
Rethinking Internet Traffic Management:
From Multiple Decompositions to a Practical Protocol

Jiayue He, Ma’ayan Bresler, Mung Chiang, and Jennifer Rexford
Princeton University, USA

Email: {jhe, mbresler, chiangm, jrex}@princeton.edu
Under submission, please do not distribute

ABSTRACT
In the Internet today, traffic management spans congestion
control (at end hosts), routing protocols (on routers) and traf-
fic engineering (by network operators). Historically, this di-
vision of functionality slowly evolved without a conscious
design. In this paper, we perform a top-down redesign of
traffic management using recent innovations in optimization
theory. First, we propose an objective function that captures
the goals of end users and network operators alike. Using
all known optimization decomposition techniques, we gen-
erate four distributed algorithms where sources adapt their
sending rates along multiple paths, based on different kinds
of feedback from the links. Optimization theory guarantees
that these algorithms converge to a stable and optimal point,
and simulations allow us to compare rate of convergence,
robustness to tunable parameters, and performance under re-
alistic traffic. Combining the best features of the algorithms,
we construct TRUMP: a traffic management protocol that is
distributed, adaptive, robust, flexible and easy to manage.
We show that using optimization decompositions as a foun-
dation, simulations as a building block, and human intuition
as a guide can be a principled approach to protocol design.

1. INTRODUCTION
Traffic management has three players: users, routers,

and operators. In today’s Internet, users run conges-
tion control to adapt their sending rates at the edge of
the network. Inside a single Autonomous System (AS),
routers run shortest-path routing based on link weights.
Operators set link weights through solving centralized
optimization. This optimization minimizes a cost func-
tion that considers the resulting utilizations on all links
given the offered traffic (e.g., [1, 2]). The current divi-
sion of labor between the three players slowly evolved
over time without any conscious design, resulting in a
few shortcomings. First, operators tune link weights as-
suming that the traffic is inelastic and end hosts adapt
sending rates assuming routing is fixed. Second, the
link-weight setting problem is NP-hard, forcing opera-
tors to resort to heuristics. Finally, since this offline
optimization occurs at the timescale of hours, it does
not adapt to changes in the offered traffic.

In this paper, we rethink Internet traffic management
using optimization decompositions as a foundation. Op-
timization decomposition is the process of decomposing
a single optimization problem into many sub-problems,
each of which can then be solved locally. While de-
composition is a useful tool for deriving distributed al-
gorithms, it has rarely been used to design a practical
protocol, with FAST TCP [3] as a notable exception.
The barriers are two-fold. First, the mathematics leaves
many important practical details unspecified. Second,
recent work [4] shows that there are multiple decom-
position methods, leading to multiple algorithms with
potentially different practical properties, but there lacks
theory to compare between them. To our best knowl-
edge, this is the first work that systematically compares
between multiple decomposition solutions, then builds
a practical protocol that combines best features from
each one.

In our top-down redesign of traffic management, we
start by formulating the right problem (i.e., identifying
the objective function and constraints). We then derive
distributed solutions using optimization decomposition
techniques. After comparing performance properties of
different solutions through simulations, we combine the
best features of each to construct a simple traffic man-
agement protocol. Our contributions are two-fold:

• Redesigned Traffic Management: We intro-
duce TRUMP, a TRaffic-management Using Mul-
tipath Protocol to replace congestion control and
traffic engineering today. It is optimal, easy to
manage, and robust to small-timescale traffic shifts.

• Protocol Design using Decompositions: We
demonstrate how to create a practical network pro-
tocol by generating multiple decompositions, com-
paring their practical properties, and synthesizing
their best features.

We start with an optimization objective of maximiz-
ing aggregate user utility, but discover that the result-
ing algorithm has poor convergence properties. This
leads us to an alternative objective function: a weighted
difference of the goals of the users (to maximize their



utility) and the operators (to prevent heavily-congested
links). We then apply all known decomposition tech-
niques to generate four different distributed solutions to
the new optimization problem. In all four algorithms,
sources adapt their sending rates on each of the multi-
ple paths given feedback price from the links, but differ
in how the prices are computed.

While optimization theory guarantees all four algo-
rithms to converge to the optimal solution at equilib-
rium, it falls short on several practical considerations.
First, there is no theory for choosing the appropriate
tunable parameters, which could depend on network
topology, link capacities and other network properties.
Second, the rate of convergence is only loosely bounded
by theory, so two algorithms with the same bound could
behave drastically differently in practice. Finally, under
stochastic dynamics, the existing mathematical machin-
ery in stochastic optimization can at best help charac-
terize the stability of queues rather than transient be-
havior or performance metrics. In this paper, we ad-
dress these issues through simulations.

From our simulations, we observe that all four al-
gorithms indeed converge to the optimal solution, but
at different rates and with different sensitivity to tun-
able parameters. Learning from the simulation results,
we combine best parts from different decompositions to
construct a TRaffic-management Using Multipath Pro-
tocol (TRUMP). TRUMP converges more quickly than
the previous decompositions and has the fewest tunable
parameters. It also leads to an intuitive interpretation
where the feedback price is based on a combination of
packet loss and queuing delay. This paper showcases
that a heuristic protocol with better performance prop-
erties can be found through the process of considering
multiple decompositions.

In this paper, we start with abstract formulation of a
problem, which we interpret with a progressive amount
of detail as the paper progresses. Since an optimization
model operates only at the abstract level of “sources”
and “links”, the mathematics leaves much room for in-
terpretation regarding the division of functionality. For
example, “sources” could refer to edge routers or end
hosts, computations could be done distributedly or cen-
trally, and feedback could be implicit or explicit. We de-
fer the discussions regarding architectural implications
of TRUMP until Section 7. We do not address issues
associated with incremental deployment, as our goal is
to redesign traffic management not to retrofit a solution
into today’s architecture.

2. CHOOSING AN OBJECTIVE FUNCTION
In this section, we look for the best formulation of

the optimization problem. Every optimization problem
consists of an objective function, constraint set, vari-
ables, and constants. For traffic management, by having

both routing and source rate as optimization variables,
we have the most flexibility in resource allocation. In
our problem, the constraint is that link load does not
exceed capacity, with the topology and link capacities
as constants. The objective function remains to be de-
termined by design. In this section, we start with an
objective of maximizing aggregate user utility, but sim-
ulations reveal its solution converges slowly and is sen-
sitive to step size. From our observations, we motivate
a different objective function. The first few subsections
serve as a preview to the rest of the paper. We introduce
dual decomposition, a standard optimization technique
to derive a distributed solution to a given optimization
problem, which will form the basis for multiple decom-
positions. We also give a glimpse of the simulations
which we will use to compare between multiple decom-
position solutions. The key notation used in this paper
is summarized in Table 1.

Symbol Meaning
xi Rate of source i.
Ui(xi) Utility function for source i.
Rli Fraction of traffic on link l for source i.
cl Capacity of link l.
zi
j Rate of source i on its jth path.

H Network topology as the set of all paths.
sl Feedback price on link l.
βs Step size for update of feedback price.
t Time.
Tp Time it takes for feedback.
f Cost function.
w Weight of the cost function.
yl Effective capacity on link l.
βy Step size for effective capacity.
Tm Time for master problem to iterate.
pl Consistency price on link l.
βp Step size for consistency price.
βz Step size for path rate.

Table 1: Summary of notation.

2.1 Maximizing Aggregate Utility
One natural objective for the traffic management sys-

tem is to maximize aggregate user utility, where utility
Ui(xi) is a measure of “happiness” of user i as a func-
tion of the total transmission rate xi. U is a concave,
non-negative, increasing and twice-differentiable func-
tion, e.g. log(xi), that can also represent the elasticity
of the traffic or determine fairness of resource alloca-
tion. This is the objective implicitly achieved by TCP
congestion control today [5, 6]. We represent the rout-
ing through Rli that captures the fraction of source i’s
flow that traverses link l, and we let cl denote the capac-
ity of link l. As proposed in [7, 8], this is the resulting
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optimization problem:

maximize
∑

i Ui(xi)
subject to Rx ¹ c, x º 0 (1)

A distributed solution to (1) can be derived through
dual decomposition if (1) is a convex optimization prob-
lem. In its current form, (1) has a non-convex constraint
set, which can be transformed into a convex set if the
routing is allowed to be multipath. In single path rout-
ing, Rli = 1 if link l is on the path and 0 otherwise. In
multipath routing, the entries of R can take any value
between 0 and 1. To capture multipath routing, we in-
troduce zi

j to represent the sending rate of source i on
its jth path. We also represent available paths by a
matrix H where

Hi
lj =

{
1, if path j of source i uses link l
0, otherwise.

H does not necessarily present all possible paths in the
physical topology, but a subset of paths chosen by op-
erators or the routing protocol. Then we can rewrite
(1) as:

maximize
∑

i Ui(
∑

j zi
j)

subject to
∑

i

∑
j Hi

ljz
i
j ≤ cl, ∀l. (2)

In this form, (2) is a convex optimization problem.

2.2 Dual Decomposition
Now that we have a convex optimization problem for-

mulation, we can then proceed to derive a distributed
solution to (2) through dual decomposition. The vari-
ables which appear in the original problem e.g. z are
called primal variables while the variables introduced
to relax constraints are called dual variables. We relax
(2) by forming the following Lagrangian:

L(z, s) =
∑

i Ui(
∑

j zi
j) +

∑
l sl(cl −

∑
i

∑
j Hi

ljz
i
j)

where sl ≥ 0 is the dual variable associated with the
capacity constraint on link l. Additivity of total utility
and linearity of flow constraints lead to a Lagrangian
dual decomposition into the following per-source sub-
problem:

argmaxzi
j
(Ui(

∑

j

zi
j)− zi

j

∑

l

slH
i
lj .)

The Lagrangian dual function h(s) is defined as the
maximized L(z, s) over z for a given s. Each source
can compute an optimizer zi∗(s). The Lagrange dual
problem of (2) is:

minimize h(s) = L(z∗(s), s)
subject to s º 0,

(3)

and can be solved locally by each link. Note that (3) is a
convex minimization. Since h(s) may be non-differentiable,

an iterative subgradient method can be used to update
the dual variable s to solve (3):

sl(t + 1) = [sl(t)− βs(t)(cl −
∑

i

∑

j

Hi
ljz

i
j(t))]

+,

where βs(t) represents dual variable step size.

2.3 Dual-based Utility Maximizing Protocol
The distributed algorithm derived in the previous

subsection can be interpreted similarly to the reverse
engineering of the congestion-control protocol in [6].
The resulting Dual-based Utility Maximizing Protocol
(DUMP) involving users (sources) and routers (links) is
summarized in Figure 2.

Feedback price update at link l:

sl(t+Tp) =


sl(t)− βs(t)


cl(t)−

∑

i

∑

j

Hi
ljz

i
j(t)







+

,

where βs is the feedback price step size.

Path rate update at source i, path j:

zi
j(t + Tp) = maximizezi

j


Ui(

∑

j

zi
j)− zi

j

∑

l

sl(t)Hi
lj




Figure 2: Dual-based utility maximizing proto-
col.

Here t represents the iteration number and each it-
eration is at the same timescale as the longest Round
Trip Time (RTT) of the network. The parameter Tp

represents the propagation delay for the edge router to
receive the congestion-price information from the links.
At each link, sl is updated based on the difference be-
tween the link load

∑
i

∑
j Hi

ljz
i
j and the link capacity.

As indicated by []+, sl is only positive when the link
load exceeds the link capacity, i.e. when the network
is congested. Each source updates zi

j based on explicit
feedback from the links, in the form of feedback prices
sl. In particular, each source maximizes its own utility,
while balancing the price of using path j. The path
price is the product of the source rate with the price
per load for path j (computed by summing sl over the
links in the path). DUMP is similar to the TCP dual
algorithm in [6] except the local maximization is con-
ducted over a vector zi, as opposed to only a scalar xi,
to capture the multipath nature of DUMP.

Architecturally, one interpretation is to have the path-
rate computation done at the sources and the feedback
price computation done at the links. The sources would
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(a) Step size = 0.0001 (b) Step size = 0.00001 (c) Step size = 0.000001

Figure 1: Plots of aggregate utility versus iteration to show the sensitivity to step size choices.

then receive sl as explicit control messages. Alternative
architectures are discussed in Section 7.

2.4 Poor Convergence Properties
From optimization theory, certain choices of step sizes,

such as βs(t) = β/t where β > 0 is a constant, guar-
antee that DUMP will converge to the joint optimum
as t → ∞ [9]. Such diminishing step size is difficult to
implement in practice as it requires synchronization of
time across the nodes, and particularly difficult to do
with dynamic arrivals of new sessions. Using MATLAB,
we first examine how DUMP behaves with a constant
step size under greedy flows with no stochastics. In the
problem formulation, we have implicitly assumed that
the flows are long lived and links do not fail. The de-
tailed simulation set-up will be described in Section 3.2
and the experiments in this section use an access-core
topology (Figure 3a).

In Figure 1, we plot the aggregate user utility against
the number of iterations for three different step sizes.
Each iteration corresponds to the maximum RTT in the
network, so on the order of 100ms. We observe that,
when the step size is too large, such as in Figure 1a,
DUMP will constantly overshoot or undershoot, never
reaching the ideal utility. On the other hand, when the
step size is too small, such as in Figure 1c, DUMP con-
verges very slowly. A good fit is shown in Figure 1b,
where DUMP does converge after about 100 iterations.
This highlights that choosing an appropriate step size
is challenging. The paper [7] uses the same objective as
DUMP and their simulations on much simpler topolo-
gies show the same convergence sensitivity.

Let us reflect for a moment on why DUMP has poor
convergence behavior. If we look at the form for feed-
back price, we see it is only nonzero when links are
overloaded, therefore, the feedback from the links is not
very fine-grained. This corresponds to the current con-
gestion control mechanism where sources only reduce
their sending rates once packets are already lost, caus-
ing the saw tooth behavior which we observe. In fact,

the feedback price in DUMP has the same formulation
as the congestion price in [6].

Another reason for not maximizing the aggregate util-
ity was proposed in [10]. The authors of [10] suggest the
network would be driven to a solution where some links
are operating near capacity. This is an undesirable op-
erating point which is very fragile to traffic bursts. This
suggests that maximizing the aggregate user utility en-
hances performance of the individual users in the short
term, but leaves the network as a whole fragile.

2.5 New Objective for Traffic Management
In order to avoid the poor convergence properties seen

in DUMP, we look for an alternative problem formula-
tion which takes into account the operator’s objective
as well. In today’s traffic-engineering practices, the fol-
lowing optimization problem is solved with only R is a
variable (and x constant):

minimize
∑

l f(
∑

i Rlixi/cl). (4)

f is a convex, non-decreasing, and twice-differentiable
function that gives increasingly heavier penalty as link
load increases, e.g. e

P
i Rlixi/cl . The intuition behind

choosing this f is two fold. First, this roughly models
M/M/1 queuing delay. Second, network operators want
to penalize solutions with many links at or near capacity
and don’t care too much whether a link is 20% loaded
or 40% loaded [1, 2]. If we solve (4) with both x and
R as variables, then the solution would end up with no
one sending any traffic, which is also undesirable.

A better traffic management objective could be to
combine performance metrics (users’ objective) with net-
work robustness (operator’s objective), leading to the
following formulation as a joint optimization over (x,R):

maximize
∑

i Ui(xi)− w
∑

l f(
∑

i Rlixi/cl)
subject to Rx ¹ c, x º 0.

(5)

This objective favors a solution that provides a trade-off
between high aggregate utility and a low overall network
congestion, to satisfy the need for performance and ro-
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bustness. Similar problem formulations were proposed
in [10, 11], though without w. Here w is a tuning pa-
rameter which adjusts the balance between the utility
function and the cost function. When w is small, then
(5) is very close to (1) since the utility term dominates.
When w is large, the solution would be more conser-
vative in avoiding solutions which are close to capacity.
Operators can tune w to operate their network with ag-
gressive or conservative sending rates. Architecturally,
the operator is responsible for setting U , f , w and also
any tunable algorithmic parameters that may come out
of the decomposition process.

The number of non-degenerate alternative decompo-
sitions is dependent on the complexity of the objective
function and the number of constraints. Since (1) is
simpler, it only had two different known decompositions
(the other one with equally poor convergence behavior),
whereas (5) has four.

3. MULTIPLE DECOMPOSITIONS
In this section, we describe the distributed algorithms

generated from all known optimization decompositions
of (5), [4, 5]. As in Section 2.1, we first transform (5)
to a convex optimization problem using z and H:

maximize
∑

i Ui(
∑

j zi
j)− w

∑
l f(yl/cl)

subject to y ¹ c,
yl =

∑
i

∑
j Hi

ljz
i
j , ∀l.

(6)

Note that to decouple the objective which contains U
(a per-source function) and f (a per-link function), we
introduce an extra variable yl.

In all four algorithms, the resulting solutions update
their path rates based on feedback prices from links.
Optimization decomposition leads us to three general
notions that make the algorithms effective:

• Effective capacity (yl) arises out of decoupling the
cost function f in the objective from U . Its is
to provide feedback before link load exceed actual
capacity.

• Consistency price arises from relaxing the con-
straint y ¹ c. It ensures that effective capacity
is below actual capacity at the equilibrium point.

• Direct path-rate update is possible when the capac-
ity constraint is relaxed with a penalty function.

There are several similarities between the four algo-
rithms. They only impose a small amount of overhead
on the links including measuring the link load. They
also incur the same amount of message passing over-
head, i.e., passing one link price to the sources. While
computations can involve solving local optimization and
derivatives, U and f are twice differentiable, therefore
closed-form solutions are available and they are just

simple function evaluations. The computational com-
plexity for all four algorithms are constant per link and
constant per source.

Tunable Storage Storage
Decomposition Parameters Per Link Per Source
Partial Dual 1 1 0
Primal Dual 3 1 1
Full Dual 2 2 0

Primal Driven 2 0 1

Table 2: Summary of tunable parameters and
storage overhead.

The four algorithms do differ in the number of tun-
able parameters and the amount of memory required,
as summarized in Table 2. The primal-dual algorithm
contains the most number of tunable parameters while
partial-dual algorithm contains the fewest. In terms
of memory consumption, any iterative subgradient up-
date requires storage of the previous value. The primal-
driven algorithm consumes the least memory as there
are fewer sources than links in any connected graph.

3.1 Effective Capacity
The first three algorithms prevent link loads from

reaching link capacity by providing feedback based on
effective capacity rather than actual capacity. In the
resulting algorithms, the sources update the path rates
based on feedback price just as in Figure 2. Similar to
Section 2.2, a single dual variable s is introduced to re-
lax the constraint yl =

∑
i,j Hi

ljz
i
j . The feedback price

is updated as follows:

sl(t + Tp) = sl(t)− βs


yl(t)−

∑

i

∑

j

Hi
ljz

i
j(t)


 . (7)

In considering constant step sizes in this section, we
remove the t argument from all the step sizes. Equation
(7) is identical to Figure 2, except for using the effective
capacity rather than actual capacity. This is one way
to provide feedback to the source before the links reach
actual capacity.

3.1.1 Local Optimization: Partial-dual
The derivation process for the partial-dual algo-

rithm is identical to Section 2.2 except with effective
capacity y as an additional primal variable. The con-
straint y ¹ c is directly enforced resulting in the fol-
lowing effective capacity update:

yl(t + Tp) = minimize(yl≤cl)wf(yl/cl)− sl(t)yl. (8)

In (8) yl is updated by solving a local optimization
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using information from feedback price and the cost func-
tion f . An economic interpretation is that the effective
capacity balances the cost of using a link (represented
by f) and revenue from traffic transmission (represented
by the product of feedback price with the effective ca-
pacity). Note that the effect of the cost function is
proportional to the size of w.

3.1.2 Subgradient Update: Primal-Dual
The primal-dual decomposition first decomposes (6)

into two layers, one responsible for each primal variable.
The master problem solves for y assuming a given x∗,
while the subproblem that solves for x assuming a fixed
y. The master problem is as follows:

maximize
∑

i Ui(x∗)− w
∑

l f(yl/cl)
subject to y ¹ c. (9)

where x∗ is a solution to the following subproblem:

maximize
∑

i Ui(xi)
subject to Rx ¹ y.

(10)

Note that (10) is identical to (2) except the constraint
is on y rather than c. The solution to the subproblem
is then identical to that presented in Figure 2 except for
the feedback price update uses the effective capacity y
rather than actual capacity c.

The master problem can be solved through an itera-
tive update on effective capacity :

yl(t+Tm) = min(cl, yl(t)+βy(sl(t)−wf ′(yl(t)))) (11)

where βy is the effective capacity step size. Taking a
closer look at (11), the minimization ensures effective
capacity stays below the actual capacity. The param-
eter Tm is a multiple of Tp since (9) is updated less
frequently than (10). The subgradient update itself
consists of balancing the price the link can charge (sl),
and the cost that link must pay (f ′l (yl)). In a nut-
shell, the primal-dual decomposition is identical to the
partial-dual decomposition in Section 3.1.1 except that
the effective capacity is updated iteratively through (11)
rather than by solving a local minimization problem.

3.2 Consistency Price: Full Dual
The full-dual decomposition is quite similar to the

partial-dual decomposition in Section 3.1.1, but a sec-
ond dual variable p is introduced to relax the constraint
y ¹ c. This dual variable can be interpreted as consis-
tency price as it ensures consistency between effective
capacity and the capacity constraint at the equilibrium
point. As with the feedback price, the consistency price
is updated over time using a subgradient method:

pl(t + Tp) = [pl(t)− βp(cl − yl(t))]+,

where βp is the step size for consistency price . Con-
sistency price only comes into play when the capacity

constraint is violated, therefore, it is mapped to a non-
negative value. The effective capacity update is based
on both link prices:

yl(t + Tp) = minimizeyl
wf(yl/cl)− (sl(t) + pl(t))yl.

The path rate update and feedback price update are
identical to that of the previous two algorithms. The
full-dual algorithm closely resembles an algorithm pre-
sented in [10], the key difference is that our objective
contains w as a weighing factor. Appendix 2 of [10] also
shows a full derivation of the full-dual algorithm.

3.3 Direct Path Rate Update: Primal Driven
In all the previous algorithms, auxiliary dual vari-

ables were introduced to relax the constraints. In this
primal-driven decomposition, we find a direct solution
by introducing a penalty function. Let the penalty func-
tion gl(

∑
i

∑
j Hi

ljz
i
j) replace the capacity constraint

Hz ¹ c. The penalty function is a continuous, in-
creasing, differentiable and convex function that is suf-
ficiently steep such that link loads will not overshoot
capacity. If it is also sufficiently close to zero for values
less than capacity, it will not affect the optimal point
[12]. If we combine g and the cost function f to get a
penalty-cost function Pl(

∑
i

∑
j Hi

ljz
i
j), then (6) can be

transformed into the following:

maximize
∑

i

Ui(
∑

j

zi
j)−w

∑

l

Pl(
∑

i

∑

j

Hi
ljz

i
j). (12)

The derivative (12) is:

dzi

dt
= βz

∂Ui

∂zi
j

(xi(t))−w
∑

l

P ′l (
∑

i

∑

j

Hi
ljz

i
j(t))). (13)

Converting (13) into a subgradient update form and
separate link information from source information, then
we obtain the algorithm in Figure 4.

Path rate update:

zi
j(t + Tp) = zi

j(t) + βzz
i
j(t)(

∂Ui

∂zi
j

(xi(t))−
∑

l

Hi
ljsl(t))

Feedback price update:

sl(t + Tp) = wP ′l (
∑

i

∑

j

Hi
ljz

i
j(t)),

Figure 4: The Primal-driven Algorithm.

The path rates are iteratively updated based on the
difference between the rate of change of the utility func-
tion and the associated path feedback price. The feed-
back price here directly represents how quickly the penalty
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Figure 3: Two realistic topologies.

function is changing at a given link load. The primal-
driven algorithm in Figure 4 differs significantly from
the first three decompositions in two ways. First, it is
the only algorithm with direct subgradient update on
the path rates. Second, it does not use the concept of
effective capacity.

4. CONVERGENCE PROPERTIES
In this section, we study convergence properties of the

four algorithms, and make three observations which will
guide our design of a new protocol in Section 5. First,
we find that there is a trade-off between convergence
rate and aggregate utility achieved. Second, we find al-
gorithms which use local minimizations instead of itera-
tive updates converge faster. Third, we find consistency
price can aid convergence, but only for small w.

4.1 Experimental Set-up
We chose MATLAB as our simulation environment

since we are proposing a new traffic management system
and do not need models of existing congestion control or
routing protocols. We do consider stochastic perturba-
tions and feedback delay in our simulations. We present
simulation with topology changes and traffic stochastics
in Section 6. For all algorithms, we update the source
and link variables at each iteration based on link load
from the previous iteration. Each iteration represents
the total time it takes for all sources to receive feedback
from all links, this is on the order of 100ms. Since all
four algorithms have the same feedback mechanism, it
is likely that they will all be impacted equally by vari-
abilities in feedback delay.

For the utility function U , we use a logarithmic func-
tion commonly associated with proportional fairness and
TCP Reno today [13]. For the cost-function f , we use
an exponential function, which is the continuous ver-
sion of the function used in various studies of traffic
engineering [1, 2].

We study two realistic topologies as shown in Fig-
ure 3. On the left is a tree-mesh topology, which is
representative of a common access-core network struc-
ture. On the right is the Abilene backbone network [14].

For tractability of manual setting of paths between two
nodes, we choose six source-destination pairs for ac-
cess core and four pairs for Abilene to be active. For
each source-destination pair, we choose three minimum-
hop paths as possible paths for access-core and the four
minimum-hop paths as possible paths for Abilene. In
reality, the Abilene topology has a completely homoge-
nous capacity distribution, but we wanted to simulate
the potential variability in real networks. Therefore,
the simulations assume the link capacities follow a trun-
cated (to avoid negative values) Gaussian distribution,
with an average of 100 and a standard deviation of 10.

For this set of experiments, we define convergence as
reaching 99.9% of the optimal aggregate utility of (5).
We found the convergence rates to be independent of
initial routing conditions. Due to space constraints, we
omit extra graphs when the same trends are observed
across algorithms, topologies and values of w.

4.2 Weighing User Utility and Operator Cost
In this section, we illustrate a trade-off between ag-

gregate utility and convergence time. In Figure 5, we
plot the number of iterations before convergence against
step-size for three values of w for the partial-dual algo-
rithm from Section 3.1.1. For each step-size value, 10
random capacity distributions are chosen and the av-
erage number of iterations before convergence is high-
lighted in a solid line. Comparing across Figure 5 from
left to right, we see that as w shrinks, the convergence
time at the optimal step size grows and the range of
step sizes with a good convergence time shrinks.

In Figure 7, we plot the percentage of maximal aggre-
gate utility achieved by maximizing the new objective in
(5) for a range of w values. From the graph, we observe
that there is a knee region for both topologies. For the
access-core topology, this knee region is from w = 1/4
to w = 1/6; for the Abilene topology, this knee region
is between w = 1/6 and w = 1/10. Below this knee
region, the algorithm achieves nearly 100% of maximal
aggregate utility, since the cost function f is weighed
sufficiently lightly to not change the solution. Above
this knee region, the percentage of maximal aggregate
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(a) w = 1 (b) w = 1/6 (c) w = 1/36

Figure 5: Plots of partial-dual algorithm showing dependence of convergence time on step-size.
Access-core topology.
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Figure 6: Plots of primal-dual algorithm showing dependence of convergence time on step-size.
Access-core topology.

utility decreases, as f start to impose new constraints
beyond the capacity constraints.
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Figure 7: Plot of w versus percentage of maximal
utility achieved.

Below the knee region, the gains in aggregate utility
does not offset the gain in convergence time. Other-
wise, there is a trade-off between aggregate utility and
convergence time. Depending on the conditions of their
network, operators can choose their desired operation

point.

4.3 Comparing Between the Algorithms
In this subsection, we do a series of comparisons be-

tween convergence time of different algorithms, and find
partial-dual in Figure 5 is the best overall, with a good
convergence profile and fewest tunable parameters.

Comparing the primal-dual algorithm in Section 3.1.2
to the partial-dual algorithm, we find the two extra tun-
able parameters do not improve the convergence prop-
erties. In Figure 6, we plot convergence time versus
step-size for the primal-dual with Tm = 3Tp. Since
the primal-dual algorithm contains two step sizes (βy,
βs), the plots in Figure 6 shows convergence time as a
function of one step size for a particular value of the
other step size. Comparing Figure 6a to Figure 5a, the
convergence times of primal-dual algorithm and partial-
dual algorithms are almost identical for well-chosen βy

and Tm. For other values of βy, however, we find the
primal-dual algorithm converges more slowly than the
partial-dual algorithm, as seen by comparing Figure 6b
to Figure 5a. Figure 6c further highlights the conver-
gence properties are quite sensitive to βy.

Comparing the full-dual algorithm in Section 3.2 to
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Figure 8: Plots of full-dual and partial-dual algorithm showing dependence of convergence time on
step-size. Abilene topology.

the partial-dual algorithm, we find consistency price can
improve convergence properties. We plot convergence
time versus step size for the full-dual algorithm in Fig-
ure 8a and 8b. If we look at Figure 8a, we note that βp

has no effect on the convergence time when w = 1. This
is because the effective capacity stays far below actual
capacity when w is high, so consistency price pl stays
at 0 and its step size plays no role. For w = 1/6 (which
is the edge of the knee region seen in Figure 7), we find
that the full-dual algorithm converges faster than the
partial-dual algorithm, as seen by comparing Figure 8b
to Figure 8c. This is because if we allow the capacity
constraint to be violated during transients, the algo-
rithm can take more aggressive steps and potentially
converge faster.
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Figure 9: Plot of primal-driven algorithm show-
ing dependence of convergence time on step-size
for w = 1. Access-core topology.

Comparing the primal-driven algorithm in Section 3.3
to the partial-dual algorithm, we find local minimization
update has better convergence properties than subgradi-
ent update. We plot convergence time versus step size in
Figure 9 for the primal-driven algorithm. Compared to
Figure 5a, the primal-driven algorithm takes longer to

converge at the optimal step size (25 iterations versus 15
iterations) and the convergence time is more sensitive
to the choice of step size. In addition, the primal-driven
algorithm also requires operators to tune a second pa-
rameter (the penalty function g).

5. TRUMP
While the algorithms introduced in Section 3 con-

verge faster than DUMP for well-tuned parameters, they
still require explicit feedback. In this section, we in-
troduce a simpler Traffic-management Using Multipath
Protocol (TRUMP) which can be implemented using
only implicit feedback at the sources.

5.1 The TRUMP Algorithm
Our simulations in the previous section suggested that

simpler algorithms with fewer tunable parameters con-
verged faster, although having a second link price can
help for small w. Using those observations, we com-
bine best parts of all four algorithms to construct the
TRaffic-management Using Multipath Protocol (TRUMP)
described in Figure 11. In TRUMP, the feedback price
has two components as in the full-dual algorithm: pl

and ql. Since we observed that local optimization worked
better than subgradient update, we use the feedback
price update from primal-driven algorithm in Figure 4
as our ql. This has the additional benefit of removing
one tuning parameter from the protocol since the up-
date of ql involves no step size. By a similar argument,
we use a local optimization for the path rate update as
in the dual-based algorithms.

The prices pl and ql also have intuitive interpreta-
tions. A closer look at pl reveals that it is closely related
to packet loss: the portion cl −

∑
i

∑
j Hi

ljz
i
j(t) is the

amount of overflow on a link, βp moderates how much
to react to the overflow and how much to rely on its old
value. If we use the most common interpretation of f
i.e. queuing delay, then ql summed along a path is just
the sum of the rate of change of queuing delay. This
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Figure 10: Plots of TRUMP algorithm showing dependence of convergence time on step-size. Access-
core topology.

Feedback price update:

sl(t + Tp) = pl(t + Tp) + ql(t + Tp),

Loss price update:

pl(t + Tp) = [pl(t)− βp(cl −
∑

i

∑

j

Hi
ljz

i
j(t))]

+,

Delay price update:

ql(t + Tp) = wf ′


∑

i

∑

j

Hi
ljz

i
j(t)


 ,

Path rate update:

zi
j(t+Tp) = maximizezi

j
Ui(

∑

j

zi
j)−

∑

l

(sl(t))
∑

j

Hi
ljz

i
j

Figure 11: TRaffic-management Using Multi-
path Protocol.

is captured as difference in Round Trip Times (RTTs).
Current congestion control reacts mostly to packet loss
[6], which tends to cause the saw-toothed windowing
behavior seen today. Proposed TCP variants primar-
ily react to queuing delay so that feedback regarding
the link conditions can be received before packets are
lost e.g. [3, 15, 16]. TRUMP is similar to Compound
TCP [17] which reacts to both delay and loss, though
TRUMP also handles routing. The intuition is that
queuing delay warns TRUMP when a link is getting
heavily loaded to avoid packet loss, but if a packet is
lost, TRUMP will take that into consideration. Algo-
rithmically, TRUMP has the same measurement and
computational overhead as the four algorithms in Sec-
tion 3. It requires just one variable to be stored per
link and has only one tunable parameter. If TRUMP is
implemented based on implicit feedback, then the mea-
surement, computational and storage at the links are

no longer required.

5.2 TRUMP Convergence Properties
We do not yet have a proof that TRUMP converges

to the optimal value of (5), since TRUMP does not cor-
respond to a known decomposition. On the other hand,
in all our simulations, we find that it indeed converges
to the optimal values of (5) across a large range of w
values, both topologies and different variations in link
capacity. So when we plot its achieved aggregate util-
ity at equilibrium versus w, we would get an identical
plot to Figure 7. While we believe that a convergence
proof is important, it is perhaps even more important
to trade-off the simplicity and practical properties of
TRUMP with the lack of a convergence proof.

In Figure 10, we plot convergence time versus step-
size for TRUMP. From Figure 10a, we observe that as
with the full-dual algorithm, the second link price does
not play a role when w = 1. Comparing Figure 10b to
Figure 5b, we see that TRUMP has much nicer conver-
gence properties than the partial-dual algorithm. Over-
all, TRUMP is simpler than any of the algorithms pre-
sented in Section 3, with just one tunable parameter
that only needs to be tuned if the operator wants to
operate his network with a small w.

6. PERFORMANCE UNDER STOCHASTICS
In our earlier simulations, we had implicitly assumed

flows are persistent and sources are greedy. In this
section, we relax those assumptions by studying how
TRUMP responds under topology changes and traffic
shifts. Since our goal is to understand TRUMP’s be-
havior under stochastics, we do not explicitly model
retransmissions of lost packets, just like early studies
of TCP protocols such as [15, 16]. Instead we penalize
the utility achieved when links are overloaded to en-
sure that utility is not given to packets that would ulti-
mately be dropped. For each path rate, we calculate the
maximum relative load overflow of links along the path
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((yl−cl)/yl). Then we penalize all flows using that link
proportionally to the amount of load they contribute to
that link. We assume the excess packets are loading the
entire path since a downstream link could be a bottle-
neck link for a different path. Due to space constraints,
we only present the results for access-core topology as
the same trends are observed for Abilene. For legibility
of the graphs, we only compare TRUMP to DUMP, but
TRUMP also outperforms the algorithms in Section 3.

6.1 Topology Dynamics
In our first set of experiments, we consider what hap-

pens when a link fails. Link failures occur infrequently,
but can be quite disruptive. We start with all links
operational, then we let a random link fail or recover
every 50 iterations. We ensure that even with a failed
link there is still at least one available path between
each source-destination pair.
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Figure 12: Plot of utility versus iteration num-
ber for w = 1/6. Links fail or recover every 50
iterations.

In Figure 12, we plot the aggregate utility versus time
for TRUMP, DUMP and also the ideal as a benchmark.
First of all, we observe that link failures can be quite
disruptive. For example, at iteration 100, we see a large
drop in utility for both DUMP and TRUMP. This is
because a source is sending all its traffic on a single
path that is no longer available due to a link failure.
This means the maximum relative load overflow for that
path is now 1, hence causing the utility to drop to 0
(not shown due to scale) until the traffic is moved onto
a new path. Second, we note that since when a link
fails or recovers the underlying set of possible paths
changes and hence this is similar to just starting from
a set of new initial conditions and then moving towards
convergence. We observe that since TRUMP converges
faster than DUMP, it also recovers faster in this case.

6.2 Traffic Dynamics
In our next set of experiments, we allow flows to ar-

rive according to a Poisson process with rate P . For
each instance of the experiment, we consider a constant
flow duration d. We then repeat the experiments with
different values of d to see how TRUMP reacts to flow
duration. We let Pd = 0.2 in order to place the same
average traffic load on the network.

From Figure 11, where we describe TRUMP algorith-
mically, we see that TRUMP adapts its path rates based
on link prices of the previous iteration (which is repre-
sented by the link load placed on the system when flows
arrive or depart). We take the aggressive approach of
starting new flows which arrive between two iterations
at the same rate as all other flows between the same
source-destination pair.

In Figure 13, we plot aggregate utility versus iteration
number for TRUMP, DUMP and the ideal. We observe
that with w = 1/6, the gap between TRUMP and ideal
is very small. Similar to the link failure case, we see
that once again TRUMP trumps DUMP.
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Figure 13: Plot of utility versus iteration num-
ber for w = 1/6. Poisson arrival with probability
0.02, flow duration of 10 iterations.

In Figure 14, we sweep a set of flow durations for
TRUMP alone. We run 10 experiments for the same
flow duration, each experiment for 20 times the flow du-
ration. We calculate the average and also the standard
deviation for the 10 samples associated with each dura-
tion and plot the results in Figure 14. We observe that
there is very little dependency between flow duration
and gap to maximal utility. There are two reasons for
this observation. One, TRUMP only cares about how
many flows there are between each source-destination
pair, not their flow lengths when assigning path rates for
a source-destination pair. Two, by assigning the same
rate to all flows of a source-destination pair, TRUMP
emulates processor sharing like the proposed Rate Con-
trol Protocol (RCP) [16], and hence deals equally well
with long and short flows. Since TRUMP spans conges-
tion control and routing, it has more degrees of freedom
than RCP which is limited to congestion control. As a
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result, RCP assigns the same flow rate to all flows pass-
ing through a link (local effect), while TRUMP assigns
the same flow rate to flows that have the same source-
destination pair (end-to-end effect). Our preliminary
results show that TRUMP also works well with a mix
of short and long flows.
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Figure 14: Plot of ratio of maximal aggregate
utility versus flow duration for w = 1/6, TRUMP.

As true for any traffic management protocol (pro-
posed or current), it is difficult for TRUMP to adapt
immediately when there is a sudden burst in traffic. A
conservative approach of starting new flows at very low
sending rate can waste bandwidth, while an aggressive
approach as we model here can overload the network
and cause losses. When we test TRUMP under the
Weibull arrival rates which contains more traffic bursts,
we find that when multiple flows arrive at once at it-
eration 71, there is a bigger gap to the ideal aggregate
utility due to overloading of some links. Still TRUMP’s
fast reaction time is an advantage for handling shifts in
traffic.
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Figure 15: Plot of aggregate utility versus iter-
ation number for w = 1/6. Weibull arrivals with
parameter 0.5, flow duration of 1.

7. ARCHITECTURAL IMPLICATIONS
Architecturally, we find that the algorithms specified

by the mathematics still leave many questions unan-
swered such as: which network elements correspond to
the sources, perform computations and determine H.
This is actually a blessing as Traffic Management is only
part of network architecture, so it is good to have some
flexibility. In this section, we explore how TRUMP can
fit into different architectures.

Are the sources end hosts or edge routers? The
mathematics does not specify whether the sources refer
to the end hosts or the edge routers. The interpreta-
tion of the sources depends on two factors: whether the
end host has control over and access to the multiple
paths and whether the network can trust the end hosts
to abide by the rate limits. If end hosts are unaware
of the multiple paths, then edge routers could send end
hosts an aggregate rate over all paths instead of feed-
back prices from the links. In this case, the edge routers
would split traffic amongst the multiple paths. Even if
the end hosts are aware of multiple paths, they might
not be trusted to not send too aggressively. In this case,
edge routers should perform the same calculations and
perform policing or shaping to enforce the path rate by
dropping excess packets. In terms of computational im-
pact, if sources are end hosts, then the computational
load of updating path rates is distributed across end sys-
tems and is scalable. If sources are edge routers, then
they should keep state on traffic aggregates to avoid
overloading the edge routers with flow-level state.

Are the computations done centrally or dis-
tributedly? In the algorithms, it is unclear which
component takes the link feedback and computes the re-
sulting path rates. One natural division of labor would
be to have the links compute their prices, then feed back
the appropriate price to the sources, the sources would
then compute the path rates. An alternative solution is
for sources to periodically probe along the path and sum
up the price from link to link, similar to the approach in
[18]. Another option is for the management system to
centrally collect the link load measurements, calculate
the feedback prices and the path rates. Then the edge
routers would receive the path rate information and use
it to police the incoming traffic.

Is H determined by the routers or the man-
agement system? In the algorithms, the matrix H
is considered to be a constant, but there is no hint as
to where it comes from. In reality, H can be computed
by routers or set manually by the network-management
system. H is a chosen subset of all possible paths. This
subset could be the shortest paths (determined by hop-
count, RTT or link weights), the K-shortest paths or
all possible paths. The number of paths introduces a
trade-off between flexibility of distributing the traffic
and the overhead of computing and using the routes.
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One way to find H is through an underlying routing
protocol, e.g., where routers compute all of the short-
est paths, or the K shortest paths. It is also possible
for the management system to pin a set of tunnels be-
tween each source-destination pair centrally, similar to
the approach in [18]. For scalability, this can just be the
ingress-egress pairs or pairs between points-of-presence.

Is the feedback explicit or implicit? While the
mathematics suggest there is explicit feedback from the
links to the sources for all algorithms, TRUMP can be
implemented based on implicit feedback from the links.
As we mentioned in Section 5.1, the feedback price has
two components, which can be interpreted as packet loss
and RTT changes, respectively. This interpretation has
the added benefit of not requiring any explicit feedback.

What are the challenges for Multi-AS? Although
most of the earlier discussion implicitly assumes all of
the links and nodes belong to a single institution, many
of our results are relevant to a network like the Inter-
net that consists of many Autonomous Systems (ASes).
Still, the multi-AS scenario does present some unique
challenges for deploying and running the proposed traffic-
management protocols. For example, the ASes would
need to agree to provide explicit feedback from the links
to the end hosts or edge routers, and trust that the
feedback is an honest reflection of network conditions.
This makes the use of implicit feedback, based on ob-
servations of packet losses and changes in RTTs, espe-
cially attractive for a multi-AS network. In addition,
the sources would need the flexibility to direct traffic
over multiple paths. Although already possible today
through multi-homing, extending the Border Gateway
Protocol (BGP) to a multipath protocol as proposed
by [19], would give sources additional flexibility. Com-
bining implicit feedback with a multipath interdomain
routing protocol for TRUMP would be an exciting av-
enue for future research.

8. RELATED WORK
Mathematics has been used to aid research on traffic

management in four ways: analysis of existing protocols
e.g. [5, 6], tuning configuration parameters of exist-
ing protocols e.g. [1, 2], analysis of proposed protocols
e.g. [15, 16] and guiding the design of new protocols
e.g. [3]. In this section, we will focus our attention on
the body of research that looks at new protocol design.
Most of the proposed new traffic management proto-
cols only consider congestion control or traffic engineer-
ing alone. Design of congestion control has been an
extremely active area of research, so we will only men-
tion a small selection of papers which share similarities
with our work. FAST TCP [3] also uses optimization
theory to guide protocol design, but it only considers
one single decomposition. Many of the other protocols,
such as XCP [15], RCP [16] and Compound TCP [17],

prove the stability of their algorithms using control the-
ory, but do not use theory to guide their design process
from the beginning. Similarly, mathematics has helped
to analyze dynamic distributed traffic engineering pro-
tocols that do not consider congestion control, [18, 20,
21]. In particular, tools from control theory have been
used to analyze the stability of [18, 20], and [21] was
developed using algorithms from game theory. These
traffic-engineering protocols do not start with an objec-
tive function as we do for TRUMP and only considers
part of the traffic management problem.

Some research tries to look at traffic management as
a whole, but still has a mathematical flavor. Such re-
search either tries to analyze the current architecture
or propose new architectures. Our work is quite dif-
ferent from [10, 22], which attempt to analyze whether
congestion-control and traffic-engineering practices to-
day interact well together. Some of the research pro-
posed traffic-management protocols with poor practical
properties. For example, [8] proposes a system where
link weights are based on congestion price and then traf-
fic is routed on the path with lowest link weights, such
a system turns out to be unstable. Yet others ana-
lyze stability of joint congestion control and routing al-
gorithms using control theory, e.g. [7, 11, 23]. The
paper [7] considers a different objective function than
TRUMP. [23] is an analysis of whether joint-congestion
control and routing algorithms can be stable. In [11],
a similar objective function is considered, but they ad-
vocate a very different architecture involving overlays.
Overall, TRUMP uses a more complete design process
starting with justifying the objective function to com-
paring between multiple decompositions to evaluating
performance under stochastic perturbations.

Our work is the most inspired by [4, 10, 7, 24], though
they did not try to bridge the gap between mathemat-
ics and protocol design. In [4], multiple decomposition
methods were presented, but not applied to the design
of new approaches to traffic management, and no ma-
chinery was offered to compare between the multiple
decompositions. The work in [10] briefly describes an
algorithm similar to the full-dual algorithm in Section
3.2, but had very limited evaluation of the algorithm.
In the Appendix of [24], an algorithm similar to the
primal-driven algorithm we described in Section 3.3 was
presented, but not evaluated. Neither [10] nor [24] con-
sidered a range of design alternatives, or tried to com-
pare between them, as we have in this paper.

9. CONCLUSIONS
In this paper, we searched for a traffic-management

protocol which was distributed, adaptive, robust, flex-
ible and easy to manage. We followed a top-down de-
sign process which started with finding the correct prob-
lem formulation. We generated four provably optimal
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distributed solutions using known decompositions. We
then compared the practical properties of four different
distributed solutions through simulation. We gleaned
several insights regarding how algorithmic structure can
affect the rate of convergence and sensitivity to step
size. Using those insights, we combined the best parts
of each algorithm to construct TRUMP: a new and sim-
pler traffic management protocol. By adapting to both
packet loss and queuing delay, TRUMP is effective in
reacting to topology changes and traffic shifts on a small
timescale. By emulating processor sharing for flows
traversing the same source-destination pair, TRUMP
works well with short and long flows. TRUMP is flex-
ible and fits into a range of architectures. In addition,
TRUMP is easy to manage, with just one optional tun-
able parameter. The process of considering multiple
decompositions has led us to a more practical, though
heuristic, protocol. This suggests that while theory can
be a good guide, better protocols may be found by look-
ing past the boundaries of theory.

Now that we have constructed a promising protocol,
we plan to follow up with packet-level simulations. Us-
ing NS-2, we can test how well TRUMP behaves using
only implicit feedback. We can also test how it behaves
under more realistic workload models as in [25] and vari-
able feedback delay. We are optimistic TRUMP will
perform well under heterogeneous feedback delay, since
[23] establishes a stable joint congestion control and
routing protocol is achievable at the timescale of RTTs.
We plan to add in practical details such as handling
retransmission of lost packets at this stage. Another
important question is how to achieve perfect splitting
of the traffic. Flow-level splitting is not quite accurate,
but packet-level splitting can cause out-of-order pack-
ets. Recent work on flowlet switching shows promise as
a way to get near perfect traffic splitting ratios without
reordered packets [26]. To make TRUMP truly scal-
able for a large network, we must also explore practical
details such as the level of traffic aggregation and how
to provision buffers properly. In our ongoing work, we
have planned a series of experiments to complete the
whole design cycle from mathematics to a full-fledged
protocol.
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