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ABSTRACT
Today’s networks typically handle traffic engineering (e.g.,
tuning the routing-protocol parameters to optimize the flow
of traffic) and failure recovery (e.g., pre-installed backup
paths) independently. In this paper, we propose a unified
way to balance load efficiently under a wide range of fail-
ure scenarios. Our architecture supports flexible splitting of
traffic over multiple precomputed paths, with efficient path-
level failure detection and automatic load balancing over
the remaining paths. We propose two candidate solutions
that differ in how the routers rebalance the load after a fail-
ure, leading to a trade-off between router complexity and
load-balancing performance. We present and solve the op-
timization problems that compute the configuration state
for each router. Our experiments with traffic measurements
and topology data (including shared risks in the underlying
transport network) from a large ISP identify a “sweet spot”
that achieves near-optimal load balancing under a variety of
failure scenarios, with a relatively small amount of state in
the routers. We believe that our solution for joint traffic en-
gineering and failure recovery will appeal to Internet Service
Providers as well as the operators of data-center networks.

1. INTRODUCTION
To ensure uninterrupted data delivery, communication net-

works must distribute traffic efficiently even as links and
routers fail and recover. By tuning routing to the offered
traffic, traffic engineering [28] improves performance and al-
lows network operators to defer expensive outlays of new
capacity. Effective failure recovery [29,35]—adapting to fail-
ures by directing traffic over good alternate paths—is also
important to avoid performance disruptions. However, to-
day’s networks typically handle failure recovery and traffic
engineering independently, leading to more complex routers
and less efficient paths after failures. In this paper, we pro-
pose an integrated solution with much simpler routers that
balances load effectively under a range of failure scenarios.

We argue that traffic engineering and failure recovery can
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be achieved by the same underlying approach—dynamically
rebalancing traffic across diverse end-to-end paths in re-
sponse to individual failure events. This reduces the com-
plexity of the routers by moving most functionality to the
management system—an algorithm run by the network op-
erator. Our network architecture has three key features:

Precomputed multipath routing: Traffic between each
pair of edge routers is split over multiple paths that are con-
figured in advance. The routers do not compute (or recom-
pute) paths, reducing router overhead and improving path
stability. Instead, the management system computes paths
that offer sufficient diversity across a range of failure scenar-
ios, including correlated failures of multiple links.

Path-level failure detection: The ingress routers per-
form failure recovery based only on which paths have failed.
A minimalist control plane performs path-level failure de-
tection and notification, in contrast to the link-level probing
and network-wide flooding common in today’s intradomain
routing protocols. This leads to simpler, cheaper routers.

Local adaptation to path failures: Upon detecting
path failures, the ingress router rebalances the traffic on the
remaining paths, based only on which path(s) failed—not on
load information. This avoids having the routers distribute
real-time updates about link load and prevents instability.
Instead, the management system precomputes the reactions
to path failures and configures the routers accordingly.

The first two features—multiple precomputed paths and
path-level monitoring—are ideas that have been surfacing
(sometimes implicitly) in the networking literature over the
past few years (e.g., [4, 15, 25, 40], and many others). Our
architecture combines these two ideas in a new way, through
(i) a specific proposal for the “division of labor” between the
routers and the management system and (ii) an integrated
view of traffic engineering and failure recovery within a sin-
gle administrative domain. To support the simple network
elements, the management system makes network-wide de-
cisions based on the expected traffic, the network topology,
and the groups of links that can fail together. The manage-
ment system does not need to make these decisions in real
time—quite the contrary, offline algorithms can compute the
paths and the adaptations to path failures to ensure good
performance.

Our architecture raises important questions about (i) what
configuration state the routers should have to drive their lo-
cal reactions to path failures and (ii) how the management
system should compute this state, and the underlying paths,
for good traffic engineering and failure recovery. In address-
ing these questions, we make four main contributions:



Simple architecture for joint TE and failure re-
covery (Section 2): We propose a joint solution for traf-
fic engineering and failure recovery, in contrast to today’s
networks that handle these problems separately. Our min-
imalist control plane has routers balance load based only
on path-failure information, in contrast to recent designs
that require routers to disseminate link-load information and
compute new path-splitting parameters in real time [19,24].

Network-wide optimization across failure scenar-
ios (Section 3): We formulate and solve network-wide op-
timization problems for configuring the routers. Our algo-
rithms compute (i) multiple paths that distribute traffic effi-
ciently under a range of failure scenarios and (ii) the state for
each ingress router to adapt to path failures. We present al-
gorithms for two router designs that strike a different trade-
off between router state and load-balancing performance.

Experiments with measurement data from a large
ISP (Section 4): We evaluate our algorithms on mea-
surement data from a tier-1 ISP network. Our simulation
achieves a high degree of accuracy by utilizing the real topol-
ogy, link capacities, link delays, hourly traffic matrices, and
Shared Risk Link Groups (SRLGs) [14]. Our experiments
show that one of our candidate router designs achieves near-
optimal load balancing across a wide range of failure scenar-
ios, even when the traffic demands change dynamically.

Deployability in ISP and data-center networks (Sec-
tion 5): While our architecture enables simpler routers
and switches, existing equipment can support our solutions.
ISP backbones can use RSVP to signal multiple MPLS [30]
paths, with hash-based splitting of traffic over the paths.
In data centers, the fabric controller can configure multiple
paths through the network, and the server machines can en-
capsulate packets to split traffic in the desired proportions.

The paper ends with related work in Section 6, conclusion
in Section 7, and supporting proofs in an Appendix.

2. SIMPLE NETWORK ARCHITECTURE
Our architecture uses simple, cheap routers to balance

load before, during, and after failures by placing most func-
tionality in a management system that performs offline opti-
mization. The network-management system computes mul-
tiple diverse paths between each pair of edge routers, and
tells each ingress router how to split traffic over these paths
under a range of failure scenarios. Each edge router simply
detects path-level failures and uses this information to adjust
the splitting of traffic over the remaining paths, as shown in
Figure 1. The main novel feature of our architecture is the
way routers split traffic over the working paths; we propose
two approaches that introduce a trade-off between router
state and load-balancing performance.

2.1 Precomputed Multipath Routing
Many existing routing protocols compute a single path be-

tween each pair of routers, and change that path in response
to topology changes. However, dynamic routing has many
downsides, including the overhead on the routers (to dis-
seminate topology information and compute paths) and the
transient disruptions during routing-protocol convergence.
Techniques for making convergence faster tend to increase
the complexity of the routing software and the overhead on
the routers, by disseminating more information or updating
it more quickly. Rather than trying to reduce convergence
time, or add mechanisms for routers to detect (and avoid)
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Figure 1: The management system calculates a
fixed set of paths and splitting ratios, based on
the topology, traffic demands, and potential failures.
The ingress router learns about path failures and
splits traffic over the remaining paths, based on pre-
configured splitting ratios.

transient loops and blackholes, we avoid dynamic routing
protocols entirely [4].

Our architecture uses multiple preconfigured paths be-
tween each pair of edge routers, allowing ingress routers to
adapt to failures by shifting traffic away from failed path(s).
With multiple paths through the network, the routers do not
need to recompute paths dynamically—they simply stop us-
ing the failed paths until they start working again. This
substantially reduces router software complexity and proto-
col overheads (e.g., bandwidth and CPU resources), while
entirely side-stepping the problem of convergence. Instead,
the management system computes these paths, based on
both traffic-engineering and failure-recovery goals, and in-
stalls the paths in the underlying routers. The management
system can select diverse paths that ensure connectivity in
the face of failures, including multiple correlated failures.

Using multiple paths also leads to better load balancing,
whether or not failures occur. Today’s shortest-path rout-
ing protocols (like OSPF and IS-IS) use a single path, or
(at best) only support even splitting of traffic over multiple
shortest paths. Our architecture (like other recent propos-
als for multipath load balancing [7, 15, 18, 39]) allows flex-
ible splitting of traffic over multiple paths. However, we
do not require the routers to adapt the traffic splitting dy-
namically. Instead, the ingress router has a simple static
configuration that determines the splitting of traffic over
the available paths, while intermediate routers merely for-
ward packets over pre-established paths. The management
system optimizes this configuration in advance based on a
network-wide view of the expected traffic and likely fail-
ures. This avoids the protocol overhead and stability chal-
lenges of distributed, load-sensitive routing protocols. Also,
the management system can incorporate knowledge about
shared risks in the underlying topology and anticipated traf-
fic demands—information the routers do not have.

2.2 Path-Level Failure Detection
Most routing protocols detect failures by exchanging“hello”

messages between neighboring routers and flooding the topol-
ogy changes through the network. This approach requires



Optimal (Baseline) State-Dependent Splitting State-Independent Splitting

Router state Exponential in total Exponential in # of pre-configured Linear in # of pre-configured

# of links paths between two routers paths between two routers

Failure information Link level Path level Path level

Optimality Optimal Nearly-optimal Good

Table 1: Properties of the candidate solutions. The solutions differ in the amount of configuration state that
must be stored in the routers, the information the routers must obtain about each failure, and the achieved
traffic-engineering performance.

small timers for fast failure detection, imposing additional
overhead on the routers. In addition, many failures are trig-
gered by planned maintenance [22], leading to two conver-
gence events—one for the link failure(s), and another for
the recovery—that both cause transient disruptions. In ad-
dition, “hello” messages do not detect all kinds of failures—
some misconfigurations (e.g., having a maximum packet size
that is too small) and attacks (e.g., an adversary selectively
dropping packets) do not lead to lost “hello” messages.

Instead, our architecture relies on path-level failure detec-
tion. Each ingress-egress router pair has a session to mon-
itor each of its paths (e.g., as in BFD [16]). The probes
can be piggybacked on existing data traffic, obviating the
need for separate “hello” messages when the path is carry-
ing regular data traffic. This enables fast failure detection
without introducing extra probe traffic, and the “implicit
probes” provide a more realistic view of the reliability of a
path [3, 12], since the packets vary in size, addresses, and
so on. Another advantage is that the packets are handled
by the hardware interfaces and, as such, do not consume
processing resources (or experience software processing de-
lays) at intermediate routers. (Still, the propagation delay
along a path does impose limits on detection time in large
topologies, an issue we discuss in more detail in Section 5.)

Although the ingress router doesn’t learn which link failed,
knowledge of the path failures is sufficient to avoid the failed
path. In fact, since the routers need not be aware of the
topology, no control protocol is needed to exchange topol-
ogy information. In fact, only some of the ingress routers
need to learn about the failure—only the routers that have
paths traversing the failed edge. The other ingress routers,
and the intermediate routers, can remain unaware of the
link failure. Of course, the management system ultimately
needs to know about topology changes, so failed equipment
can be fixed or replaced. But this detection problem can be
handled on a much longer timescale since it does not affect
the failure-recovery time for data traffic.

2.3 Local Adaptation to Path Failures
In our architecture, a router is a simple device that does

not participate in a routing protocol, collect congestion feed-
back, or solve any computationally difficult problems. Still,
the routers do play an important role in adapting the distri-
bution of traffic when paths fail or recover, at the behest of
the management system. We propose two different ways the
routers can split traffic over the working paths: (i) state-
independent splitting which has minimal router state and
(ii) state-dependent splitting which introduces more state
in exchange for near-optimal performance, as summarized
(and compared to an idealized solution) in Table 1.

Optimal load balancing: This idealized solution cal-

culates the optimal paths and splitting ratios separately for
each possible failure state, i.e., for each combination of link
failures. This approach achieves the best possible load bal-
ancing by finding the optimal set of paths and splitting
ratios. However, the approach is impractical because the
routers must (i) store far too much state and (ii) learn about
all link failures—even on links the router’s paths do not tra-
verse. Therefore, this solution would violate our architec-
ture. However, the solution is still interesting as an upper
bound on the performance of the other two schemes.

State dependent splitting: In this solution, each ingress
router has a separate configuration entry with path-splitting
weights for each combination of path failures to a particular
egress router. For example, suppose a router has three paths
to an egress router. Then, the router configuration contains
seven entries—one for each of the 23 − 1 combinations of
path failures. Each configuration entry, computed ahead of
time by the management system, consists of three weights—
one per path, with a 0 for any failed paths. Upon detecting
path failures, the ingress router inspects a pre-configured ta-
ble to select the appropriate weights for splitting the traffic
destined to the egress router. Our experiments in Section 4
show that, even in a large ISP backbone, having three or four
paths is sufficient, leading to modest state requirements on
the router in exchange for near-optimal load balancing.

State independent splitting: This solution further sim-
plifies the router configuration by having a single set of
weights across all failure scenarios. So, an ingress router
with three paths to an egress router would have only three
weights, one for each path. If any paths fail, the ingress
router simply renormalizes the traffic on the remaining paths.
As such, the management system must perform a robust op-
timization of the limited configuration parameters to achieve
good load-balancing performance across a range of failure
scenarios. Our experiments in Section 4 show that this sim-
ple approach can perform surprisingly well, but understand-
ably not as well as state-dependent splitting.

3. NETWORK-WIDE OPTIMIZATION
In our architecture, the network-management system per-

forms network-wide optimization to compute paths and traffic-
splitting ratios that balance load effectively across a range of
failure scenarios. In this section, we first discuss the informa-
tion the management system has about the network topol-
ogy, traffic demands, and shared risks. Then, we explain how
the management system computes the multiple diverse paths
and the traffic-splitting ratios, for both state-dependent and
state-independent splitting. We solve all optimization prob-
lems either by formulating them as linear programs solvable
in polynomial time, or by providing heuristics for solving



NP-hard problems. Table 2 summarizes the notation.

3.1 Network-Wide Visibility and Control
The management system computes paths and splitting ra-

tios based on a network-wide view:
Fixed topology: The management system makes deci-

sions based on the designed topology of the network—the
routers and links that have been deployed. The topology is
represented by a graph G(V, E) with a set of vertices V and
directed edges E. The capacity of edge e ∈ E is denoted by
ce, and the propagation delay on the edge is ye.

Shared risk link groups: The management system knows
which links share a common vulnerability, such as connect-
ing to the same line card or router or traversing the same
optical fiber or amplifier [14]. The shared risks are denoted
by the set S, where each s ∈ S consists of a set of edges
that may fail together. For example, a router failure is rep-
resented by the set of its incident links, a fiber cut is rep-
resented by all links in the affected fiber bundle, and the
failure-free case is represented by the empty set ∅. Opera-
tors also have measurement data from past failures to pro-
duce estimates for the likelihood of different failures (e.g.,
an optical amplifier may fail less often than a line card). As
such, each failure state s has a weight ws that represents its
likelihood or importance.

Expected traffic demands: The management system
knows the anticipated traffic demands, based on past mea-
surements and predictions of traffic changes. Each traffic
demand d ∈ D is represented by a triple (ud, vd, hd), where
ud ∈ V is the traffic source (ingress router), vd ∈ V is the
destination (egress router), and hd is the flow requirement
(measured traffic). For simplicity, we assume that all de-
mands remain connected for each failure scenario; alterna-
tively, a demand can be omitted for each failure case that

Variable Description

G(V, E) network with vertices V and directed edges E

ce capacity of edge e ∈ E

ye propagation delay on edge e ∈ E

S family of network failure states

s network failure state (set of failed links)

ws weight of network failure state s ∈ S

D set of demands

ud source of demand d ∈ D

vd destination of demand d ∈ D

hd flow requirement of demand d ∈ D

Pd paths available to demand d ∈ D

αp fraction of the demand assigned to path p

Od family of observable failure states for node ud

od(s) state observable by ud in failure state s ∈ S

P o
d paths available to ud in failure state o ∈ Od

fs
p flow on path p in failure state s ∈ S

fo
p flow on path p in failure state o ∈ Od

lse total flow on edge e in failure state s

lse,d flow of demand d on edge e in failure state s

Table 2: Summary of notation

disconnects it. In practice, the management system may
have a time sequence of traffic demands (e.g., for different
hours in the day), and optimize the network configuration
across all these demands, as we discuss in Section 4.3.

The management system’s output is set of paths Pd for
each demand d and the splitting ratios for each path. In
each failure state s, the traffic splitting by ingress router ud

depends only on which paths have failed, not which failure
scenario s has occurred; in fact, multiple failure scenarios
may affect the same subset of paths in Pd. To reason about
the handling of a particular demand d, we consider a set Od

of “observable” failure states, where each observable state
o ∈ Od corresponds to a particular P o

d ⊂ Pd representing the
available paths. For ease of expression, we let the function
od(s) map to the failure state observable by node ud when
the network is in failure state s ∈ S. The amount of flow
assigned to path p in observable failure state o ∈ Od is fo

p .
The total flow on edge e in failure state s is lse, and the flow
on edge e corresponding to demand d is lse,d.

The management system’s goal is to compute paths and
splitting ratios that minimize congestion over the range of
possible failure states. A common traffic-engineering objec-
tive [10] is to minimize

P
e∈E Φ(lse/ce) where le is the load

on edge e and ce is its capacity. Φ() could be a convex func-
tion of link load [10], to penalize the most congested links
while still accounting for load on the remaining links. The
final objective minimizing congestion across failure scenarios
is

obj(ls1
e1/ce1 , ...) =

P
s∈S ws P

e∈E Φ(lse/ce). (1)

Minimizing this objective function is the goal of all the can-
didate solutions in the following section. The constraints
that complete the problem formulation differ depending on
the functionality placed in the underlying routers.

3.2 Computing Multiple Diverse Paths
The management system must compute multiple diverse

paths that ensure good load balancing—and (most impor-
tantly) continued connectivity—across a range of failure sce-
narios. However, computing the optimal paths for state-
dependent and state-independent splitting is NP-hard. In-
stead, we propose a heuristic: using the collection of paths
computed by the optimal solution that optimizes for each
failure state independently. This guarantees that the paths
are sufficiently diverse to ensure traffic delivery in all failure
states, while also making efficient use of network resources.

The idealized optimal solution has a separate set of paths
and splitting ratios in each failure state s. To avoid intro-
ducing explicit variables for exponentially many paths, we
formulate the problem in terms of the amount of flow lse,d

from demand d traversing edge e for failure state s. The op-
timal edge loads are obtained by solving a linear program:

min obj(ls1
e1/ce1 , ...)

s.t. lse =
P

d∈D lse,d ∀s, e
0 =

P
i:e=(i,j) lse,d −

P
i:e=(j,i) lse,d ∀d, s, j 6= ud, vd

hd =
P

i:e=(ud,i) lse,d −
P

i:e=(i,ud) lse,d ∀d, s

0 ≤ lse,d ∀d, s, e,

(2)

where lse and lse,d are variables. The first constraint defines
the load on edge e, the second constraint ensures flow con-
servation, the third constraint ensures that the demands are



met, and the last constraint guarantees flow non-negativity.
An optimal solution can be found in polynomial time using
conventional techniques for solving multi-commodity flow
problems.

After obtaining the optimal flow on each edge for all the
failure scenarios, we use a standard decomposition algorithm
to determine the corresponding paths Pd and the flow fs

p

on each of them. The decomposition starts with a set Pd

that is empty. New unique paths are added to the set by
performing the following decomposition for each failure state
s. First, annotate each edge e with the value lse,d. Remove
all edges that have 0 value. Then, find a path connecting
ud and vd. Although we could choose any of the paths from
ud to vd, our goal is to obtain paths that are as short as
possible. So, if multiple such paths exist, we use the path
p with the smallest propagation delay. Add this path p to
the set Pd and assign to it flow fs

p equal to the smallest
value of the edges on path p. Reduce the values of these
edges accordingly. Continue in this fashion, removing edges
with zero value and finding new paths, until there are no
remaining edges in the graph.

Note that we can show by induction that this process com-
pletely partitions the flow lse,d into paths. The decomposi-
tion yields at most |E| paths for each network failure state
s because the value of at least one edge becomes 0 whenever
a new path is found. Hence the total size of the set Pd is at
most |E||S|. It is difficult to obtain a solution that restricts
the number of paths as we prove in the appendix that it is
NP-hard to solve problem (2) when the number of allowed
paths is bounded by a constant J . In practice, the algo-
rithm produces a relatively small number of paths between
each pair of edge routers, as shown later in Section 4.

3.3 Optimizing the Traffic-Splitting Ratios
Once the paths are computed, the network-management

system can optimize the path-splitting ratios for each ingress-
egress router pair. The optimization problem and the result-
ing solution depend on whether the routers perform state-
dependent or state-independent splitting.

3.3.1 State-Dependent Splitting
In state-dependent splitting, each ingress router ud has a

set of splitting ratios for each observable failure state o ∈ Od.
Since the path-splitting ratios depend on which paths in Pd

have failed, the ingress router must store splitting ratios for
min(|S|, 2|Pd|) scenarios; fortunately, the number of paths
|Pd| is typically small in practice. When the network per-
forms such state-dependent splitting, the management sys-
tem’s goal is to find a set of paths Pd for each demand and
the flows fo

p on these paths in all observable states o ∈ Od.
If the paths Pd are known and fixed, the problem can be
formulated as a linear program:

min obj(ls1
e1/ce1 , ...)

s.t. lse =
P

d∈D

P
p∈P o

d
,e∈p

fo
p ∀e, s, o = od(s)

hd =
P

p∈P o
d

fo
p ∀d, o ∈ Od

0 ≤ fo
p ∀d, o ∈ Od, p ∈ Pd,

(3)

where lse and fo
p are variables. The first constraint defines

the load on edge e, the second constraint guarantees that
the demand d is satisfied in all observable failure states, and
the last constraint ensures non-negativity of flows assigned

to the paths. The solution of the optimization problem (3)
can be found in polynomial time.

The problem becomes NP-hard if the sets of paths {Pd}
are not known in advance. In fact, as we show in the Ap-
pendix, it is NP-hard even to tell if two paths that allow
an ingress router to distinguish two network failure states
can be constructed. Therefore, it is NP-hard to construct
the optimal set of paths for all our formulations that assume
the sources do not have information about the network fail-
ure state s. Therefore, we use the paths that are found by
the decomposition of the optimal solution (2), as outlined
in the previous subsection. Since these paths allow optimal
load balancing for the optimal solution (2), they are also
likely to enable good load balancing for the optimization
problem (3).

3.3.2 State-Independent Splitting
In state independent splitting, each ingress router has a

single configuration entry containing the splitting ratios that
are used under any combination of path failures. Each path
p is associated with a splitting fraction αp. When one or
more paths fail, the ingress router ud renormalizes the split-
ting parameters for the working paths to compute the frac-
tion of traffic to direct to each of these paths. If the net-
work elements implement such state-independent splitting,
and the paths Pd are known and fixed, the management
system needs to solve the following non-convex optimization
problem:

min obj(ls1
e1/ce1 , ...)

s.t. fo
p = hd

αpP
q∈P o

d
αq

∀d, o ∈ Od, p ∈ Pd

lse =
P

d∈D

P
p∈P o

d
,e∈p

fo
p ∀e, s, o = od(s)

hd =
P

p∈P o
d

fo
p ∀d, o ∈ Od

0 ≤ fo
p ∀d, o ∈ Od, p ∈ Pd,

(4)

where lse, fo
p and αp are variables. The first constraint en-

sures that the flow assigned to every available path p is pro-
portional to αp. The other three constraints are the same
as in (3).

Unfortunately, no standard optimization techniques allow
us to compute an optimal solution efficiently, even when the
paths Pd are fixed. Therefore, we have to rely on heuristics
to find both the candidate paths Pd and the splitting ratios
αp. To find the set of candidate paths Pd, we again use
the optimal paths obtained by decomposing (2). To find
the splitting ratios we mimic the behavior of the optimal
solution as closely as possible. We find the splitting ratios

for all paths p by letting αp =
P

s∈S

wsfs
p

hd
where fs

p is the

flow assigned by the optimal solution to path p in network
failure state s. Since

P
ws = 1, the calculated ratio is the

weighted average of the splitting ratios used by the optimal
solution (2).

4. EXPERIMENTAL EVALUATION
To evaluate the algorithms described in the previous sec-

tion, we wrote a simulator in C++ that calls the CPLEX
linear program solver in AMPL and solves the optimization
problems (2) and (3). We compare our two heuristics to the
optimal solution, a simple “equal splitting” configuration,
and OSPF with the link weights set using state-of-the-art
optimization techniques. We show that our two heuristics



require few paths resulting in compact routing tables, and
the round-trip propagation delay does not increase. Finally,
using real traffic traces obtained during a 24-hour measure-
ment in the network of a tier-1 ISP we show that our solu-
tions achieve excellent results without the need to perform
any reoptimizations even in the presence of a changing traffic
matrix.

Our experimental results show that the objective value
of state-dependent splitting very closely tracks the
optimal objective. For this reason, this solution is our
favorite. Although state-independent splitting has a some-
what worse performance especially as the network load in-
creases beyond current levels, it is also attractive due to its
simplicity.

4.1 Experimental Setup
Our simulations use a variety of synthetic topologies, the

Abilene topology, as well as the city-level IP backbone topol-
ogy of a tier-1 ISP with a set of failures provided by the net-
work operator. The parameters of the topologies we used
are summarized in Table 3.
Synthetic topologies: The synthetic topologies include 2-
level hierarchical graphs, purely random graphs, and Wax-
man graphs. 2-level hierarchical graphs are produced using
the generator GT-ITM [41], for random graphs the probabil-
ity of two edges being connected is constant, and the proba-
bility of having an edge between two nodes in the Waxman
graph decays exponentially with the distance of the nodes.
These topologies also appear in [9].
Abilene topology: The topology of the Abilene network
and a measured traffic matrix are used. We use the true
edge capacities of 10 Gbps.
Tier-1 IP backbone: The city-level IP backbone of a tier-1
ISP is used. In our simulations, we use the real link capac-
ities and measured traffic demands. We also obtained the
link round-trip propagation delays.

The collection of network failures S for the synthetic topolo-
gies and Abilene contains single edge failures and the no-
failure case. Two experiments with different collections of
failures are performed on the tier-1 IP backbone. In the
first experiment, single edge failures are used. In the second
experiment, the collection of failures also contains Shared
Risk Link Groups (SRLGs), link failures that occur simulta-
neously. SRLGs were obtained from the network operator’s
database that contains 954 failures with the largest failure

Name Topology Nodes Edges Demands

hier50a hierarchical 50 148 2,450

hier50b hierarchical 50 212 2,450

rand50 random 50 228 2,450

rand50a random 50 245 2,450

rand100 random 100 403 9,900

wax50 Waxman 50 169 2,450

wax50a Waxman 50 230 2,450

abilene backbone 11 28 253

tier-1 backbone 50 180 625

Table 3: Synthetic and realistic network topologies.

affecting 20 links simultaneously. For each potential line
card failure, a complete router failure, or a link cut there is
a corresponding record in the SRLG database. Therefore,
failures that do not appear in the database are rare. The
weights ws in the optimization objective (1) were set to 0.5
for the no-failure case, and all other failure weights are equal
and sum to 0.5.

The set of demands D in the Abilene and tier-1 networks
were obtained by sampling Netflow data measured on Nov.
15th 2005 and May 22nd 2009, respectively. For the syn-
thetic topologies, we chose the same traffic demands as in [9].

To simulate the algorithms in environments with increas-
ing congestion, we repeat all experiments several times while
uniformly increasing the traffic demands. For the synthetic
topologies we start with the original demands and scale them
up to twice the original values. As the average link utiliza-
tion in Abilene and the tier-1 topology is lower than in the
synthetic topologies, we scale the demands in these realistic
topologies up to three times the original value.

In our experiments we use the piecewise linear penalty
function defined by Φ(0) = 0 and its derivatives:

Φ′ (`) =

8>>>>><>>>>>:

1 for 0 ≤ ` < 0.333
3 for 0.333 ≤ ` < 0.667
10 for 0.667 ≤ ` < 0.9
70 for 0.9 ≤ ` < 1
500 for 1 ≤ ` < 1.1
5000 for 1.1 ≤ ` < ∞

This penalty function was introduced in [10]. The function
can be viewed as modeling retransmission delays caused by
packet losses. The cost is small for low utilization, and in-
creases steeply as the utilization exceeds 100%.

Our simulation calculates the objective value of the opti-
mal solution, state-independent and state-dependent split-
ting, and equal splitting. Equal splitting is a variant of state-
independent splitting that splits the flow evenly on the avail-
able paths. We also calculate the objective achieved by the
shortest path routing of OSPF with optimized link weights.
These link weights were calculated using the state-of-the-art
optimizations of [9], and these optimizations take into con-
sideration the set of failure states S and the corresponding
failure weights ws.

Our simulations were performed using CPLEX version
11.2 on a 1.5 GHz Intel Itanium 2 processor. Solving the
linear program (2) for a particular failure case in the tier-1
topology takes 4 seconds, and solving the linear program (3)
takes about 16 minutes. A tier-1 network operator can per-
form calculations for its entire city-level topology in less than
2 hours.

4.2 Performance with Static Traffic
Avoiding congestion and packet losses during planned and

unplanned failures is the central goal of traffic engineering.
Our traffic engineering objective measures congestion across
all the considered failure cases. The objective as a func-
tion of the scaled-up demands is depicted in Figure 2. The
results which were obtained on the hierarchical and tier-1
topologies are representative, we made similar observations
for all the other topologies. In Figure 2, the performance of
state-dependent splitting and the optimal solution is virtu-
ally indistinguishable in all cases. State-independent split-
ting is less sophisticated and does not allow custom load
balancing ratios for distinct failures, and therefore its perfor-
mance is worse compared to the optimum. However, the per-
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Figure 2: From top to bottom the traffic engineering
objective as a function of an increasing traffic load
in the hierarchical topology hier50a, tier-1 topol-
ogy with single edge failures, and mboxtier-1 topol-
ogy with SRLGs, respectively. The performance of
the optimal solution and state-dependent splitting
is nearly identical.

formance compares well with that of OSPF. Unlike OSPF,
state-independent splitting benefits from using the same set
of paths as the optimal solution. It is not surprising that the
equal splitting algorithm achieves the worst performance.

We observe that OSPF achieves a somewhat worse perfor-
mance than state-independent and state-dependent splitting
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Figure 4: Size of the compressed routing tables in
the tier-1 topology with SRLGs. The largest and av-
erage routing table sizes (± one standard deviation)
in the backbone routers are shown.

as the load increases. We made this observation despite the
fact that we obtained a custom set of OSPF link weights
for each network load we evaluated. A possible explanation
is that OSPF routing, in which each router splits the load
evenly between the smallest weight paths, does not allow
enough flexibility in choosing routes and splitting ratios.

Solutions with few paths are preferred as they decrease
the number of tunnels that have to be managed, and reduce
the size of the router configuration. However, a sufficient
number of paths must be available to avoid failures and to
reduce congestion. We observe that the number of paths
used by our algorithms is small. We record the number of
paths used by each demand, and plot the distribution in
Figure 3. Not surprisingly, the number of paths is greater
for larger and more diverse topologies. 92% of the demands
in the hierarchical topology use 7 or fewer paths, and fewer
than 10 paths are needed in the tier-1 backbone topology
for almost all demands. Further, Figure 3 shows that the
number of paths only increases slightly as we scale up the
amount of traffic in the networks. This small increase is
caused by shifting some traffic to longer paths as the short
paths become congested.

A practical solution uses few MPLS labels in order to re-
duce the size of routing tables in the routers. Our experi-
mental results reveal that when we use MPLS tunnels in the
tier-1 topology, a few thousand tunnels can pass through
a single router. However, a simple routing table compres-
sion technique allows us to reduce the routing table size to
a few hundred entries in each router. Such compression is
important because it reduces the memory requirements im-
posed on the simple routers whose use we advocate, and it
improves the route lookup time.

Routing tables can be compressed by using the same MPLS
labels for routes with a common path to the destination.
Specifically, if two routes to destination t pass through router
r, and these routes share the same path between the router
r and the destination t, the same outbound label should be
used in the routing table of router r. The resulting routing
table sizes as a function of the network load are depicted in
Figure 4. The curve on the top shows the size of the largest
routing table, and the curve on the bottom shows the aver-
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Algorithm Single edge SRLGs

Optimal load balancing 31.75± 0.26 31.80± 0.25

State dep. splitting 31.51± 0.17 31.61± 0.16

State indep. splitting 31.76± 0.26 31.87± 0.25

Equal splitting 34.83± 0.33 40.85± 0.86

OSPF (optimized) 31.18± 0.40 31.23± 0.40

OSPF (current) 31.38± 0 31.38± 0

Table 4: Round-trip propagation delay in ms (aver-
age ± one standard deviation) in the tier-1 backbone
network for single edge failures and SRLG failures.

age routing table size among all the backbone routers.
Minimizing the delay experienced by the users is another

important goal of network operators. We calculated the av-
erage round-trip propagation delays of all the evaluated al-
gorithms. The calculated delays include delays in all failure
states weighted by the corresponding likelihood of occur-
rence, but exclude congestion delay which is negligible. The
delays are summarized in Table 4. We observe that the
round-trip delay of all algorithms except equal splitting is
almost identical at around 31 ms. These values would sat-
isfy the 37 ms requirement specified in the SLAs of the tier-1
network. Moreover, these values are not higher than these
experienced by the network users today. To demonstrate
this, we repeated our simulation on the tier-1 topology using
the real OSPF weights which are used by the network oper-
ator. These values are chosen to provide a tradeoff between
traffic engineering and shortest delay routing. The results
which appear in Table 4 in the row titled OSPF (current)
show that the current delays are 31.38 ms for each of the
two tier-1 failure sets.

4.3 Robust Optimization for Dynamic Traffic
Solving the optimization problems repeatedly as the traffic

matrix changes is undesirable due to the need to update the
router configurations with new paths and splitting ratios.
We explore the possibility of using a single router configu-
ration that is robust to diurnal changes of the demands.
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Figure 5: The aggregate traffic volume in the tier-1
network has peaks at midnight GMT and 8 p.m.
GMT. Examples of three demands show that their
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To perform this study we collected hourly netflow traffic
traces in the tier-1 network on September 29, 2009. We de-
note the resulting 24 hourly traffic matrices D0, D1, ..., D23.
Figure 5 depicts the aggregate traffic volume, as well as ex-
ample of the traffic between three ingress-egress router pairs.
The aggregate traffic volume is the lowest at 9 a.m. GMT
and peaks with 2.5 times as much traffic at midnight and 8
p.m. GMT. Comparison to the three depicted ingress-egress
router demands reveals that the traffic during a day cannot
be obtained by simple scaling as the individual demands
peak at different times. This makes the joint optimization
challenging.

The first step in the joint optimization is to calculate a
single set of paths that guarantee failure resilience and load
balancing for each of the 24 traffic matrices. There are sev-
eral approaches we can take. In the first approach, we solve
linear program (2) for each traffic matrix Di separately and
use the union of the paths obtained for each matrix. The
second approach is to calculate the average traffic matrix
D = 1

24

P
i Di. The linear program (2) is then solved for
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Figure 6: The traffic engineering objective in the
tier-1 topology with SRLGs. The state dependent
and state independent splitting algorithms use a sin-
gle configuration throughout the day. The optimal
solution uses a custom configuration for each hour.

the average traffic matrix. In the third approach we use the
envelope of the 24 traffic matrices instead of the average,
i.e., we let Djk = maxiD

i
jk.

In our simulations we chose the last method. Compared
to the first method, it results in fewer paths. Compared
to the second method, it allows better load balancing be-
cause demands between ingress-egress pairs with high traffic
variability throughout the day are represented by the peak
traffic.

The second step is to calculate router configuration ro-
bust to traffic changes. We again use the envelope Djk =
maxiD

i
jk as the input traffic matrix and repeat the opti-

mizations from the previous section. Then we test the so-
lution by simulating the varying traffic demand during one
day period. The resulting objective value of state depen-
dent splitting and state independent splitting is depicted in
Figure 6. The optimal objective in Figure 6 represents the
performance of the best possible solution that uses custom
configuration updated hourly. We observe that state depen-
dent splitting with a single configuration is robust to diurnal
traffic changes and the value of its objective closely tracks
the optimum. State independent splitting is also close to
optimal during low congestion periods, but becomes subop-
timal during the peak hours.

5. DEPLOYMENT SCENARIOS
Although our architecture enables the use of new simpler

routers, we can readily deploy our solutions using existing
protocols and equipment, as summarized in Table 5. An
ISP can deploy our architecture using Multi-Protocol Label
Switching (MPLS) [30]. Data centers could use the same
solution, or leverage existing Ethernet switches and move
some functionality into the end-host machines.

5.1 ISP Backbone Using MPLS
Installing MPLS paths with RSVP: MPLS is par-

ticularly suitable because ingress routers encapsulate pack-
ets with labels and direct them over pre-established Label-
Switched Paths (LSPs). This enables flexible routing when

ISP Backbone Data Center

Network element MPLS router Ethernet switch
Path installation RSVP VLAN trunking
Traffic splitting Ingress router End host
Failure detection BFD Host probing
Fast recovery Ingress router End host
Traffic demand MPLS MIB Host/VLAN counter

Table 5: Existing tools and protocols that can be
used to deploy our architecture.

multiple LSPs are established between each ingress-egress
router pair. Our solution, then, could be viewed as a par-
ticular application of MPLS, where the management system
computes the LSPs, instructs the ingress routers to estab-
lish the paths (say, using RSVP), and disables any dynamic
recalculation of alternate paths when primary paths fail.

Hash-based splitting at ingress routers: Multipath
forwarding is supported by commercial routers of both ma-
jor vendors [2, 28]. The routers can be configured to hash
packets based on port and address information in the head-
ers into several groups and forward each group on a separate
path. This provides path splitting with relatively fine gran-
ularity (e.g., at the 1/16th level), while preventing out-of-
order packet by delivery by ensuring that packets belonging
to the same TCP or UDP flow traverse the same path.

Path-level failure detection using BFD: Fast failure
detection can be done using Bidirectional Forwarding De-
tection (BFD) [16]. A BFD session can monitor each path
between two routers, by piggybacking on the existing data
traffic. (Backbones covering a large geographic region may
also use existing link-level detection mechanisms for even
faster recovery. For example, local path protection [29] in-
stalls a short alternate path between two adjacent routers,
for temporary use after the direct link fails. However, local
protection cannot fully exploit the available path diversity,
leading to suboptimal load balancing; instead, local protec-
tion can be used in conjunction with our design.)

Failure recovery at ingress router: The ingress router
adapts to path failures by splitting traffic over the remain-
ing paths. In state-independent splitting, the ingress router
has a single set of traffic-splitting weights, and automati-
cally renormalizes to direct traffic over the working paths.
State-dependent splitting requires modification to the router
software to switch to alternate traffic-splitting weights in the
data plane; no hardware modifications are required.

Measuring traffic demands using SNMP: MPLS has
SNMP counters (called Management Information Bases) that
measure the total traffic traversing each Label-Switched Path.
The management system can poll these counters to measure
the traffic demands. Alternative measurement techniques,
such as Netflow or tomography, may also be used.

5.2 Data Center Using Hosts and Switches
While a data center could easily use the same MPLS-based

solution, control over the end host and the availability of
cheaper commodity switches enable another solution.

End-host support for monitoring and traffic split-
ting: The server machines in data centers can perform many
of the path-level operations in our architecture. As in the
VL2 [13] and SPAIN [25] architectures, the end host can en-



capsulate the packets (say, using a VLAN tag) to direct them
over a specific path. This enables much finer-grain traffic
splitting. In addition, the end host can perform path-level
probing in the data plane, by piggybacking on existing data
traffic and sending additional active probes when needed.
Upon detecting path failures, the end host can change to
new path-splitting percentages based on the precomputed
configuration installed by the controller. The end host could
also measure the traffic demands by keeping counts of the
traffic destined to each egress switch. These functions can
be implemented in the hypervisor, such as the virtual switch
that often runs on server machines in data centers.

Multiple VLANs or OpenFlow rules for forward-
ing: The remaining functions can be performed by the un-
derlying switches. For example, the management system
can configure multiple paths by merging these paths into
a set of trees, where each tree corresponds to a different
VLAN [25]. Or, if the switches support the emerging Open-
Flow standard [1, 23], the management system could install
a forwarding-table rule for each hop in each path, where the
rule matches on the VLAN tag, and forwards the packet
to the appropriate output port. Since OpenFlow switches
maintain traffic counters for each rule, the management sys-
tem can measure the traffic demands by polling the switches,
in lieu of the end hosts collecting these measurements.

6. RELATED WORK
Traffic engineering: Most of the related work treats

failure recovery and traffic engineering independently. Traf-
fic engineering without failure recovery in the context of
MPLS is studied in [6, 7, 20, 33, 39]. The work in [6] uti-
lizes traffic splitting to minimize end-to-end delay and loss
rates; however, an algorithm for optimal path selection is
not provided. The works in [20] and [33] minimize the max-
imum link utilization while satisfying the requested traffic
demands. Other papers [7, 15, 18, 39] prevent congestion by
adaptively balancing the load among multiple paths based
on measurements of congestion, whereas our solution pre-
computes traffic-splitting configurations based on both the
offered traffic and the likely failures.

Failure recovery: Local and global path protection are
popular failure recovery mechanisms in MPLS. In local pro-
tection the backup path takes the shortest path that avoids
the outage location from a point of local repair to the merge
point with the primary path. The IETF RFC 4090 [29] fo-
cuses on defining signaling extensions to establish the backup
paths, but leaves the issues of bandwidth reservation and
optimal route selection open. In [37] the shortest path that
avoids the failure is used. While [32] and [38] attempt to
find optimal backup paths with the goal of reducing con-
gestion, local path protection is less suitable for traffic engi-
neering than global path protection, which allows rerouting
on end-to-end paths [35]. Other work describes how to man-
age restoration bandwidth and select optimal paths [17,21].
While our solution also uses global protection to reroute
around failures, the biggest difference is that most of the re-
lated work distinguishes primary and backup paths and only
uses a backup path when the primary path fails. In contrast,
our solution balances the load across multiple paths even be-
fore failures occur, and simply adjusts the splitting ratios in
response to failures.

Integrated failure recovery and TE: Previous results
that integrate failure recovery with routing on multiple paths

only use alternate paths when primary routes fail [31], or
they require explicit congestion feedback and do not provide
algorithms to find the optimal paths [19, 24]. YAMR [11]
constructs a set of diverse paths in the interdomain routing
setting that are resilient against a specified set of failures,
but without regard to load balancing. In [42] they inte-
grate failure recovery with load balancing, but their focus
is different—they guarantee delivery of a certain fraction of
the traffic after a single edge failure, whereas our goal is
to deliver all traffic for a known set of multi-edge failures.
Proposals that optimize OSPF or IS-IS link weights with
failures in mind, such as [9] and [27], must rely on shortest
path IGP routing and therefore cannot fully utilize the path
diversity in the network.

Failure recovery and TE with multiple spanning
trees: Enterprise and data-center networks often use Eth-
ernet switches, which do do not scale well because all traffic
flows over a single spanning tree, even if multiple paths exist.
Several papers propose more scalable Ethernet designs that
use multiple paths. The work of Sharma et al. uses VLANs
to exploit multiple spanning trees to improve link utilization,
and achieve improved fault recovery [34]. Most of the designs
such as VL2 [13], and PortLand [26] rely on equal splitting
of traffic on paths with the same cost. SPAIN [25] supports
multipath routing through multiple spanning trees, with end
hosts splitting traffic over the multiple paths. However, the
algorithm for computing the paths does not consider the
traffic demands, and the end hosts must play a stronger role
in deciding which path to use for each individual flow based
on the observed performance.

NP-hardness: Hardness proofs of optimization problems
related to failure recovery appear, e.g., in [36] and [5].

7. CONCLUSION
In this paper we propose a mechanism that combines path

protection and traffic engineering to enable reliable data de-
livery in the presence of link failures. We formalize the prob-
lem by providing several optimization-theoretic formulations
that differ in the capabilities they require of the network
routers. For each of the formulations, we present algorithms
and heuristics that allow the network operator to find a set
of optimal end-to-end paths and load balancing rules.

Our extensive simulations on the IP backbone of a tier-1
ISP and on a range of synthetic topologies demonstrate the
attractive properties of our solutions. First, state-dependent
splitting achieves load balancing performance close to the
theoretical optimum, while state-independent splitting of-
ten offers comparable performance and a very simple setup.
Second, using our solutions does not significantly increase
propagation delay compared to the shortest path routing
of OSPF. Finally, our solution is robust to diurnal traffic
changes and a single configuration suffices to provide good
performance.

In addition to failure resilience and favorable traffic en-
gineering properties, our architecture has the potential to
simplify router design and reduce operation costs for ISPs
as well as operators of data centers and enterprise networks.
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APPENDIX
A. PROOFS

In this Appendix, we show that two problems are NP-
hard:

Failure State Distinguishing
instance: A directed graph G = (V, E), a source and des-
tination vertices u, v ∈ V , and two sets s, s′ ⊆ E.
question: Is there a simple directed path P from u to v
that contains edges from one and only one of the sets s and
s′?

Bounded Path Load Balancing
instance: A directed graph G = (V, E) with a positive
rational capacity ce for each edge e ∈ E, a collection S
of subsets s ⊆ E of failure states with a rational weight
ws for each s ∈ S, a set of triples (ud, vd, hd), 1 ≤ d ≤ k,
corresponding to demands, where hd units of demand d need
to be sent from source vertex ud ∈ V to destination vertex
vd ∈ V , an integer bound J on the number of paths that can
be used between any source-destination pair, a piecewise-
linear increasing cost function Φ(`) mapping edge loads ` to
rationals, and an overall cost bound B.
question: Are there J (or fewer) paths between each source-
destination pair such that the given demands can be assigned
to the paths so that the cost (sum of Φ(`) over all edges and
weighted failure states as described in the text) is B or less?

To prove that a problem X is NP-hard, we must show
that for some known NP-hard problem Y , any instance y of
Y can be transformed into an instance x of X in polynomial
time, with the property that the answer for y is yes if and
only if the answer for x is yes. Both our problems can be
proved NP-hard by transformations from the following prob-
lem, proved NP-hard by Fortune, Hopcroft, and Wyllie [8].

Disjoint Directed Paths
instance: A directed graph G(V, E) and distinguished ver-
tices u1, v1, u2, v2 ∈ V .

question: Are there directed paths P1 from u1 to v1 and
P2 from u2 to v2 such that P1 and P2 are vertex-disjoint?

Theorem 1. The Failure State Distinguishing prob-
lem is NP-hard.

Proof. Suppose we are given an instance G = (V, E), u1, v1,
u2, v2 of Disjoint Directed Paths. Our constructed in-
stance of Failure State Distinguishing consists of the
graph G′ = (V, E′), where E′ = E∪{(v1, u2)}, with u = u1,
v = v2, s = φ, and s′ = {(v1, u2)}.

Given this choice of s and s′, a simple directed path from
u to v that distinguishes the two states must contain the
edge (v1, u2). We claim that such a path exists if and only if
there are vertex-disjoint directed paths P1 from u1 to v1 and
P2 from u2 to v2. Suppose a distinguishing path P exists.
Then it must consist of of three segments: a path P1 from
u = u1 to v1, the edge (v1, u2), and then a path P2 from
u2 to v = v2. Since it is a simple path, P1 and P2 must be
vertex-disjoint. Conversely, if vertex-disjoint paths P1 from
u1 to v1 and P2 from u2 to v2 exist, then the path P that
concatenates P1 followed by (v1, u2) followed by P2 is our
desired distinguishing path. �

Theorem 2. The Bounded Path Load Balancing prob-
lem is NP-hard even if there are only two commodities (k =
2), only one path is allowed for each (J = 1), and there is
only one failure state s.

Proof. For this result we use the variant of Disjoint Di-
rected Paths in which we ask for edge-disjoint rather than
vertex-disjoint paths. The NP-hardness of this variant is
easy to prove, using a construction in which each vertex x
of G is replaced by a pair of new vertices inx and outx, and
each edge (x, y) is replaced by the edge (outx, iny).

Suppose we are given an instance G = (V, E), u1, v1, u2, v2

of the edge-disjoint variant of Disjoint Directed Paths.
Our constructed instance of Bounded Path Load Bal-
ancing is based on the same graph, with each edge e given
capacity ce = 1, with the single failure state s = φ (i.e.,
the state with no failures), with ws = 1, and with demands
represented by the triples (u1, v1, 1) and (u2, v2, 1). The
cost function Φ has derivative Φ′(`) = 1, 0 ≤ ` ≤ 1, and
Φ′(`) = |E|, ` > 1. Our target overall cost bound is B = |E|.

If the desired disjoint paths exist, we can use P1 to send
the required unit of traffic from u1 to v1, and P2 to send
the required unit of traffic from u2 to v2. Since the paths
are edge-disjoint, no edge will carry more than one unit of
traffic, so the cost per edge used is 1, and the total number
of edges used is at most |E|. Thus the specified cost bound
B = |E| is met. On the other hand, if no such pair of paths
exist, then we must choose paths P1 and P2 that share at
least one edge, which will carry two units of flow, for an
overall cost of at least |E| + 1, just for that edge. Thus if
there is a solution with cost |E| or less, the desired disjoint
paths must exist. �

Adding more paths, failure states, or commodities cannot
make the problem easier. Note, however, that this does not
imply that the problem for the precise cost function Φ pre-
sented in the text is NP-hard. It does, however, mean that,
assuming P 6= NP, any efficient algorithm for that Φ would
have to exploit the particular features of that function.


