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a b s t r a c t

The emergence of OpenFlow-capable switches enables exciting new network functionality, at

the risk of programming errors that make communication less reliable. The centralized pro-

gramming model, where a single controller program manages the network, seems to reduce

the likelihood of bugs. However, the system is inherently distributed and asynchronous, with

events happening at different switches and end hosts, and inevitable delays affecting com-

munication with the controller. In this paper, we present efficient, systematic techniques for

testing unmodified controller programs. Our NICE tool applies model checking to explore the

state space of the entire system—the controller, the switches, and the hosts. Scalability is the

main challenge, given the diversity of data packets, the large system state, and the many possi-

ble event orderings. To address this, we propose a novel way to augment model checking with

symbolic execution of event handlers (to identify representative packets that exercise code

paths on the controller). We also present a simplified OpenFlow switch model (to reduce the

state space), and effective strategies for generating event interleavings likely to uncover bugs.

Our prototype tests Python applications on the popular NOX platform. In testing three real

applications—a MAC-learning switch, in-network server load balancing, and energy-efficient

traffic engineering—we uncover 13 bugs.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

While lowering the barrier for introducing new function-

ality into the network,software-defined networking (SDN)

also raises the risks of software faults (or bugs). Even to-

day’s networking software—written and extensively tested

by equipment vendors, and constrained (at least some-

what) by the protocol standardization process—can have

bugs that trigger Internet-wide outages [1,2]. In contrast, pro-

grammable networks will offer a much wider range of func-

tionality, through software created by a diverse collection of
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network operators and third-party developers. The ultimate

success of SDN, and enabling technologies like OpenFlow [3],

depends on having effective ways to test applications in pur-

suit of achieving high reliability. In this paper, we present

NICE, a tool that efficiently uncovers bugs in OpenFlow pro-

grams, through a combination of model checking and sym-

bolic execution.

1.1. Bugs in OpenFlow applications

An OpenFlow network consists of a distributed collection

of switches managed by a program running on a logically-

centralized controller, as illustrated in Fig. 1. Each switch has

a flow table that stores a list of rules for processing packets.

http://dx.doi.org/10.1016/j.comnet.2015.03.019
http://www.ScienceDirect.com
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Fig. 1. An example of OpenFlow network traversed by a packet. Due to

delays between controller and switches, the packet may not encounter an

installed rule in the second switch.
Each rule consists of a pattern (matching on packet header

fields) and actions (such as forwarding, dropping, flooding,

or modifying the packets, or sending them to the controller).

A pattern can require an “exact match” on all relevant header

fields (i.e., a microflow rule), or have “don’t care” bits in

some fields (i.e., a wildcard rule). For each rule, the switch

maintains traffic counters that measure the bytes and pack-

ets processed so far. When a packet arrives, a switch se-

lects the highest-priority matching rule, updates the coun-

ters, and performs the specified action(s). If no rule matches,

the switch sends (part of) the packet to the controller and

awaits a response on what actions to take. Switches also send

event messages, upon joining the network, or when links go

up or down.

The OpenFlow controller (un)installs rules in the

switches, reads traffic statistics, and responds to events.

For each event, the controller program defines a handler,

which may install rules or issue requests for traffic statis-

tics. Many OpenFlow applications1 are written on the NOX

controller platform [4], which offers an OpenFlow API for

Python and C++ applications. These programs can per-

form arbitrary computation and maintain arbitrary state.

A growing collection of controller applications support

new network functionality [5–10], over OpenFlow switches

available from several different vendors. Our goal is to create

an efficient tool for systematically testing these applications.

More precisely, we seek to discover violations of (network-

wide) correctness properties due to bugs in the controller

programs.

On the surface, the centralized programming model

should reduce the likelihood of bugs. Yet, a software-defined

network is inherently distributed and asynchronous, with

events happening at multiple switches and inevitable delays

affecting communication with the controller. To reduce over-

head and delay, applications push as much packet-handling

functionality to the switches as possible. A common pro-

gramming idiom is to respond to a packet arrival by installing

a rule for handling subsequent packets in the data plane.

Yet, a race condition can arise if additional packets arrive

while installing the rule. A program that implicitly expects

to see just one packet may behave incorrectly when multiple

arrive [11]. In addition, many applications install rules at

multiple switches along a path. Since rules are not installed

atomically, some switches may apply new rules before
1 In this paper, we use the terms “OpenFlow application” and “controller

program” interchangeably.
others install theirs. Fig. 1 shows an example where a packet

reaches an intermediate switch before the relevant rule is

installed. This can lead to unexpected behavior, where an

intermediate switch directs a packet to the controller. As a

result, an OpenFlow application that usually works correctly

can misbehave under certain event orderings.

1.2. Challenges of testing OpenFlow apps

Testing OpenFlow applications is challenging because the

behavior of a program depends on the larger execution en-

vironment. The end-host applications sending and receiving

traffic—and the switches handling packets, installing rules,

and generating events—all affect the program running on the

controller. The need to consider the larger environment leads

to an extremely large state space, which “explodes” along

three dimensions:

Large space of switch state: Switches run their own

programs that maintain state, including the many packet-

processing rules and associated counters and timers. Further,

the set of packets that match a rule depends on the presence

or absence of other rules, due to the “match the highest-

priority rule” semantics. As such, testing OpenFlow appli-

cations requires an effective way to capture the large state

space of the switch.

Large space of input packets: Applications are data-plane

driven, i.e., programs must react to a huge space of possi-

ble packets. Older OpenFlow specifications allow switches

to match on MAC and IP addresses, TCP/UDP port numbers,

and the switch input port; newer generations of switches

match on even more fields. The controller can perform ar-

bitrary processing based on other fields, such as TCP flags

or sequence numbers. As such, testing OpenFlow applica-

tions requires effective techniques to deal with large space of

inputs.

Large space of event orderings: Network events, such

as packet arrivals and topology changes, can happen at any

switch at any time. Due to communication delays, the con-

troller may not receive events in order, and rules may not be

installed in order across multiple switches. Serializing rule

installation, while possible, would significantly reduce appli-

cation performance. As such, testing OpenFlow applications

requires efficient strategies to explore a large space of event

orderings.

To simplify the problem, we could require programmers

to use domain-specific languages that prevent certain classes

of bugs [12–14]. However, the adoption of new languages

is difficult in practice. Not surprisingly, most OpenFlow ap-

plications are written in general-purpose languages, like

Python and Java. Alternatively, developers could create ab-

stract models of their applications, and use formal-methods

techniques to prove properties about the system. However,

these models are time-consuming to create and easily be-

come out-of-sync with the real implementation. In addi-

tion, existing model-checking tools like SPIN [15] and Java

PathFinder (JPF) [16] cannot be directly applied because

they require explicit developer inputs to resolve the data-

dependency issues and sophisticated modeling techniques to

leverage domain-specific information. They also suffer state-

space explosion, as we show in Section 8. Instead, we ar-

gue that testing tools should operate directly on unmodified
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Fig. 2. Given an OpenFlow program, a network topology, and correctness

properties, NICE performs a state-space search and outputs traces of prop-

erty violations.
OpenFlow applications, and leverage domain-specific knowl-

edge to improve scalability.

1.3. NICE research contributions

To address these scalability challenges, we present NICE

(No bugs In Controller Execution)—a tool that tests unmodified

controller programs2 by automatically generating carefully-

crafted streams of packets under many possible event in-

terleavings. To use NICE, the programmer supplies the con-

troller program, and the specification of a topology with

switches and hosts. The programmer can instruct NICE to

check for generic correctness properties such as no forward-

ing loops or no black holes, and optionally write additional,

application-specific correctness properties (i.e., Python code

snippets that make assertions about the global system state).

By default, NICE systematically explores the space of possible

system behaviors, and checks them against the desired cor-

rectness properties. The programmer can also configure the

desired search strategy. In the end, NICE outputs property vi-

olations along with the traces to reproduce them. Program-

mers can also use NICE as a simulator to perform manually-

driven, step-by-step system executions or random walks on

system states. By combining these two features — gathering

event traces that lead to bugs and step-by-step execution —

developers can effectively debug their applications (Fig. 2).

Our design uses explicit state, software model checking

[16–19] to explore the state space of the entire system—the

controller program, the OpenFlow switches, and the end

hosts—as discussed in Section 2. However, applying model

checking “out of the box” does not scale. While simplified

models of the switches and hosts help, the main challenge is

the event handlers in the controller program. These handlers

are data dependent, forcing model checking to explore all

possible inputs (which does not scale) or a set of “important”

inputs provided by the developer (which is undesirable).

Instead, we extend model checking to symbolically execute

[20,21] the handlers, as discussed in Section 3. By symbol-

ically executing the packet-arrival handler, NICE identifies

equivalence classes of packets—ranges of header fields that

determine unique paths through the code. NICE feeds the

network a representative packet from each class by adding a

state transition that injects the packet. To reduce the space of

event orderings, we propose several domain-specific search
2 NICE only requires access to the controller state.
strategies that generate event interleavings that are likely

to uncover bugs in the controller program, as discussed in

Section 5.

Bringing these ideas together, NICE combines model

checking (to explore system execution paths), symbolic ex-

ecution (to reduce the space of inputs), and search strate-

gies (to reduce the space of event orderings). The program-

mer can specify correctness properties as snippets of Python

code that assert global system state, or select from a library

of common properties, as discussed in Section 6. Our NICE

prototype tests unmodified applications written in Python

for the popular NOX platform, as discussed in Section 7. Our

performance evaluation in Section 8 shows that: (i) even on

small examples, NICE is five times faster than approaches

that apply state-of-the-art tools, (ii) our OpenFlow-specific

search strategies reduce the state space by up to 20 times,

and (iii) the simplified switch model brings a four-fold re-

duction on its own. In Section 9, we apply NICE to three

real OpenFlow applications and uncover 13 bugs. Most of the

bugs we found are design flaws, which are inherently less

numerous than simple implementation bugs. In addition, at

least one of these applications was tested using unit tests.

Section 10 discusses the trade-off between testing coverage

and the overhead of symbolic execution. Section 11 discusses

related work, and Section 12 concludes the paper.

2. Model checking OpenFlow applications

The execution of a controller program depends on the un-

derlying switches and end hosts; the controller, in turn, af-

fects the behavior of these components. As such, testing is

not just a matter of exercising every path through the con-

troller program—we must consider the state of the larger sys-

tem. The requirements for systematically exploring the space

of system states, and checking correctness in each state, nat-

urally lead us to consider model checking techniques. To ap-

ply model checking, we need to identify the system states

and the transitions between states. After a brief review of

model checking, we present a strawman approach for apply-

ing model checking to OpenFlow applications, and proceed

by describing changes that make it more tractable.

2.1. Background on model checking

2.1.1. Modeling the state space

A distributed system consists of multiple components that

communicate asynchronously over message channels, i.e.,

first-in, first-out buffers (e.g., see Chapter 2 of [22]). Each

component has a set of variables, and the component state is

an assignment of values to these variables. The system state

is the composition of the component states. To capture in-

flight messages, the system state also includes the contents

of the channels. A transition represents a change from one

state to another (e.g., due to sending a message). At any given

state, each component maintains a set of enabled transitions,

i.e., the state’s possible transitions. For each state, the enabled

system transitions are the union of enabled transitions at all

components. A system execution corresponds to a sequence

of these transitions, and thus specifies a possible behavior of

the system.
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1 ctrl state = {} # State of the controller is a global variable

2 def packet in(sw id, inport, pkt, bufid): # Handle new packets
3 mactable = ctrl state[sw id]
4 is bcast src = pkt.src[0] & 1
5 is bcast dst = pkt.dst[0] & 1
6 if not is bcast src:
7 mactable[pkt.src] = inport
8 if (not is bcast dst) and (mactable.has key(pkt.dst)):
9 outport = mactable[pkt.dst]

10 if outport != inport:
11 match = {DL SRC: pkt.src, DL DST: pkt.dst, ←↩

DL TYPE: pkt.type, IN PORT: inport}
12 actions = [OUTPUT, outport]
13 install rule(sw id, match, actions, soft timer=5, ←↩

hard timer=PERMANENT) # 2 lines optionally
14 send packet out(sw id, pkt, bufid) # combined in 1 API
15 return
16 flood packet(sw id, pkt, bufid)

17 def switch join(sw id, stats): # Handles when a switch joins
18 if not ctrl state.has key(sw id):
19 ctrl state[sw id] = {}
20 def switch leave(sw id): # Handles when a switch leaves
21 if ctrl state.has key(sw id):
22 del ctrl state[sw id]

Fig. 3. Pseudo-code of a MAC-learning switch, based on the pyswitch ap-

plication. The packet_in handler learns the input port associated with

non-broadcast source MAC addresses; if the destination MAC is known, the

handler installs a forwarding rule and instructs the switch to send the packet

according to that rule. Otherwise it floods the packet.
2.1.2. Model-checking process

Given a model of the state space, performing a search

is conceptually straightforward. Fig. 5 (non boxed-in text)

shows the pseudo-code of the model-checking loop. First,

the model checker initializes a stack of states with the ini-

tial state of the system. At each step, the checker chooses

one state from the stack and one of its enabled transitions.

After executing this transition, the checker tests the correct-

ness properties on the newly reached state. If the new state

violates a correctness property, the checker saves the error

and the execution trace. Otherwise, the checker adds the new

state to the set of explored states (unless the state was added

earlier) and schedules the execution of all transitions enabled

in this state (if any). The model checker can run until the

stack of states is empty, or until detecting the first error.

2.2. Transition model for OpenFlow apps

Model checking relies on having a model of the system,

i.e., a description of the state space. This requires us to iden-

tify the states and transitions for each component—the con-

troller program, the OpenFlow switches, and the end hosts.

However, we argue that applying existing model-checking

techniques imposes too much work on the developer and

leads to an explosion in the state space.

2.2.1. Controller program

Modeling the controller as a transition system seems

straightforward. A controller program is structured as a set

of event handlers (e.g., packet arrival and switch join/leave

for the MAC-learning application in Fig. 3), that interact

with the switches using a standard interface, and these

handlers execute atomically. As such, we can model the

state of the program as the values of its global variables

(e.g., ctrl_state in Fig. 3), and treat event handlers as

transitions. To execute a transition, the model checker can

simply invoke the associated event handler. For example,
receiving a packet-in message from a switch enables the

packet_in transition, and the model checker can execute

it by invoking the corresponding event handler.

However, the behavior of event handlers is often data-

dependent. In line 7 of Fig. 3, for instance, the packet_in
handler assigns mactable only for unicast source MAC

addresses, and either installs a forwarding rule or floods

a packet depending on whether or not the destination

MAC is known. This leads to different system executions.

Unfortunately, model checking does not cope well with

data-dependent applications (see Chapter 1 of [22]). Since

enumerating all possible inputs is intractable, a brute-force

solution would require developers to specify “relevant”

inputs based on their knowledge of the application. Hence,

a controller transition would be modeled as a pair consisting

of an event handler and a concrete input. This is clearly un-

desirable. NICE overcomes this limitation by using symbolic

execution to automatically identify the relevant inputs, as

discussed in Section 3.

2.2.2. OpenFlow switches

To test the controller program, the system model must

include the underlying switches. Yet, switches run complex

software, and this is not the code we intend to test. A straw-

man approach for modeling the switch is to start with an

existing reference OpenFlow switch implementation (e.g.,

[23]), define its state as the values of all variables, and iden-

tify transitions as the portions of the code that process pack-

ets or exchange messages with the controller. However, the

reference switch software has a large state (e.g., several hun-

dred KB), not including the buffers containing packets and

OpenFlow messages awaiting service; this aggravates the

state-space explosion problem. Importantly, such a large pro-

gram has many sources of nondeterminism and it is difficult

to identify them automatically [19].

Instead, we create a switch model that omits inessential

details. Indeed, creating models of some parts of the sys-

tem is common to many standard approaches for applying

model checking. Further, in our case, this is a one-time effort

that does not add burden on the user. Following the Open-

Flow specification [24], we view a switch as a set of commu-

nication channels, transitions that handle data packets and

OpenFlow messages, and a flow table.

2.2.2.1. Simple communication channels. Each channel is a

first-in, first-out buffer. Packet channels have an optionally-

enabled fault model that can drop, duplicate, or reorder

packets, or fail the link. The channel with the controller

offers reliable, in-order delivery of OpenFlow messages,

except for optional switch failures. We do not run the

OpenFlow protocol over SSL on top of TCP/IP, allowing us

to avoid intermediate protocol encoding/decoding and the

substantial state in the network stack.

2.2.2.2. Two simple transitions. The switch model supports

process_pkt and process_of transitions—for process-

ing data packets and OpenFlow messages, respectively. We

enable these transitions if at least one packet channel or the

OpenFlow channel is non empty, respectively. A final simpli-

fication we make is in the process_pkt transition. Here,
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the switch dequeues the first packet from each packet chan-

nel, and processes all these packets according to the flow ta-

ble. So, multiple packets at different channels are processed

as a single transition. This optimization is safe because the

model checker already systematically explores the possible

orderings of packet arrivals at the switch.

2.2.2.3. Merging equivalent flow tables. A flow table can eas-

ily have two states that appear different but are semantically

equivalent, leading to a larger search space than necessary.

For example, consider a switch with two microflow rules.

These rules do not overlap—no packet would ever match both

rules. As such, the order of these two rules is not important.

Yet, simply storing the rules as a list would cause the model

checker to treat two different orderings of the rules as two

distinct states. Instead, as often done in model checking, we

construct a canonical representation of the flow table that

derives a unique order of rules.

2.2.3. End hosts

Modeling the end hosts is tricky, because hosts run arbi-

trary applications and protocols, have large state, and have

behavior that depends on incoming packets. We could re-

quire the developer to provide the host programs, with a

clear indication of the transitions between states. Instead,

NICE provides simple programs that act as clients or servers

for a variety of protocols including Ethernet, ARP, IP, and

TCP. These models have explicit transitions and relatively

little state. For instance, the default client has two basic

transitions—send (initially enabled; can execute C times,

where C is configurable) and receive—and a counter of

sent packets. The default server has the receive and the

send_reply transitions; the latter is enabled by the for-

mer. A more realistic refinement of this model is the mobile

host that includes the move transition that moves the host

to a new < switch, port > location. The programmer can also

customize the models we provide, or create new models.

3. Symbolic execution of event handlers

To systematically test the controller program, we must

explore all of its possible transitions. Yet, the behavior of

an event handler depends on the inputs (e.g., the MAC ad-

dresses of packets in Fig. 3). Rather than explore all possible

inputs, NICE identifies which inputs would exercise different

code paths through an event handler. Systematically explor-

ing all code paths naturally leads us to consider symbolic exe-

cution (SE) techniques. After a brief review of symbolic ex-

ecution, we describe how we apply symbolic execution to

controller programs. Then, we explain how NICE combines

model checking and symbolic execution to explore the state

space effectively.

3.1. Background on symbolic execution

Symbolic execution runs a program with symbolic vari-

ables as inputs (i.e., any values). The symbolic-execution

engine tracks the use of symbolic variables and records

the constraints on their possible values. For example, in

line 4 of Fig. 3, the engine learns that is_bcast_src is

“pkt.src[0] & 1”. At any branch, the engine queries a
constraint solver for two assignments of symbolic inputs—

one that satisfies the branch predicate and one that satisfies

its negation (i.e., takes the “else” branch)—and logically forks

the execution to follow the feasible paths. For example, the

engine determines that to reach line 7 of Fig. 3, the source

MAC address must have its eighth bit set to zero.

Unfortunately, symbolic execution does not scale well

because the number of code paths can grow exponentially

with the number of branches and the size of the inputs.

Also, symbolic execution does not explicitly model the state

space, which can cause repeated exploration of the same sys-

tem state unless expensive and possibly undecidable state-

equivalence checks are performed. In addition, despite ex-

ploring all code paths, symbolic execution does not explore

all system execution paths, such as different event interleav-

ings. Techniques exist that can add artificial branching points

to a program to inject faults or explore different event order-

ings [21,25], but at the expense of extra complexity. As such,

symbolic execution is insufficient for testing OpenFlow ap-

plications. Instead, NICE uses model checking to explore sys-

tem execution paths (and detect repeated visits to the same

state [26]), and symbolic execution to determine which in-

puts would exercise a particular state transition.

3.2. Symbolic execution of OpenFlow apps

Applying symbolic execution to the controller event han-

dlers is relatively straightforward, with two exceptions. First,

to handle the diverse inputs to the packet_in handler, we

construct symbolic packets. Second, to minimize the size of

the state space, we choose a concrete (rather than symbolic)

representation of controller state.

3.2.1. Symbolic packets

The main input to the packet_in handler is the incom-

ing packet. To perform symbolic execution, NICE must iden-

tify which (ranges of) packet header fields determine the

path through the handler. Rather than view a packet as a

generic array of symbolic bytes, we introduce symbolic pack-

ets as our symbolic data type. A symbolic packet is a group

of symbolic integer variables that each represents a header

field. To reduce the overhead for the constraint solver, we

maintain each header field as a lazily-initialized, individual

symbolic variable (e.g., a MAC address is a 6-byte variable),

which reduces the number of variables. Yet, we still allow

byte- and bit-level accesses to the fields. We also apply do-

main knowledge to further constrain the possible values of

header fields (e.g., the MAC and IP addresses used by the

hosts and switches in the system model, as specified by the

input topology).

3.2.2. Concrete controller state

The execution of the event handlers also depends on

the controller state. For example, the code in Fig. 3 reaches

line 9 only for unicast destination MAC addresses stored in

mactable. Starting with an empty mactable, symbolic

execution cannot find an input packet that forces the execu-

tion of line 9; yet, with a non-empty table, certain packets

could trigger line 9 to run, while others would not. As such,

we must incorporate the global variables into the symbolic

execution. We choose to represent the global variables in a
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discover_packets transition:

Fig. 4. Example of how NICE identifies relevant packets and uses them as

new enabled send packet transitions of client1. For clarity, the circled states

refer to the controller state only.

1 state stack = []; explored states = []; errors = []
2 initial state = create initial state()

3 for client in initial state.clients
4 client.packets = {}
5 client.enable transition(discover packets)

6 for t in initial state.enabled transitions:
7 state stack.push([initial state, t])
8 while len(state stack) > 0:
9 state, transition = choose(state stack)

10 try:
11 next state = run(state, transition)

12 ctrl = next state.ctrl # Reference to controller
13 ctrl state = ctrl.get state() # Stringified controller state
14 for client in state.clients:
15 if not client.packets.has key(ctrl state):
16 client.enable transition(discover packets, ctrl)
17 if process stats in ctrl.enabled transitions:
18 ctrl.enable transition(discover stats, state, sw id)

19 check properties(next state)
20 if next state not in explored states:
21 explored states.add(next state)
22 for t in next state.enabled transitions:
23 state stack.push([next state, t])
24 except PropertyViolation as e:
25 errors.append([e, trace])

26 def discover packets transition(client, ctrl):
27 sw id, inport = switch location of(client)
28 new packets = SymbolicExecution(ctrl, packet in, ←↩

context=[sw id, inport])
29 client.packets[state(ctrl)] = new packets
30 for packet in client.packets[state(ctrl)]:
31 client.enable transition(send, packet)

32 def discover stats transition(ctrl, state, sw id):
33 new stats = SymbolicExecution(ctrl, process stats, ←↩

context=[sw id])
34 for stats in new stats:
35 ctrl.enable transition(process stats, stats)

Fig. 5. The state-space search algorithm used in NICE for finding errors. The

highlighted parts, including the special “discover” transitions, are our addi-

tions to the basic model-checking loop.
concrete form. We apply symbolic execution by using these

concrete variables as the initial state and by marking as sym-

bolic the packets and statistics arguments to the handlers.

The alternative of treating the controller state as symbolic

would require a sophisticated type-sensitive analysis of com-

plex data structures (e.g., [26]), which is computationally ex-

pensive and difficult for a dynamically typed language like

Python.

3.3. Combining SE with model checking

With all of NICE’s parts in place, we now describe how

we combine model checking (to explore system execution

paths) and symbolic execution (to reduce the space of in-

puts). At any given controller state, we want to identify pack-

ets that each client should send—specifically, the set of pack-

ets that exercise all feasible code paths on the controller

in that state. To do so, we create a special client transi-

tion called discover_packets that symbolically executes

the packet_in handler. Fig. 4 shows the unfolding of con-

troller’s state-space graph.

Symbolic execution of the handler starts from the ini-

tial state defined by (i) the concrete controller state (e.g.,

State 0 in Fig. 4) and (ii) a concrete “context” (i.e., the switch

and input port that identify the client’s location). For every

feasible code path in the handler, the symbolic-execution

engine finds an equivalence class of packets that exercise

it. For each equivalence class, we instantiate one concrete

packet (referred to as the relevant packet) and enable a cor-

responding send transition for the client. While this exam-

ple focuses on the packet_in handler, we apply similar

techniques to deal with traffic statistics, by introducing a

special discover_stats transition that symbolically ex-

ecutes the statistics handler with symbolic integers as argu-

ments. Other handlers, related to topology changes, operate

on concrete inputs (e.g., the switch and port ids).

Fig. 5 shows the pseudo-code of our search-space algo-

rithm, which extends the basic model-checking loop in two

main ways.

Initialization (lines 3–5): For each client, the algo-

rithm (i) creates an empty map for storing the relevant

packets for a given controller state and (ii) enables the

discover_packets transition.
Checking process (lines 12–18): Upon reaching a new

state, the algorithm checks for each client (line 15) whether

a set of relevant packets already exists. If not, it enables the

discover_packets transition. In addition, it checks (line

17) if a process_stats transition is enabled in the newly-

reached state, meaning that the controller is awaiting a re-

sponse to a previous query for statistics. If so, the algorithm

enables the discover_stats transition.

Invoking the discover_packets (lines 26–31) and

discover_stats (lines 32–35) transitions allows the sys-

tem to evolve to a state where new transitions become

possible—one for each path in the packet-arrival or statistics

handler. This allows the model checker to reach new con-

troller states, allowing symbolic execution to again uncover

new classes of inputs that enable additional transitions, and

so on.

By symbolically executing the controller event handlers,

NICE automatically infers the test inputs for enabling model

checking without developer input, at the expense of some

limitations in coverage of the state space which we discuss

in Section 10.

4. General-purpose search optimizations

Even with our optimizations from the last two sections,

the model checker cannot typically explore the entire state
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1 def DPOR(current path):
2 for t i in current path[1 : n−1]:
3 state = get start state(t i)
4 for t j in current path[idx(t i) + 1 : n]:
5 if is worth reordering(t i, t j):
6 if t j in state.enabled:
7 t k = t j
8 else:
9 t k = get predecessor(state, t j)

10 state.strongly enabled.add(t k)
11 state.force order(t k, (t j, t i))
12 elif t j in state.enabled:
13 state.unnecessary.add(t j)

14 def get next transition(state):
15 for t in state.enabled:
16 if (t in state.unnecessary) and (t not in ←↩

state.strongly enabled):
17 state.enabled.remove(t)
18 return state.enabled.pop()

Fig. 6. Pseudo-code of the DPOR algorithm. The get_next_transition
method prunes the enabled actions and returns the next transition worth

executing. The DPOR method runs when the search ends in a state with no

enabled transitions.
space, since it may be prohibitively large or even infinite.

In this and the next section, we describe both general-

purpose and domain-specific techniques for reducing the

search space.

Partial-order reduction (POR) is a technique that reduces

the number of possible orderings to be analyzed without sac-

rificing search completeness (e.g., see Chapter 8 of [22]). POR

takes advantage of the fact that many events that are hap-

pening in the system are independent and can be explored

following just one arbitrary order. Formally, let T be a set of

transitions; we say transitions t1 ∈ T and t2 ∈ T are indepen-

dent (adapted from [27]) if for all states s:

1. if t1 is enabled in s and s
t1→ s′, then t2 is enabled in s iff t2

is enabled in s′.
2. if t1 and t2 are enabled in s, then there is a state s′ that

s
t1→ s1

t2→ s′ and s
t2→ s2

t1→ s′.
In other words, independent transitions do not enable or dis-

able each other and if they are both enabled they commute.

If two transitions are not independent, they are dependent.

Further, transitions that are dependent are worth reordering

because they lead to different system behaviors.

In practice, to check if transitions are independent, POR

algorithms use the notion of shared objects. Transitions that

use the same shared object are dependent and the ones that

use disjoint sets of shared objects are independent. Identi-

fying the right granularity for shared objects is crucial be-

cause if the choice is too conservative, transitions that are not

worth reordering would be considered dependent and make

POR less effective. On the other hand, missing a shared object

generally means that the search is no longer complete.

To apply POR in our context, we identify the following

shared objects:

(1) input buffers of switches and hosts: All transitions that

read from or write to a buffer of a given node (send or

receive a packet) are dependent.

(2) switch flow tables: The order of switch flow table

modifications is important because it matters if a rule

is installed before or after a packet matching that rule

arrives at the switch. However, we exploit the seman-

tics of flow tables to identify more fine-grained shared

objects and hence make POR more effective. In par-

ticular, a pair of transitions that only read from the

flow table are independent. Also, transitions that op-

erate on rules with non-overlapping matches are in-

dependent. All remaining transition combinations are

dependent.

(3) the controller application: Because NICE treats the

controller state as a single entity all transitions related

to the controller are dependent. No further specializa-

tion is possible without relying on more fine-grained

analysis of controller state.

Rather than relying on a-priori knowledge about what

shared objects are used by which transition, we use a dy-

namic variant of POR, namely dynamic partial-order reduc-

tion (DPOR) [27], which gathers the dependency information

at run-time while executing transitions, and modifies the set

of enabled transitions at each visited state accordingly.

We base our DPOR algorithm on the one presented in [27]

and extend it to work for our context. The base DPOR algo-
rithm relies on the fact that a single execution path ends

when there are no enabled transitions. NICE typically bounds

the search depth and uses state matching to avoid exploring

the same state multiple times. Therefore, some search paths

end before all possible transitions that could be worth re-

ordering are considered by DPOR. To avoid this problem, we

conservatively consider all enabled transitions as worth ex-

ploring unless specifically marked otherwise.

We first introduce some notation: Let Ei be the set of tran-

sitions enabled in state si; let SEi ⊆ Ei be the set of transitions

strongly enabled in si (i.e., the transitions that cannot be ig-

nored); let Di ⊆ Ei be the set of transitions enabled in si that

are temporarily disabled by DPOR. The search path is repre-

sented by a transition sequence: s1

t1−→ s2

t2−→ . . .
tn−→ sn+1. For

each transition tj in this sequence, we keep track of the tran-

sition ti that enabled tj. In other words, we look for i such

that t j �∈ Ei and t j ∈ Ei+1. Let P( j) = i, we call tP(j) a first level

predecessor of tj, tP(P(j)) a second level predecessor of tj, and

so on.

Fig. 6 presents the pseudo-code of our DPOR algorithm.

The function DPOR is invoked for the current execution path

once the model checker reaches a state sn with no enabled

transitions. For every transition ti with i ∈ [1, n], we iden-

tify all transitions tj where j ∈ [i + 1, n] that ti is worth re-

ordering with (line 5). In this case, we want to enforce a new

search path that, starting from si, would first execute tj and

then ti (lines 6–11). If tj ∈ Ei, we simply add tj to SEi. If t j �∈ Ei,

we find a transition tk ∈ Ei that is a predecessor of tj (line 9)

and add it to SEi (line 10). If ti is not worth reordering with

tj ∈ Ei, we add tj to Di (line 13). Marking tk for exploration is

necessary to ensure search completeness, but it is not suffi-

cient to efficiently prune states. After executing tk, the model

checker would again have two possible orderings of ti and tj.

To achieve the desired state space reduction, we enforce that

tj is executed before ti on this particular search path (line 11).

Before selecting the next transition to explore in a given state,

the get_next_transition function disables all transi-

tions enabled in this state, that were considered not worth

reordering while exploring other paths (line 16).
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5. OpenFlow-specific search strategies

We propose domain-specific heuristics that substantially

reduce the space of event orderings while focusing on sce-

narios that are likely to uncover bugs. Most of the strategies

operate on the event interleavings produced by model check-

ing, except for PKT-SEQ which reduces the state-space explo-

sion due to the transitions uncovered by symbolic execution.

5.1. PKT-SEQ: Relevant packet sequences

The effect of discovering new relevant packets and using

them as new enabled send transitions is that each end-host

generates a potentially-unbounded tree of packet sequences.

To make the state space finite and smaller, this heuristic re-

duces the search space by bounding the possible end host

transitions (indirectly, bounding the tree) along two dimen-

sions, each of which can be fine-tuned by the user. The first is

merely the maximum length of the sequence, or in other words,

the depth of the tree. Effectively, this also places a hard limit

to the issue of infinite execution trees due to symbolic ex-

ecution. The second is the maximum number of outstanding

packets, or in other words, the length of a packet burst. For

example, if client1 in Fig. 4 is allowed only a 1-packet burst,

this heuristic would disallow both send(pkt2) in State 2

and send(pkt1) in State 3. Effectively, this limits the level

of “packet concurrency” within the state space. To introduce

this limit, we assign each end host with a counter c; when

c = 0, the end host cannot send any more packets until the

counter is replenished. As we are dealing with communicat-

ing end hosts, we adopt as default behavior to increase c by

one unit for every received packet. However, this behavior

can be modified in more complex end host models, e.g., to

mimic the TCP flow and congestion controls.

5.2. NO-DELAY: Instantaneous rule updates

When using this simple heuristic, NICE treats each com-

munication between a switch and the controller as a sin-

gle atomic action (i.e., not interleaved with any other tran-

sitions). In other words, the global system runs in “lock step”.

This heuristic is useful during the early stages of develop-

ment to find basic design errors, rather than race conditions

or other concurrency-related issues. For instance, it would al-

low the developer to realize that installing a rule prevents the

controller from seeing other packets that are important for

program correctness. For example, a MAC-learning applica-

tion that installs forwarding rules based only on the destina-

tion MAC address would prevent the controller from seeing

some packets with new source MAC addresses.

5.3. UNUSUAL: Unusual delays and reorderings

With this heuristic, NICE only explores event orderings

with uncommon and unexpected delays aiming to uncover

race conditions. For example, if an event handler in the con-

troller installs rules in switches 1, 2, and 3, the heuristic ex-

plores transitions that reverse the order by allowing switch 3

to install its rule first, followed by switch 2 and then switch

1. This heuristic uncovers bugs like the example in Fig. 1.
5.4. FLOW-IR: Flow independence reduction

Many OpenFlow applications treat different groups of

packets independently; that is, the handling of one group is

not affected by the presence or absence of another. In this

case, NICE can reduce the search space by exploring only one

relative ordering between the events affecting each group. To

use this heuristic, the programmer provides isSameFlow,

a Python function that takes two packets as arguments and

returns whether the packets belong to the same group.

For example, in some scenarios different microflows are

independent, whereas other programs may treat packets

with different destination MAC addresses independently.

5.5. Summary

PKT-SEQ is complementary to other strategies in that it

only reduces the number of send transitions rather than the

possible kind of event orderings. It is enabled by default and

used in our experiments (unless otherwise noted). The other

heuristics can be selectively enabled.

6. Specifying application correctness

Correctness is not an intrinsic property of a system—a

specification of correctness states what the system should

do, whereas the implementation determines what it actually

does. NICE allows programmers to define correctness proper-

ties as Python code snippets, and provides a library of com-

mon properties (e.g., no loops or black holes).

6.1. Customizable correctness properties

Testing correctness involves asserting safety properties

(“something bad never happens”) and liveness properties

(“eventually something good happens”), defined more formally

in Chapter 3 of [22]. Checking for safety properties is rela-

tively easy, though sometimes writing an appropriate predi-

cate over all state variables is tedious. As a simple example,

a predicate could check that the collection of flow rules does

not form a forwarding loop or a black hole. Checking for live-

ness properties is typically harder because of the need to con-

sider a possibly infinite system execution. In NICE, we make

the inputs finite (e.g., a finite number of packets, each with

a finite set of possible header values), allowing us to check

some liveness properties. For example, NICE could check that,

once two hosts exchange at least one packet in each direc-

tion, no further packets go to the controller (a property we

call “StrictDirectPaths”). Checking this liveness property re-

quires knowledge not only of the system state, but also which

transitions were executed.

To check safety and liveness properties, NICE allows cor-

rectness properties to (i) access the system state, (ii) register

callbacks invoked by NICE to observe important transitions in

system execution, and (iii) maintain local state. In our expe-

rience, these features offer enough expressiveness. For ease

of implementation, the properties are represented as snip-

pets of Python code that make assertions about system state.

NICE invokes these snippets after each transition. For exam-

ple, to check the StrictDirectPaths property, the code snippet

defines local state variables that keep track of whether a pair
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of hosts has exchanged at least one packet in each direction,

and would flag a violation if a subsequent packet triggers a

packet_in event. When a correctness check signals a vi-

olation, NICE records the execution trace that recreates the

problem.

6.2. Library of correctness properties

NICE provides a library of correctness properties applica-

ble to a wide range of OpenFlow applications. A programmer

can select properties from a list, as appropriate for the appli-

cation. Writing these correctness modules can be challeng-

ing because the definitions must be robust to communication

delays between the switches and the controller. Many of the

definitions must intentionally wait until a “safe” time to test

the property to prevent natural delays from erroneously trig-

gering a violation. Providing these modules as part of NICE

can relieve the developers from the challenges of specifying

correctness properties precisely, though creating any custom

modules would require similar care.

• NoForwardingLoops: This property asserts that packets

do not encounter forwarding loops. It is implemented by

checking if each packet goes through any < switch, input

port > pair at most once.

• NoBlackHoles: This property states that no packets

should be dropped in the network, and is implemented by

checking that every packet that enters the network and is

destined to an existing host, ultimately leaves the network

(for simplicity, we disable optional packet drops and du-

plication on the channels). In case of host mobility, an ex-

tended version of this property: NoBlackHolesMobile ignores

the inevitably dropped packets in the period from when the

host moves to when the controller can realize that the host

moved.

• DirectPaths: This property checks that, once a packet

has successfully reached its destination, future packets of

the same flow do not go to the controller. Effectively, this

checks that the controller successfully establishes a direct

path to the destination as part of handling the first packet of a

flow. This property is useful for many OpenFlow applications,

though it does not apply to the MAC-learning switch, which

requires the controller to learn how to reach both hosts

before it can construct unicast forwarding paths in either

direction.

• StrictDirectPaths: This property checks that, after two

hosts have successfully delivered at least one packet of a flow

in each direction, no successive packets reach the controller.

This checks that the controller has established a direct path

in both directions between the two hosts.

• NoForgottenPackets: This property checks that all switch

buffers are empty at the end of system execution. A pro-

gram can easily violate this property by forgetting to tell the

switch how to handle a packet. This can eventually consume

all the available buffer space for packets awaiting controller

instruction; after a timeout, the switch may discard these

buffered packets.3 A short-running program may not run

long enough for the queue of awaiting-controller-response
3 In our tests of the ProCurve 5406zl OpenFlow switch, we see that, once

the buffer becomes full, the switch starts sending the entire contents of new

incoming packets to the controller, rather than buffering them. After a 10-s
packets to fill, but the NoForgottenPackets property easily de-

tects these bugs. Note that a violation of this property often

leads also to a violation of NoBlackHoles.

7. Implementation highlights

We have built a prototype implementation of NICE writ-

ten in Python so as to seamlessly support OpenFlow con-

troller programs for the popular NOX platform (which pro-

vides an API for Python).

As a result of using Python, we face the challenge of doing

symbolic execution for a dynamically typed language. This

task turned out to be quite challenging from an implementa-

tion perspective. To avoid modifying the Python interpreter,

we implement a derivative technique of symbolic execution

called concolic execution [28],4 which executes the code with

concrete instead of symbolic inputs. Like symbolic execution,

it collects constraints along code paths and tries to explore

all feasible paths. Another consequence of using Python is

that we incur a significant performance overhead, which is

the price for favoring usability. We plan to improve perfor-

mance in a future release of the tool.

NICE consists of three parts: (i) a model checker, (ii) a

concolic-execution engine, and (iii) a collection of models in-

cluding the simplified switch and several end hosts. We now

briefly highlight some of the implementation details of the

first two parts: the model checker and concolic engine, which

run as different processes.

7.1. Model checker details

To checkpoint and restore system state, NICE in the basic

version takes the approach of remembering the sequence of

transitions that created the state and restores it by replay-

ing such sequence, while leveraging the fact that the sys-

tem components execute deterministically. State-matching

is done by comparing and storing hashes of the explored

states. The main benefit of this approach is that it reduces

memory consumption and, secondarily, it is simpler to im-

plement. Trading computation for memory is a common ap-

proach for other model-checking tools (e.g., [18,19]). To create

state hashes, NICE serializes the state via the json module and

applies the built-in hash function to the resulting string.

In the extended version, NICE stores the serialized states

themselves, at the cost of higher memory usage. This ap-

proach has a potential to reduce NICE running time, but the

exact benefits depend mostly on the time required to save

and restore the controller state. Moreover, saving the state re-

quired for DPOR is challenging and in the current prototype

we do not support it.

7.2. Concolic execution details

A key step in concolic execution is tracking the constraints

on symbolic variables during code execution. To achieve this,

we first implement a new “symbolic integer” data type that

tracks assignments, changes and comparisons to its value
timeout, the switch deletes the packets that are buffered awaiting instruc-

tions from the controller.
4 Concolic stands for concrete + symbolic.
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Table 1

Dimensions of exhaustive search in NICE-MC vs. model-checking without a canonical representation of the

switch state, which prevents recognizing equivalent states. Symbolic execution is turned off in both cases.

Pings NICE-MC NO-SWITCH-REDUCTION

Transitions Unique states CPU time Transitions Unique states CPU time ρ

2 530 315 1.1 s 706 432 1.72 s 0.27

3 14,762 6,317 37.24 s 31,345 13,940 92.9 s 0.54

4 356,469 121,320 17 min 1,134,515 399,919 59 min 0.69

5 7,816,517 2,245,345 8 h 33,134,573 9,799,538 57 h 0.77

Fig. 7. Relative state-space search reduction of our heuristic-based search

strategies vs. NICE-MC.
while behaving like a normal integer from the program point

of view. We also implement arrays (tuples in Python ter-

minology) of these symbolic integers. Second, we reuse the

Python modules that naturally serve for debugging and dis-

assembling the byte-code to trace the program execution

through the Python interpreter.

Further, before running the code symbolically, we nor-

malize and instrument it since, in Python, the execution can

be traced at best with single code-line granularity. Specifi-

cally, we convert the source code into its abstract syntax tree

(AST) representation and then manipulate this tree through

several recursive passes that perform the following transfor-

mations: (i) we split composite branch predicates into nested

if statements to work around shortcut evaluation, (ii) we

move function calls before conditional expressions to ease

the job for the STP constraint solver [29], (iii) we instrument

branches to inform the concolic engine on which branch is

taken, (iv) we substitute the built-in dictionary with a spe-

cial stub to track uses of symbolic variables, and (v) we in-

tercept and remove sources of nondeterminism (e.g., seeding

the pseudo-random number generator). The AST tree is then

converted back to source code for execution.

8. Performance evaluation

Here we present an evaluation of how effectively NICE

copes with the large state space in OpenFlow.

8.1. Experimental setup

We run the experiments on the simple topology of Fig. 1,

where the end hosts behave as follows: host A sends a “layer-

2 ping” packet to host B which replies with a packet to A. The

controller runs the MAC-learning switch program of Fig. 3.

We report the numbers of transitions and unique states, and

the execution time as we increase the number of concurrent

pings (a pair of packets). We run all our experiments on a

machine with Linux 3.8.0 x86_64 that has 64 GB of RAM and

a clock speed of 2.6 GHz. Our prototype does not yet make

use of multiple cores.

8.2. Benefits of simplified switch model

We first perform a full search of the state space us-

ing NICE as a depth-first search model checker (NICE-MC,

without symbolic execution) and compare to NO-SWITCH-

REDUCTION: doing model-checking without a canonical

representation of the switch state. Effectively, this pre-

vents the model checker from recognizing that it is ex-

ploring semantically equivalent states. These results, shown
in Table 1, are obtained without using any of our search

strategies. We compute ρ , a metric of state-space re-

duction due to using the simplified switch model, as
Unique(NO-SWITCH-REDUCTION)−Unique(NICE-MC)

Unique(NO-SWITCH-REDUCTION)
.

We observe the following:

• In both samples, the number of transitions and of unique

states grow roughly exponentially (as expected). How-

ever, using the simplified switch model, the unique states

explored in NICE-MC only grow with a rate that is lower

than the one observed for NO-SWITCH-REDUCTION.

• The efficiency in state-space reduction ρ scales with the

problem size (number of pings), and is substantial (factor

of 3.5 for four pings).

• The time taken to complete a full state-space search in

this small-scale example grows exponentially with the

number of packets. However, thanks to symbolic execu-

tion, we expect NICE to explore most of the system states

using a modest number of symbolic packets and even

small network models.

8.3. Heuristic-based search strategies

Fig. 7 illustrates the contribution of NO-DELAY and UN-

USUAL in reducing the search space relative to the metrics

reported for the full search (NICE-MC). The state space re-

duction is again significant; about factor of 5 and factor of

10 for over two pings with UNUSUAL and NO-DELAY respec-

tively. In summary, our switch model and these heuristics re-

sult in over 20-fold state space reduction for four and more

pings. FLOW-IR is unable to reduce the state space in a net-

work with two end hosts. Because of the way the PySwitch

works, all flows are dependent. However, in Table 5 we show

the effectiveness of this strategy in other scenarios (even 10

times reduction).



280 P. Perešíni et al. / Computer Networks 92 (2015) 270–286

2 4 6 8
10

0

10
1

10
2

10
3

10
4

10
5

Number of pings

M
em

or
y 

[M
B

]

10
−2

10
0

10
2

10
4

T
im

e 
[s

]

Hits memory limit
of 65000 MB

(a) Memory usage and elapsed
time (log y-scales).

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of pings

1 
−

 P
O

R
/N

O
P

O
R

 tr
an

si
tio

ns

(b) Efficiency of POR.

Fig. 8. SPIN: Exponential increase in computational resources partially mit-

igated by POR.

Table 2

JPF: Exhaustive search on thread-based model.

Pings Time [s] Unique states End states Mem. [MB]

1 0 55 2 17

2 9 20638 134 140

3 13689 25470986 2094 1021

Table 3

JPF: Exhaustive search on choice-based model.

Pings Time [s] Unique states End states Mem. [MB]

1 0 1 1 17

2 1 691 194 33

3 16 29930 6066 108

4 11867 16392965 295756 576

5 We order events by their states’ hash values.
8.4. Comparison to other model checkers

Next, we contrast NICE-MC with two state-of-the-art

model checkers, SPIN [15] and JPF [16]. We create system

models in these tools that replicate as closely as possible the

system tested in NICE, using the same experimental setup as

with our heuristics.

SPIN is one of the most popular tools for verifying the

correctness of software models, which are written in a high-

level modeling language called PROMELA. This language ex-

poses non-determinism as a first-class concept, making it

easier to model the concurrency in OpenFlow. However, us-

ing this language proficiently is non-trivial and it took several

person-days to implement the model of the simple Open-

Flow system (Fig. 1). To capture the system concurrency at

the right level of granularity, we use the atomic language

feature to model each transition as a single atomic compu-

tation that cannot be interleaved to any other transition. In

practice, this behavior cannot be faithfully modeled due to

the blocking nature of channels in PROMELA. To enable

SPIN’s POR to be most effective, we assign exclusive rights

to the processes involved in each communication channel.

Fig. 8a shows the memory usage and elapsed time for the

exhaustive search with POR as we increase the number of

packets sent by host A. As expected, we observe an exponen-

tial increase in computational resources until SPIN reaches

the memory limit when checking the model with eight pings

(i.e., 16 packets).

To see how effective POR is, we compare in Fig. 8b the

number of transitions explored with POR vs. without POR

(NOPOR) while we vary the number of pings. In relative

terms, POR’s efficiency increases, although with diminishing

returns, from 24% to 73% as we inject more packets that are

identical to each other. The benefits due to POR on elapsed

time follow a similar trend and POR can finish six pings in

28% of time used by NOPOR. However, NOPOR hits the mem-

ory limit at seven pings, so POR only adds one extra ping.

Finally, we test if POR can reduce the search space by

taking advantage of the simple independence property as

in FLOW-IR. Unfortunately, we observe that there is no re-

duction when we inject two packets with distinct address

pairs compared to the case with identical packets. This is be-

cause SPIN uses the accesses to communication channels to

derive the independence of events. Our DPOR algorithm in-

stead considers a more fine-grained definition of shared ob-

jects and achieves better state space reduction.

Java PathFinder (JPF) is one among the first modern

model checkers which use the implementation in place of
the model. We follow two approaches to model the system

by porting our Python code to Java.

In the first approach, we naively use threads to capture

nondeterminism, hoping that JPF’s automatic state-space re-

duction techniques would cope with different thread cre-

ation orders of independent transitions. However, in our case,

the built-in POR is not very efficient in removing unneces-

sary network event interleavings because thread interleav-

ing happens at finer granularity than event interleavings.

To solve this problem, we tune this model by using the

beginAtomic() and endAtomic() functions provided

by JPF. As this still produces too many possible interleavings,

we further introduced a global lock.

In a second approach to further refine the model,

we capture nondeterminism via JPF’s choice generator:

Verify.getInt(). This gives a significant improvement

over threads, mainly because we are able to specify precisely

the granularity of interleavings. However, this second mod-

eling effort is non trivial since we are manually enumerating

the state space and there are several caveats in this case too.

For example, explicit choice values should not be saved on

the stack as the choice value may become a part of the global

state, thus preventing reduction. The vector of possible tran-

sitions must also be sorted.5

Table 2 illustrates the state space explosion when using

the thread-based model. Unfortunately, as shown in Table 3,

the choice-based model improves only by 1 ping the size

of the model that we can explore within a comparable time

period (≈4 h).

These results suggest that NICE, in comparison with

the other model-checkers, strikes a good balance between

(i) capturing system concurrency at the right level of granu-

larity, (ii) simplifying the state space and (iii) allowing testing

of unmodified controller programs.

9. Experiences with real applications

In this section, we report our experience with applying

NICE to three real applications—a MAC-learning switch, a

server load-balancer, and energy-aware traffic engineering—

and uncovering 13 bugs. In all experiments, it was sufficient

to use a network model with at most three switches.
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9.1. MAC-learning switch (PySwitch)

Our first application is the pyswitch software included

in the NOX distribution (98 LoC). The application implements

MAC learning, coupled with flooding to unknown destina-

tions, common in Ethernet switches. Realizing this function-

ality seems straightforward (e.g., the pseudo-code in Fig. 3),

yet NICE automatically detects three violations of correctness

properties.

9.1.1. BUG-I: Host unreachable after moving

This fairly subtle bug is triggered when a host B moves

from one location to another. Before B moves, host A starts

streaming to B, which causes the controller to install a for-

warding rule. When B moves, the rule stays in the switch as

long as A keeps sending traffic, because the soft timeout does

not expire. As such, the packets do not reach B’s new location.

This serious correctness bug violates the NoBlackHoles and

NoBlackHolesMobile properties. If the rule had a hard time-

out, the application would eventually flood packets and reach

B at its new location; then, B would send return traffic that

would trigger MAC learning, allowing future packets to fol-

low a direct path to B. While this “bug fix” prevents persis-

tent packet loss, the network still experiences transient loss

until the hard timeout expires.

9.1.2. BUG-II: Delayed direct path

The pyswitch also violates the StrictDirectPaths prop-

erty, leading to suboptimal performance. The violation arises

after a host A sends a packet to host B, and B sends a response

packet to A. This is because pyswitch installs a forwarding

rule in one direction—from the sender (B) to the destination

(A), in line 13 of Fig. 3. The controller does not install a for-

warding rule for the other direction until seeing a subsequent

packet from A to B. For a three-way packet exchange (e.g., a

TCP handshake), this performance bug directs 50% more traf-

fic than necessary to the controller. Anecdotally, fixing this

bug can easily introduce another one. The naïve fix is to add

another install_rule call, with the addresses and ports

reversed, after line 14, for forwarding packets from A to B.

However, since the two rules are not installed atomically, in-

stalling the rules in this order can allow the packet from B to

reach A before the switch installs the second rule. This can

cause a subsequent packet from A to reach the controller un-

necessarily. A correct fix installs the rule for traffic from A

first, before allowing the packet from B to A to traverse the

switch. With this “fix”, the program satisfies the StrictDirect-

Paths property.

9.1.3. BUG-III: Excess flooding

When we test pyswitch on a topology that contains a

cycle, the program violates the NoForwardingLoops property.

This is not surprising, since pyswitch does not construct a

spanning tree.

9.2. Web server load balancer

Data centers rely on load balancers to spread incom-

ing requests over service replicas. Previous work created a

load-balancer application that uses wildcard rules to divide

traffic based on the client IP addresses to achieve a target
load distribution [8]. The application dynamically adjusts the

load distribution by installing new wildcard rules; during the

transition, old transfers complete at their existing servers

while new requests are handled according to the new dis-

tribution. We test this application with one client and two

servers connected to a single switch. The client opens a TCP

connection to a virtual IP address corresponding to the two

replicas. In addition to the default correctness properties, we

create an application-specific property FlowAffinity that veri-

fies that all packets of a single TCP connection go to the same

replica. Here we report on the bugs NICE found in the original

code (1209 LoC), which had already been unit tested to some

extent.

9.2.1. BUG-IV: ARP packets forgotten during address resolution

Having observed a violation of the NoForgottenPackets

property for ARP packets, we identified two bugs. The con-

troller program handles client ARP requests on behalf of the

server replicas. Despite sending the correct reply, the pro-

gram neglects to discard the ARP request packets from the

switch buffer. A similar problem occurs for server-generated

ARP messages.

9.2.2. BUG-V: TCP packets always dropped before the first

reconfiguration

A violation of the NoForgottenPackets property for TCP

packets allowed us to detect a problem where the controller

ignores all packet_in messages for TCP packets caused by

no matching rule at the switch. As before the first reconfig-

uration there are no rules installed, all flows that start dur-

ing this period are ignored. Dropping such packets is under-

standable as the controller may have insufficient information

about the replicas. However, ignoring them completely occu-

pies space in switch buffers.

9.2.3. BUG-VI: Next TCP packet always dropped after

reconfiguration

Having observed another violation of the NoForgotten-

Packets property, we identified a bug where the applica-

tion neglects to handle the “next” packet of each flow—for

both ongoing transfers and new requests—after any change

in the load-balancing policy. Despite correctly installing the

forwarding rule for each flow, the application does not in-

struct the switch to forward the packet that triggered the

packet_in handler. Since the TCP sender ultimately re-

transmits the lost packet, the program does successfully han-

dle each Web request, making it hard to notice this bug

that degrades performance and, for a long execution, would

ultimately exhaust the switch’s space for buffering packets

awaiting controller action.

9.2.4. BUG-VII: Some TCP packets dropped during

reconfiguration

After fixing previously described bugs, NICE detected an-

other NoForgottenPackets violation due to a race condition.

In switching from one load-balancing policy to another, the

application sends multiple updates to the switch for each

existing rule: (i) a command to remove the existing for-

warding rule followed by (ii) commands to install one or

more rules (one for each group of affected client IP ad-

dresses) that direct packets to the controller. Since these
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commands are not executed atomically, packets arriving be-

tween the first and second step do not match either rule.

The OpenFlow specification prescribes that packets that do

not match any rule should go to the controller. Although the

packets go to the controller either way, these packets arrive

with a different “reason code” (i.e., NO_MATCH). As written,

the packet_in handler ignores such (unexpected) packets,

causing the switch to hold them until the buffer fills. This ap-

pears as packet loss to the end hosts.6 To fix this bug, the

program should reverse the two steps, installing the new

rules (perhaps at a lower priority) before deleting the exist-

ing ones. Finding this bug poses another challenge: only a de-

tailed analysis of event sequences allows us to distinguish it

from BUG-V. Moreover, a proper fix of BUG-V hides all symp-

toms of BUG-VII.

9.2.5. BUG-VIII: Incomplete packets encapsulated in

packet_in messages

The final NoForgottenPackets property violation was

caused by a change in the OpenFlow specification before

version 1.0. If a rule’s action is to send packets to the con-

troller, the action needs to define the maximum number of

packet bytes that should be encapsulated in an packet_in
message. The controller uses value 0, which in the initial

versions of the specification means encapsulate the entire

packet. However, in OpenFlow 1.0, 0 is no longer a special

value. As a result, the controller does not receive any bytes of

the packet header and is unable to analyze it.

9.2.6. BUG-IX: Duplicate SYN packets during transitions

A FlowAffinity violation detected a subtle bug that arises

only when a connection experiences a duplicate (e.g., re-

transmitted) SYN packet while the controller changes from

one load-balancing policy to another. During the transition,

the controller inspects the “next” packet of each flow, and

assumes a SYN packet implies the flow is new and should

follow the new load-balancing policy. Under duplicate SYN

packets, some packets of a connection (arriving before the

duplicate SYN) may go to one server, and the remaining pack-

ets to another, leading to a broken connection. The authors

of [8] acknowledged this possibility (see footnote #2 in their

paper), but only realized this was a problem after careful

consideration.

9.3. Energy-efficient traffic engineering

OpenFlow enables a network to reduce energy consump-

tion [9,30] by selectively powering down links and redirect-

ing traffic to alternate paths during periods of lighter load.

REsPoNse [30] pre-computes several routing tables (the de-

fault is two), and makes an online selection for each flow.

The NOX implementation (374 LoC) has an always-on rout-

ing table (that can carry all traffic under low demand) and an

on-demand table (that serves additional traffic under higher

demand). Under high load, the flows should probabilisti-

cally split evenly over the two classes of paths. The appli-

cation learns the link utilizations by querying the switches
6 To understand the impact, consider a switch with 1 Gb/s links, 850-byte

frames, and a flow-table update rate of 257 rules/s (as widely reported for

the HP 5406zl). That would lead to 150 dropped packets per switch port.
for port statistics. Upon receiving a packet of a new flow, the

packet_in handler chooses the routing table, looks up the

list of switches in the path, and installs a rule at each hop.

For testing with NICE, we install a network topology with

three switches in a triangle, one sender host at one switch

and two receivers at another switch. The third switch lies on

the on-demand path. We define the following application-

specific correctness property:

• UseCorrectRoutingTable: This property checks that the

controller program, upon receiving a packet from an ingress

switch, issues the installation of rules to all and just the

switches on the appropriate path for that packet, as deter-

mined by the network load. Enforcing this property is impor-

tant, because if it is violated, the network might be config-

ured to carry more traffic than it physically can, degrading

the performance of end-host applications running on top of

the network.

NICE found several bugs in this application:

9.3.1. BUG-X: The first packet of a new flow is dropped

A violation of NoForgottenPackets and NoBlackHoles re-

vealed a bug that is almost identical to BUG-VI. The

packet_in handler installed a rule but neglected to in-

struct the switch to forward the packet that triggered the

event.

9.3.2. BUG-XI: The first few packets of a new flow can be

dropped

After fixing BUG-X, NICE detected another NoForgotten-

Packets violation at the second switch in the path. Since the

packet_in handler installs an end-to-end path when the

first packet of a flow enters the network, the program im-

plicitly assumes that intermediate switches would never di-

rect packets to the controller. However, with communica-

tion delays in installing the rules, the packet could reach the

second switch before the rule is installed. Although these

packets trigger packet_in events, the handler implicitly

ignores them, causing the packets to buffer at the interme-

diate switch. This bug is hard to detect because the problem

only arises under certain event orderings. Simply installing

the rules in the reverse order, from the last switch to the first,

is not sufficient—differences in the delays for installing the

rules could still cause a packet to encounter a switch that has

not (yet) installed the rule. A correct “fix” should either han-

dle packets arriving at intermediate switches, or use “barri-

ers” (where available) to ensure that rule installation com-

pletes at all intermediate hops before allowing the packet to

depart the ingress switch.

9.3.3. BUG-XII: Only on-demand routes used under high load

NICE detects a CorrectRoutingTableUsed violation that pre-

vents on-demand routes from being used properly. The pro-

gram updates an extra routing table in the port-statistic han-

dler (when the network’s perceived energy state changes) to

either always-on or on-demand, in an effort to let the re-

mainder of the code simply reference this extra table when

deciding where to route a flow. Unfortunately, this made it

impossible to split flows equally between always-on and on-

demand routes, and the code directed all new flows over on-

demand routes under high load. A “fix” was to abandon the

extra table and choose the routing table on a per-flow basis.
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Table 4

Comparison of the number of transitions/running time to the first violation that uncovered each bug. Time is in seconds unless

otherwise noted. For BUG-XII transitions are explored in the reverse order, so that this bug gets detected before BUG-V.

Bug Only PKT-SEQ NO-DELAY FLOW-IR UNUSUAL

No DPOR DPOR No DPOR DPOR No DPOR DPOR No DPOR DPOR

I 2149/8.3 1631/7.14 418/1.6 355/1.34 2149/8.55 1631/7.61 994/3.88 819/3.17

II 540/1.65 415/1.18 187/0.62 156/0.4 540/1.70 415/1.21 241/0.8 179/0.45

III 23/0.22 23/0.16 17/0.2 17/0.16 23/0.21 23/0.16 24/0.2 24/0.18

IV 49/0.61 49/0.36 49/0.58 49/0.32 49/0.53 49/0.47 30/0.36 30/0.26

V 52/0.59 52/0.33 52/0.53 52/0.37 52/0.59 52/0.38 33/0.5 33/0.33

VI 738/6.65 312/2.25 1977/15.35 361/1.8 778/10.0 306/2.31 139/1.47 208/1.24

VII 12k/93.14 1782/13.26 Missed Missed 481/4.0 385/2.28 112/1.5 49/0.38

VIII 1274/12.12 245/3.74 1237/10.31 265/1.33 1134/11.22 278/2.15 709/6.81 200/1.54

IX 432.7k/66m 33.7k/324 33.5k/213 15.6k/111 Missed Missed 53.5k/478 13.4k/138

X 22/0.31 22/0.19 22/0.24 22/0.21 22/0.24 22/0.21 22/0.24 22/0.19

XI 97/0.97 53/0.63 Missed Missed 97/0.98 53/0.61 24/0.25 24/0.2

XII 19/0.27 19/0.21 17/0.22 18/0.17 19/0.23 19/0.21 19/0.25 19/0.19

XIII 3126/24.86 697/6.59 Missed Missed 2287/18.54 617/5.59 1225/11.24 589/4.86
9.3.4. BUG-XIII: Packets can be dropped when the load reduces

After fixing BUG-XI, NICE detected another violation of

the NoForgottenPackets. When the load reduces, the program

recomputes the list of switches in each always-on path. Un-

der delays in installing rules, a switch not on these paths may

send a packet to the controller, which ignores the packet be-

cause it fails to find this switch in any of those lists.

9.4. Overhead of running NICE

In Table 4, we summarize how many seconds NICE took

(and how many state transitions were explored) to discover

the first property violation that uncovered each bug, under

four different search strategies with and without DPOR. Note

the numbers are generally small because NICE quickly pro-

duces simple test cases that trigger the bugs. One excep-

tion, BUG-IX, is found in 1 h by doing a PKT-SEQ-only search

but NO-DELAY and UNUSUAL can detect it in just 3–8 min.

Our search strategies are also generally faster than PKT-

SEQ-only to trigger property violations, except in one case

(BUG-VI). Adding DPOR improves all strategies unless the

bug is found on one of the first explored paths. Also, note

that there are no false positives in our case studies—every

property violation is due to the manifestation of a bug—

and only in few cases (BUG-VII, BUG-IX, BUG-XI and BUG-

XIII) the heuristic-based strategies experience false nega-

tives. Expectedly, NO-DELAY, which does not consider rule

installation delays, misses race condition bugs (23% missed

bugs). BUG-IX is missed by FLOW-IR because the dupli-

cate SYN is treated as a new independent flow (8% missed

bugs).

Finally, the reader may find that some of the bugs we

found—like persistently leaving some packets in the switch

buffer—are relatively simple and their manifestations could

be detected with run-time checks performed by the con-

troller platform. However, the programmer would not know

what caused them. For example, a run-time check that flags a

“no forgotten packets” error due to BUG-VI or BUG-VII would

not tell the programmer what was special about this particu-

lar execution that triggered the error. Subtle race conditions

are hard to diagnose, so having a (preferably small) example

trace—like NICE produces—is crucial.
9.5. Effectiveness of optimizations

Until now we reported only times to find the first invari-

ant violation, which is critical when looking for bugs. How-

ever, to fully evaluate various optimizations described earlier,

we disable all invariants and in Table 5 present a total num-

ber of transitions and running time for three configurations:

MAC-learning controller like in Section 8 with four pings,

load balancer with one connection, and Energy-Efficient Traf-

fic Engineering with two connections (like for BUG-XIII).

First, state serialization improves the performance and

the improvement depends on the complexity of serializing

the controller state. Load balancer has a more complex state

than the other two. For the controllers with a simpler state,

the state serialization allows to finish the state space explo-

ration even in less than 60% of the original time.

DPOR reduces the number of transitions and states that

the model checker needs to explore, however, it comes with

two sources of overhead: (i) it performs additional compu-

tations, and (ii) in our implementation DPOR works do not

work with state serialization. That is the reason why in a net-

work where many transitions are dependent and where se-

rializing the controller is simple (learning switch) the ben-

efits of using DPOR are smaller than the costs. On the other

hand, with the load balancer, DPOR reduces the number of

explored transitions even 9 times which leads to even 10

times shorter exploration time. For REsPoNse the difference

is smaller, but still meaningful: over 4 times.

10. Coverage vs. overhead trade-offs

Testing is inherently incomplete, walking a fine line be-

tween good coverage and low overhead. Here we discuss

some limitations of our approach.

10.1. Concrete execution on the switch

In identifying the equivalence classes of packets, the algo-

rithm in Fig. 5 implicitly assumes the packets reach the con-

troller. However, depending on the rules already installed in

the switch, some packets in a class may reach the controller

while others do not. This leads to two limitations. First, if no
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Table 5

Comparison of number of transitions and running time when using basic NICE, NICE with state serializa-

tion and NICE with DPOR. Except for the load balancer application for which serializing the controller state

takes a lot of time, state serialization significantly reduces running time. DPOR gives additional except for

the PySwitch application where many transitions are dependent and a small reduction in explored states is

insufficient to balance the cost of running DPOR and the time advantage of serialization.

PySwitch Load balancer REsPoNse

Strategy Transitions Time [s] Transitions Time [s] Transitions Time [s]

PKT-SEQ 356,469 1,739.42 84,831 486.88 62,152 541.32

PKT-SEQ + serialize 356,469 1,051.89 84,831 428.86 62,152 316.38

PKT-SEQ + DPOR 253,511 1,604.62 9,206 47.59 14,549 116.70

NO-DELAY 6,385 19.87 7,663 22.76 2,012 12.17

NO-DELAY + serialize 6,385 15.31 7,663 34.53 2,012 8.37

NO-DELAY + DPOR 4,962 20.22 2,841 9.15 834 5.78

FLOW-IR 356,469 1,587.34 8,636 41.02 32,352 251.76

FLOW-IR + serialize 356,469 1,058.00 8,636 40.35 32,352 167.88

FLOW-IR + DPOR 253,511 1,468.23 1,420 6.24 8,447 62.28

UNUSUAL 67,816 258.83 4,716 21.62 3,544 21.79

UNUSUAL + serialize 67,816 186.69 4,716 22.20 3,544 17.22

UNUSUAL + DPOR 21,659 111.93 1,406 8.11 1,072 6.12
packets in an equivalence class go to the controller, gener-

ating a representative packet from this class was unneces-

sary. This leads to some loss in efficiency. Second, if some

(but not all) packets go to the controller, we may miss an

opportunity to test a code path through the handler by in-

advertently generating a packet that stays in the “fast path”

through the switches. This causes some loss in both efficiency

and coverage. We could overcome these limitations by ex-

tending symbolic execution to include our simplified switch

model and performing “symbolic packet forwarding” across

multiple switches. We chose not to pursue this approach be-

cause (i) symbolic execution of the flow-table code would

lead to a path-explosion problem, (ii) including these vari-

ables would increase the overhead of the constraint solver,

and (iii) rules that modify packet headers would further com-

plicate the symbolic analysis.

10.2. Concrete global controller variables

In symbolically executing each event handler, NICE could

miss complex dependencies between handler invocations.

This is a byproduct of our decision to represent controller

variables in a concrete form. In some cases, one call to a

handler could update the variables in a way that affects the

symbolic execution of a second call (to the same handler,

or a different one). Symbolic execution of the second han-

dler would start from the concrete global variables, and may

miss an opportunity to recognize additional constraints on

packet header fields. We could overcome this limitation by

running symbolic execution across multiple handler invoca-

tions, at the expense of a significant explosion in the number

of code paths. Or, we could revisit our decision to represent

controller variables in a concrete form.

10.3. Infinite execution trees in symbolic execution

Despite its many advantages, symbolic execution can lead

to infinite execution trees [26]. In our context, an infinite

state space arises if each state has at least one input that

modifies the controller state. This is an inherent limitation

of symbolic execution, whether applied independently or in
conjunction with model checking. To address this limitation,

we explicitly bound the state space by limiting the size of

the input (e.g., a limit on the number of packets) and devise

OpenFlow-specific search strategies that explore the system

state space efficiently. These heuristics offer a tremendous

improvement in efficiency, at the expense of some loss in

coverage.

Finally, there are two main sources of coverage incom-

pleteness: (i) heuristic-driven and bounded-depth model

checking, and (ii) incomplete symbolic execution of the con-

troller code. We showed in Section 9 that at least one heuris-

tic was always able to detect each bug. We do not report the

code coverage of the controller because symbolic execution

applies to event handlers that are a subset of the actual appli-

cation logic, making it is difficult to distinguish between this

logic and the rest of the system. Second, there are many hid-

den branches (e.g., in dictionaries) that are not visible with

code coverage statistics.

11. Related work

11.1. Bug finding

While model checking [15–19] and symbolic execution

[20,21,28] are automatic techniques, a drawback is that they

typically require a closed system, i.e., a system (model) to-

gether with its environment. Typically, the creation of such

an environment is a manual process (e.g., [25]). NICE re-

uses the idea of model checking—systematic state-space

exploration—and combines it with the idea of symbolic

execution—exhaustive path coverage—to avoid pushing the

burden of modeling the environment on the user. Also, NICE

is the first to demonstrate the applicability of these tech-

niques for testing the dynamic behavior of OpenFlow net-

works. Finally, NICE makes a contribution in managing state-

space explosion for this specific domain.

Khurshid et al. [26] enable a model checker to perform

symbolic execution. Both our and their work share the spirit

of using symbolic variables to represent data from very large

domains. Our approach differs in that it uses symbolic exe-

cution in a selective way for uncovering possible transitions
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given a certain controller state. As a result, we (i) reduce

state-space explosion due to feasible code paths because not

all code is symbolically executed, and (ii) enable matching

of concrete system states to further reduce the search of the

state space.

11.2. Software-defined networking

Frenetic [14], Maple [12], and FlowLog [13] are domain-

specific languages for SDN. The higher-level abstractions in

these works make it possible to eradicate certain classes of

programming faults and to some extent enable controller

verification. However, these languages have not yet seen

wide adoption.

OFRewind [31] enables recording and replay of events

for troubleshooting problems in production networks due to

closed-source network devices. However, it does not auto-

mate the testing of OpenFlow controller programs.

Mai et al. [32] use static analysis of network devices’ for-

warding information bases to uncover problems in the data

plane. FlowChecker [33] applies symbolic model checking

techniques on a manually-constructed network model based

on binary decision diagrams to detect misconfigurations in

OpenFlow forwarding tables. We view these works as orthog-

onal to ours since they both aim to analyze a snapshot of the

data plane.

Bishop et al. [34] examine the problem of testing the spec-

ification of end host protocols. NICE tests the network itself,

in a new domain of software defined networks. Kothari et al.

[35] use symbolic execution and developer input to iden-

tify protocol manipulation attacks for network protocols. In

contrast, NICE combines model checking with symbolic ex-

ecution to identify relevant test inputs for injection into the

model checker.

Several recent works have considered the problem of

checking the correctness in SDN under dynamic controller

behavior. Sethi et al. [36] present data- and network-state

abstractions for model checking SDN controllers. Their ap-

proach extends verification to an arbitrarily number of pack-

ets by considering only one concrete packet for the verifica-

tion task. This reduces the state space but it also limits the

invariants that can be checked to just per-packet safety prop-

erties. Kuai [37] introduces a set of partial order reduction

techniques to reduce the state space. VeriCon [38] extends

verification of SDN programs to check their correctness on all

admissible topologies and for all possible sequences of net-

work events. These approaches need to manually port the

controller application to a different programming language

and do not use symbolic execution to reduce the space of in-

put packets.

12. Conclusion

We built NICE, a tool for automating the testing of Open-

Flow applications that combines model checking and con-

colic execution in a novel way to quickly explore the state

space of unmodified controller programs written for the pop-

ular NOX platform. Further, we devised a number of new,

domain-specific techniques for mitigating the state-space

explosion that plagues approaches such as ours. We con-

trast NICE with an approach that applies off-the-shelf model
checkers to the OpenFlow domain, and demonstrate that

NICE is five times faster even on small examples. We ap-

plied NICE to implementations of three important applica-

tions, and found 13 bugs. A release of NICE is publicly avail-

able at https://github.com/mcanini/nice.
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