400, the relayed volume is higher by17 to 106%, depending on

weeks. This higher and markedly variable amount of relayed volume can be attributed to

the fact that LCVSR uses the traffic matrix of the model week inits hub selection, and

150

that different weeks will have some variability in the volumes of common conversation

pairs. Similar results are found when using the full-mesh solutions of the model week,

but we do not show them to save space. Despite the increase of relayed traffic volume, we

confirmed that the distributions of additional distances during the test weeks are similar

to those of the test week (i.e., curves in Figure 4.8b), except that tails become slightly

heavier in a similar fashion shown as in the LCR results (Section 4.6.5 and Figure 4.6c).

The fact that the distributions of the additional distancesdo not change much over the

test weeks might seem to be conflicting with the fact that the aggregate relayed volume

significantly increases during the test weeks. By manually investigating the traffic pat-

terns of the model and test weeks, we figure out that this happens because conversation

matrices (C) are more stable than volume matrices (L) are. For example, suppose PE

p1 communicates with PEp2 during the model week (i.e.,c1,2 = 1), and bothp1 andp2

are not hubs (i.e., traffic fromp1 to p2 is relayed). Note that during the test weeks traffic

from p1 to p2 never experience additional distances larger thanθ because our algorithm

guarantees this for all pairs of PEs who communicated duringthe model week. Now let

us consider the volumev1,2 of the traffic fromp1 to p2. Whenv1,2 increases during the

test weeks, compared tov1,2 of the model week, the fraction of the relayed traffic vol-

ume during the test weeks eventually increases, leading to the effect shown in Figure 4.9

without affecting the additional distance distributions.

4.8 Implementation and Deployment

Implementing relaying is straightforward and does not introduce complexity into the ex-

isting VPN infrastructure. Given a set of hubs for each VPN, network administrators can

easily migrate from the conventional VPN architecture to the relaying architecture only

151

by slightly modifying PE routers’ configuration. Meanwhile, relaying traffic through a

hub is handled solely by the hub, without affecting the CEs orlinks that are incident to

the hub. Moreover, both initial deployment and periodic re-adjustment of Relaying do

not incur any service disruption.

4.8.1 Implementing Relaying with BGP

PE routers use BGP to disseminate customer prefixes. For scalability, PE routers multi-

plex route updates of different VPNs over a set of shared BGP sessions established among

the PEs. Isolation between different VPNs is then achieved via route targets(RTs) and

import policies. Specifically, all routes of VPNp are tagged with its own route targetRTp

when they are advertised. When PEs receive route updates tagged withRTp, they import

those routes only intop’s VRF tableV RFp as dictated byp’s import policy. Note that

implementing this conventional VPN routing architecture requires only one RT and one

import policy for each VPN.

Our Relaying scheme can be easily implemented by introducing in each VPNi) two

RTs to distinguish customer routes from the default routes (0.0.0.0/0), andii) two dif-

ferent import policies for hubs and spokes. This mechanism is illustrated in Figure 4.10.

Each PE – regardless of whether it is a hub or a spoke – in VPNp advertises customer

routes tagged withRT c
p . Additionally, each hub inp advertises a default route tagged with

RT d
p . Upon receiving updates, a spoke PE imports routes tagged with RT d

p only, whereas

a hub PE imports routes tagged withRT c
p only. As a result, a VRF tableV RF spoke

p at

a spoke PE is populated only with the default routes advertised by other hubs and the

routes of the locally-attached customer sites. Contrastingly, a hub’s VRF tableV RF hub
p

contains all customer routes in the VPN. Note that this routing architecture ensures for a

hub to directly handle relayed traffic without forwarding itto a locally-attached customer

152

0 200 400 600 800 1000
Maximum additional distance, theta (in miles)

0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
n

vol_relayed / vol_total (test)
vol*add_dist / vol*dir_dist (test)
vol_relayed / vol_total (model)
vol*add_dist / vol*dir_dist (model)

Figure 4.9: Robustness results during test weeks

site because hubs maintain full reachability information.Hence, implementing Relaying

does not require any modification to customers.

The mechanism described above naturally implements the de facto hub assignment

scheme because each spoke individually selects the closesthub in terms of IGP metric.

However, to implement a specific hub assignment plan that ouralgorithm generates, we

need to customize the import policy of each spoke’s VRF differently. There may be

multiple options enabling such customization, including local preference adjustment.

Unfortunately there is one exceptional case where this implementation guideline

should not be directly applied. When a customer site announces the default route on its

own (to provide Internet gateway service to other sites, forexample), the PE connected

to the customer site must be chosen as a hub regardless of our algorithm’s decision. By

comparing our algorithms’ results with the VPN routing configuration, we found that

most (97.2%) PEs that are connected to those default-route-advertising sites are anyway

chosen as hubs because those sites usually have higher span values or generate/receive

large amount of traffic volume. Thus, the penalty due to thoseexceptional cases are very

153

low.

4.8.2 Managing Relaying-enabled VPNs

Run-time complexity:The complexity or our algorithms isO(n3) per VPN wheren is the

number of PEs in a VPN. A sparse usage-based traffic matrix often allows much better

run times in practice –O(n2) especially when each spoke communicates with a small

constant number of hubs. Actually, given hundreds of VPNs each of which spans some

tens to hundreds of PEs, running our prototype script with usage-based traffic matrices

measured over one week takes less than an hour. With full-mesh matrices, the completion

time goes up to tens of hours. Thus, assuming a simple configuration automation tool

set [87], running our algorithms and correspondingly re-configuring PEs can be easily

performed as a weekly management operation. With further optimization (e.g., coding in

C language), daily adjustment might be possible as well.

Reconfiguration overhead:To assess the incremental re-configuration overhead, we

measured how stable hub sets are across different measurement/re-configuration win-

dows. We used two different sizes (i.e., a week and a month) ofwindows. For9 weeks

beginning May 07, 2007, we measured how many hub PEs out of those chosen for a win-

dow are also chosen as hubs in the following window. The results are shown in Table 4.1.

Overall, the hub sets are quite stable; more than94% (91%) percent of PEs chosen for a

week (month) remain as hubs in the following week (month). The results also confirms

the followings: i) Using a smaller measurement window (i.e., a shorter re-configuration

interval) ensures higher stability,ii) full-mesh solutions are more stable than usage-based

solutions, andiii) the LCR solutions are more stable than the LCVSR solutions.

Availability: One concern about utilizing Relaying is the potential decrease of availability

154

Figure 4.10: BGP configuration for Relaying

Table 4.1: Proportions (in percentage) of hubs that remain as hubs across two windows
(averaged across all windows andθ)

LCR-usage LCR-full LCVSR-usage LCVSR-full

weekly 96.4 99.2 94.3 98.4
monthly 91.2 97.8 91.0 97.3

due to the small number of hubs. When one of the multiple hubs in a VPN goes down,

our Relaying scheme ensures that each spoke using the unreachable hub immediately

switches over to another hub. Thus, by having at least two hubs located at different

POPs, we can significantly increase a VPN’s availability. Although our hub selection

algorithms do not consider this constraint (i.e.,|H| ≥ 2), most large VPNs almost always

have multiple hubs anyway;98.3% of VPNs which are provisioned over more than10

PEs have at least2 hubs. Moreover, our algorithms in itself ensure that each ofthose

hubs are located at different POPs.

Nevertheless, extending the algorithms to explicitly factor in this additional constraint

for every VPN is also straight forward. When the algorithm chooses only one hub for

a VPN, we can make the algorithm additionally choose the second best hub in terms

of the algorithm’s hub selection criterion that does not reside in the same POP as the

155

first hub. We modified our algorithms this way and measured memory saving effect.

The reduction of memory saving due to this modification was only 0.5% at most, and

this penalty decreases asθ becomes smaller because a smallerθ naturally chooses more

number of hubs per VPN.

4.9 Related Work

To the knowledge of the author, ou in this chapter is the first study focusing on a scalable

L3 VPN routing architecture that reduces the the amount of state information stored in

routing tables and yet strictly bounds individual path lengths.

Designing a scalable routing architecture forthe general intra- or inter-domain IP

routing, however, is an active research field where several interesting results are avail-

able, including CRIO [18], and LISP [17]. One key mechanism commonly used by these

works isindirection. An indirection mechanism divides the large address space used for

end host (or subnet) identification into several small fractions. Then each router stores the

reachability information about one of the fractions, rather than the entire address space,

leading to smaller routing tables. When a router receives a packet destined to a fraction

for which the router is not responsible, the packet is first forwarded via tunneling to a

router that is responsible for the fraction, and then finallyto the actual destination. Each

architectural model mentioned above suggests unique mechanisms to systematically di-

vide the original address space into fractions, and to map a fraction to a router. For

example, CRIO uses large super-prefixes and BGP for these purposes, whereas LISP en-

compasses several variations, including super-prefix-based, DNS-based, or ICMP-based

mapping models. However, none of these models suggest specific algorithms that can

generate complete indirection configuration satisfying parameterized performance con-

156

straints. Also, all these models propose caching for reducing path inflation, whereas our

approach avoids caching for simplicity and implementability.

Flat routing architectures, such as ROFL [21] and UIP [88], also reduces the amount

of state at the expense of increasing path stretch. These works leverage on DHTs (Dis-

tributed Hash Tables) to avoid storing individual route entries for each destination. Un-

fortunately, these solutions are not immediately available and lacks simplicity. Also it

is unclear how we can utilize these flat routing schemes in a VPN environment where

names (i.e., prefixes) are not flat. For example, a router cannot determine which part of a

given destination address it should hash unless it knows thedestination prefix. Apart from

these, the flat routing schemes are not practically suitablefor realizing a constrained in-

direction architecture because path stretch in those architectures is unlimited in the worst

case, and paths may often change as the set of destinations (i.e., prefixes) change.

Understanding the unique nature of VPNs and suggesting a better (e.g., more efficient

or scalable) provisioning architecture leveraging the unique nature of VPNs has been of

interest to many researchers recently. A study on estimating PE-to-PE traffic matrix from

aggregate volume data gathered at the edge [79] has identified the strong “hub-and-spoke”

traffic patterns. They used the estimation model to suggest amore efficient admission

control scheme [80]. Unfortunately, estimated traffic matrices are not suitable for making

relaying decisions since hub selection is sensitive to the conversation matrices, rather than

the volumes matrices.

4.10 Summary

The large memory footprint of L3 VPN services is a critical, impending problem to net-

work service providers. As a solution, this chapter suggests Relaying, a highly scalable

157

VPN routing architecture. Relaying enables routers to reduce routing tables significantly

by offering indirect any-to-any reachability among PEs. Despite this benefit, there are

two practical requirements that must be considered. First,from customer sites’ point

of view, end-to-end communication latency over a VPN shouldnot increase noticeably.

Second, for the service provider’s sake, Relaying should not significantly increase the

workload on the backbone.

Reflecting these requirements, we formulate two hub selection and assignment prob-

lems and suggest practical algorithms to solve the problems. Our evaluation using real

traffic matrices, routing configuration, and VPN topologiesdraws the following conclu-

sions: i) When one can allow the path lengths of common conversationsto increase by

a few hundred miles (i.e., a few msec in unidirectional latency) at most, Relaying can

reduce memory consumption by80 to 90%; ii) even when enforcing the additional dis-

tance limit to every conversation, rather than only common ones, Relaying can still save

60 to 80% of memory with the increase of unidirectional latency by around10 msec at

most; andiii) it is possible, at the same time, to increase memory saving,tightly bound

the increase of workload on the backbone, and bound additional latency of individual

conversations.

Our Relaying technique is readily deployable in today’s network, works in the context

of existing routing protocols, requires no changes to either router hardware and software,

or to the customer’s network. Network administrators can implement Relaying by mod-

ifying routing protocol configuration only. The entire process of Relaying configuration

can be easily automated, and adjusting the configuration does not incur service disruption.

In this chapter, we focused on techniques that did not require any new capabili-

ties or protocols. The space of alternatives increases if werelax this strict backwards-

compatibility assumption. One interesting possibility involves combining caching with

158

Relaying, where Relaying is used as a resolution scheme to handle cache misses. An-

other revolves around having hubs keep smaller non-overlapping portions of the address

space, rather than the entire space, and utilizing advancedresolution mechanisms such as

DHTs. We are exploring these as part of ongoing work, and the SEATTLE architecture

introduced in Chapter 2 will serve as a good model.

159

Chapter 5

Conclusion

Configuration is the Sisyphean task of network management, which burdens administra-

tors with a huge workload and complexity only to maintain thestatus quo. This dis-

sertation took an architectural approach toward self-configuring networks that do not

compromise other indispensable features for wide deployment, such as scalability and

efficiency. This chapter begins by summarizing the contributions in Section 5.1, then

suggests avenues for future work in Section 5.2, and finally concludes the dissertation in

Section 5.3.

5.1 Summary of Contributions

While sharing the same high-level goal of ensuring self-configuration without sacrific-

ing scalability and efficiency, the specific network architectures introduced in previous

chapters take different approaches as to how and where new functions are implemented,

which specific aspects of self-configuration, scalability,and efficiency they address, and

so forth. In this section, we first summarize the key results of the three network architec-

160

tures with focus on how and to what extent those architectures achieve this dissertation’s

goal – self-configuration, scalability, and efficiency. Then we recapitulate how our key

principles play pivotal roles in those architecture in ensuring the goals.

5.1.1 Scalable and efficient self-configuring networks can be made

practical

Table 5.1 gives an overview of how specifically each architecture in this dissertation ad-

dresses the issues of self-configuration, scalability, andefficiency, and what kind of key

results each architecture ensures. Altogether, these results demonstrate that scalable and

efficient self-configuring networks can be made practical.

Table 5.1: Specific aspects of self-configuration, scalability, and efficiency in the pro-
posed architectures

Self-configuration Scalability Efficiency

Ensure reachability Decrease control-plane Improve link utilization
SEATTLE without requiring overhead, allowing an and reduce convergence

addressing and routing Ethernet network to grow latency as well
configuration an order of mag. larger

Obviate configuration Allow a DC to host hundreds Enable dynamic service
VL2 for addressing, routing, of thousands of servers re-provisioning, increasing

and traffic engineering without over-subscription server and link utilization
Retain self-configuring Allow existing routers to Only slightly increase

Relaying semantics for serve an order of mag. end-to-end latency
VPN customers more number of VPNs and traffic workload

Self-configuration

Both SEATTLE and VL2 obviate the need for configuration for most frequent, labor-

intensive, and yet complex administrative tasks. More specifically, SEATTLE ensures

host-to-host reachability without requiring any addressing and routing configuration.

161

VL2 takes a further step by not only guaranteeing reachability, but also avoiding con-

gestion in a configuration-free fashion. In addition, Relaying retains the same self-

configuring capability as the conventional VPN architecture – allowing individual cus-

tomer sites to autonomously choose and alter their own address blocks, and letting routers

in the provider network self-learn and disseminate that information.

Scalability

In SEATTLE and VL2, the main technical principle enabling self-configuration is flat

addressing of end hosts. When dealing with a large number of hosts, however, dissemi-

nating and storing non-aggregatable hosts’ information can lead to a huge workload in the

control plane. SEATTLE effectively solves this problem by partitioning – assigning only

a fraction of the entire host information to each switch. This scheme allows a SEATTLE

network to grow by more than an order of magnitude larger thana conventional Ethernet

network can. While VL2 also improves control-plane scalability through its own non-

partitioning approach (i.e., the scalable directory-service system), its novelty and empha-

sis lie on data-plane scalability achieved via random traffic spreading. Specifically, this

allows cloud-service providers to build a huge data-centernetwork using only commodity

components. Finally, Relaying substantially reduces the overall memory footprint needed

to store customer-routing information and thus enables a VPN provider to host nearly an

order of magnitude more customers immediately.

Efficiency

SEATTLE switches run a link-state routing protocol and deliver traffic through short-

est paths, rather than through a single spanning tree. This reduces routing-convergence

latency and improves link utilization by a huge factor. VL2 basically offers the same

benefits, because its switch-level routing mechanism is identical to that of SEATTLE.

162

Additionally, the random traffic spreading used in VL2 can maintain links’ utilization at

a uniformly high level and ensure a huge server-to-server capacity. Eventually this mech-

anism enables agility (i.e., capability to frequently re-provision services over different

sets of machines without causing any configuration update orcontrol-plane overhead),

which eliminates pod-level resource fragmentation and helps maintain servers’ utiliza-

tion at a uniformly high level as well. Together, all these features can greatly improve

the statistical multiplexing gain of a data center. Finallyin Relaying, the hub selection

algorithm guarantees that any traffic between customer sites is subject to only a small,

bounded increase of end-to-end latency. Another variationof this algorithm can addi-

tionally bound the increase of traffic workload in the provider network resulting from

indirect forwarding. In the end, the overall networking performance, perceived by cus-

tomers, in a Relaying-enabled VPN would remain equivalent to that in a conventional

VPN.

5.1.2 Principles and applications

Earlier in this dissertation (Section 1.2), we introduced three technical principles useful

for designing scalable and efficient self-configuring networks. Table 5.2 summarizes

how those principles are repeatedly utilized in each of the architectures introduced in this

dissertation.

Flat addressing

In SEATTLE, hosts identify themselves using their flat and permanent MAC addresses,

and the network also delivers traffic based on those addresses. This ensures exactly

the same plug-and-play semantics as Ethernet, guaranteeing backwards-compatibility for

end hosts in enterprises. Servers in a VL2 network also utilize permanent, location-

163

Table 5.2: Key principles and the varying applications of the principles

Flat Traffic Usage-based
Addressing Indirection Optimization

MAC-address-based Forwarding traffic Caching host info
SEATTLE routing through at ingress switches, and

resolver switches reactive cache update
Separating hosts’ Forwarding traffic Utilizing ARP,

VL2 names from through randomly-chosen and reactive cache
their locations indirect paths update

Relaying Location-independent Forwarding traffic Popularity-driven
site addressing through hub routers hub selection

independent names to communicate with one another. Since a server’s name does not

change regardless of which physical or virtual machine the server is provisioned on, VL2

can allow services to be frequently re-provisioned over different sets of machines without

causing any configuration change at hosts or switches. Unlike SEATTLE and VL2, Re-

laying utilizes flat addressing at the level of individual VPN-customer sites, rather than

of individual hosts. This gives each site complete freedom to choose its own address

blocks and thus allows the network to cope with frequent customer-information churn –

which naturally occur due to various business activities, such as branch opening or con-

solidation, corporate merger and acquisition, altering VPN-service providers – with little

configuration overhead.

Traffic indirection

SEATTLE switches retrieve a host’s information by forwarding only the first few packets

to the host through a resolver switch. To lower complexity and increase scalability when

dealing with traffic to less popular or highly-mobile hosts,switches can also forward

such traffic always through resolvers. On the other hand, in VL2, switches forward traffic

through randomly-chosen indirect paths all the time, and doing so enables the network

164

to avoid congestion with neither gross over-provisioning nor esoteric traffic engineering.

Finally in Relaying, traffic between two unpopular customersites is always forwarded

through a hub router connected to a popular site. This greatly reduces overall memory

footprint in provider routers, allowing them to serve an order of magnitude more customer

VPNs without hardware or software upgrade.

Usage-based optimization

In SEATTLE, host-information is reactively fetched from a resolver when incoming

traffic arrives at ingress switches. Resolved host information is also cached at ingress

switches to reduce resolution overhead and end-to-end latency for subsequent packets.

When updating cached entries for consistency, switches again employ a reactive approach

that can correct only those entries that are actually used bytraffic. All these “usage-

driven” approaches substantially improve the overall efficiency of a network, in terms of

memory footprint in switches, end-to-end performance, control-plane overhead to dis-

seminate host information, etc. VL2 employs the same approaches except that source

hosts, rather than ingress switches, resolve and cache hostinformation. Finally, in Re-

laying, the hub selection algorithm chooses hub routers by taking into account actual

traffic patterns among customer sites. This helps reduce thenumber of hub routers –

thus overall memory consumption as well – while bounding theimpact on the end-to-end

performance those actual conversations experience.

5.2 Future Work and Open Issues

Given the importance of enabling hands-free network operation in various networking

environments and at various scales, we believe the following issues deserve further inves-

tigation.

165

Internet-wide flat addressing: Despite potential benefits including mobility and secu-

rity, enabling flat addressing at Internet scale remains an extremely challenging goal due

to scalability and efficiency concerns. We believe that the multi-level one-hop resolution

scheme introduced in Chapter 2 (Section 2.3) can offer an initial architecture toward this

goal. Our preliminary analysis results indicate that it maystill be feasible to achieve

scalability and efficiency to such a tremendous extent whileensuring robustness, back-

wards compatibility, and conformance with existing inter-domain-routing policies remain

as challenging future work. The reason these issues become all the more important at In-

ternet scale is because, unlike in edge networks, differentindependent participants in the

Internet (i.e., autonomous systems) are often not cooperating with or even competing

against one another. As such, forwarding or resolving through a randomly chosen inter-

mediary network could cause various security, performance, and economic concerns.

Scalable router: Internet routers in the default-free zone are suffering from the inflation

of the amount of routing state and churn. Deployment of IPv6 and VPNs stands to worsen

this situation even further. While solutions for this problem are being proposed [17, 19],

those schemes rely on inter-router coordination and thus require complicated control-

and management-plane protocols to maintain consistency across distributed routers, in-

creasing configuration complexity. Instead, it may be interesting to develop a purely

stand-alone solution that achieves the same goal, greatly simplifying configuration and

deployment. The feasibility of this argument is grounded onthe observation that network

interface cards in an individual router can collectively offer enough memory capacity

to hold the entire set of routes in the Internet, whereas conventional routers utilize the

memory resources in the least efficient fashion by forcing the entire set of routes to be

redundantly kept on every interface card.

166

Self-adjusting host and switch groups:For scalability and security purposes, hosts in a

network are often grouped into VLANs. Deciding which hosts belong to which VLANs,

however, is mostly a manual process relying on administrators’ intuition and understand-

ing of performance, host-mobility patterns, and access-control policies. This can lead

to either sub-optimal resource utilization across different VLANs or frequent updates of

VLAN-membership settings. Thus it would be highly interesting to design a network that

self-adjusts VLAN membership and boundaries. By allowing VLANs to be dynamically

defined for varying workloads, or by making VLAN boundaries elastic, it would be possi-

ble to attain higher efficiency and performance while lowering configuration complexity.

Similar approaches could also be extended for defining switch groups, such as areas in

link-state routing protocols and regions in the multi-level SEATTLE design introduced in

Chapter 2 (Section 2.3).

Novel traffic engineering: Hot spots in a network have traditionally been resolved by

traffic engineering and end-to-end congestion control. Theformer approach is often em-

bodied by adjusting traffic-forwarding paths – tuning routing-protocol parameters, or

explicitly setting up specific paths for individual types oftraffic. The latter approach

achieves its goal by regulating traffic-forwarding rates atend hosts. While the VL2 work

in Chapter 3 introduces a novel way of eliminating hot spots,it would also be very ex-

citing to investigate the potentials of other kinds of mechanisms. Among those, two

emerging primitives – anycast and live process cloning/migration – seem particularly in-

triguing. With these primitives it might be possible to moveheavy traffic sources and

sinks, or even to split them into multiple entities running on different machines and ad-

just workload distributions over the machines. This approach has several unique benefits

over the conventional schemes: effectiveness (as it directly manipulates individual traffic

sources and destinations), efficiency (as it essentially increases the capacity share for the

167

resource-hungry application), and low management complexity (as it does not require

frequent update of routing-protocol parameters and thus eliminates transient forwarding

anomalies during convergence).

Robust self-configuring networks:Ensuring robust operation of a self-configuring net-

work can be particularly challenging when the network includes faulty or un-trusted en-

tities. This is because such an entity can deliberately or inadvertently compromise both

the integrity and availability of a routing system. Moreover, in the case of a malicious

participant, it can even hide itself with a fabricated (spoofed) self-configured identity. Po-

tentially promising principles deserving further exploration include self-certifying identi-

fiers, replication of routing and host information, and quorum-based resolution. A result-

ing architecture will be useful in securing conventional layer-2 networks, which suffer

from the vulnerabilities due to flooding and broadcasting.

5.3 Concluding Remarks

Administrators in today’s large operational networks needself-configuring network ar-

chitectures. To run emerging applications, such as cloud orutility computing, a self-

configuring network is also paramount, because such a network can substantially reduce

service-management workload and increase resource utilization. For real-world deploy-

ment, however, self-configuring networks must be scalable and efficient all at once.

As part of a larger effort to re-design networks with this goal in mind, this disserta-

tion i) presented key technical principles useful for designing and developing a scalable

and efficient self-configuring network;ii) proposed a highly-scalable network architec-

ture that combines Ethernet’s plug-and-play capability and IP’s efficiency (SEATTLE);

iii) developed a data-center network architecture that ensures tremendous server-to-server

168

capacity and support for agility, substantially increasing a data-center’s overall resource

utilization (VL2); and iv) presented an alternative VPN routing architecture that, once

deployed, immediately allows a VPN provider to host an orderof magnitude more cus-

tomers without any router hardware or software upgrade (Relaying).

At the same time, all the solutions proposed in this dissertation are highly practical

and can be rapidly prototyped and deployed – in fact, Relaying can be immediately de-

ployed. VL2 and Relaying have passed pre-deployment tests in laboratory settings and

are expected to be rolled out for real-world deployment – fora large public cloud-service

provider (VL2) and for large corporate VPNs served by a tier-1 provider in the U.S. (Re-

laying). SEATTLE is also available as several independent prototypes implemented by

different research groups.

While we took a comprehensive approach in this dissertation, we do not claim com-

pleteness. In fact, we are aware that this is just the first step towards the wide deployment

of self-configuring networks. That means there are many other types of networks upon

which self-configuration can (and should) be achieved without compromising scalability

and efficiency. Good examples include the Internet itself, various content-distribution

networks, the networks interconnecting distributed small-scale data centers, etc. In light

of the lessons learned from this dissertation, we believe the design principles and archi-

tectural primitives we proposed will benefit the development of appropriate architectures

for those networks.

169

Bibliography

[1] ResearchAndMarket, “Demystifying Opex and Capex Budgets - Feedback from

Operator Network Managers,” 2007.http://www.researchandmarkets.

com/reports/448691/demystifying opex and capex budgets

feedback.

[2] Lightreading, “Capex vs. Opex,” 2002.http://www.lightreading.com/

document.asp?doc id=22223.

[3] W. Enck, T. Moyer, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg,

Y. Sung, S. Rao, and W. Aiello, “Configuration Management at Massive Scale: Sys-

tem Design and Experience,”IEEE J. Selected Areas in Communications, Special

Issue on Network Infrastructure Configuration, April 2009.

[4] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP misconfigura-

tions,” in Proc. ACM SIGCOMM, August 2002.

[5] T. G. Griffin and G. Wilfong, “On the correctness of iBGP configuration,” inProc.

ACM SIGCOMM, August 2002.

[6] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults with static

analysis,” inProc. USENIX Networked Systems Design and Implementation, 2005.

170

[7] Z. Kerravala, “Configuration management delivers business resiliency.” The Yankee

Group, November 2002.

[8] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Meyers, J. Rexford, G. Xie, H. Yan,

J. Zhan, and H. Zhang, “A clean slate 4D approach to network control and manage-

ment,” inACM SIGCOMM Computer Communication Review, 2005.

[9] H. Ballani and P. Francis, “CONMan: A Step Towards Network Manageability,” in

Proc. ACM SIGCOMM, 2007.

[10] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “Towards a Next

Generation Data Center Architecture: Scalability and Commoditization,” in Proc.

of PRESTO Workshop at SIGCOMM, 2008.

[11] “HP Openview.” http://www.openview.hp.com/.

[12] “IBM Tivoli.” http://www.ibm.com/software/tivoli/.

[13] “Microsoft Operations Manager.” http://www.microsoft.com/mom/.

[14] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der Merwe,

“Design and Implementation of a Routing Control Platform,”in Proc. USENIX Net-

worked Systems Design and Implementation, 2005.

[15] H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni, H. Zhang, andZ. Cai, “Tesseract:

A 4D network control plane,” inProc. USENIX Networked Systems Design and

Implementation, April 2007.

[16] Y. Sung, S. Rao, G. Xie, and D. Maltz, “Towards Systematic Design of Enterprise

Networks,” in Proc. ACM Conference on emerging Networking EXperiments and

Technologies, 2008.

171

[17] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “Locator/ID Separation Protocol

(LISP).” Internet draft, work in progress, March 2009.

[18] X. Zhang, P. Francis, J. Wang, and K. Yoshida, “Scaling IP Routing with the Core

Router-Integrated Overlay,” inProc. IEEE International Conference on Network

Protocols, November 2006.

[19] H. Ballani, P. Francis, T. Cao, and J. Wang, “Making Routers Last Longer with

ViAggre,” in Proc. USENIX Networked Systems Design and Implementation, April

2009.

[20] C. Kim, M. Caesar, A. Gerber, and J. Rexford, “Revisiting Route Caching: The

World Should be Flat,” inProc. Passive and Active Measurement, 2009.

[21] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica, “ROFL:

Routing on Flat Labels,” inProc. ACM SIGCOMM, September 2006.

[22] L. De Carli and Y. Pan and A. Kumar and C. Estan and K. Sankaralingam, “Flexible

Lookup Modules for Rapid Deployment of New Protocols in High-speed Routers,”

in Proc. ACM SIGCOMM, 2009. to appear.

[23] D. Pall, “Faster Packet Forwarding in a Scalable Ethernet Architecture.” TR-812-

08, Princeton University, January 2008. Computer Science Department Technical

Report.

[24] M. Arregoces and M. Portolani,Data Center Fundamentals. Cisco Press, 2003.

[25] S. Halabi,Metro Ethernet. Cisco Press, 2003.

[26] H. Hudson, “Extending access to the digital economy to rural and developing re-

gions.” Understanding the Digital Economy, The MIT Press, Cambridge, MA, 2002.

172

[27] A. Gupta, B. Liskov, and R. Rodrigues, “Efficient routing for peer-to-peer overlays,”

in Proc. USENIX Networked Systems Design and Implementation, March 2004.

[28] W. Aiello, C. Kalmanek, P. McDaniel, S. Sen, O. Spatscheck, and J. van der Merwe,

“Analysis of communities of interest in data networks,” inProc. Passive and Active

Measurement, March 2005.

[29] R. Perlman, “Rbridges: Transparent routing,” inProc. IEEE INFOCOM, March

2004.

[30] “IETF TRILL Working Group.” http://tools.ietf.org/wg/trill/, 2009.

[31] A. Myers, E. Ng, and H. Zhang, “Rethinking the service model: scaling Ethernet

to a million nodes,” inProc. ACM Workshop on Hot Topics in Networks, November

2004.

[32] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh, “Viking:A multi-spanning-tree

Ethernet architecture for metropolitan area and cluster networks,” in Proc. IEEE

INFOCOM, March 2004.

[33] T. Rodeheffer, C. Thekkath, and D. Anderson, “SmartBridge: A scalable bridge

architecture,” inProc. ACM SIGCOMM, August 2000.

[34] C. Kim and J. Rexford, “Revisiting Ethernet: Plug-and-play made scalable and ef-

ficient,” in Proc. IEEE Workshop on Local and Metropolitan Area Networks, June

2007.

[35] S. Ray, R. A. Guerin, and R. Sofia, “A distributed hash table based address resolu-

tion scheme for large-scale Ethernet networks,” inProc. IEEE International Con-

ference on Communications, June 2007.

173

[36] B. Ford, “Unmanaged Internet Protocol: Taming the edgenetwork management

crisis,” in Proc. ACM Workshop on Hot Topics in Networks, November 2003.

[37] M. Caesar, M. Castro, E. Nightingale, A. Rowstron, and G. O’Shea, “Virtual Ring

Routing: Network routing inspired by DHTs,” inProc. ACM SIGCOMM, Septem-

ber 2006.

[38] R. Perlman,Interconnections: Bridges, Routers, Switches, and Internetworking

Protocols. Addison-Wesley, second ed., 1999.

[39] M. Allman, V. Paxson, and J. Terrell, “A brief history ofscanning,” inProc. Internet

Measurement Conference, October 2007.

[40] Dartmouth Institute for Security Technology Studies,“Problems with broad-

casts.” http://www.ists.dartmouth.edu/classroom/crs/arp

broadcast.php.

[41] R. King, “Traffic management tools fight growing pains,”June 2004.http://

www.thewhir.com/features/traffic-management.cfm.

[42] “IEEE Std 802.1Q - 2005, IEEE Standard for Local and Metropolitan Area Net-

work, Virtual Bridged Local Area Networks,” 2005.

[43] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet indirection

infrastructure,” inProc. ACM SIGCOMM, August 2002.

[44] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area coopera-

tive storage with CFS,” inProc. ACM Symposium on Operating Systems Principles,

October 2001.

174

[45] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin, “Con-

sistent Hashing and Random Trees: Distributed Caching Protocols for Relieving

Hot Spots on the World Wide Web,” inProc. ACM Symposium on Theory of Com-

puting, 1997.

[46] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load balanc-

ing in dynamic structured P2P systems,” inProc. IEEE INFOCOM, March 2003.

[47] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The design and

implementation of an intentional naming system,” inProc. ACM Symposium on

Operating Systems Principles, December 1999.

[48] J. Moy,OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley, 1998.

[49] R. Hinden, “Virtual Router Redundancy Protocol (VRRP).” RFC 3768, April 2004.

[50] Ethereal, “Gratuitous ARP.”http://wiki.ethereal.com/Gratuitous

ARP.

[51] R. Droms, “Dynamic Host Configuration Protocol.” Request for Comments 2131,

March 1997.

[52] C. Tengi, J. Roberts, J. Crouthamel, C. Miller, and C. Sanchez, “autoMAC: A Tool

for Automating Network Moves, Adds, and Changes,” inProc. USENIX Large In-

stallation System Administration Conference, 2004.

[53] D. Hucaby and S. McQuerry,Cisco Field Manual: Catalyst Switch Configuration.

Cisco Press, 2002.

175

[54] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney, “A first look

at modern enterprise traffic,” inProc. Internet Measurement Conference, October

2005.

[55] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISPtopologies with Rocket-

fuel,” in Proc. ACM SIGCOMM, August 2002.

[56] “Skitter.” http://www.caida.org/tools/measurement/skitter.

[57] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, “The Click modular

router,” inACM Trans. Computer Systems, August 2000.

[58] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov, “Designing ex-

tensible IP router software,” inProc. USENIX Networked Systems Design and Im-

plementation, May 2005.

[59] J. Hamilton, “Cooperative Expendable Micro-Slice Servers (CEMS): Low Cost,

Low Power Servers for Internet-Scale Services,” inProc. of Conference on Inno-

vative Data Systems Research, 2009.

[60] K. Claffy, H. Braun, and G. Polyzos, “A parameterizablemethodology for Internet

traffic flow profiling,” IEEE J. Selected Areas in Communications, vol. 13, 1995.

[61] Y. Zhang and Z. Ge, “Finding critical traffic matrices,”in Proc. IEEE International

Conference on Dependable Systems and Networks, June 2005.

[62] R. Zhang-Shen and N. McKeown, “Designing a PredictableInternet Backbone Net-

work,” in Proc. ACM Workshop on Hot Topics in Networks, 2004.

[63] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Efficientand Robust Routing of

Highly Variable Traffic,” inProc. ACM Workshop on Hot Topics in Networks, 2004.

176

[64] N. G. Duffield, P. Goyal, A. G. Greenberg, P. P. Mishra, K.K. Ramakrishnan, and

J. E. van der Merwe, “A flexible model for resource managementin virtual private

network,” inProc. ACM SIGCOMM, 1999.

[65] W. J. Dally and B. Towles,Principles and Practices of Interconnection Networks.

Morgan Kaufmann Publishers, 2004.

[66] D. C. Plummer, “An ethernet address resolution protocol – or – converting network

protocol addresses.” RFC 826, November 1982.

[67] L. Lamport, “The part-time parliament,”ACM Trans. Computer Systems, vol. 16,

pp. 133–169, 1998.

[68] M. Mathis, J. Heffner, and R. Raghunarayan, “TCP Extended Statistics MIB.” RFC

4898, 2007.

[69] R. Jain,The Art of Computer Systems Performance Analysis. John Wiley and Sons,

Inc., 1991.

[70] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “Tcp friendly rate control (tfrc):

Protocol specification.” RFC 3348, 2003.

[71] J. Hamilton, “An architecture for modular data centers,” in Third Biennial Confer-

ence on Innovative Data Systems Research, 2007.

[72] Cisco, “Data Center Ethernet.” http://www.cisco.com/go/dce.

[73] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE: A Scalable Ethernet

Architecture for Large Enterprises,” inProc. ACM SIGCOMM, August 2008.

177

[74] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, and S. Luz, “DCell: A Scalable and Fault-

Tolerant Network Structure for Data Centers,” inProc. ACM SIGCOMM, 2008.

[75] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity Data Center

Network Architecture,” inProc. ACM SIGCOMM, 2008.

[76] C. Chang, D. Lee, and Y. Jou, “Load balanced Birkhoff-von Neumann switches,

part I: one-stage buffering,”IEEE HPSR, 2001.

[77] E. Rosen and Y. Rekhter, “BGP/MPLS IP Virtual Private Networks.” RFC 4364,

February 2006.

[78] IDC, “U.S. IP VPN services 2006-2010 forecast.”http://www.idc.com/

getdoc.jsp?containerId=201682.

[79] S. Raghunath, K. K. Ramakrishnan, S. Kalyanaraman, andC. Chase, “Measurement

Based Characterization and Provisioning of IP VPNs,” inProc. Internet Measure-

ment Conference, October 2004.

[80] S. Raghunath, S. Kalyanaraman, and K. K. Ramakrishnan,“Trade-offs in Resource

Management for Virtual Private Networks,” inProc. IEEE INFOCOM, March 2005.

[81] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol (BGP-4),”RFC 4271,

January 2006.

[82] T. Bates, R. Chandra, D. Katz, and Y. Rekhter, “Multiprotocol Extensions for BGP-

4.” RFC 2283, 1998.

[83] Cisco, “Cisco Line Cards, engine 0,1,2,3,4.” http://www.cisco.

com/en/US/products/hw/routers/ps167/products tech

note09186a00801e1dbe.shtml.

178

[84] B. Claise, “Cisco Systems NetFlow Services Export Version 9.” Request for Com-

ments 3954, October 2004.

[85] C. Kim, A. Gerber, C. Lund, D. Pei, and S. Sen, “Scalable VPN Routing via Relay-

ing.” Technical Report, November 2007. AT&T TD-794M29.

[86] R. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer

Computations, pp. 85–103, 1972.

[87] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerrel, A. Greenberg, S. Rao, and

W. Aiello, “Configuration Management at a Massive Scale: System Design and

Experience,” inProc. USENIX Annual Technical Conference, 2007.

[88] B. Ford, “Unmanaged Internet Protocol: Taming the edgenetwork management

crisis,” in ACM SIGCOMM Computer Communication Review, 2004.

179

