
TIE Breaking: Tunable Interdomain Egress Selection

Renata Teixeira Timothy G. Griffin Mauricio G. C. Resende Jennifer Rexford
UC San Diego University of Cambridge AT&T Labs–Research Princeton University
La Jolla, CA Cambridge, UK Florham Park, NJ Princeton, NJ

teixeira@cs.ucsd.edu Timothy.Griffin@cl.cam.ac.uk mgcr@research.att.com jrex@cs.princeton.edu

Abstract— The separation of intradomain and interdomain
routing has been a key feature of the Internet’s routing architec-
ture from the early days of the ARPAnet. However, the appro-
priate “division of labor” between the two protocols becomes
unclear when an Autonomous System (AS) has interdomain
routes to a destination prefix through multiple border routers—a
situation that is extremely common today because neighboring
domains often connect in several locations. We believe thatthe
current mechanism of early-exit or hot-potato routing—where
each router in an AS directs traffic to the “closest” border
router based on the intradomain path costs—is convoluted,
restrictive, and sometimes quite disruptive. In this paper, we
propose a flexible mechanism for routers to select the egresspoint
for each destination prefix, allowing network administrators to
satisfy diverse goals, such as traffic engineering and robustness
to equipment failures. We present two example optimization
problems that use integer-programming and multicommodity-
flow techniques, respectively, to tune our mechanism to satisfy
network-wide objectives. Experiments with traffic, topology, and
routing data from two backbone networks demonstrate that our
solution is both simple (for the routers) and expressive (for the
network administrators).

I. I NTRODUCTION

The Internet’s two-tiered routing architecture was designed
to have a clean separation between the intradomain and inter-
domain routing protocols. For example, the interdomain pro-
tocol allows the border routers to learn how to reach external
destinations, whereas the intradomain protocol determines how
to direct traffic from one router in the AS to another. However,
the appropriate roles of the two protocols becomes unclear
when the AS learns routes to a destination at multiple border
routers—a situation that arises quite often today. Since service
providers peer at multiple locations, essentiallyall of the traffic
from customers to the rest of the Internet has multiple egress
routers. In addition, many customers connect to their provider
in multiple locations for fault tolerance and more flexible
load balancing, resulting in multiple egress routers for these
destinations as well. Selecting among multiple egress points
is now a fundamental part of the Internet routing architecture,
independent of the current set of routing protocols.

In the Internet today, border routers learn routes to destina-
tion prefixes via the Border Gateway Protocol (BGP). When
multiple border routers have routes that are “equally good”in
the BGP sense (e.g., local preference, AS path length, etc.),
each router in the AS directs traffic to theclosestborder router,
in terms of Interior Gateway Protocol (IGP) distances. This
policy of early-exitor hot-potatorouting is hard-coded in the
BGP decision process implemented on each router [1]. Hot-
potato routing allows a router to implement a simple decision

rule, independently of the other routers, while ensuring that
packets are forwarded to neighboring routers that have selected
the same (closest) egress point. In addition, hot-potato routing
tends to limit the consumption of bandwidth resources in the
network by shuttling traffic to the next AS as early as possible.

We believe that the decision to select egress points based
on IGP distances should be revisited, in light of the growing
pressure to provide good, predictable communication perfor-
mance for applications such as voice-over-IP, online gaming,
and business transactions. We argue that hot-potato routing is:

• Too restrictive: The underlying mechanism dictates a
particular policy rather than supporting the diverse per-
formance objectives important to network administrators.

• Too disruptive: Small changes in IGP distances can
sometimes lead to large shifts in traffic, long convergence
delays, and BGP updates to neighboring domains [2, 3].

• Too convoluted: Network administrators are forced to
select IGP metrics that make “BGP sense,” rather than
viewing the two parts of the routing system separately.

Selecting the egress point and computing the forwarding path
to the egress point are two very distinct functions, and we
believe that they should be decoupled. Paths inside the network
should be selected based on some meaningful performance
objective, whereas the egress selection should be flexible to
support a broader set of traffic-engineering goals.

In this paper, we propose a new way for each router to
select an egress point for a destination, by comparing the
candidate egress points based on a weighted sum of the
IGP distance and a constant term. The configurable weights
provide flexibility in deciding whether (and how much) to
base BGP decisions on the IGP metrics. Network management
systems can apply optimization techniques to automatically
set these weights to satisfy network-level objectives, such as
balancing load and minimizing propagation delays. To ensure
consistent forwarding through the network, we advocate the
use of lightweight tunnels to direct traffic from the ingress
router to the chosen egress point. Our new mechanism, called
TIE (Tunable Interdomain Egress) because it controls how
routers break ties between multiple equally-good BGP routes,
is both simple (for the routers) and expressive (for the network
administrators). Our solution does not introduce any new
protocols or any changes to today’s routing protocols, making
it possible to deploy our ideas at one AS at a time and with
only minimal changes to the BGP decision logic on IP routers.
The paper makes the following research contributions:

• Flexible mechanism for egress-point selection:The

2

TIE mechanism we propose is: (i) flexible in balancing
the trade-off between sensitivity to IGP changes and
adaptability to network events, (ii) computationally easy
for the routers to execute in real time, and (iii) easy for
a higher-level management system to optimize based on
diverse network objectives.

• Optimization of network-wide objectives: We present
example problems that can be solved easily using TIE.
First, we show how to minimize sensitivity to internal
topology changes, subject to a bound on propagation
delay, using integer programming to tune the weights
in our mechanism. Second, we show how to balance
load in the network without changing the IGP metrics or
BGP policies, by using multicommodity-flow techniques
to move some traffic to different egress points.

• Evaluation on two backbone networks: We evaluate
the effectiveness of TIE for the two optimization prob-
lems, using traffic, topology, and routing data from two
backbone networks (i.e., Abilene and a large tier-1 ISP).
Our experiments show that TIE reduces sensitivity to
internal topology changes while satisfying network-wide
objectives for load and delay.

In the next section, we discuss the problems caused by hot-
potato routing, and describe an alternative where each router
has a fixed ranking of the egress points. Then, Section III
presents the TIE mechanism for selecting egress points, along
with several simple examples. Sections IV and V present
the two optimization problems and evaluate our solutions
on topology, traffic, and routing data from two backbone
networks. In Section VI, we discuss how to limit the number
of configurable parameters and how to deploy TIE without
changing the existing routing protocols. After a brief overview
of related work in Section VII, we conclude the paper in
Section VIII with a discussion of future research directions. An
Appendix describes how we determine the network topology,
egress sets, and traffic demands from the measurement data
collected from the two backbone networks.

II. CRITIQUE OF TODAY ’ S IGP/BGP BOUNDARY

The Internet routing system has three main components:
(i) interdomain routing, which determines the set of border
(or egress) routers that direct traffic toward a destination,
(ii) intradomain routing, which determines the path from
an ingress router to an egress router, and (iii) egress-point
selection, which determines which egress router is chosen by
each ingress router for each destination. In this section, we
first describe how tying egress selection to IGP distances leads
to harmful disruptions and over-constrained traffic-engineering
problems. Then we explain how the alternative of allowing
each ingress router to have a fixed ranking of egress points is
not flexible enough (for traffic engineering) or adaptive enough
(to large changes in the network topology).

Our discussion of the two approaches draws on the example
network in Figure 1. AS1 has five routers (A, B, C, D, andE)
and each internal link has an IGP metric. RouterC learns BGP
routes to destinationp from egress routersA and B. Under
hot-potato routing, routerC chooses the BGP route learned

B

C

ED

A

AS 3AS 2

AS 1

51
5

1

before failure
after failure

4

AS 0

s

p

failure of link C−D

Fig. 1. Link failure causes routerC to switch egress points fromA to B

from A because the IGP distance toA is 2, which is smaller
than the distance of9 to B. However, if theC–D link fails, all
traffic fromC to p would shift to egress routerB, with an IGP
distance of9 that is smaller than the IGP distance of10 to A.
In this section, we argue that these kinds of routing changes
are disruptive. Yet, continuing to use egress-pointA might not
be the right thing to do, either, depending on the propagation
delay, traffic demands, and link capacities. Instead, network
administrators need a mechanism that is flexible enough to
support sound performance trade-offs.

A. Hot-Potato Routing

Hot-potato routing adapts automatically to topology changes
that affect the relative distances to the egress points. Although
hot-potato routing seems like a reasonable way to minimize
resource consumption, IGP link weights do not express re-
source usage directly. The IGP distances do not necessarily
have any relationship to hop count, propagation delay, or
link capacity, and selecting the closer egress point does not
necessarily improve network performance. In addition, small
topology changes can lead to performance disruptions:

• Large shifts in traffic within and between ASes: A
single link failure can affect the egress-point selection
for tens of thousands of destinations at the same time,
leading to large shifts in traffic [2]. In fact, hot-potato
routing changes are responsible for many of the largest
traffic variations in a large backbone [3].

• Changes in the downstream path:When the egress
point changes, the traffic moves to a different downstream
forwarding path that may have a different round-trip time
or available bandwidth, which may disrupt the commu-
nicating applications. In addition, the abrupt increase in
traffic entering the neighboring AS may cause congestion.

• BGP update messages for neighboring domains:A
change in egress point may also change the AS path.
The failure of theC–D link in Figure 1 causes routerC
to switch from a path through AS2 to one through AS3,
forcingC to send a BGP update message to AS0. Global
BGP convergence may take several minutes [4]. If AS0
switches to a BGP route announced by another provider,
the traffic entering AS1 at routerC would change.

Even if the hot-potato routing change does not lead to new
BGP update messages, long convergence delays can occur in-

3

side the AS depending on how the router implements the BGP
decision process. An earlier measurement study [2] discovered
long convergence delays because the underlying routers in
the network only revisited the influence of IGP distances
on BGP decisions once per minute; during the convergence
period, data packets may be lost, delayed, or delivered out of
order. This particular problem, while serious, can be addressed
by having routers use an event-driven implementation that
immediately revisits the BGP routing decisions after a change
in the intradomain topology. In contrast, the three problems
listed above are fundamental.

In a large network, IGP changes that affect multiple destina-
tion prefixes happen several times a day, sometimes leading to
very large shifts in traffic [3]. Not all of these events are caused
by unexpected equipment failures—a large fraction of them
are caused by planned events, such as routine maintenance1.
A recent study of the Sprint backbone showed that almost half
of IGP events happened during the maintenance window [5].
Often, shifts in egress points are not necessary. The new in-
tradomain path to the old egress point, although a little longer
IGP-wise, may offer comparable (or even better) performance
than the path to the new egress point. Following the failure
of the C–D link in Figure 1, the pathC, E, D, A might be
less congested or have lower propagation delay than the path
C, E, B. Moreover, many internal network changes are short-
lived; a study of the Sprint backbone showed that96% of
failures were repaired in less than15 minutes [5]. Maintenance
activities are often done in periods of lower traffic demands,
when the network would comfortably have extra capacity to
tolerate the temporary use of non-closest egress points.

Besides being disruptive, the tight coupling between egress
selection and IGP metrics makes traffic engineering and main-
tenance planning extremely difficult. Network administrators
indirectly control the flow of traffic by tuning the IGP met-
rics [6–9] and BGP policies [10, 11]. Finding good settings that
result in the desired behavior is computationally challenging,
due to the large search space and the need to model the effects
on egress-point selection. Finding settings that are robust to a
range of possible equipment failures is even more difficult [12–
14]. Imposing even more constraints, such as minimizing hot-
potato disruptions across all routers and destination prefixes,
makes the problem increasingly untenable. In addition, once
the local-search techniques identify a better setting of the IGP
metrics or BGP policies, changing these parameters in the
routers requires the network to go through routing-protocol
convergence, leading to transient performance disruptions.

B. Fixed Ranking of Egress Points at Each Ingress Router

A natural alternative would be to configure each router
with a fixed ranking of the egress points, where the router
would select the highest-ranked element in the set of egress
routers for each destination. This solution can be realizedusing
today’s technology by establishing a tunnel from each ingress

1Maintenance activities happen very frequently to upgrade the operating
system on the routers, replace line cards, or repair opticalamplifiers. In
addition, construction activities may require moving fibers or temporarily
disabling certain links.

router to each egress router, and assigning an IGP metric
to the tunnel2. The data packets would follow the shortest
underlying IGP path from the ingress router to the chosen
egress router. The hot-potato mechanism would still dictate
the selection of egress points, but the metric associated with
each tunnel would be defined statically at configuration time
rather than automatically computed by the IGP. Thus, this
technique allows network administrators to rank the egress
points from each router’s perspective, allowing each ingress
router to select the highest-ranked egress point independent of
internal network events, short of the extreme case where the
egress point becomes unreachable and the router is forced to
switch to the egress point with the next highest rank.

For the example in Figure 1, routerC could be configured
to prefer egressA overB. Then, when theC–D link fails, C
would continue to direct traffic toward routerA, though now
using the pathC, E, D, A. This would avoid triggering the
traffic shift toB, changes in the downstream forwarding path,
and BGP updates to neighboring domains. However, although
the fixed ranking is extremely robust to internal changes,
sometimes switching to a different egress point is a good idea.
For example, the pathC, E, D, A may have limited bandwidth
or a long propagation delay, making it more attractive to
switch to egress-pointB, even at the expense of causing a
transient disruption. In the long term, network administrators
could conceivably change the configuration of the ranking to
force the traffic to move to a new egress point, but the reaction
would not be immediate. Similarly, the administrators could
reconfigure the IGP metrics or BGP policies to redistribute the
traffic load, at the expense of searching for a suitable solution,
reconfiguring the routers, and waiting for the routing protocol
to converge.

The mechanisms available today for selecting egress points
represent two extremes in the trade-off between robustnessand
automatic adaptation. Hot-potato routing adapts immediately
to internal routing changes (however small), leading to fre-
quent disruptions. Imposing a fixed ranking of egress points,
while robust to topology changes, cannot adapt in real time to
critical events. Neither mechanism offers sufficient control for
network administrators trying to engineer the flow of traffic
and plan for maintenance. In this paper, we ask a natural
question:Is there a mechanism for egress-point selection that
is flexible enough to control the flow of traffic in steady state,
while responding automatically to network events that would
degrade performance?

III. TIE: T UNABLE INTERDOMAIN EGRESSSELECTION

In this section, we propose a mechanism for selecting an
egress point for each ingress router and destination prefix in
a network. Ideally, an optimization routine could compute
the egress points directly based on the current topology,
egress sets, and traffic, subject to a network-wide performance
objective. However, the routers must adapt in real time to

2For example, network administrators can use MPLS [15, 16] tocreate
label-switched paths (LSPs) between all ingress-egress pairs. Configuring each
LSP as an IGPvirtual link ensures that each tunnel appears in the intradomain
routing protocol. The metric assigned to the tunnel would then drive the hot-
potato routing decision hard-coded in the routers.

4

events such as changes in the underlying topology and egress
sets, leading us to design a simple mechanism that allows a
separation of timescales—enabling both rapid adaptation to
unforeseen events and longer-term optimization of network-
wide objectives. In addition, the design of our mechanism
places an emphasis on generality to allow us to support a wide
variety of network objectives, rather than tailoring our solution
to one particular scenario. In this section, we first describe our
simple mechanism and then present several examples of how
to set the configurable parameters to manage a simple network.

A. TIE Ranking Metric

Our mechanism allows each router to have a ranking of the
egress points for each destination prefix. That is, routeri has
a metricm(i, p, e), across all prefixesp and egress pointse.
For each prefix, the router considers the set of possible egress
points and selects the one with the smallest rank, and then
forwards packets over the shortest path through the network
to that egress point. Our approach differs from the scheme in
Section II-B in several key ways. First, our ranking metric has
finer granularity, in that we allow an ingress router to have a
different ranking for different destination prefixes. Second, our
ranking metric is computed rather than statically configured,
allowing the ranking toadapt to changesin the network
topology and egress set. Third, our metric isnot tied directly
to the underlying tunnelthat directs traffic from an ingress
point to the chosen egress point, allowing us to achieve the
finer granularity of control without increasing the number of
tunnels. Our approach is also more flexible than tuning BGP
routing policies, in that one router can start using a new egress
point while other routers continue to use the old one.

Undirected graph G = (N, L), nodesN and linksL

Ingress and egress nodesi ∈ N ande ∈ N

IGP distance on graph d(G, i, e), i, e ∈ N

Destination prefix p ∈ P

Egress set E(p) ⊆ N

Ranking metric m(i, p, e), i, e ∈ N , p ∈ P

Tunable parameters α(i, p, e) andβ(i, p, e)

TABLE I

SUMMARY OF NOTATION .

To support flexible policy while adapting automatically to
network changes, the metricm(i, p, e) must include both
configurable parameters and values computed directly from
a real-time view of the topology. We represent intradomain
routing topology as an undirected weighted graphG = (N, L),
where N is the set of nodes andL is the set of IP links,
as summarized in Table I. Based on the link weights, each
router i ∈ N can compute the IGP distanced(G, i, e) to
every other routere ∈ N . The egress setE(p) ⊆ N
consists of the edge nodes that have equally-good BGP routes
for prefix p. For prefix p, node i selects the egress point
argmine{m(i, p, e) | e ∈ E(p)}. The metric is computed as a
weighted sum of the IGP distance and a constant term:

m(i, p, e) = α(i, p, e) · d(G, i, e) + β(i, p, e),

whereα and β are configurable values. The first component
of the equation supports automatic adaptation to topology
changes, whereas the second represents a static ranking of
routes for that prefix. Together, these two parameters can
balance the trade-off between adaptivity and robustness. This
simple metric satisfies our three main goals:

• Flexible policies: By tuning the values ofα and β,
network administrators can cover the entire spectrum
of egress-selection policies from hot-potato routing to
static rankings of egress points. Hot-potato routing can
be implemented by settingα = 1 and β = 0 for all
nodes and prefixes. A static ranking can be represented
by settingα = 0 and, for each nodei, β(i, p, e) to a
constant value for all values ofp. Our mechanism can
also realize a diverse set of policies in between.

• Simple computation: The metric is computationally
simple—one multiplication and one addition—based on
information readily available to the routers (i.e., the
IGP distances and theα and β values). This allows
routers to compute the appropriate egress point for all
destination prefixes immediately after a change in the
network topology or egress set.

• Ease of optimization:The mechanism offers two knobs
(α and β) that can be easily optimized by a man-
agement system based on diverse network objectives.
In Sections IV and V, we explore the power of this
mechanism to express a wide range of policies, and we
demonstrate that it is easy to optimize by showing that
the optimization problems we define are tractable.

In addition, when the network-management system changes
theα andβ values, the affected routers can move traffic from
one path to another without incurring any convergence delays.
This is possible because the network already has forwarding
paths between each pair of routers. Changing theα and β
values merely changes which paths carry the traffic.

B. Example Configurations

For each routeri and prefixp, network administrators need
to configure the values ofα andβ. By configuring the egress
selection parameters on a per prefix basis, an AS can satisfy
diverse policy goals. We now explore a few examples:

Voice-over-IP: For instance, suppose that a prefixp is used
for VoIP and that network administrators set IGP link weights
according to propagation delay. Voice applications are sensi-
tive to both high delays and the transient disruptions that occur
during egress-point changes. Imagine that the network learns
p at two egress pointse1 ande2, and that the IGP distance at
design time from a routeri to each egress isd(G, i, e1) = 20
andd(G, i, e2) = 30. In the designed topology,i should prefer
e1 to forward packets top to minimize delay. If the cost to
reache1 increases a little,i should still usee1 in order to avoid
disruptions associated with the egress change. However, when
the IGP distance toe1 exceeds50, the network administrators
want i to select the closest egress.

This application needs an egress-selection policy that is
between hot-potato routing and a fixed ranking. At design
time, the value ofm(i, p, e1) = 20 · α(i, p, e1) + β(i, p, e1)

5

andm(i, p, e2) = 30 · α(i, p, e2) + β(i, p, e2). Sincei prefers
e1, we need to havem(i, p, e1) < m(i, p, e2); however,
when d(G, i, e1) exceeds50, we need to havem(i, p, e1) <
m(i, p, e2). We can express these constraints with the follow-
ing equations:

20 · α(i, p, e1) + β(i, p, e1) < 30 · α(i, p, e2) + β(i, p, e2)

50 · α(i, p, e1) + β(i, p, e1) < 30 · α(i, p, e2) + β(i, p, e2)

51 · α(i, p, e1) + β(i, p, e1) > 30 · α(i, p, e2) + β(i, p, e2)

We can now select the values ofα andβ that satisfy these con-
straints. For instance, if we set bothβ(i, p, e1) = β(i, p, e2) =
0 andα(i, p, e1) = 1, then we find thatα(i, p, e2) = 1.7.

Large file transfer: Take now the example of two research
labs that continuously exchange large data files. Suppose that
each research lab has an ISP and that the two providers peer
in two locations. Both the source and the destination ISPs
need to provision enough bandwidth for these large transfers.
To provision for the file transfers, both ISPs need to know
both the ingress and egress points for the data. In this case,
the egress selection needs to be stable. Say that the source
and destination ISPs agree thate1 should be responsible for
carrying this traffic. Then, for each routeri we setα(i, p, e1) =
α(i, p, e2) = 0 andβ(i, p, e1) = 1 andβ(i, p, e2) = 2.

Traffic engineering: The first two examples consider a
prefix in isolation. However, egress-point selection should also
consider network-wide goals. Consider the egress-selection
decision for prefixesp1 and p2 at routerC in Figure 2,p1

is a VoIP prefix andp2 corresponds to Web servers. In this
example, routerC has to choose between egressesA andB.
Assume that the path with IGP distance9 has high capacity,
whereas the paths with cost10 and 11 have lower capacity.
When all three paths are working, the network administrators
wantC to use egress-pointB for both prefixes. However, if the
path with cost9 fails, they would like to balance the load over
the two lower-bandwidth links. Since the voice traffic top1

is sensitive to the routing change, the network administrators
would prefer to useB for p1 andA for p2. This policy can be
implemented by setting the parameters as presented in TableII.
C ’s egress selection top1 behaves like a fixed ranking of the
egress points, whereasp2 behaves like hot-potato routing.

A

1p
p2

11 9

C

B

10

Fig. 2. Example illustrating heterogeneous traffic types.

Despite the simplicity of this policy, current egress-selection
mechanisms cannot express it. Hot-potato routing would cause
both p1 andp2 to shift to egressA after the path with cost9
fails, and ranking egressB overA for all prefixes would force
all traffic over the low-capacity path with cost11. Of course,

α β
A B A B

p1 0 0 2 1
p2 1 1 0 0

TABLE II

CONFIGURATION OF PARAMETERS FOR EXAMPLE INFIGURE 2.

after the failure, the network administrators could changethe
BGP import policy top2 at A to make it look better than
B. However, there is a long delay before they can detect the
failure and identify the BGP policy that should be applied
in order to alleviate the problem. Our mechanism allow this
policy to be implemented at design time and the network can
them adjust itself accordingly.

The setting ofα andβ can be done independently for each
pair(i, p), which leads to easier optimization problems. In con-
trast, tweaking IGP weights impacts the IGP distance between
multiple pairs of routers for all routes, and tweaking BGP
policies impacts the preference of all routers in the network for
a particular route. One drawback of our mechanism is the large
number of parameters that need to be set at each router. In the
next two sections we discuss how to select suitable values ofα
andβ when there are a large number of prefixes involved, and
then Section VI discusses techniques for reducing the number
of parameters that need to be configured in practice.

IV. M INIMIZING SENSITIVITY TO EQUIPMENT FAILURES

WITH BOUNDED DELAY

In this section, we show how to select values ofα andβ to
minimize the sensitivity of egress-point selection to equipment
failures, subject to restrictions on increasing the propagation
delay. After presenting a precise formulation of the problem,
we present a solution that has two phases—simulating the
effects of equipment failures to determine the constraints
on the α and β values and applying integer-programming
techniques to identify optimal settings. Then, we evaluatethe
resulting solution using traffic, topology, and routing data from
two backbone networks.

A. Problem Definition: Minimizing Sensitivity

Consider a well-provisioned backbone network that supports
interactive applications, such as voice-over-IP and online gam-
ing. The network administrators want to avoid the transient
disruptions that would arise when an internal failure causes
a change in the egress point for reaching a destination, as
long as continuing to use the old egress point would not incur
large delays. By setting the IGP link weights according to
geographic distance, the shortest IGP path between two nodes
would correspond to the smallest delay and the closest egress
point would be the best choice. Hence, for this problem, the
best egress pointb(G, i, p) for node i and prefix p is the
nodee ∈ E(p) with the smallest IGP distanced(G, i, e). If
an internal failure occurs, the administrators want nodei to
continue directing traffic tob(G, i, p) unless the delay to this
egress point exceedsT · d(G, i, b(G, i, p)) for some threshold
T > 1. If the delay to reach the egress point exceeds the

6

threshold, the administrators want nodei to switch to using
the (new) closest egress point to minimize the propagation
delay. Table III summarizes the notation.

Threshold for tolerable delay T

Set of topology changes ∆G

Topology change δ ∈ ∆G

Network topology after change δ(G)

Best egress point for(i, p) on G b(G, i, p)

TABLE III

NOTATION FOR THE PROBLEM OF MINIMIZING SENSITIVITY TO TOPOLOGY

CHANGES WITH BOUNDED DELAY.

In an ideal world, the routers could be programmed to
implement this policy directly. For example, upon each IGP
topology changeδ, each nodei could revisit its egress selec-
tion for each prefix by performing a simple test for the new
topologyδ(G):

if (d(δ(G), i, b(G, i, p)) ≤ T · d(G, i, b(G, i, p))),
thenb(δ(G), i, p) = b(G, i, p)
elseb(δ(G), i, p) = argmine{d(δ(G), i, e) | e ∈ E(p)}.

Modifying every router in the network to implement this
egress-selection policy would guarantee that the network
always behaves according to the specified goal. However,
supporting a wide variety of decision rules directly in the
routers would be extremely complicated, and ultimately net-
work administrators would want to apply a policy that is not
supported in the routers. In the next subsection, we show that
TIE is expressive enough to implement this policy. Instead of
having the routers apply the test in real time, the network-
management system configures the TIE parameters at design
time based on the policy, and the routers adapt automatically
when internal changes occur.

B. Solving the Sensitivity Problem with TIE

Solving the problem with our mechanism requires us to
find values ofα(i, p, e) and β(i, p, e), for eachi, e ∈ N and
p ∈ P , that lead to the desired egress-point selections over
all graph transformations∆G. Our solution has two main
steps. First, asimulation phasedetermines the desired egress
selection both at design time (under graphG) and after each
topology change (under graphδ(G)). The output of this phase
is a set of constraints on theα andβ values for each(i, p) pair.
Then, anoptimization phasedetermines the values ofα andβ
that satisfy these constraints. For this problem, the egress-point
selection for each(i, p) pair can be made independently.

1) Simulation Phase:To illustrate how we construct the
constraints onα and β for the initial topologyG and each
topology changeδ, consider the example in Figure 3(a). In
the initial topology, nodeA would select nodeB as the
egress point becauseB is closer thanC. We can express
this by m(A, p, B) < m(A, p, C) for topology G, as shown
by the first constraint in Figure 3(b). Then, we consider

each topology changeδ and determine the preferred egress
selection with the policy in mind, whereT = 2 and δ1 is
the failure of the link with cost4 and δ2 is the failure of
the links with costs4 and 6. In the new graphδ1(G), A
is closer toC (with a distanced(δ1(G), A, C) of 5) than
to B (with a distanced(δ1(G), A, B) of 6). However, since
d(δ1(G), A, B) < 2 · d(G, A, B), A should continue to select
egress-pointB. This decision is expressed by the second
equation in Figure 3(b). We use the same methodology to
evaluate the best egress selection afterδ2. In this case, the
distance fromA to B is above the threshold, soA should
switch to using egress-pointC, as expressed by the third
equation.

αB βB αC βC
 4 . + < 5 . +
αB βB αC βC

 6 . + < 5 . +
αB βB

αC βC
 12 . + > 5 . +

p

4
6

12

5

(b)(a)

Constrainsts for (A,p):
B

A

C

Fig. 3. Example illustrating constraints on values ofα andβ.

More generally, our algorithm consists of two main steps.
First, we compute the distancesd(·, i, e) for the original graph
G and all transformationsδ ∈ ∆G using an all-pairs shortest
path algorithm. (For simple graph transformations, such as
all single-link failures, an incremental Dijkstra algorithm can
reduce the overhead of computing the|∆G| + 1 instances of
the all-pairs shortest paths.) Then, we generate the constraints
for each(i, p) pair as presented in Figure 4.

1) Identify the closest egress point in the original graph:
b = argmine{d(G, i, e) | e ∈ E(p)},

2) For eache ∈ E(p) \ {b}, generate the constraint
“α(i, p, b)·d(G, i, b)+β(i, p, b) < α(i, p, e)·d(G, i, e)+
β(i, p, e)”

3) For eachδ ∈ ∆G

a) Identify the preferred egress pointb′: If
d(δ(G), i, b) ≤ T · d(G, i, b), then b′ = b.
Else,b′ = argmine{d(δ(G), i, e) | e ∈ E(p)}.

b) For eache ∈ E(p) \ {b′}, generate the constraint
“α(i, p, b′) · d(δ(G), i, b′)+ β(i, p, b′) < α(i, p, e) ·
d(δ(G), i, e) + β(i, p, e)”

Fig. 4. Algorithm of the simulation phase.

Step 2 runs once (on the original graph) and step3(b)
runs |∆G| times (on each graph transformation), generating
a constraint for each alternative to the desired egress point
for that configuration. As a result, the algorithm produces
(|∆G| + 1) · (|E(p)| − 1) constraints for each pair(i, p). The
size ofE(p) is limited by the number of edge nodes that have
best BGP routes for a prefix; in practice, the size is usually
one, two, or three, or at most ten. Fortunately, any prefixes
that have the same egress set produce the same constraints,

7

and the same values ofα andβ. The number of unique egress
sets is typically orders of magnitude less than the number
of prefixes, which substantially reduces the running time of
the algorithm. In order to reduce the complexity and number
of configurable parameters, we group all routers in the same
PoP into a single node; these routers typically make the same
BGP routing decisions anyway, since they essentially act as
one larger router. Ultimately, the running time of the algorithm
is dominated by the number of topology changes in∆G.

2) Optimization Phase:In the optimization phase, we com-
puteα andβ values that satisfy the constraints for each pair
(i, p). In theory,anysettings that satisfy the constraints would
achieve our optimization goal. However, several practical
issues drive how we set up the optimization problem:

• Finite-precision parameter values:Theα andβ values
should have finite precision to be configured and stored
on the routers. Since the parameter values only have
meaning relative to each other, we can limit ourselves
to considering integer solutions. This leads us to apply
integerprogramming to solve the problem.

• Limiting the number of unique parameter values:
To reduce the overhead of configuring and storing the
α and β parameters, we prefer solutions that minimize
the number of unique values. As such, we attempt to
minimize an objective function that is the sum across all
of the α andβ values.

• Robustness to unplanned events:Although we optimize
the parameters based on the topology changes in∆G,
the real network might experience events outside of our
model. If optimizing based on∆G results in solutions
with α = 0 for an (i, p) pair, then routeri would never
adapt to a change in IGP distance, however large. To
increase the robustness to unplanned events, we add an
extra constraint thatα(i, p, e) > 0 for all i, p, ande.

We solve the integer-programming problem for each(i, p)
pair using CPLEX [17] with AMPL. Although integer-
programming problems are sometimes difficult to solve, our
constraints are typically easy to satisfy because many con-
straints are identical or are subsumed by other constraints.
For instance, the second constraint in Figure 3(b) is stricter
than the first constraint (i.e., because4αB < 6αB). In fact,
for most of the (i, p) pairs, CPLEX computes the values
of α and β during a pre-processing phase that analyzes the
constraints. Very few(i, p) pairs required more than three
simplex iterations in the root node of the branch-and-bound
tree to identify parameters that satisfy the constraints and
minimize the objective function. Still, for arbitrary topologies
and graph transformations, we could conceivably encounter
a scenario where no parameter setting would satisfy every
constraint. A scenario like this, should it arise, could be
handled by an extension to the integer program to minimize
the number of constraints that are violated. This could be
achieved by including an extra error term in each constraint
and selecting an objective function that minimizes the total
error.

C. Evaluation

We evaluate the effectiveness of TIE for achieving our goal
of minimizing sensitivity to equipment failures on the Abilene
network and a tier-1 ISP backbone. We obtain the network
topology G and the egress sets{E(p)} as described in the
Appendix. For this problem, we set the IGP link weights to
the geographic distance between the PoPs to approximate the
propagation delay. We optimize TIE for two sets of topology
changes∆G (single link failures and single node failures) and
three different delay thresholdsT (1.5, 2, and3).

We ran the simulation and the optimization phases on dif-
ferent machines because the raw measurement data could only
be stored on one machine, and the CPLEX license resides on
another. The simulation phase ran on a 900MHz Ultrasparc-III
Copper processor of a Sun Fire 15000. This phase consumed
3.2 MB of RAM and took0.5 and31.1 seconds to build the
constraints for all pairs(i, p) for the Abilene and ISP networks,
respectively. The optimization phase ran on a 196 MHz MIPS
R10000 processor on an SGI Challenge. This phase consumed
just under4 MB of RAM and took37 seconds and12 minutes
to run for the Abilene and ISP networks, respectively. We
expect that the optimization phase would complete much faster
if we invoke the CPLEX library directly from a C program
rather than the AMPL interpreter.

For the Abilene network,α was equal to1 for 93% of the
(i, p, e) tuples and had only four distinct values (α ∈ [1, 4]);
β was zero for90% of the (i, p, e) tuples and had only three
distinct values (β ∈ {0, 1, 3251}). The ISP network has a
much larger number of destination prefixes and distinct egress
sets, which resulted in a broader range of values for the pa-
rameters (α ∈ [1, 19] andβ ∈ {0, 1, 3411, 4960, 5185, 5009}).
However, the vast majority ofα values (88%) were equal to
one, and69% of β values were zero. The small number of
distinct values for the parameters, and the large number of
α(i, p, e) = 1 andβ(i, p, e) = 0, help reduce the overhead of
configuring and storing the parameters, as discussed in more
detail in Section VI.

After generating the values ofα(i, p, e) and β(i, p, e) for
each one of these scenarios, we simulate the behavior of
each network with this configuration. For comparison, we also
simulate the behavior of the network using hot-potato routing
(by settingα(i, p, e) = 1 and β(i, p, e) = 0 for all (i, p, e)),
and the fixed ranking egress selection (by settingα(i, p, e) =
0 for all (i, p, e), and β(i, p, e) = d(G, i, b(G, i, p))). We
simulate the behavior of these egress-selection policies under
the set of all single-link failures and the set of all single-
node failures. For conciseness, we only present the resultsfor
single-node failures, the results for the other instances lead
to the same conclusions. We compare the three mechanisms
using two metrics:

• Delay ratio: For each(i, p, δ) we compute the delay for
i to reach the best egress point forp after the topology
changeδ (d(δ(G), i, b(δ(G), i, p))), and divide it by the
delay to reach the best egress in the original topology
(d(G, i, b(G, i, p))).

• Routing sensitivity: For each(i, δ) the routing sensitivity
reprints the fraction of prefixes ati that change egress

8

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

C
C

D
F

 o
f (

no
de

,p
re

fix
,fa

ilu
re

)
tu

pl
es

ratio of delay after failure to design time delay

Fixed ranking
TIE (link failures,2)

Hot-potato

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

C
C

D
F

 o
f (

no
de

,fa
ilu

re
)

pa
irs

routing sensitivity

Fixed ranking
TIE (link failures,2)

Hot-potato

(a) Propagation delay ratio (CCDF) (b) Routing sensitivity(CCDF)

Fig. 5. Comparison of egress-selection schemes on the Abilene network under single-node failures with TIE optimized for single-link failures andT = 2.

point after a topology changeδ. This metric is the
routing-shift function (HRM) defined in [18] and rep-
resents the fraction of a router’s BGP table that changes
egress points after an intradomain routing change.

Figure 5(a) presents the complementary cumulative distri-
bution function (CCDF) of the delay ratio for the Abilene
network. A delay ratio equal to one means that the delay after
the failure is the same as the delay in the original network.
Many of the node failures do not affect the path between an
ingress node and a best egress node for a prefix. Therefore, we
omit all values that had a delay ratio of one. Given that the link
weights are set according to geographic distance, the delay
ratio achieved by hot-potato routing represents the smallest
feasible delay ratio. Fixed ranking represents the delay toreach
the old egress point after the failure. In this plot, we present the
results for TIE optimized for single-link failures andT = 2,
and evaluate the schemes against single-node failures. The
results of TIE optimized for single-node failures were very
similar (in fact most of the values ofα andβ were the same).

Despite being optimized for a different set of topology
changes, TIE still behaves according to the original goal. TIE
exceeds the delay threshold of2 for only 20% of the (i, p, δ),
and hot-potato routing also exceeds the threshold in each of
these cases. Fixing the ranking of egress points leads to delays
that are higher than the delay achieved by TIE in the majority
of instances. Whenever the fixed-ranking scheme lies below
the threshold of2, TIE is below it as well. When the fixed-
ranking scheme exceeds the threshold, TIE shifts to an egress
point that is at or below the threshold. This is the reason why
the TIE curve liesbelow the fixed-ranking curve for delay
ratios under2.

Below the threshold of2 TIE, has higher delay than hot-
potato routing in exchange for lower sensitivity values as
shown in Figure 5(b). This graph plots the CCDF of routing
sensitivity for all (i, δ) pairs. Fixing the ranking of egress
points has the lowest sensitivity. In fact, the fixed-ranking
scheme has a non-zero sensitivity only when the best egress
point fails, forcing even this scheme to change to the second-
ranked egress point (i.e., the one that was second-closest at

the initial topology). The TIE curve follows the fixed ranking
for most points. TIE only experiences egress changes when
they are unavoidable. The gap between the hot-potato and
the TIE curve—around15% of the (i, δ) pairs—represents
the scenarios for which egress-selection disruptions could be
avoided without violating the delay threshold.

Although we observe similar behavior in the results for the
large ISP network (presented in Figures 6(a) and 6(b)), the
gap between the curves is not as large as for the Abilene
network. In this case, we optimize TIE for single-link failures
with a delay thresholdT = 3. The ISP network has many
more choices of egress points per prefixes than the Abilene
network. Therefore, the delay to reach the closest egress point
in the original topology is likely to be very small, and setting
the threshold to three times this delay still gives reasonably
short delays. This network also has more path diversity than
the Abilene network. In a more diverse graph, it is more likely
that there is still a low-delay path to the initial egress point,
even after the failure. Contrasting the delay ratio and routing
sensitivity of the two networks illustrates that there is not a
single policy that fits all networks. Compared to the Abilene
network, the ISP network could safely put more emphasis
on setting theβ values, because its rich connectivity makes
it unlikely that equipment failures would lead to significant
changes in the IGP distance between a pair of routers. The
TIE mechanism is flexible enough to accommodate both of
these networks.

In this section, we assume that the egress set for each
destination prefix is stable when determining the values ofα
andβ. Our evaluation shows that even when the an egress node
is removed from the egress set, TIE behaves as expected. We
can extend the formulation of this problem to find solutions
that are robust to egress-set changes. For instance, we can
configure TIE to react slowly to the announcement of new
routes (i.e., additions to the egress set) by setting the values
of α(·, p, e) and β(·, p, e) to be very high for alle 6∈ E(p).
We can also extend our notion of graph transformationsδ to
include changes to the egress sets.

9

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

C
C

D
F

 o
f (

no
de

,p
re

fix
,fa

ilu
re

)
tu

pl
es

ratio of delay after failure to design time delay

Fixed ranking
TIE (link failures,3)

Hot-potato

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
C

D
F

 o
f (

no
de

,fa
ilu

re
)

pa
irs

routing sensitivity

Fixed ranking
TIE (link failures,3)

Hot-potato

(a) Propagation delay ratio (CCDF) (b) Routing sensitivity(CCDF)

Fig. 6. Comparison of egress-selection schemes on the ISP network under single-node failures for TIE optimized for single-link failures andT = 3.

V. TRAFFIC ENGINEERING

This section demonstrates the expressiveness of TIE for
doing traffic engineering. We propose an optimization problem
that balances link utilization on the network only by selecting
the appropriate egress point for each pair(i, p) (i.e., by setting
the values ofβ(i, p, e)). This is in contrast with the common
practice of optimizing link utilization by either tweakingIGP
link weights or BGP policies. After defining the optimization
problem and presenting our solution, we evaluate our solution
by comparing the link utilizations achieved using TIE to that
using the current network configuration.

A. Problem Definition: Balancing Link Utilization

Traffic engineering—adapting the flow of traffic to the
prevailing network conditions—is a common task that can
be performed in several ways. Traffic engineering considers
a network topology (G) with the capacity of each link (c(`)),
and the traffic demandsv(i, p) (i.e., the volume of traffic to
destination prefixp that enters the network at ingress router
i), as summarized in Table IV. The effects of the IGP weights
on the intradomain paths can be represented by the routing
matrix R(i, e, `), which captures the fraction of traffic from
routeri to routere that traverses link̀. If the network has one
shortest path betweeni ande, R(i, e, `) is one for any link`
on that path, or zero otherwise; if multiple shortest paths exist,
R(i, e, `) may be fractional. The flow of traffic also depends
on the egress setE(p) and the egress pointb(i, p) that router
i uses to reach prefixp.

Traffic engineering involves tuning the network configura-
tion to minimize some function of the load on the links. The
load t(`) on link ` can be determined as follows:

t(`) =
∑

i∈N

∑

p ∈ P,

b(i, p) = e,

e ∈ E(p)

v(i, p) · R(i, e, `)

and the resulting link utilization isu(`) = t(`)/c(`). The
common approach to traffic engineering is to formulate an
optimization problem that minimizes an objective functionthat

Link capacity c(`), for ` ∈ L

Traffic demand v(i, p) for i ∈ N , p ∈ P

Routing matrix R(i, e, `), for i, e ∈ N , ` ∈ L

Egress selection b(i, p) ∈ E(p) for i ∈ N , p ∈ P

Link traffic load t(`) for ` ∈ L

Link utilization u(`) = t(`)/c(`), ` ∈ L

Multicommodity flow path τ (i, e, p) ⊂ G

Decision variable x(i, e, p) ∈ {0, 1}

Link congestion penalty φ(u(`)), ` ∈ L

Objective function Φ =
P

`∈L
φ(u(`))

TABLE IV

NOTATION FOR THE TRAFFIC-ENGINEERING PROBLEM

penalizes solutions in terms of the load they place on each link.
In our work, we consider the functionφ(u(`)) in Figure 7 that
increasingly penalizes loads as they near or pass the link’s
capacity. This piecewise-linear function can be expressedby
the equation

φ(u(`)) =

8

>

>

>

>

>

<

>

>

>

>

>

:

u(`), u(`) ∈ [0, 1/3)
3 · u(`) − 2/3, u(`) ∈ [1/3, 2/3),
10 · u(`) − 16/3, u(`) ∈ [2/3, 9/10),
70 · u(`) − 178/3, u(`) ∈ [9/10, 1),
500 · u(`) − 1468/3, u(`) ∈ [1, 11/10),
5000 · u(`) − 16318/3, u(`) ∈ [11/10, ∞)

(1)

that was introduced in [19] and used in several other traffic-
engineering studies. The network-wide objective functionΦ is
the sum of the link penalties—i.e.,Φ =

∑
`∈L φ(u(`)).

Network administrators can minimize the objective function
by changing the intradomain paths (R(i, e, `)), interdomain
routes (E(p)), or the egress-point selection (b(i, p)). Tuning
the IGP link weights (to influence the intradomain paths) and
the BGP policies (to influence the interdomain routes) lead
to NP-complete optimization problems [6–9]. The computa-
tional intractability of these problems forces the use of local-
search techniques that repeatedly evaluate parameter settings
in the hope of finding a good solution. Although local-search

10

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2

co
st

 p
er

 u
ni

t o
f c

ap
ac

ity

link utilization

Fig. 7. Piecewise-linear penalty functionφ(u(`)) versus link utilization

heuristics often produce good parameter values [9, 12], the
solutions are not optimal and are not guaranteed to have
performance that is close to optimal. In addition, the solutions
require changing the IGP weights or BGP policies, which
triggers routing-protocol convergence and leads to transient
disruptions. In contrast, using TIE to control the egress-point
selectionsb(i, p) leads to a simpler optimization problem that
does not require changes to the routing-protocol configuration.
Since we are simply selecting among existing paths and not
change the configuration of routing protocols, our approach
does not trigger routing convergence.

B. Solving the Traffic-Engineering Problem with TIE

Traffic engineering with TIE involves assigning each(i, p)
pair to an egress pointb(i, p) ∈ E(p) in a way that minimizes
the objective functionΦ. A solution can be realized by setting
β(i, p, b(i, p)) to a low value, while settingβ(i, p, e) to a
high value for alle 6= b(i, p), and all α values to zero. In
contrast to the fixed-ranking scheme in Section II-B, we allow
a router’s ranking of egress points to differ across the prefixes.
In practice, we envision solving richer optimization problems
that consider robustness to changes in the network topology
G, the egress setsE(p), and the traffic demandsv(i, p), which
would lead to solutions that assign values to bothα andβ. In
this paper, we focus on fixed topology, egress sets, and traffic
demands, to illustrate how TIE provides the flexibility needed
to balance load across the links.

We formulate the egress-selection problem as apath-based
multicommodity-flow problem that accounts for the constraints
that the routing matrixR(i, e, `) imposes on the flow of traffic.
For a routeri and prefixp, we consider the topologyτ(i, e, p)
induced by the links̀ ∈ L for which R(i, e, `) > 0. All
links in the graphτ(i, e, p) can be used to route traffic from
i to p through the egress pointe ∈ E(p). We call τ a path in
the multicommodity-flow formulation. We represent the actual
routing of the traffic fromi to p by a (0, 1)-decision variable
x(i, e, p), such thatx(i, e, p) = 1 if and only if the path
τ(i, e, p) is selected to send traffic fromi to p. The choice
of a pathτ determines the egress pointe ∈ E(p) selected.
For all pairs(i, p), the egress-selection problem requires that
a single egress pointe ∈ E(p) be chosen. We express this
requirement by the following equation:

∑

e∈E(p)

x(i, e, p) = 1.

The contribution of the traffic going fromi to p to the load on
link ` is the product of the traffic demandv(i, p), the routing-
matrix elementR(i, e, `), and the decision variablex(i, e, p).
The total load on a link is the sum of all the contributions, i.e.

t(`) =
∑

i∈N

∑

p∈P

∑

e∈E(p)

v(i, p) · R(i, e, `) · x(i, e, p).

A piecewise-linearinteger-programming formulation for the
single egress-selection problem is to minimize the objective
functionΦ =

∑
`∈L φ(u(`)) such that the(0, 1)-decision vari-

ablesx(i, e, p) sum to1 for each(i, p) pair. Definingφ(u(`))
to be a linear variable and applying a standard transformation
results in thelinear integer-programming formulation:

min
X

`∈L

φ(u(`))

s.t.

u(`) =
“

X

i∈N

X

p∈P

X

e∈E(p)

v(i, p) · R(i, e, l) · x(i, e, p)
”

/c(`), ∀l ∈ L,

X

e∈E(p)

x(i, e, p) = 1, ∀i ∈ N, p ∈ P,

φ(u(`)) ≥ u(`), ∀l ∈ L,

φ(u(`)) ≥ 3 · u(`) − 2/3, ∀l ∈ L,

φ(u(`)) ≥ 10 · u(`) − 16/3, ∀l ∈ L,

φ(u(`)) ≥ 70 · u(`) − 178/3, ∀l ∈ L,

φ(u(`)) ≥ 500 · u(`) − 1468/3, ∀l ∈ L,

φ(u(`)) ≥ 5000 · u(`) − 16318/3, ∀l ∈ L,

x(i, e, p) ∈ {0, 1}, ∀i ∈ N, p ∈ P, e ∈ E(p),

φ(u(`)) ≥ 0, ∀l ∈ L.

However, in general, this integer multicommodity-flow prob-
lem is intractable. Instead, we consider its linear-programming
relaxation obtained by relaxing the integrality constraints
x(i, e, p) ∈ {0, 1} to simply x(i, e, p) ≥ 0. For both net-
works we consider, the CPLEX solver produced solutions
with only integer values ofx(i, e, p), allowing us to configure
the β(i, p, e) values to pick the single egress pointb(i, p)
for each(i, p) pair. For situations where the solution of the
linear-programming relaxation is fractional, applying a simple
heuristic based on randomized rounding can produce a valid
egress selection. For each pair(i, p) with fractionalx(i, e, p)
values, egress pointe ∈ E(p) is selected with probability
x(i, e, p). Randomized rounding is repeatedly applied and the
best solution found is output by the algorithm.

C. Evaluation

We evaluate the link utilization achieved by TIE on both the
Abilene and ISP networks. We obtained the network topology
G, the egress sets{E(p)}, and the traffic demandsv(i, p),
as explained in the Appendix. We aggregate all traffic from
an ingressi to all destination prefixesp that share the same
egress setE(p) to build the ingress to egress set traffic demand

11

v(i, E) for each unique egress setE. For this problem, we
use the IGP link weights as configured in each network. The
CPLEX solver took0.1 and1.5 seconds to run on the 196 MHz
MIPS R10000 processor for the Abilene and ISP networks,
respectively. The current network IGP configuration is set to
achieve good link utilization assuming that the egress-selection
mechanism is hot-potato routing. Therefore, we compare the
utilization achieved using TIE with that achieved by hot-potato
routing.

Table V presents the value of the objective functionΦ for
both topologies under both egress-selection policies. TIE’s
flexibility in balancing load allows us to find an optimal
solution for both networks using the linear-programming re-
laxation. The solution using hot-potato routing is40% worse
than that found using TIE for the ISP network. Hot-potato
routing has a congestion function close to TIE for the Abi-
lene network. However, even though the Abilene network is
significantly under-utilized, TIE does offer some (admittedly
modest) improvements to the objective function.

Abilene Network ISP Network
Hot-potato routing 0.4513510071 8.990353677
TIE 0.4425879808 5.557480707

TABLE V

COMPARISON OF THE NETWORK CONGESTION FUNCTIONΦ BETWEEN

HOT-POTATO ROUTING ANDTIE.

Figure 8 shows the ratio of link utilization between hot-
potato routing and TIE, for the ten most heavily-loaded links
under hot-potato routing; link number1 is the most utilized
link and number10 is the tenth most utilized. The TIE solution
reduces the utilization of the most utilized link by40.9%.
Although TIE increases the load on some links (as illustrated
by link 8 in the figure), our solution reduces the utilization of
two-thirds of the links, and the most utilized link in the TIE
solution has26.3% less utilization than the most utilized link
under hot-potato routing.

0

1

2

3

4

5

6

7

0 2 4 6 8 10

R
at

io
 o

f l
in

k
ut

ili
za

tio
n

fo
r

 h
ot

-p
ot

at
o

ro
ut

in
g

ov
er

 T
IE

links

Fig. 8. Comparison of link utilization with hot-potato routing and TIE.

In our ongoing work, we plan to compare the TIE solution
with the loose lower bound achieved by multicommodity flow

with no restrictions on using valid IGP paths. We also want to
compare this solution with that achieved by using other traffic-
engineering mechanisms: (i) heuristics for IGP link-weight
optimization; (ii) heuristics for setting local-preference values
in BGP import policies; and (iii) egress-point optimization
where each routeri is forced to have a single ranking of
egress points across all destination prefixes, as in SectionII-
B. These comparisons will help us understand how much of
the performance benefit of TIE comes from the decoupling
of egress selection from the IGP weights versus the ability to
exert fine-grain control over the ranking of egress points.

D. Extensions

In this section, we assume that each routeri can select any
e ∈ E(p) for each destination prefixp. However, this could
conceivably lead to long propagation delays ifi selects a far-
away egress point, or to unnecessary BGP update messages to
neighboring domains. We can address these concerns simply
by removing certain egress points from consideration if they
have high propagation delay or a BGP route with a different
AS path. For instance, egresses whered(G, i, e) exceeds a
threshold could be removed from consideration for routeri, or
we could consider only the egress points that have BGP routes
with the same AS path. Our solution can also treat destination
prefixes for sensitive applications (such as VoIP) separately.
For instance, the egress selection for such prefixes can be done
to minimize sensitivity and delay as discussed in Section IV,
and the demands to these prefixes considered as immutable
background load for the traffic-engineering problem.

The traffic-engineering optimization problem as defined in
this section only considers the utilization of internal links. A
natural extension is to use TIE tobalance outbound load on
the edge links. We can formulate this problem by adding an
artificial node for each destination prefixp, with each peering
link connecting to it, and solve it using the same methodology
presented here. In addition, our traffic-engineering optimiza-
tion problem currently does not set the values ofα. This
prevents the egress selection to automatically adapt to changes
in the network topology. We can combine our methodology
for solving the problem presented in Section IV with the
one presented here to find a solution to therobust traffic-
engineeringproblem. In steps 1 and 3(a) in Figure 4, instead
of identifying the best egress point according to the shortest
distance, we can achieve robust traffic engineering by selecting
the best egress according to the solution of the path-based
multicommodity-flow problem specified in Section V-B. TIE
can also be configured beforeplanned maintenance activities
to ensure low link utilizations during the event. In this case,
the topology changeδ is known in advance, so the network
administrators can compute the optimal egress selection inthe
modified topologyδ(G) and adjustα and β to achieve the
desired traffic-engineering goal.

VI. I MPLEMENTATION ISSUES

An AS can deploy the TIE mechanism without changing the
intradomain or interdomain routing protocols, and withoutthe
cooperation of other domains. In this section, we first describe

12

how to ensure that each router can apply TIE independently
of other routers in the AS. Next we discuss how to configure
the α and β parameters and how a router applies the TIE
mechanism to select a BGP route for each destination prefix.
Then, we discuss how moving the responsibility for BGP path
selection from the routers to separate servers [20, 21] would
make it possible to implement our TIE scheme withoutany
modification to the decision logic running on the routers.

A. Allowing Independent Decisions at Each Node

Throughout the paper, we have assumed that each node
applies the TIE mechanism to select a single best route from
the set of equally-good BGP routes chosen by the border
routers. In a network with a “full mesh” internal BGP (iBGP)
configuration, each router learns these routes directly from
the border routers. However, large networks typically employ
route reflectors to overcome the scaling problems of having an
iBGP session for each pair of routers. A route reflector runs
the BGP decision process and propagates a single best route
to its clients; as a result, the clients may choose a different
best route than they would with all of the options at their
disposal3. In a network with route reflectors, we recommend
applying the TIE mechanism only on the route reflectors to
allow decisions based on a complete view of the BGP routes.
The client routers (e.g., other routers in the same PoP) would
inherit the choice made by their common route reflector. This
has the added advantage that only the route reflectors would
need to be upgraded to implement the TIE mechanism.

The TIE mechanism also relies on the underlying network
to forward data packets from the ingress router to the chosen
egress point. However, the routers along the forwarding path
do not necessarily select the same egress point, depending on
how their α and β parameters are configured. This problem
does not arise in hot-potato routing because each router selects
the closest egress point, which ensures that the routers along
the shortest path have chosen the same egress point. Rather
than constraining the wayα andβ are set on different routers,
we advocate that the network employ some form of lightweight
tunneling to direct traffic over the shortest IGP path(s) from
the ingress point to the egress point. For example, the ingress
router could encapsulate each data packet in an IP packet
where the destination corresponds to the chosen egress router.
Alternatively, the network may employ MPLS [15, 16] to
create label-switched paths (LSPs) between all ingress-egress
pairs, as discussed earlier in Section II-B. Tunneling IP packets
over the underlying IGP paths is a common usage of MPLS
since it obviates the need for interior routers to speak BGP or
have a large forwarding table, while also allowing the network
to forward VPN and non-IP traffic.

3The way route reflectors affect the BGP decisions of their clients leads to
a variety of operational problems, such as protocol oscillation and forwarding
loops [22–24]. An appealing way to avoid these problems, while retaining
most of the scalability advantages, is to have the route reflectors forward
all of the equally-good BGP routes to their clients [23]. This enhancement to
route reflectors would allow each router in the AS to apply theTIE mechanism
based on a complete view of the egress set for each destination prefix.

B. Configuring and Applying TIE in Routers

Using the TIE mechanism requires configuring the routers
with the values ofα andβ selected by the optimization routine.
Rather than configuring these values by hand, we envision
that a network-management system would connect to each
router to set or modify the parameters. Still, configuring a
large number of values may introduce significant overhead
and delay. In the worst case, each router would need to be
configured with two integer values for every destination prefix
and edge router. For a network with 500 edge routers and
150,000 destination prefixes, this would require configuring 75
billion parameters (i.e.,500 ·500 ·2 ·150, 000), which is clearly
excessive. Fortunately, a router often has the same values of
α and β across many destination prefixes and egress points.
To capitalize on this observation, the TIE mechanism could
have default values ofα = 1 and β = 0 (corresponding to
hot-potato routing) for each prefix, allowing the management
system to specify only the parameters that differ from these
values. For example, in Section IV only 10% of theβ values
were non-zero for the tier-1 ISP backbone, which would
reduce the configuration overhead by an order of magnitude.

Another way to reduce the overhead is to assignα and β
at a coarser granularity than individual routers and destination
prefixes. For example, the parameters could be defined for
PoPs, rather than routers, particularly if TIE is implemented
only at the route reflector(s) in each PoP. If the 500-router
network has (say)25 PoPs, the number of parameters would
drop by a factor of400 (i.e.,25 PoPs would be configured with
two parameters per prefix for25 egress PoPs). In addition,
the parameters could be based on the destination AS (i.e.,
the origin AS that initially announced the BGP route), rather
than the destination prefix. If the Internet has (say) 20,000
ASes and150, 000 prefixes, this would reduce the number of
parameters by an additional factor of7.5. Together, these two
optimizations would reduce the number of parameters by a
factor of 3000, from 75 billion down to 25 million across all
the routers in the network, which seems acceptable particularly
if the management system need only specify exceptions to the
default α and β values. Further reductions can be achieved
by associatingα andβ values with the next-hop AS or other
route attributes.

When α and β are not associated directly with particular
prefixes and egress routers, the ingress router needs some way
to know which parameters to use in selecting selecting a BGP
route for a prefix. The BGPcommunityattribute [25] provides
an effective way to communicate which parameters should be
used. For example, the border routers could be configured to
tag each BGP advertisement with a unique community value
that identifies the PoP. Another community could be used to
identify the origin AS or next-hop AS associated with the
advertisement. Upon receiving these tagged routes via internal
BGP (iBGP), a router can use these community values to index
into a table that stores theα andβ values4.

Once the router knows whichα and β values to use, the

4Using BGP communities in this way is quite common. For example,
policy-based accounting uses community attributes to determine which pre-
fixes should have their traffic measured together by a single counter [26].

13

router can compute the metricm based on these parameters
and the IGP distance to the egress router. Rather than applying
the traditional IGP tie-breaking step, the router can implement
a modified BGP decision process that uses them metric to se-
lect the route with the most-preferred egress point. Ultimately,
the TIE mechanism requires only a change in one step of
the BGP decision process implemented on the routers, rather
than any protocol modifications. We note that router vendors
already provide features that allow network administrators to
modify the operation of the BGP decision process [27], which
significantly reduces the barrier to deploying TIE.

C. Applying TIE in a Separate Path-Selection Platform

Rather than modifying the BGP decision process imple-
mented on the routers, an AS could move the entire responsi-
bility for BGP path selection to a separate software platform,
as proposed in [20, 21]. In this setting, dedicated servers
receive the eBGP advertisements and run decision logic to
select BGP routes on behalf of the routers in the AS. The
servers use iBGP sessions to send each router a customized
routing decision for each prefix, essentially overriding the
influence of the BGP decision process running on the routers.

These servers could implement the TIE mechanism for
selecting the routes in real time, and might also run the offline
optimization routines that set theα and β parameters; this
would allow the parameters to exist only on the servers, rather
than in the routers or other management systems. Even though
the servers could conceivably implement any decision logic,
in practice they need some separation of functionality between
the real-time adaptation to network events and the longer-term
optimization of the path-selection process based on network-
wide goals. TIE provides a way to achieve that separation.

VII. R ELATED WORK

Our work relates to several ongoing threads of research in
Internet routing:

Hot-potato disruptions: Measurement studies have shown
that hot-potato routing changes can lead to long conver-
gence delays, large shifts in traffic, and external BGP routing
changes [2, 3]. Subsequent work proposed metrics of network
sensitivity to internal changes to assist network administrators
in minimizing hot-potato disruptions [18]. Rather than trying
control disruptions using routing protocols as they are defined
today, we redesign the boundary between the two tiers of the
routing system to achieve a broader set of traffic-engineering
goals (including minimizing disruptions).

Traffic engineering: Research on traffic engineering has
shown how to tune the configuration of IGP link weights [7–
9, 28–30] and BGP policies [10, 11] to the prevailing traffic.
However, the resulting optimization problems are NP com-
plete, forcing the use of local-search techniques. Findinga
good setting of the configurable parameters is especially dif-
ficult when routing must be robust to equipment failures [12–
14]. Instead, we designed TIE with optimization in mind,
allowing the direct application of effective techniques such
as integer programming and multicommodity flow.

Optimizing egress-point selection:Previous research con-
sidered an optimization problem similar to the one we studied
in Section V. The work in [31] focused on selecting egress
points such that traffic loads do not exceed the egress-point
capacities, with the secondary objective of minimizing thetotal
distance traveled by the traffic. In contrast, we formulate an
optimization problem that minimizes congestion over the links
in the network, using the objective function used in earlier
traffic-engineering studies [19].

Multi-homing: In recent years, an increasing number of
stub ASes, such as large enterprise and campus networks,
connect to multiple upstream providers for improved reli-
ability and flexibility. In response, several research studies
have considered how these networks should balance load over
the multiple access links [32, 33]. However, our problem is
different because we focus on networks where each destination
prefix has a (possibly different) set of egress points, and the
choice of egress point affects the load on linksinside the AS.

Inter-AS negotiation: Other research has considered how
a pair of neighboring ASes could coordinate to select egress
points in a mutually advantageous manner [34, 35]. Where
these papers focus on the negotiation process, and on the
important question of what information the ASes should
exchange, we propose a tunable mechanism for selecting the
egress points and a way for each AS to determine its preferred
egress points based on network-wide objectives.

VIII. C ONCLUSION

IP networks are under increasing pressure to provide pre-
dictable communication performance for applications suchas
voice over IP, interactive gaming, and commercial transactions.
These applications are sensitive to both transient disruptions
(i.e., during routing changes) and persistent congestion (i.e.,
when the routing does not match the prevailing traffic). In
this paper, we propose a new mechanism for selecting egress
points that satisfies both requirements. TIE avoids the disrup-
tions caused by hot-potato routing changes while supporting
diverse network-wide objectives such as traffic engineering
and maintenance planning.

TIE is simple enough for routers to adapt in real time
to network events, and yet is much more amenable to opti-
mization than today’s routing protocols. In addition, TIE can
be deployed in an AS without changing the intradomain or
interdomain routing protocols, and without the cooperation of
other domains. Our experiments for two network-management
problems, using data from two backbone networks, demon-
strate the effectiveness of our new mechanism and the ease of
applying conventional optimization techniques to determine
the best settings for the tunable parameters.

APPENDIX

In Sections IV and V, we evaluate TIE on data from
two operational networks. In this appendix, we present our
methodology for obtaining the input data—the internal topol-
ogy, the egress sets, and the traffic demands—from passive
measurements. Since routers in the same Point-of-Presence
(PoP) essentially act as one larger node, we model the topology
of both networks at the PoP level.

14

A. Abilene Network

Abilene is the backbone for U.S. research network [36]. The
network has11 PoPs with one router each. The vast majority
of the links are OC192, with only one OC48. For our study,
we used data from April 2003. We obtained the topologyG
(both with designed weights and geographic distance) and link
capacitiesc(l) from the publicly-available map of the network.
This map has the location of each router, as well as the link
capacities and IGP weights.

Each BGP speaker has around7, 500 prefixes in its routing
table. We obtained the egress setE(p) for each prefix from
a dump of the BGP table for a monitor that peers with every
router. The network had only23 distinct egress sets.

We extracted the traffic demands from sampled Netflow
data. Every router in the network has Netflow enabled with
a sampling rate of1/100. For each routeri and destination
prefix p we have setv(i, p) to the average traffic volume for
one hour of Netflow data collected on a weekday afternoon.

B. Tier-1 ISP Network

We also used data collected from a tier-1 service-provider
backbone on January 10, 2005. We extracted the router-
level topology and IGP link weights from the link-state
advertisements logged by a routing monitor. We used router
configuration data to map each router to a PoP and determine
the link capacities. The resulting topology has a few dozen
nodes. For simplicity, we combine parallel links between a
pair of PoPs into one link with the aggregate capacity. We
used the PoP locations to determine the geographic distance
traversed by each inter-PoP link.

The network learns BGP routes for approximately150, 000
prefixes, We build the egress setE(p) for each prefix from
the BGP table dumps from all top-level route reflectors in the
network. The network has a few hundred distinct egress sets.

We use sampled Netflow data collected around the entire
periphery of the network. We aggregate all traffic entering
at the same PoPi and destined to the same prefixp into a
single traffic demandv(i, p). Each traffic demand represents
the average traffic rate over the course of the day.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-
4).” Internet Draft draft-ietf-idr-bgp4-25.txt, September 2004.

[2] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics of Hot-
Potato Routing in IP Networks,” inProc. ACM SIGMETRICS, June
2004.

[3] R. Teixeira, N. Duffield, J. Rexford, and M. Roughan, “Traffic matrix
reloaded: Impact of routing changes,” inProc. Passive and Active
Measurement Workshop, March/April 2005.

[4] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “DelayedInternet
Routing Convergence,”IEEE/ACM Trans. Networking, vol. 9, pp. 293–
306, June 2001.

[5] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibility
of IP Restoration in a Tier-1 Backbone,”IEEE Network Magazine,
March 2004.

[6] J. Rexford, “Route optimization in IP networks,” inHandbook of
Optimization in Telecommunications(P. Pardalos and M. Resende, eds.),
Kluwer Academic Publishers, 2005. To appear.

[7] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS Weights in a Chang-
ing World,” IEEE J. Selected Areas in Communications, vol. 20, no. 4,
pp. 756 – 767, 2002.

[8] D. H. Lorenz, A. Orda, D. Raz, and Y. Shavitt, “How good canIP
routing be?,” Tech. Rep. 2001-17, DIMACS, May 2001.

[9] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” inProc. IEEE INFOCOM, March 2000.

[10] N. Feamster, J. Winick, and J. Rexford, “A Model of BGP Routing for
Network Engineering,” inProc. ACM SIGMETRICS, June 2004.

[11] S. Uhlig, “A multiple-objectives evolutionary perspective to interdomain
traffic engineering in the Internet,” inWorkshop on Nature Inspired
Approaches to Networks and Telecommunications, September 2004.

[12] A. Nucci, B. Schroeder, N. Taft, and C. Diot, “IGP Link Weight As-
signment for Transient Link Failures,” inProc. International Teletraffic
Congress, August 2003.

[13] B. Fortz and M. Thorup, “Robust optimization of OSPF/IS-IS weights,”
in Proc. International Network Optimization Conference, pp. 225–230,
October 2003.

[14] A. Sridharan and R. Guerin, “Making OSPF/IS-IS routingrobust to link
failures,” tech. rep., University of Pennsylvania, July 2004.

[15] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switch-
ing Architecture.” RFC 3031, January 2001.

[16] B. S. Davie and Y. Rekhter,MPLS: Technology and Applications.
Morgan Kaufmann, May 2000.

[17] Ilog S.A., ”Ilog Cplex 9.0 User’s Manual”, October 2003.
[18] R. Teixeira, T. Griffin, A. Shaikh, and G. Voelker, “Network sensitivity

to hot-potato disruptions,” inProc. ACM SIGCOMM, September 2004.
[19] B. Fortz and M. Thorup, “Increasing internet capacity using local

search,”Computational Optimization and Applications, vol. 29, no. 1,
pp. 13–48, 2004. Preliminary short version of this paper published as
“Internet Traffic Engineering by Optimizing OSPF weights,”in Proc.
19th IEEE Conf. on Computer Communications (INFOCOM 2000).

[20] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der
Merwe, “The Case for Separating Routing from Routers,” inACM
SIGCOMM Workshop on Future Directions in Network Architecture,
August 2004.

[21] O. Bonaventure, S. Uhlig, and B. Quoitin, “The Case for More Versa-
tile BGP Route Reflectors.” Internet Draft draft-bonaventure-bgp-route-
reflectors-00.txt, July 2004.

[22] T. G. Griffin and G. Wilfong, “On the Correctness of IBGP Configura-
tion,” in Proc. ACM SIGCOMM, August 2002.

[23] A. Basu, A. Rasala, C.-H. L. Ong, F. B. Shepherd, and G. Wilfong,
“Route Oscillations in I-BGP with Route Reflection,” inProc. ACM
SIGCOMM, August 2002.

[24] D. McPherson, V. Gill, D. Walton, and A. Retana, “Bordergateway pro-
tocol (BGP) persistent route oscillation condition.” RFC 3345, August
2002.

[25] R. Chandra, P. Traina, and T. Li, “BGP communities attribute.” RFC
1997, August 1996.

[26] “BGP policy accounting.”http://www.cisco.com/univercd/
cc/td/doc/product/software/ios122/122newf%t/
122t/122t13/ft_bgppa.htm .

[27] “BGP cost community.” http://www.cisco.com/en/US/
products/sw/iosswrel/ps5207/products_feature%
_guide09186a00801a7f74.html .

[28] B. Fortz, J. Rexford, and M. Thorup, “Traffic Engineering with Tradi-
tional IP Routing Protocols,”IEEE Communication Magazine, October
2002.

[29] M. Ericsson, M. Resende, and P. Pardalos, “A genetic algorithm for
the weight setting problem in OSPF routing,”Journal of Combinatorial
Optimization, vol. 6, pp. 299–333, 2002.

[30] L. Buriol, M. Resende, C. Ribeiro, and M. Thorup, “A hybrid genetic
algorithm for the weight setting problem in OSPF/IS-IS routing,” Tech.
Rep. TD-5NTN5G, AT&T Labs Research, 2003.

[31] T. Bressoud, R. Rastogi, and M. Smith, “Optimal configuration of BGP
route selection,” inProc. IEEE INFOCOM, 2003.

[32] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman, “A
measurement-based analysis of multi-homing,” inProc. ACM SIG-
COMM, August 2003.

[33] D. K. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang,“Optimiz-
ing cost and performance for multihoming,” inProc. ACM SIGCOMM,
September 2004.

[34] R. Mahajan, D. Wetherall, and T. Anderson, “Towards coordinated
interdomain traffic engineering,” inProc. SIGCOMM Workshop on Hot
Topics in Networking, November 2004.

[35] J. Winick, S. Jamin, and J. Rexford, “Traffic engineering be-
tween neighboring domains.”http://www.cs.princeton.edu/
˜jrex/papers/interAS.pdf , July 2002.

[36] “Abilene Backbone Network.” http://abilene.internet2.
edu/ .

