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ABSTRACT
Traffic often needs to be split over multiple equivalent back-
end servers, links, paths, or middleboxes. For example, in
a load-balancing system, switches distribute requests of on-
line services to backend servers. Hash-based approaches like
Equal-Cost Multi-Path (ECMP) have low accuracy due to
hash collision and incur significant churn during update. In
a Software-Defined Network (SDN) the accuracy of traffic
splits can be improved by crafting a set of wildcard rules
for switches that better match the actual traffic distribution.
The drawback of existing SDN-based traffic-splitting solu-
tions is poor scalability as they generate too many rules for
small rule-tables on switches. In this paper, we propose Ni-
agara, an SDN-based traffic-splitting scheme that achieves
accurate traffic splits while being extremely efficient in the
use of rule-table space available on commodity switches.
Niagara uses an incremental update strategy to minimize
the traffic churn given an update. Experiments demonstrate
that Niagara (1) achieves nearly optimal accuracy using only
1.2%−37% of the rule space of the current state-of-art, (2)
scales to tens of thousands of services with the constrained
rule-table capacity and (3) offers nearly minimum churn.

1. INTRODUCTION
Network operators often spread traffic over multiple com-

ponents (such as links, paths, and backend servers) that offer
the same functionality or service, to achieve better scalabil-
ity, reliability, and performance. Managing these distributed
resources effectively requires a good way to balance the traf-
fic load, especially when different components have different
capacity. Rather than deploying dedicated load-balancing
appliances, modern networks increasingly rely on the un-
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derlying switches to split load across the replicas [1–8]. For
example, server load-balancing systems [4, 6] use hardware
switches to spread client requests for each service over mul-
tiple software load balancers, which in turn direct requests to
backend servers. Another example is multi-pathing [3,9,10],
where a switch splits the flows with the same destination
over multiple paths.

The most common traffic-splitting mechanism is Equal-
Cost Multi-Path (ECMP) [9, 10], which is available in
most commodity switches and widely used for load balanc-
ing [4, 6] and multi-pathing purposes [1, 2]. ECMP splits a
set of flows (typically flows with the same destination pre-
fix) uniformly over a group of next-hops based on the hash
values of the packet-header fields. Weighted-Cost Multi-
Path (WCMP) [3] is an extension of ECMP that supports
a weighted splits by repeating the same next-hop multiple
times in an ECMP group. ECMP and WCMP both parti-
tion the flow space, assuming equal traffic load in each hash
bucket. The splitting accuracy of ECMP degrades signifi-
cantly due to hash collision [11,12]. Furthermore, ECMP in-
curs unnecessary traffic shifts during updates. When a next-
hop is added or removed in ECMP, any hash function shifts
at least 25% to 50% of the flow space to a different next-
hop [10].

In this paper, we are interested in designing a generic and
accurate traffic-splitting scheme for commodity switches.
The emergence of open interfaces to commodity SDN
switches such as OpenFlow [13, 14], enables operators to
have a controller that installs rules on switch rule-tables to
satisfy the load-balancing goals [5,12,15]. These rule-tables
(e.g., TCAM) are optimized for high-speed packet-header
matching, however they have small capacities on the order
of a few thousand entries [16–18]. The simplest SDN-based
solution [15] directs the first packet of each flow to the con-
troller, which reactively installs an exact-match (microflow)
rule on the switch. More efficient approaches [5, 12, 19, 20]
proactively install wildcard rules that direct packets match-
ing the same header patterns to the same next-hop, but they
do not use the rule-table space efficiently and cannot scale to
large networks.

This paper presents Niagara, an efficient traffic-splitting
scheme that computes switch rules to minimize traffic im-



balance (i.e., the fraction of traffic sent to the “wrong” next-
hop, based on the target load balancing weights), subject to
rule-table constraints. Niagara handles multiple flow aggre-
gates—sets of flows with the same destination or egress.
Each flow aggregate is splitted according to distinct target
weights. Our experiments demonstrate that Niagara scales
to tens of thousands of flow aggregates and hundreds of
next-hops with a small imbalance. After a brief discussion
of traffic-splitting use cases and related work (Section 2),
we present the traffic-splitting optimization problem and a
high-level overview of Niagara (Section 3).

We make the following contributions.
Efficient traffic-splitting algorithm: Niagara approxi-

mates load-balancing weights accurately with a small num-
ber of wildcard rules. For each flow aggregate, Niagara can
flexibly trade off accuracy for fewer rules (Section 4). Ni-
agara packs rules for multiple flow aggregates into a sin-
gle table, and allows sharing of rules across multiple aggre-
gates with similar weights (Section 5). Given an update, Nia-
gara computes incremental changes to the rules to minimize
churn (i.e., the fraction of traffic shuffled to a different next-
hop due to the update) and traffic imbalance (Section 6).

Realistic prototype: We implement the Niagara Open-
Flow controller and deploy the controller (i) in a physical
testbed with a hardware Pica8 switch interconnecting four
hosts and (ii) in Mininet [21] with Open vSwitches [22]
and a configurable number of hosts. We recently conducted
a live demonstration of Niagara at an SDN-based Internet
eXchange Point (IXP) in New Zealand [23], where Niagara
load balanced DNS and web requests to backend servers in
a production environment.

Trace-driven large-scale evaluation: We evaluate the
performance of Niagara for server load balancing and multi-
path traffic splitting through extensive simulation against
real and synthetic data and validate the simulation results
subject to the limitations of our prototype (Section 7). Ex-
periments demonstrate that Niagara (1) achieves nearly op-
timal accuracy outperforming ECMP and other SDN-based
approaches, (2) scales to tens of thousands of aggregates us-
ing as little as 1.2%− 37% of the rule space compared to
alternative solutions and (3) handles update gracefully with
nearly minimal churn.

2. TRAFFIC SPLIT BACKGROUND

2.1 Use cases
We provide three examples that illustrate how hardware

switches are used to split traffic over next-hops.
Server load balancing. Cloud providers host many

services, each replicated on multiple servers for greater
throughput and reliability. Load balancers (e.g., Ananta [4],
Duet [6]) rely on hardware switches to spread service re-
quests over servers. Ananta uses switches to forward re-
quests over software load balancers (SLB), which then send
requests to backends; Duet requires switches to distribute
requests to backends for popular services directly, besides
forwarding to SLBs. Depending on the server capacity and

deployments (e.g., server allocation in racks, maintenance
and failures), a switch is required to spread requests evenly
or in a weighted fashion [5, 6]. Both Ananta and Duet use
hash-based traffic-splitting schemes (Section 2.3).

Data center multi-pathing. Data center topologies [1–3]
offer many equal-length paths that switches can use to in-
crease bisection bandwidth. In a fully symmetric topology, a
switch splits traffic of each destination prefix equally over
available paths. A recent study [3] found that data-center
topologies tend to be asymmetric due to failures and het-
erogeneous devices. In such a topology, a switch should split
traffic in proportion to the capacity of the equal-length paths.

Wide area traffic engineering. Wide Area Networks
(WAN) carry a huge amount of inter-datacenter traffic. WAN
traffic engineering systems (TE) establish tunnels among
data center sites and run periodic algorithms to optimize
the bandwidth allocation of tunnels to different applications.
The underlying switches should split traffic for each ap-
plication over tunnels according to the algorithm’s results
for the best network utilization. Existing TE solutions (e.g.,
SWAN [24], B4 [25]) use hash-based approaches as their de-
fault traffic-splitting schemes (Section 2.3).

2.2 Requirements
Accuracy. Traffic-splitting schemes should be accurate.

Commodity servers can handle a limited number of requests;
an inaccurate traffic split can easily overload a server, thus
incurring long latencies and request failures. In the network,
inaccurate splits create congestion and packet loss.

Scalability. The scheme should scale. Data centers host
up to tens of thousands of services (i.e., flow aggregates),
which are collectively handled by a handful of SLBs (i.e.,
next-hops); multi-path routing requires an ingress switch
to handle hundreds of destination prefixes (i.e., flow ag-
gregates) and dozens of paths (i.e., next-hops). A scalable
traffic-splitting scheme should handle the heterogeneity in
the numbers of flow aggregates and next-hops, given the
constraints in rule-table capacity.

Update efficiency. Failures or changes in capacity require
updating the split of flow aggregates. However, transition-
ing to this new split comes at some cost of reshuffling pack-
ets among servers (i.e., churn). This requires extra work to
ensure consistent handling of TCP connections already in
progress [4,26,27]. A good traffic-splitting scheme needs to
be updatable with limited churn.

2.3 Prior Traffic-Splitting Schemes
Hash-based approaches. ECMP aims at an equal split

over a group of next-hops (e.g., SLBs) by partitioning the
flow space into equal-sized hash-buckets, each of which cor-
responds to one next-hop. WCMP handles weighted splits by
repeating next-hops in an ECMP group, thus assigning mul-
tiple hash-buckets to the same next-hop. ECMP is available
on most commodity switches, which gives rise to its popu-
larity [4, 6, 24, 25]. However, it splits the flow space equally,
rather than the actual traffic. It is common that certain parts
of the flow spaces (e.g., a busy source) contribute more traf-
fic than others [1,11,28]; an even partition of the flow space



does not guarantee the equal split of traffic. Moreover, the
size of the ECMP table, which is a TCAM with hundreds
to thousands rules on commodity switches [3], severely re-
stricts the achievable accuracy of WCMP. Finally, updating
an ECMP group unnecessarily shuffles packets among next-
hops. It is shown that when a next-hop is added to a N− 1-
member group, at least 1

4 +
1

4N of the flow space are shuffled
to different next-hops [10], while the minimum shuffle is 1

N .
SDN-based approaches. SDN supports programming

rule-tables in switches, enabling finer-grained control and
more accurate splitting. Aster*x [15] directs the first packet
of each flow to a controller, which then installs micro-flow
rules for forwarding the remaining packets, making the con-
troller load and hardware rule-table capacity quickly become
bottlenecks. MicroTE [12] proactively decides routing for
every pair of edge switches (i.e., ToR-to-ToR flows in a data
center), but still generates many rules. A more scalable alter-
native installs coarse-grained rules that direct a consecutive
chunk of flows to a common next-hop. A preliminary explo-
ration of using wildcard rules is discussed in [5]. Niagara
follows the same high-level approach, but presents more so-
phisticated algorithms for optimizing rule-table size, while
also addressing churn under updates. We discuss [5] in de-
tail in Section 4.1.

Other approaches for multi-pathing. The traffic-
splitting problem has been studied extensively in the past in
the context of multi-pathing. LocalFlow [29] achieves per-
fectly uniform splits, but cannot produce weighted splits and
may split a flow, causing packet reordering. Conga [30] and
Flare [31] load balance flowlets (bursts of packets within
a flow) to avoid reordering but require advanced switch
hardware support. In comparison, Niagara load balances
traffic without packet reordering using off-the-shelf Open-
Flow switches. An alternative approach to these schemes
is centralized flow scheduling such as Hedera [11]. Hedera
reroutes “elephant” flows based on global information. Nia-
gara could provide the default routing scheme for a central-
ized flow-scheduler which then installs specific flow-rules
for elephant flows. The third type of approaches is host-
controlled routing, which changes the paths of packets by
customizing extra fields in ECMP hash functions [32] or
round-robin forwarding to intermediate switches [33]. Ni-
agara does not directly compete with these approaches by
design, as it does not touch the end-hosts.

3. NIAGARA OVERVIEW
Niagara generates wildcard rules to split the traffic within

the constrained rule-table size. Incoming traffic is grouped
into flow aggregates, each of which is divided over the
same set of next-hops according to a weight vector. The
per-aggregate weight vector is calculated with consideration
on the bandwidth of both downstream links and capacity of
next-hops. In the load balancing example, incoming packets
are grouped by their destination IPs (i.e., services). Traffic of
each service is divided over next-hops (i.e., SLBs) according
to their capacity (e.g., bandwidth, CPU, the number of back-
end servers they connect to). Figure 1(a) shows an example

Match Action
DIP SIP Next-hop

63.12.28.42 ∗0 17.12.11.1
63.12.28.42 ∗ 17.12.12.1
63.12.28.34 ∗00100 17.12.11.1
63.12.28.34 ∗000 17.12.11.1
63.12.28.34 ∗0 17.12.12.1
63.12.28.34 ∗ 17.12.13.1
(a) Load balancing two services.

Match Action
DIP Tag

63.12.28.42 1
63.12.28.53 1
63.12.28.27 1
63.12.28.34 2
63.12.28.43 2

=⇒

Match Action
Tag SIP Next-hop
1 ∗0 17.12.11.1
1 ∗ 17.12.12.1
2 ∗00100 17.12.11.1
2 ∗000 17.12.11.1
2 ∗0 17.12.12.1
2 ∗ 17.12.13.1

(b) Grouping and load balancing five services.
Figure 1: Example wildcard rules for load balancing.

of wildcard rules generated by Niagara for load balancing.
Each rule matches on destination IP to identify the service
and source IP to forward packets to the same SLBs. Packets
are forwarded based on the first matching rule. In addition
to wildcard rules, Niagara leverages the metadata tags sup-
ported by latest chip-sets [14] and generates tagging rules to
group services of similar weight distributions, thus further
reducing the number of rules (Figure 1(b)).

In this section, we formulate the optimization problem for
computing wildcard rules in the switch and outline the five
main components of our algorithm. For easy exposition of
the rule generation algorithm, we use suffixes of source IP
address and assume a proportional split of the traffic over
suffixes (e.g., ∗0 stands for 50% traffic). We relax this as-
sumption in Section 4.1.2.

3.1 Problem Formulation
The algorithm computes the rules in the switch, given the

per-aggregate weights and the switch rule-table capacity. A
hardware switch should approximate the target division of
traffic over the next-hops accurately. The misdirected traffic
may introduce congestion over downstream links and over-
load on next-hops. As such, an important challenge is to min-
imize the imbalance—the fraction of traffic that routes to the
“wrong” next-hops.

The weights of each aggregate vary due to differences in
resource allocation (e.g., bandwidth), next-hop failures, and
planned maintenance. Each aggregate v has non-negative
weights {wv j} for splitting traffic over the M next-hops
j = 1,2, . . . ,M, where ∑ j wv j = 1. (Table 1 summarizes the
notation.) The traffic split is not always exact, since match-
ing on header bits inherently discretizes portions of traffic.
In practice, splitting traffic exactly is not necessary, and ag-
gregates can tolerate a given error bound e, where the actual
split is w′v j such that |w′v j−wv j| ≤ e. The value of e depends
on the deployment: an aggregate with a few next-hops re-
quires a smaller e value (usually in [0.001,0.01]). Ideally,
the hardware switch could achieve w′v j with wildcard rules.
But small rule-table sizes thwart this, and instead, we settle



Variable Definition
N Number of aggregates (v = 1, . . . ,N)
M Number of next-hops ( j = 1, . . . ,M)
C Hardware switch rule-table capacity

wv j Target weight for aggregate v, next-hop j
tv Traffic volume for aggregate v
dv Traffic distribution for aggregate v over the flow space
e Error tolerance |w′v j−wv j| ≤ e

w′v j Actual weight for aggregate v, next-hop j
cv Hardware rule-table space for aggregate v

Table 1: Table of notation, with inputs listed first.
for the lesser goal of approximating the weights as well as
possible, given a limited rule capacity C at the switch.

To approximate the weights, we solve an optimization
problem that allocates cv rules to each aggregate v to achieve
weights {w′v j} (i.e., cv = numrules({w′v j})). Aggregate v has
traffic volume tv, where some aggregates contribute more
traffic than others. We define the total imbalance as the sum
of over-approximated weights. The goal is to minimize the
total traffic imbalance, while approximating the weights:

minimize ∑v(tv×∑ j E(w′v j−wv j,e)) s.t.
w′v j ≥ 0 ∀v, j
∑ j w′v j = 1 ∀v
cv = numrules({w′v j}) ∀v
∑v cv ≤C

where E(x,e) =
{

x if x > e
0 if x≤ e

given the weights {wv j}, traffic volumes {tv}, rule-table ca-
pacity C, and error tolerance e as inputs.

3.2 Overview of Optimization Algorithm
Our solution to the optimization problem introduces five

main contributions, starting with the following three ideas:
Approximating weights for a single aggregate (Sec-

tion 4.1): Given weights {wv j} for aggregate v and error
tolerance e, we compute the approximated weights {w′v j}
and the associated rules for each aggregate. The algorithm
expands each weight wv j in terms of powers of two (e.g.,
1
6 ≈

1
8 +

1
32 ) that can be approximated using wildcard rules.

Truncating the approximation to use fewer rules (Sec-
tion 4.2): Given the above results, we can truncate the ap-
proximation and fit a subset of associated rules into the rule
table. This results in a tradeoff curve of traffic imbalance
versus the number of rules.

Packing multiple aggregates into a single table (Sec-
tion 5.1): We allocate rules to aggregates based on their
tradeoff curves to minimize the total traffic imbalance. In
each step of the packing algorithm, we allocate one more
rule to the aggregate that achieve the highest ratio of the ben-
efit (the reduction in traffic imbalance) to the cost (number of
rules), until the hardware table is full with a total of C =∑v cv
rules. Consequently, more rules are allocated to aggregates
with larger traffic volume and easy-to-approximate weights.

Together, these three parts allow us to make effective use
of a small rule table to divide traffic over next-hops.

Thousands of aggregates with dozens of next-hops can
easily overwhelm the small wildcard rule table (i.e., TCAM)
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(a) Suffix allocation

Pattern Action
∗000 fwd to 1
∗100 fwd to 2
∗10 fwd to 2
∗1 fwd to 3

(b) Naive approach

Pattern Action Priority
∗000 fwd to 1 high
∗0 fwd to 2 low
∗1 fwd to 3 low

(c) Use subtraction and priority

Figure 2: Naive and subtraction-based rule generation
for weights { 1

6 ,
1
3 ,

1
2} and approximation { 1

8 ,
3
8 ,

4
8}.

in today’s hardware switches. Fortunately, today’s hardware
switches have multiple table stages. For example, the popu-
lar Broadcom chipset [14] has a table that can match on des-
tination IP prefix and set a metadata tag that can be matched
(along with the five-tuple) in the subsequent TCAM. Niagara
can capitalize on this table to map an aggregate to a tag—
or, more generally, multiple aggregates to the same tag. Our
fourth algorithmic innovation uses this table:

Sharing rules across aggregates with similar weights
(Section 5.2): We associate a tag with a group of aggre-
gates with similar weights over the same next-hops. We use
k-means clustering to identify the groups, and then generate
one set of rules for each group. Furthermore, we create a set
of default rules, which are shared by all groups.

Transitioning to new weights (Section 6): In practice,
weights change over time, forcing Niagara to compute in-
cremental changes to the rules to control the churn.

4. OPTIMIZE A SINGLE AGGREGATE
We begin with generating rules to approximate the weight

vector {wv j} of a single aggregate v within error tolerance e.
We then extend the method to account for constrained rule-
table capacity C.

4.1 Approximate: Binary Expansion
Naive approach to generating wildcard rules. A possi-

ble method to approximate the weights [5] is to pick a fixed
suffix length k and round every weight to the closest multi-
ple of 2−k such that the approximated weights still sum to 1.
For example by fixing k = 3, weights wv1 =

1
6 , wv2 =

1
3 , and

wv3 =
1
2 are approximated by w′v1 =

1
8 , w′v2 =

3
8 , and w′v3 =

4
8 .

The visualized suffix tree is presented in Figure 2(a). To
generate the corresponding wildcard rules, an approximate
weight b× 2−k is represented by b k-bit rules. In practice,
allocating similar suffix patterns to the same weight may en-
able combining some of the rules, hence reducing the num-
ber of rules. The corresponding wildcard rules are listed in
Figure 2(b).

Shortcomings of the naive solution. The naive approach
always expresses b as the “sums” of power of two (for ex-



Iteration w′v1 w′v2 w′v3

0 0 0 1

1 0 1
2 1− 1

2

2 1
8

1
2−

1
8 1− 1

2

3 1
8 +

1
32

1
2 −

1
8−

1
32 1− 1

2
(a) Approximation iterations

Pattern Action Corresponding terms

∗00100 fwd to 1 1
32 in w′v1 and − 1

32 in w′v2

∗000 fwd to 1 1
8 in w′v1 and − 1

8 in w′v2

∗0 fwd to 2 1
2 in w′v2 and − 1

2 in w′v3

∗ fwd to 3 1 in w′v3
(b) Wildcard rules

Figure 3: Wildcard rules to approximate ( 1
6 ,

1
3 ,

1
2 )

ample 3
8 is expressed as 2

8 + 1
8 ) and only generates non-

overlapping rules. In contrast, our algorithm allows subtrac-
tion as well as longest-match rule priority. In the above ex-
ample, 3

8 can be expressed as 4
8 −

1
8 to achieve the same ap-

proximation with one less rule (Figure 2(c)). The generated
rules overlap and the longest-matching rule is given higher
priority: ∗000 is matched first and “steals" 1

8 of the traffic
from rule ∗0.

The power of subtractive terms and rule priority. Our
algorithm approximates weights using a series of positive
and negative power-of-two terms. We compute the approx-
imation w′v j = ∑k x jk for each weight wv j subject to |w′v j −
wv j| ≤ e. Each term x jk = b jk×2−a jk , where b jk ∈ {−1,+1}
and a jk is a non-negative integer. For example, wv2 = 1

3 is
approximated using three terms as w′v2 =

1
2 −

1
8 −

1
32 . As we

explain later, each term x jk is mapped to a suffix matching
pattern. In what follows, we show how to compute the ap-
proximations and how to generate the rules.

4.1.1 Approximate the weights
We start with an initial approximation where the biggest

weight is 1 and the other weights are 0. The initial approxi-
mation for wv = ( 1

6 ,
1
3 ,

1
2 ) is w′v = (0,0,1) (Figure 3(a)). The

errors, namely the difference between the w′v and wv, are
(− 1

6 ,−
1
3 ,

1
2 ). wv1,wv2 are under-approximated , while wv3 is

over-approximated.
We use error tolerance e = 0.02 for the example. The

initial approximation is not good enough; wv2 is the most
under-approximated weight with an error − 1

3 . To reduce
its error, we add one power-of-two term to w′v2. At the
same time, this term must be subtracted from another over-
approximated weight to keep the sum unchanged. We move
a power-of-two term from wv3 to wv2.

We decide the term based on the current errors of both
weights. The term should offer the biggest reduction in er-
rors. Let the power-of-two term be x. Given the current errors
of wv2 and wv3, i.e., − 1

3 and 1
2 , we calculate the new errors

as − 1
3 + x and 1

2 − x. Hence, the reduction is 4 = | − 1
3 |+

| 12 |− |−
1
3 + x|− | 12 − x|= 2× (min( 1

3 ,x)+min( 1
2 ,x)− x).

The function is plotted as red line in Figure 4. When
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Term values

Max reduction in [1/3,1/2]

Max reduction at 1/6

Errors: -1/3, 1/2

Errors: 1/6, -1/6

Figure 4:4 plots with different errors.

x = 1, 1
2 and 1

4 , the reduction is − 1
3 ,

2
3 and 1

2 respectively.
In fact, Equation4 is a concave function, which reaches its
maximum value when x ∈ [ 1

3 ,
1
2 ]. Hence, we choose 1

2 . In
a more general case, where multiple values give the max-
imum reduction, we break the tie by choosing the biggest
term. After this operation, the new approximation becomes
(0, 1

2 ,1−
1
2 ) with errors (− 1

6 ,
1
6 ,0).

We repeat the same operations to reduce the biggest
under-approximation and over-approximation errors itera-
tively. In the example, wv3 is perfectly approximated (the
error is 0). We only move terms from wv2 to wv1. Two terms
1
8 ,

1
32 are moved until all the errors are within tolerance.

Eventually, each weight is approximated with an expansion
of power-of-two terms (Figure 3(a)).

We make three observations about this process. First,
the errors are non-increasing, as each time we reduce the
biggest errors. Second, the chosen power-of-two terms are
non-increasing, because the terms with the maximum 4 al-
ways lie between two errors (Figure 4). For a term that gives
the best 4 in the current iteration, only smaller terms may
have a bigger reduction in the next iteration1. Finally, the
reduction 4 is non-increasing, as Equation 4 is monotonic
with both errors and the chosen power-of-two term. In other
words, we gain diminishing return on4 for the term-moving
operation, as we are getting closer to the error tolerance.

4.1.2 Generate rules based on approximations
Given the approximation w′v, we generate rules by map-

ping the power-of-two terms to nodes in a suffix tree. Each
node in the tree represents a 2−k fraction of traffic, where k
is the node’s depth (or, equivalently, the suffix length). Fig-
ure 5 visualizes the rule-generation steps for our example
from Figure 3(a) with wv1 =

1
6 , wv2 =

1
3 , and wv3 =

1
2 . When

a term is mapped to a node, we explicitly assign a color to
the node. Initially, the root node is colored with the biggest
weight to represent the initial approximation (Figure 5(a)).
Color j means that the node belongs to w′v j. Each uncolored
node implicitly inherits the color of its closest ancestor. We
use dark color for explicitly colored nodes and light color for
the unassigned nodes.

We process the terms in the order that they are added to
the expansions (i.e., 1

2 , 1
8 , 1

32 ). Then, one by one, the terms
are mapped to nodes as follows. Let x be the term under con-
sideration, which is moved from weight wvb to wva. We map
it to a node representing x fraction of traffic with color b.
The node is then re-colored to a. In the example, we map 1

2
to node ∗0 and color the node with wv2 (Figure 5(b)). Sub-

1A term may be picked in multiple consecutive iterations.
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Figure 5: Generate rules using a suffix tree.

sequently, 1
8 ,

1
32 are mapped to ∗000,∗00100, which are col-

ored to wv1 (Figure 5(c) (d)).
Once all terms have been processed, rules are generated

based on the explicitly colored nodes. Figure 3(b) shows the
rules corresponding to the final colored tree in Figure 5(d).

4.1.3 Use non-power-of-two terms
We discuss the case that each suffix pattern may not match

a power-of-two fraction of traffic. For example, there may be
more packets matching ∗0 than those matching ∗1. Niagara’s
algorithm can be extended to handle the unevenness, once
the fractions of traffic for suffixes are measured [34–37].

We refine the approximation iteratively. In each iteration,
a suffix (i.e., a term) is moved from an over-approximated
weight to an under-approximated weight to maximize the
reduction of errors. The only difference is that the candi-
date values of this term are no longer powers of two, but all
possible fractions denoted by suffixes belonging to the over-
approximated weight. We use the concaveness of Equation
4 to guide our search for the best term value. Instead of
brute-force enumeration, we can scan all candidate values in
decreasing order, and stop when4 starts decreasing.

To illustrate the extended algorithm, we use wv = ( 1
6 ,

1
3 ,

1
2 )

as an example and assume an uneven traffic distribution over
the flow space shown in Figure 6. We start with the ap-
proximation w′v = (0,0,1) (Figure 7(a)) and move a suffix
from the over-approximated weight wv3 to the most under-
approximated weight wv2 in the first iteration. Based on
Equation 4, among all suffixes of w′v3, *1 with term = 2

5
maximizes4 and is moved to wv2 (Figure 7(b)). The approx-
imation becomes (0, 2

5 ,1−
2
5 ). In the next iteration, we move

suffix *100 with term = 18
125 to wv1, reducing the approxima-

tion error to w′v−wv = ( 18
125 −

1
6 ,

2
5 −

1
3 ,(1−

2
5 −

18
125 )−

1
2 ).

Finally, moving *111 with term = 8
125 to wv2 completes the

approximation. The resulting suffix tree is shown in Fig-
ure 7(d).

We also remark that it is not necessary to use suffix
matches to approximate traffic volume. As long as the traffic
distribution is measured for some bits in the header fields, we
could apply the above algorithm to generate patterns match-
ing those bits.

1

3/5

9/25 6/25

27/125

2/5

6/25 4/25

18/125 0.096 0.144 0.096 0.096 0.0640.14427/125    18/125    18/125     12/125    18/125     12/125    12/125    8/125

27/125 18/125

9/25

18/125 12/125

6/125

3/5

27/125 18/125

9/25

18/125 12/125

6/125

2/5

1

Figure 6: An example traffic distribution with a suf-
fix tree. Each number represents the fraction of traffic
matched by the suffix, e.g., *11 matches 4

25 traffic.
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Figure 7: Generate rules using a suffix tree, given the
traffic distribution in Figure 6.

4.2 Truncate: Fit Rules in the Table
Given the restricted rule-table size, some generated rules

might not fit in the hardware. Therefore, we truncate rules to
meet the capacity of rule table. We refer to the switch rules
as PH . PH achieves a coarse-grained approximation of the
weights while numrules(PH) stays within the rule-table size
C. We capture the total over-approximation error as imbal-
ance, i.e., tv×∑ j max(wH

v j−wv j,e), where tv is the expected
traffic volume for aggregate v and wH

v j is the approximation
of weight wv j given by PH .

We pick the C lower-priority rules from the rule-set gener-
ated in Section 4.1 as PH . This is because rules are generated
with increasing priority and decreasing4 values (i.e., the re-
duction in imbalance). The C lowest-priority rules give the
overall biggest reduction of imbalance. For example, when
C = 3 the rules in Figure 3(b) are truncated into PH contain-
ing the last three rules.

Stairstep plot. Figure 8 shows the imbalance as a func-
tion of C. Each point in the plot (r, imb) can be viewed as a
cost for rule space r, and the corresponding gain in reducing
imbalance imb. This curve helps us determine the gain an ag-
gregate can have from a certain number of allocated switch
rules, which is used in packing rules for multiple aggregates
into the same switch table (Section 5.1).

5. CROSS AGGREGATES OPTIMIZA-
TION

In this section, we generate rules for multiple aggregates
using two main techniques: (1) packing multiple sets of rules
(each corresponding to a single aggregate) into one rule table
and (2) sharing the same set of rules among aggregates.

5.1 Pack: Divide Rules Across Aggregates
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Figure 8: Stairstep curve (imbalance v.s. #rules) for Ag-
gregate v with weights wv = { 1

6 ,
1
3 ,

1
2} and tv = 1.

The stairstep plot in Figure 8 presents the tradeoff be-
tween the number of rules allocated to an aggregate and the
resulting imbalance. When dividing rule-table space across
multiple aggregates, we use their stairstep plots to determine
which aggregates should have more rules, to minimize the
total traffic imbalance. Figure 9 shows the weight vectors,
traffic volumes and stairsteps of two aggregates.

To allocate rules, we greedily sweep through the stairsteps
of aggregates in steps. In each sweeping step, we give one
more rule to the aggregate with largest per-step gain by step-
ping down one unit along its stairstep. The allocation repeats
until the table is full.

We illustrate the steps through an example of packing two
aggregates v1 and v2 using five rules (Figure 9). We begin
with allocating each aggregate one rule, resulting in a total
imbalance of 50% (27.5%+ 22.5%). Then, we decide how
to allocate the remaining three rules. Note that v1’s per-step
gain is 18.33% (27.5%− 9.17%), which means that giving
one more rule to v1 would reduce its imbalance from 27.5%
to 9.17%, while v2’s gain is 11.25% (22.5%−11.25%). We
therefore give the third rule to v1 and move one step down
along its curve. The per-step gain of v1 becomes 6.88%
(9.17%− 2.29%). Using the same approach, we give both
the fourth and fifth rules to v2, because its per-step gains
(22.5%− 11.25% = 11.25% and 11.25%− 0% = 11.25%)
are greater than v1’s. Therefore, v1 and v2 are given two
and three rules, respectively, and the total imbalance is
9.17% (9.17%+ 0%). The resulting rule-set is a combina-
tion of rules denoted by point (2,9.17%) in v1’s stairstep
and (3,0%) in v2’s.

A natural consequence of our packing method is that ag-
gregates with heavy traffic volume and easy-to-approximate
weights are allocated more rules. Our evaluation demon-
strates that this way of handling “heavy hitters” leads to sig-
nificant gains.

5.2 Share: Same Rules for Aggregates
In practice, a switch may split thousands of aggregates.

Given the small TCAM in today’s hardware switches, we
may not always be able to allocate even one rule to each
aggregate. Thus, we are interested in sharing rules among
multiple aggregates, which have the same set of next-hops.
We employ sharing on different levels, creating three types
of rules (with decreasing priority): (1) rules specific to a sin-
gle aggregate (Section 4); (2) rules shared among a group of

Aggregate Weights Traffic Volume

v1 w11 =
1
6 ,w12 =

1
3 ,w13 =

1
2 t1 = 0.55

v2 w21 =
1
4 ,w22 =

1
4 ,w23 =

1
2 t2 = 0.45

(a) Weights and traffic volume of v1 and v2.
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(b) Packing v1 and v2 based on stairsteps.
Figure 9: An example of packing multiple aggregates.

aggregates (Section 5.2.2), and (3) rules shared among all
aggregates, called default rules (Section 5.2.1).2

5.2.1 Default rules shared by all aggregates
Default rules have the lowest priority and are shared by

all aggregates. There are many ways to create default rules,
including approximating a certain weight vector using al-
gorithm in Section 4. Here we focus on the simplest and
most natural one—uniform default rules that divide the traf-
fic equally among next-hops.

Assuming there are M next-hops where 2k ≤ M < 2k+1,
we construct 2k default rules matching suffix patterns of
length k and distributing traffic evenly among the first 2k

next-hops. 3 These rules provide an initial approximation wE

of the target weight vector: wE
i = 2−k for i≤ 2k and wE

i = 0
otherwise, which can then be improved using more-specific
per-aggregate rules. If aggregates do not use the same set of
next-hops, the default rules will only balance over the com-
mon set of next-hops and the per-aggregate rules will rebal-
ance the loads of the rest of next-hops.

We revisit the example ( 1
6 ,

1
3 ,

1
2 ). The initial approxima-

tion wE = ( 1
2 ,

1
2 ,0). wv1 =

1
6 is over-approximated with error

1
3 ; wv3 =

1
2 is under-approximated with error − 1

2 ; we move
1
2 from wv1 to wv3. The rest operations are similar to Sec-
tion 4.1. Figure 10(a) shows the corresponding suffix tree.
Initially, the tree is colored according to the uniform default
rules. Next, we refine the approximation and obtain terms 1

2 ,
1
8 , 1

32 and the final rules (Figure 10(b)). The total number
of rules is five, compared to four rules without using default
rules (Figure 3(b)). However, only three of the five rules are
“private” to aggregate v, as the two default rules are shared
among all aggregates. This illustrates that default rules may
not save space for one (or even several) aggregates, but will
usually bring significant table space savings when the num-
ber of aggregates is large (Section 7).

2Default rules do not require extra grouping table.
3When M is the power of two, the uniform default rules
gives an equivalent split to ECMP.
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(a) Initial (left) and final (right) suffix trees for w′v1 =
1
2 −

1
2 +

1
8 +

1
32 , w′v2 =

1
2 −

1
8 −

1
32 , w′v3 =

1
2 (pool).

Rules Pattern Action
Rules for aggregate v ∗00101 fwd to 1

∗001 fwd to 1
∗0 fwd to 3

Shared default rules ∗0 fwd to 1
∗1 fwd to 2

(b) Rules that approximate v.

Figure 10: Generate rules for { 1
6 ,

1
3 ,

1
2} given default rules

5.2.2 Grouping aggregates with similar weights
To further save the table space, we group aggregates and

tag aggregates in each group with the same identifier.
We use k-means clustering to group aggregates with sim-

ilar weights. The centroid of each group is computed as the
average weight vector of its member aggregates; to prioritize
“heavy” aggregates, the average is weighted using tv (the ex-
pected traffic volume of aggregate v). We begin by selecting
the top-k aggregates with highest traffic volume as the initial
centroid of the groups, where the choice of k depends on the
available rule table space (Section 7). Then, we assign every
aggregate to the group whose centroid vector is closest to the
aggregate’s target weight vector (using Euclidean distance).
After assignment, we re-calculate group centroids. The pro-
cedure is repeated until the overall distance improvement is
below a chosen threshold (e.g., 0.01% in our evaluation).

Putting it all together. Niagara’s full algorithm first (i)
groups similar aggregates, then (ii) creates one set of default
rules (e.g., uniform rules) that serve as the initial approxi-
mation for all the groups, (iii) generates per-group stairstep
curves, and finally (iv) packs groups into a rule table.

6. GRACEFUL RULE UPDATE
Weights change over time, due to next-hop failures,

rolling out of new services, and maintenance. When the
weights for an aggregate change, Niagara computes new
rules while minimizing (i) churn due to the difference be-
tween old and new weights and (ii) traffic imbalance due
to inaccuracies of approximation. Niagara has two update
strategies, depending on the frequency of weight changes.
When weights change frequently, Niagara minimizes churn
by incrementally computing new rules from the old rules
(Section 6.1). When weights change infrequently, Niagara
minimizes traffic imbalance by computing the new set of
rules from scratch and installs them in stages to limit churn
(Section 6.2).

6.1 Incremental Rule Computation

Pattern Action
∗00100 fwd to 3
∗100 fwd to 3
∗000 fwd to 1
∗0 fwd to 2
∗ fwd to 1

(a) Target rules.

Pattern Action
∗00100 fwd to 1
∗000 fwd to 1
∗11 fwd to 1
∗0 fwd to 2
∗ fwd to 3

(b) Intermediate rules.
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Figure 11: Rule-sets (and corresponding suffix trees) in-
stalled during the transition from { 1

6 ,
1
3 ,

1
2} to { 1

2 ,
1
3 ,

1
6}.

When weights change, Niagara computes new rules to ap-
proximate the updated weights. New rules not only deter-
mine the new imbalance, but also the traffic churn during
the transition. We use an example of changing weights from
{ 1

6 ,
1
3 ,

1
2} to { 1

2 ,
1
3 ,

1
6} to illustrate the computation of new

rules. Initial rules are given in Table 3(b) and the correspond-
ing suffix tree in Figure 5(d). In this example, any solution
must shuffle at least 1

3 of the flow space (assuming a negli-
gible error tolerance e), namely the minimal churn is 1

3 .
Minimize imbalance (recompute rules from scratch).

A strawman approach to handle weight updates is to com-
pute new rules from scratch. In our example, this means
that action “fwd to 1” in Table 3(b) become “fwd to 3” and
vice versa. This approach minimizes the traffic imbalance by
making the best use of rule-table space. However, it incurs
two drawbacks. First, it leads to heavy churn, since recol-
oring 1

2 + 1
8 + 1

32 fraction of the suffix tree in Figure 5(d)
means that nearly 2

3 of traffic will be shuffled among next-
hops. Second, it requires significant updates to hardware,
which slow down the update process. As a result, this ap-
proach does not work well when weights change frequently.

Minimize churn (keep rules unchanged). An alterna-
tive strawman is to keep the switch rules “as is”. This ap-
proach minimizes churn but results in significant imbalance
and overloads on next-hops. In the example, both the churn
and the new imbalance are roughly 1

3 .
Strike a balance (incremental rule update). The above

two approaches illustrate two extremes in computing the
new rules. Niagara intelligently explores the tradeoff be-
tween churn and imbalance by iterating over the solution
space, varying the number of old rules kept. In the exam-
ple, keeping two old rules (∗000 fwd to 1, and ∗0 fwd
to 2) leads to the rule-set shown in Figure 11(a) and the
suffix tree in Figure 11(c). The imbalance is 1

32 , the same
with computation from scratch; the churn is 1

32 +
3
8 , which

is slightly higher than the minimum churn 1
3 , as suffixes

∗00100,∗011,∗11 are re-colored to 1. In practice, when
computing new rules for an aggregate, Niagara does not use
more rules than the old ones.
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Figure 12: Load balancer architecture.

6.2 Multi-stage Updates
Incurring churn during updates is inevitable. Depending

on the deployment, this traffic churn might not be tolerable.
Niagara is able to bound the churn by dividing the update
process into multiple stages. Given a threshold on accept-
able churn, Niagara finds a sequence of intermediate rule-
sets such that the churn generated by transitioning from one
stage to the next is always under the threshold.

Continuing the example in Section 6.1, we limit maxi-
mum acceptable churn to 1

4 . The churn for the direct transi-
tion from the old rules to the new rules is 1

32 +
3
8 , exceeding

the threshold. Hence, we need to find an intermediate stage
so that both the transition from the old rules to the interme-
diate rules and from the intermediate rules to the new rules
do not exceed the threshold.

To compute the intermediate rules, we pick the pattern
∗11, which is the maximal fraction of the suffix tree that
can be recolored within the churn threshold. The interme-
diate tree (Figure 11(d)) is obtained by replacing the subtree
∗11 of the old one (Figure 5(d)) with the new one’s (Fig-
ure 11(c)). The intermediate rules are computed accordingly.
Then, transitioning from the intermediate suffix-tree in Fig-
ure 11(d) to the one in Figure 11(c) recolors only 1

32 + 1
8

(< 1
4 ) of the flow space and therefore we can transition di-

rectly to the rules in Figure 11(a) after the intermediate stage.
We note that performing a multi-stage update naturally re-

sults in lengthy update process for aggregates with frequent
weight changes. To mitigate this, Niagara may rate limit the
update frequency of aggregates.

7. EVALUATION
This section presents the evaluation of Niagara in two sce-

narios: server load balancing and multi-path traffic splitting.
We conduct both trace-driven analysis and synthetic experi-
ments to demonstrate Niagara’s splitting accuracy, scalabil-
ity and update efficiency.

7.1 Niagara for Server Load Balancing
We evaluate Niagara’s accuracy against real packet traces

and load balancing configuration from a campus network.
We further use large-scale synthetic data-center load balanc-
ing configuration to examine its scalability and update effi-
ciency. Before diving into the results, we first describe the
experiment setup and data for the two scenarios.

Setup. We use two different load balancer architectures
(Figure 12). In the campus network, the switch directly for-
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Figure 13: Accuracy of uniform server load balancing.

wards VIP requests to backend servers. VIPs are deployed
on different servers, hence the switch cannot use default
rules that are intended to be shared by all aggregates (i.e.,
VIPs). In the data center network, the switch directs requests
to an intermediate layer of Software Load Balancers (SLBs),
which encapsulate packets to a pool of backend servers. All
VIP requests are distributed over the same set of SLBs, al-
though the weights for each VIP can be different depending
on the deployment of backend servers behind SLBs.

University traces and configuration. The campus net-
work hosts around 50 services (i.e., VIPs). Each VIP is
served by 2 to 5 backends. VIP requests should be evenly
distributed over backends. We collected a 20-minute Net-
flow traces from the campus border router and extracted the
top 14 popular VIPs from the traces for our evaluation as the
other VIPs saw only negligible traffic.

Synthetic weight distribution. In a large-scale data cen-
ter network, the weights of a VIP depend on various fac-
tors such as capacity of next-hop servers and deployment
plans. To reflect this variability, we use three different dis-
tribution models to choose VIP weights: Gaussian, Bimodal
Gaussian, and Pick Next-hop. Weights of a VIP v are drawn
from these models and normalized such that ∑ j wv j = 1 .

Gaussian distribution. Weights are chosen from N(4,1).
Since the variance is small, the generated weights are close
to uniform. This distribution models a setting where requests
should be equally split over next-hops.

Bimodal Gaussian distribution. Here, each weight is cho-
sen either from N(4,1) or N(16,1), with equal probability.
The generated weights are non-uniform, but VIPs exhibit
certain similarity. This distribution models a setting where
some next-hops can handle more VIP requests than others.

Pick Next-hop distribution. In this model, we pick a sub-
set of next-hops uniformly at random for each VIP. For the
chosen next-hops, we draw the weights from the Bimodal
Gaussian distribution and set the weights for the remaining
unchosen next-hops to zero. The generated weights are non-
uniform, making it hard for grouping. This case models a
setting where different VIPs should be split over different
subsets of next-hops.

Synthetic VIP traffic volume distribution. We use a
Zipf traffic distribution where the k-th most popular VIP
contributes 1/k fraction of the total traffic. The traffic vol-
ume is normalized so that ∑v tv = 1.

Metrics. We calculate imbalance_lb as ∑v(tv ×
∑ j E(w′v j − wv j,0)), where tv is the traffic volume of
VIP v, wv j is the desired fraction of loads on next-hop j by



VIP v and w′v j is the actual load. A total imbalance ≤ 10%
is considered low.

7.1.1 Accuracy
We assume that the hardware switch directly forwards

VIP requests to the backend servers (Figure 12(a)). The col-
lected traffic traces exhibit stable traffic distribution over last
8 bits of source IP. In the experiment, we run Niagara once
with the profiled traffic distribution.

We slice the 20-min trace into 2-min timeframes and com-
pute the load of each backend using Niagara and ECMP.
The ECMP hash function is SHA. We first examine one VIP
with two backends each with 50% target load. Figure 13(a)
shows the load of one of the backends. ECMP gives ex-
tremely unbalanced backend loads as part of the flow space
contributes more traffic than the rest. On average, 80% of the
load is absorbed by this backend and the total imbalance is
80%−50% = 30%. In contrast, Niagara achieves a roughly
balanced load with 1% imbalance. Figure 13(b) presents the
CDF of imbalance for all VIPs. Even for uniform load bal-
ancing, ECMP still has a much longer imbalance tail than
Niagara, because it merely splits the flow space equally re-
gardless of the actual traffic distribution.

7.1.2 Rule Efficiency and Scalability
Next, we focus our attention to server load balancing in

large-scale data center network setting (such as Duet [6] and
Ananta [4]) with tens of thousands of VIPs, where hardware
switches forward VIP requests to SLBs, which further dis-
tribute requests over backend servers (Figure 12(b)).

Approximate weights for a single VIP. We examine the
number of rules needed to approximate the target weights
of a single VIP assuming a balanced distribution of traffic
over flow space. We randomly generate 100000 distinct sets
of 8 weights (i.e., 8 SLBs) with error tolerance e = 0.001.
Figure 14(a) compares the CDF of the performance of three
strategies (Section 4.1.1): WCMP, which repeats next-hop
entries in ECMP, Naive approach, which rounds weights
to the nearest multiples of powers of two and Niagara,
which uses expansions of power-of-two terms to approxi-
mate weights. WCMP performs the worst and needs as many
as; 288 rules to reach the error tolerance. Its performance is
very sensitive to the values of the target weights. A slight
change of weights (e.g., from 0.1 to 0.11) may cause a dra-
matic change in number of rules. In fact, we see similar re-
sults for less tight error tolerance as well. The naive approach
performs slightly better with a median of 38 rules, but still
uses more rules (61 in the worst case) compared to Niagara.
In comparison, Niagara generates the fewest rules (median
is 14) with small variation. Niagara’s performance is largely
due to using both power-of-two terms and exploiting rule
priorities to have both additive and subtractive terms.

Load balance multiple VIPs. Moving on to multiple
VIPs, we use 16 weights per VIP (i.e., 16 SLBs) and draw
weights from the three synthetic models. We assume all VIPs
share a set of uniform default rules. Figure 14(b) shows
the total imbalance achieved by packing and sharing de-
fault rules for 500 VIPs, as a function of rule-table size.

The leftmost point on each curve shows the imbalance given
by the default rules (i.e., ECMP). The initial imbalance for
Gaussian, Bimodal and Pick Next-hop are 10%,30% and
53% respectively. With Niagara, as the rule-table size in-
creases, the imbalance drops nearly exponentially, reaching
3.3% at 4000 rules for Pick Next-hop model. This perfor-
mance is due to the packing algorithm prioritizing “heavy-
flows” when bumping up against rule-table capacity. Allo-
cating rules to heavier-traffic sections of flow-space natu-
rally minimizes imbalance given a fixed number of rules.

Our grouping technique (Section 5.2.2) groups VIPs with
similar weight vectors. The maximal number of VIP groups
affects approximation accuracy. When the VIPs are classi-
fied into more groups, the distance between each VIP’s tar-
get weight vector and the centroid vector of its group is re-
duced, thus creating more groups containing only VIPs of
more similar weights. However, as soon as rule capacity is
reached, finer-grained VIP groups actually reduce overall
performance because each group can push a small number
of rules into the switch. Depending on number of groups,
there is a tradeoff between grouping accuracy and approx-
imation accuracy. When the VIPs are classified into more
groups, the distance between each VIP’s target weight vec-
tor and the centroid vector of its group is reduced, making
the grouping more accurate. However, the approximation is
less accurate for a bigger number of groups given limited
rule capacity. Figure 14(c) illustrates this tradeoff by com-
paring the imbalance of classifying 10000 VIPs into 100,
300, and 500 groups. When there are less than 500 rules,
classifying the VIPs into 100 groups performs best, because
it is easier to pack 100 groups and the centroids of groups
still give a reasonable approximation for aggregates. As rule-
table sizes increase, using more fine-grained VIP groupings
is advantageous, since the distance between each aggregate
and its group’s centroid, which “represents” the aggregate
during packing, decreases. For example, given 1500 rules,
300-group outperforms 100-group.

Figure 14(d) shows the effectiveness of grouping for dif-
ferent weight models. Given the number of rules, we clas-
sify the VIPs into 100, 300, or 500 groups (picking the op-
tion which yields the smallest imbalance). At 4000 rules, we
reach 2.8% and 6.7% imbalance for the Gaussian and Bi-
modal Gaussian models respectively, and 11.1% imbalance
for Pick Next-hop, which is much tougher to group. In con-
trast, ECMP incurs imbalance of 9.6%,29.1% and 53.2%
(the leftmost point), respectively.

Time. The algorithm performs well on a standard Ubuntu
server (Intel Xeon E5620, 2.4 GHz, 4 core, 12MB cache).
The prototype single-threaded C++ implementation com-
pletes the computation of the stairstep curves for a 16-weight
vector (e = 0.001) in 10ms. The time of packing grows lin-
early with the number of aggregates and is dominated by the
computation of stairstep curve, which could be parallelized.
The grouping function using k-means clustering takes at
most 8 sec. to complete. If the traffic distribution is skewed
and VIPs use similar weight distributions the algorithm tends
to converge faster and requires fewer iterations. We do not
expect to update aggregate groups frequently: if two aggre-
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Figure 14: Weighted server load balancing for multiple VIPs.

gates are grouped together, they must have similar deploy-
ment in the network and are unlikely to be changed dramat-
ically in a short term.

7.1.3 Incremental Update
We evaluate the churn and imbalance caused by Niagara’s

incremental update strategy. Given the old weight vector, we
randomly clear one non-zero weight and renormalize the rest
to obtain new weights, or vice versa, simulating a server fail-
ure or addition. The minimum churn is the weight of the
failed (or added) server.

Incremental update with low churn and imbalance.
Our performance baseline is an approach where the load
balancer recomputes all forwarding rules from scratch in
response to a weight change. This baseline approach com-
pletely ignores churn and prior assignments by recalculat-
ing all rules. This strategy does minimize the number of
rules, however at the expense of incurring unnecessary traffic
churn. In contrast, the incremental update algorithm in Nia-
gara is aware of the cost of switching flows from one next-
hop to another and tries to minimize churn. It keeps partial
rules from the old rule-set and computes a small number of
new rules to achieve the new weights while staying within
bounded rule-space capacity. Figure 15(a) plots the CDF of
the churn among 5000 weight vectors drawn from Bimodal
distribution. The full recomputation approach (pink curve)
incurs about 70% churn in 50% of test cases while Niagara’s
incremental update approach (black curve) only incurs 20%
churn for half of test cases. This suggests that Niagara’s intu-
ition that an old rule-set serves as a good approximation for
updated weights holds up in practice. Furthermore, this ob-
servation holds across the weight models used in this study.

Although Niagara’s strategy explained above already re-
duces churn, it can be further improved by allowing a small
margin for imbalance. The above strategy ignores larger
rules-sets (than the minimum) that gives less churn. Based
on this observation, we evaluate an alternative update strat-
egy which installs truncated rules of larger rule-sets with
up to 1% imbalance. The resulting curve (blue line in Fig-
ure 15(a)) almost overlaps with the curve of minimum churn
(red). This confirms that an allowance for small imbalance
will greatly reduce churn during updates.

Comparison with hash-based approaches. The theoret-
ical lower bound of churn for ECMP, i.e., assuming a perfect
balanced traffic distribution over the flow space, is 1

4 +
1
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Figure 15: Incremental Update.
member to (N−1)-sized group) contrasting to the minimum
churn of 1

N [9, 10]. We compare the churn of ECMP and Ni-
agara using a uniform weight distribution, e.g., N weights
of 1

N . We create random server failure and additions as de-
scribed in the previous experiment. For each value of N, Ni-
agara generates the rule-set with minimum churn, while (1)
staying within the number of rules needed by recomputa-
tion and (2) incurring less than 1% imbalance. Figure 15(b)
presents the comparison of Niagara and ECMP. Niagara’s
performance (the blue line with diamonds) closely follows
the curve of minimum churn; the fluctuation in performance
(e.g., N = 24,28) is due to the differences in approximat-
ing 1

N . Niagara gives a much smaller churn than ECMP for
N ≥ 5. When N = 32, Niagara reduces the churn by 87.5%
compared to ECMP.

Time. Given a rule-set of 30 rules, if we enumerate
the number of lower-priority rules kept in the new rule-
set, the incremental computation takes about 30× 10ms
= 300ms to complete, which is in the same order of magni-
tude as rule insertion and modification on switches (3.3ms to
18ms [38,39]). This is sufficient for updates on the timescale
of management tasks. For planned updates, we can also pre-
compute the new rule-set in advance.

7.2 Niagara for Multi-pathing
This section presents Niagara’s performance for splitting

traffic over multiple equivalent outgoing links by simulating
real data center traces [28] on both symmetric and asymmet-
ric topologies [3].

Metrics. We calculate imbalance_mp as ∑i max(0,Fi −
Wi

∑k Wk
), where Fi is the fraction of traffic sent on i-th link and

Wi is the weight of i-th link (i.e., the relative bandwidth ca-
pacity). It characterizes the total oversubscription when the
switch operates at its full bandwidth capacity.

Accuracy in symmetric topology. We simulate 1-hour
real packet traces [28] to a popular /16 prefix on a single
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switch with 4 equal-capacity outgoing links. We slice the
trace into 30-second time frames and calculate the imbal-
ance within each time frame.

We compare the splitting performance of Niagara, ECMP,
MicroTE [12] and LocalFlow [29]. As MicroTE schedules
forwarding paths for ToR-to-ToR flows, we assume that each
/24 prefix in the traces correspond to a ToR and compute the
utilization and imbalance accordingly. Figure 16(a) shows
the CDFs. ECMP performs much worse than Niagara, as
it only splits the flow space equally without taking into ac-
count the actual flow sizes. ECMP gives < 10% imbalance
in around 10% of the time frames. In comparison, Niagara
achieves < 10% imbalance in 61% of the time frames. Mi-
croTE and Niagara offer similar splitting performance. We
notice that Niagara incurs high imbalance for some of the
time frames (e.g., 15% time frames have > 20% imbalance).
Upon close examination of the traces, we found that these
time frames contain large “elephant” flows; Niagara could
not achieve balanced split as it does not split a single flow
over multiple links to avoid packet reordering. This also ex-
plains why LocalFlow, which splits flows, performs the best.

Accuracy in asymmetric topology. We experiment with
a simple asymmetric topology in Figure 17, where there are
three core switches and four aggregation switches with 4
links each. We look at the traffic splitting at A1. A1 can split
traffic destined to A2 evenly on the 4 uplinks, as A1 and A2
have the same bandwidth capacity to all core switches. For
traffic to A3, although A1 has two links connected to C1, it
cannot send more traffic to C1 than C2 or C3, because C1 only
has one link to A3. Therefore, A1 should split traffic destined
to A3 in proportion to 1

2 : 1
2 : 1 : 1 (i.e., w = ( 1

6 ,
1
6 ,

1
3 ,

1
3 )) over

the 4 uplinks.
Figure 16(b) shows the imbalance CDF for splitting traffic

for A3 at A1. It is no surprise that Niagara gives a much bet-
ter result than WCMP. Niagara offers similar performance to
MicroTE. For smaller imbalance (< 2%), Niagara performs
slightly worse than MicroTE, because it schedules bulks of
flows (matching wildcard patterns) rather than ToR-to-ToR
flows. This allows Niagara to use much fewer rules than Mi-
croTE. Both Niagara and MicroTE offer < 10% imbalance

for 82% of timeframes. LocalFlow’s imbalance is steady at
16.6%, as it always splits traffic evenly.

Rule efficiency. We compare the number of rules gener-
ated by Niagara, MicroTE and LocalFlow to split the flows
of a single destination prefix evenly (Figure 16(c)). Lo-
calFlow uses the most rules: 743 on average and 854 in the
worst case, because it needs finer-grained rules, which even
match on bits outside 5-tuple for splitting a single flow, to
balance link loads. MicroTE uses fewer rules (149 rules on
average and 198 in the worst case) but still significantly more
than Niagara, because it schedules ToR-to-ToR traffic. Nia-
gara uses an average of 9 rules (59 in the worst case), which
is 1.2% of the rule consumption of LocalFlow and 6% of
MicroTE. In fact, the rule consumption of MicroTE and Lo-
calFlow heavily depends on the traffic pattern (e.g., active
flows and active ToR pairs), making them hard to scale and
less accurate when splitting multiple destination prefixes is
needed. Consider a rule-table with 4000 rules, LocalFlow
and MicroTE can at most handle 5 and 26 flow aggregates
given similar traffic patterns. In contrast, Niagara can handle
more than 400 aggregates.

To compare the number of rules needed to balance multi-
ple flow aggregates between Niagara and WCMP we gener-
ate large, asymmetric topologies to examine the total number
of rules installed at an aggregation switch. A typical asym-
metric topology contains two layers of switches: NC core
switches and NA aggregation switches. Each core switch has
at most LC links to the aggregation layer; each aggregation
switch has at most LA links to the core layer. The connec-
tion algorithm in [3] is used to interconnect two layers of
switches. The result is an asymmetric topology that maxi-
mizes bisection bandwidth among aggregation switches. We
set LC = 64 and LA = 192 and vary the values of NC ∈ [1,LA]
and NA = 8,16,24,32. Figure 16(d) compares the number of
rules generated by (1) WCMP, (2) Niagara_no_share, where
there is no shared default rules and (3) Niagara_shared,
where uniform default rules are used. We found that Ni-
agara_share always outperforms WCMP. This figure also
shows the rule-saving benefits of shared default rules.

8. CONCLUSION
Niagara advances the state-of-the-art in traffic splitting on

switches by demonstrating a new approach that takes a re-
sourceful approach to install carefully optimized flow-rules
into hardware switches to closely approximate the desired
load distribution and minimize traffic churn during weight
changes given the limited rule table capacity.
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