
HotSwap: Correct and Efficient Controller
Upgrades for Software-Defined Networks

Laurent Vanbever
Princeton University

vanbever@cs.princeton.edu

Joshua Reich
Princeton University

jreich@cs.princeton.edu

Theophilus Benson
Duke University

tbenson@cs.duke.edu

Nate Foster
Cornell University

jnfoster@cs.cornell.edu

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

ABSTRACT

Like any complex software, SDN programs must be updated pe-
riodically, whether to migrate to a new controller platform, re-
pair bugs, or address performance issues. Nowadays, SDN opera-
tors typically perform such upgrades by stopping the old controller
and starting the new one—an approach that wipes out all installed
flow table entries and causes substantial disruption including losing
packets, increasing latency, and even compromising correctness.

This paper presents HOTSWAP, a system for upgrading SDN
controllers in a disruption-free and correct manner. HOTSWAP is
a hypervisor (sitting between the switches and the controller) that
maintains a history of network events. To upgrade from an old con-
troller to a new one, HOTSWAP bootstraps the new controller (by
replaying the history) and monitors its output (to determine which
parts of the network state may be reused with the new controller).
To ensure good performance, HOTSWAP filters the history using
queries specified by programmers. We describe our design and
preliminary implementation of HOTSWAP, and present experimen-
tal results demonstrating its effectiveness for managing upgrades to
third-party controller programs.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability; C.2.3 [Network Operations]: Network management

Keywords

Software-Defined Network; Controller Upgrade; Dynamic Soft-
ware Updating;

1. INTRODUCTION
In a software-defined network (SDN), a logically-centralized con-

troller responds to changes in network conditions by updating the
packet-processing rules installed on switches. However, any soft-
ware system requires upgrades to fix bugs, add features, and im-
prove performance. SDN controllers are no exception. In today’s

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HotSDN’13, August 16, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

SDNs, upgrading a controller involves stopping and restarting the
controller. Unfortunately, during the transition, the network can-
not handle link failures, rule timeouts, or packets diverted to the
controller. Even worse, the default way to start a new controller is
to clear the existing rules in the switches, to avoid inconsistencies
with previously installed rules. But deleting rules forces the new
controller to handle a large number of events, leading to high over-
head and performance disruptions. Moreover, for stateful applica-
tions like some firewalls, a newly launched controller may behave
incorrectly because it does not have visibility into past events.

Upgrading control-plane software is not a new problem. High-
end commercial routers minimize control-plane downtime using
so-called In-Service Software Upgrades [1, 4] where the new con-
trol software is installed on a separate blade, while the old soft-
ware continues to run. Many standard routing protocols provide
“graceful restart” mechanisms for (re)establishing peering relation-
ships and routing state when new control software starts (e.g., [10,
14]). Because routing protocols typically depend only on the cur-
rent “snapshot” of the topology or routes, rather than the timing
and ordering of previous messages, it is relatively easy to bootstrap
the control-plane state by having each peer reannounce its current
routing state. However, each of these mechanisms only applies to
a single routing protocol, leading to a “cottage industry” of point
solutions for control-plane upgrades.

In contrast to routers, SDN controllers are harder to upgrade.
They have a wider range of functionality, as well as internal state
and dependencies on past events. Hence, simply replicating the
controller does not address the upgrade problem—cloning a con-
troller would be relatively easy, but the new controller would need
to run the same software as the old one. Instead, our goal is to
develop techniques for upgrading controllers with new software, to
address performance problems, fix bugs (e.g., changing the rules in-
stalled on switches), move to a new controller platform (e.g., from
Floodlight to POX), or change the application control logic and data
structures (e.g., to a more scalable implementation). As such, we
must bootstrap the internal state of the new controller, and update
whatever switch rules have changed.

Despite these challenges, SDN provides a unique opportunity to
solve the controller upgrade problem once and for all, without cus-
tomizing the solution to specific protocols or control logic. The
open API between the controller and the switches provides a gen-
eral way to learn the network state, record network events over
time, and (re)play sequences of events to bootstrap a new controller.
Of course, simply recording and replaying all events would intro-
duce substantial storage overhead and long delays in starting the
new controller, so a naive solution like this is not likely to scale.

This paper presents HOTSWAP, a new system that provides seam-
less upgrades for SDN controllers. HOTSWAP is a hypervisor that
sits between the controller and the switches. HOTSWAP handles
upgrades in three phases: (i) it efficiently records network events;
(ii) it relays these events to the new controller, while the old con-
troller continues to run; (iii) it updates the rules to reflect any neces-
sary changes in forwarding policy; and (iv) it replaces the old con-
troller with the new one. To reduce overhead and delay, HOTSWAP

incorporates mechanisms for filtering the sequence of events and
(where possible) capitalizing on existing rules installed in switches,
while still correctly bootstrapping the new controller. The right so-
lution depends on whether and how the control logic depends on
past events, and precisely how correctness is defined. We identify
a few canonical classes of controllers, and design general solutions
for updating the applications in each class correctly and efficiently.
Application developers need only provide simple, high-level infor-
mation to enable our system to apply the right replay technique. In
summary, this paper makes four main contributions:

• Upgrade mechanisms: We describe disruption-free, yet cor-
rect controller upgrade procedures (§3).

• Upgrade correctness: We develop a formalism that captures
the key correctness properties of controller upgrades (§3).

• Implementation: We describe a controller-independent im-
plementation of HOTSWAP (§4).

• Experiments: We measure the disruptions caused by restart-
ing an SDN controller and show that no disruption is ob-
served when using HOTSWAP (§2, §5).

2. CONTROLLER UPGRADE PROBLEMS
This section presents examples that illustrate the main problems

that arise with naive upgrades in controllers today: service disrup-
tions and correctness bugs.

Service disruptions. In a naive upgrade, the operator simply
halts the old controller and starts the new one. To avoid issues
where the rules installed by the old controller are inconsistent with
the rules specified by the new controller, most controllers issue
commands to delete all rules on every switch after completing the
OpenFlow handshake. Unfortunately, this can lead to massive dis-
ruptions since the new controller must process a large number of
events while it reconstructs the network state.

To quantify the disruption that can happen during a naive up-
grade, we injected traffic in an emulated network running in Mininet
HiFi [5] and measured the amount of traffic lost and the median
latency during a controller restart. We configured the emulated net-
work as a FatTree topology with 20 switches and 32 hosts. As
controller, we used Floodlight [2] running the default forwarding
application. We generated traffic between 200 randomly selected
pairs of hosts by sending 64 bytes ping probes every 10 ms, cor-
responding to roughly 10 Mbps of traffic overall. We used an Intel
Xeon W5580 processor with 8 cores and 6GB of RAM for Mininet,
an Intel i7 processor with 8GB of RAM for the controller, and re-
peated each experiment 15 times.

The results of the experiments are shown in Figure 1. Overall,
the network experienced substantial packet loss and increased la-
tency for about 15 seconds after the restart. To determine the cause
of this disruption, we inspected the Open vSwitch logs and found
that the switches were dropping a large number of packets due to
full buffers. In the worst case, up to 90% of the traffic was lost,
while the median latency increased by a factor of 105, going from

if ip_src in H:
insert(10,ip_src,
ip_dst,fwd)

insert(5,ip_dst,
ip_src,fwd)

else:
insert(15,ip_src,
ip_dst,drop)

if ip_src in H:
insert(10,ip_src,
ip_dst,fwd)

insert(5,ip_dst,
ip_src,fwd)

elif scan[ip_src]>3:
insert(15,ip_src,
ip_dst,drop)

else:
insert(15,ip_src,

*, drop)
scan[ip_src]+=1

Figure 2: Depending on the network traffic, these two simple
SDN applications can behave incorrectly after a controller restart.
Restarting the stateful firewall (left) causes previously allowed traf-
fic to be blocked, while restarting the scan defense application
(right) causes blocked traffic to be allowed.

0.1ms to 10s! Clearly such a disruption would be completely un-
reasonable in settings where high availability is required.

Correctness problems. There is another subtle issue that also
arises with naive upgrades: simply stopping the old controller and
starting the new one can introduce new bugs. In particular, invari-
ants that depend on the controller correctly tracking certain pieces
of state can be broken after the upgrade. As an example, con-
sider a network that consists of a single switch connected to sev-
eral hosts. The controller program is a stateful firewall that allows
internal hosts to initiate communication with external hosts, but
blacklists external hosts that attempt to send unsolicited traffic to
internal hosts. A pseudocode implementation of this program is
given in Figure 2 (left). Now consider the following sequence of
events: internal host i1 sends traffic to external host e1, the oper-
ator restarts controller, and then e1 sends a reply back to i1. Be-
cause the restarted controller receives the return traffic first, it will
erroneously blacklist e1. That is, restarting the controller causes
allowed traffic to be incorrectly blocked by the network.

For another example, consider the same network, but now as-
sume that the controller program is a stateful firewall that addition-
ally blacklists any external hosts that attempt to initiate three unso-
licited connections toward any internal host for all time. A pseu-
docode implementation of this program is given in Figure 2 (right).
Intuitively, this program implements an extremely simple defense
against network scans. Now consider the following sequence of
events: external host e1 attempts to connect to internal hosts i1, i2,
and i3, and is blacklisted; the operator restarts the controller; and
then i1 sends traffic to e1. Because the restarted controller sees the
outgoing traffic first, it will incorrectly allow communication be-
tween i1 and e1, even though the latter was previously blacklisted.
That is, restarting the controller causes forbidden traffic to be in-
correctly allowed by the network.

3. THE HOTSWAP SYSTEM
This section presents the design of HOTSWAP, a software hyper-

visor that enables correct and efficient SDN controller upgrades.
The key idea in HOTSWAP is to “warm up” the new controller by
replaying a history of past events rather than giving it control of
the network immediately. This makes it possible to reuse exist-
ing forwarding rules installed by the old controller, and also avoids
correctness problems, since the history can be engineered to ensure
that critical pieces of internal state are reconstructed on the new
controller before it assumes control of the network. We first de-

0
2
0

4
0

6
0

8
0

1
0
0

upgrade time (seconds)

%
 o

f
p
ro

b
e
s
 l
o
s
t

shutdown

restart

0 10 20 30 40 50 60

naive worst

naive median

naive best
HotSwap

upgrade time (seconds)

m
e
d
ia

n
 d

e
la

y
 (

m
s
)

shutdown

restart

0 10 20 30 40 50 60

0
.1

1
1
0

1
0
0

1
k

1
0
k

naive delay
HotSwap

Figure 1: Restarting a controller can create massive network disruption involving packet losses (left) and increased network delays (right)
during tens of seconds. In the worst case, up to 90% of the entire network traffic is dropped.

HotSwap

old

controller

new

record

replace

1 2

4

Network

controller

1

1

2

4

3

replay

compare

3

Figure 3: HOTSWAP architecture and upgrade phases.

scribe the overall design of HOTSWAP, and then explain its mecha-
nisms for efficiently recording and replaying state during upgrades.

Architecture. HOTSWAP is a software hypervisor that sits be-
tween the network and the controllers. Figure 3 depicts the archi-
tecture of the system graphically. To upgrade from an old controller
C to a new controller C′, HOTSWAP proceeds in four steps:

1. In the record phase, the hypervisor executes the old con-
troller C, collects a trace T of network events, and maintains
the network state N generated by C. Network events include
switch-to-controller messages including topology changes,
traffic statistics, and diverted packets. The network state con-
sists of the forwarding rules installed on switches.

2. After the upgrade is initiated, the system transitions to the
replay phase. It replays the collected trace T on C′, but
intercepts controller-to-switch messages such as flow mod-
ifications rather than actually sending them to the switches.
Using these messages, it builds up a representation of the
network state N ′ generated by C′.

3. After the full trace T has been replayed to the new controller
C′, the system transitions to the compare phase. It computes
a sequence of flow insertions and deletions that transition the
network from N to N ′.

4. Finally, in the replace phase, the system transitions the net-
work to the new state N ′ using a consistent update [12]. It
then detaches the old controller C and re-enters the record
phase, but this time with C′ attached as the current controller.

Taken together, these steps enable to perform upgrades while avoid-
ing the severe disruptions that occur with naive upgrades. In par-
ticular, when the old and new controllers are running similar pro-
grams, the two versions of the network state N and N ′ are often
nearly identical, so much of the state can be safely reused. Even
when the two versions of network state are dissimilar—e.g., be-
cause the new controller fixes a bug in the old program, precom-
puting the network state enables a more graceful upgrade process.

Note that during the upgrade, HOTSWAP must main relative time-
outs and counters values for the rules that are equivalent (and thus
preserved) between the C and C′ controllers. For example, if C′

pushes a rule with a soft timeout of 10 seconds and the correspond-
ing rule installed by C expires earlier, HOTSWAP must transpar-
ently install a rule with a soft timeout equivalent to the relative
timeout. Similar techniques can be used to handle traffic statistics
counters: upon receiving a flow modification from C′, HOTSWAP

registers the current counter values (if any) and rewrites subsequent
requests to reflect the difference.

Histories. Naively recording a full trace containing every net-
work event for all time would clearly not scale—even just storing
the full trace would quickly become unwieldy. To address these
issues, HOTSWAP also includes mechanisms that allow an operator
to collect a restricted history H . For example, in a learning switch,
it suffices to only record the last packet diverted to the controller
from each host since the behavior of the application does not de-
pend on other events; in a stateful firewall with scan defense, it
suffices to record the diverted packets for current outgoing flows
and all events used to classify scanning hosts as malicious; and in
a static routing application it suffices to only record the last event
for each element of the network topology since other events such
as traffic statistics and diverted packets do not affect the overall be-
havior in any essential way. HOTSWAP provides basic operators
for extracting histories H from traces T , including recording the
last element of a particular kind of event, and recording events per-
manently. For example, in the stateful firewall with scan defense
we might permanently record the number of times the external host
has attempted to connect to an internal host.

Upgrade correctness. Correctness is a critical issue in con-
troller upgrades. As the stateful firewall examples in the preceding
section showed, restarting a controller abruptly loses internal state,
which can break important application invariants. Intuitively, when

we upgrade from the old controller C to a new controller C′, we
would like the network to behave as if the new controller had been
running all along. Let T@T ′ denote the trace obtained by concate-
nating T and T ′, and let ⊑ be a relation on controller outputs that
captures a notion of “acceptable” differences. The intuitive condi-
tion described above can be captured formally using the following
formula:

∀T ′. C′(H@T ′) ⊑ C′(T@T ′)

It captures the notion that the network state obtained by replaying
the history H on C′ is “acceptable” on all future events. In partic-
ular, the critical pieces of the internal controller state are correctly
reconstructed by replaying with H . Note that this condition does
not specify that the internal state of C′ must be identical to the state
that would have been obtained if the new controller was running all
along. But because the condition is required to hold for all future
traces T ′, any discrepancies that would eventually result in observ-
able differences on controller output are ruled out.

Note that the definition above is parameterized on a relation ⊑

that captures acceptable differences on controller output. This can
be instantiated with different relations depending on the applica-
tions running on top of the controller. For example, the strictest
relation is =, or equality, which mandates the network state N ′

obtained after replaying the history to be identical to N . A more
relaxed relation is ≡, or semantic equivalence, which mandates N ′

to behave the same as N after the replay without requiring a perfect
identity. For instance, an operator might want to use the ≡ relation
when it updates her controller for one that aggregates contiguous
forwarding entries without changing the actual forwarding paths
taken by data packets. A third possible relation is ≺, or approxi-
mate semantic equivalence, which mandates that N ′ must behave
the “same” as N in some relaxed sense—i.e. N ′ may contain less
forwarding rules than N but where they are both defined they agree.
For instance, when upgrading a learning switch, an operator may
want to use the ≺ relation to allow the new controller to flood traf-
fic for some destinations for a limited period of time. Of course,
other relations are also possible.

Controller classes. In general, picking a correct record and re-
play mechanism depends on the type of controller application and
the relation required for correctness. We describe here several com-
mon classes of controllers we have identified in our preliminary
work on HOTSWAP.

At the highest level, a SDN application can be either stateless or
stateful according to whether or not its behavior depends on net-
work events.

Stateless applications. These applications include all purely proac-
tive applications including static routing and static access control.
These applications do not need to collect any history and can use
the strictest relation, equality, on controller outputs.

Stateful applications can be further subdivided into three classes:
(i) topology-dependent, (ii) stationary and, (iii) general applica-

tions. Each of these classes differs in the amount of state that
HOTSWAP needs to maintain.

Topology-dependent applications. These applications depend only
on the current topology graph, and not on the traffic that has been
exchanged. This is the case of most routing applications (e.g.,
shortest-path). For these applications, HOTSWAP simply records
the last version of each topology event and allows C′ to discover
the links between switches using existing OpenFlow (e.g., LLDP)

sw1

sw2

sw3

10/81

1

2
1 2

1

2

sw5

Match Action

init nwsrc : 10/8 F (1)

final nwsrc : 10/9 F (1)
nwsrc : 10.128/9 F (2)

Match Action

init - -

final ipsrc : 10.128/9 F (2)

3

Match Action

init ipsrc : 10/8 F (3)

final ipsrc : 10/8 F (3)

2

Match Action

init ipsrc : 10/9 F (2)
ipsrc : 10.128/9 F (2)

final ipsrc : 10/8 F (2)

Figure 4: A simple traffic-engineering upgrade example

mechanisms for topology discovery before setting it as primary
controller.

Stationary applications. These applications depend on the traf-
fic exchanged, but only on the last network event of a given type.
An example of such an application is a learning switch. Indeed, the
state of a learning switch depends on the locations of hosts that have
been learned by observing network traffic. HOTSWAP therefore
only needs to keep track of the last piece of relevant state. Actually,
in these applications, the network state N generated by the old con-
troller C often contains all the information necessary to reconstruct
the state in C′. For instance, in a network running a learning switch
application, one can infer the last position of each host by looking
at the forwarding rules. For these applications, HOTSWAP can use
record and replay mechanisms where network events are automati-
cally generated from the actual content of the old forwarding tables
stored in N . This is attractive because it does not require recording
any additional events beyond the network state. Sections 4 and 5
discuss an implementation and evaluation of this mechanism.

General applications. In general, the behavior of the old and new
controller applications can depend on the order and timing of net-
work events. For instance, in Figure 2, the state maintained by the
scan defense application depends on the relative ordering between
network events, but also on the history of past network events. To
recreate the state of these applications, a strawman solution would
be to record the full timing and ordering of all network events1 but
this “solution” has obvious scalability and efficiency problems as
the storage requirements and replay time would quickly become
enormous. Fortunately, using the mechanisms for constructing his-
tories provided in HOTSWAP, many stateful applications can be
handled, by only maintaining the relatively small subset of network
events needed to reconstruct an equivalent network state.

4. IMPLEMENTATION
This section presents a prototype implementation of HOTSWAP

as an extension of FlowVisor [16]. It starts by giving a general
overview and then presents a detailed description of the replay and
compare algorithms that form the core of HOTSWAP.

Overview. We implemented a first prototype of HOTSWAP by
extending FlowVisor. Conceptually, FlowVisor is a hypervisor that
sits between the controllers and switches. FlowVisor provides Open-

1Note that it would actually be necessary to record all data traf-
fic as C forwarding rules might prevent HOTSWAP from receiving
network events required to recreate C′ state.

Flow networks with virtualization capabilities by slicing the net-
work into different and isolated slices. Each slice can be config-
ured with a different flow space using topology and packet header
characteristics and is controlled by a different controller.

To implement HOTSWAP, we extended FlowVisor with two new
types of slices: primary and replayed slices. HOTSWAP automat-
ically records the network state as well as a history of network
events for primary slices. Similarly, HOTSWAP automatically mon-
itors the output for replayed slices, but prevents them from actually
writing to the network. Before the upgrade, C is attached to a pri-

mary slice and C′ to a replayed slice, both sharing the same flow
space. After the upgrade, the C′ (resp. C) slice is converted into a
primary (resp. replayed) slice.

We implemented two new FlowVisor primitives to manage the
process: (i) replay <source> <target> <method> and
(ii) replace <source> <target>. The first triggers the re-
play of the history of events attached to the primary slice source
to the replayed slice target. The method parameter designates
a replay mechanism. The second transitions the network to the
state computed by the slice target and swaps the roles of the two
slices.

Replay algorithm. The current HOTSWAP implementation sup-
ports both generating events from an existing network state and
replaying recorded events. Since replaying recorded events is rel-
atively straightforward, we focus on former. We illustrate the exe-
cution of the algorithm by considering a simple upgrade scenario in
which a traffic-engineering application reactively installs destination-
based forwarding rules (Figure 4).

Using the current network state, the replay algorithm (Figure 5)
generates packet-in events and sends them to C′. It iterates over
the forwarding rules for each switch in decreasing order of priority,
and generates one packet-in event per forwarding rule. To generate
a packet-in event, the algorithm copies the pattern values to the cor-
responding fields in the IP packet. When a wildcard is encountered
for a given field, a random but compatible value is used. For ex-
ample, the replay procedure executing on sw1 will generate an IP
packet with a source address belonging to 10/8 and random values
for all the other fields. As rules can overlap, the algorithm keeps
track of the generated packet to ensure that the same packet is not
generated for more than one matching rule.

Observe that the current replay mechanism can generate packet-
in events that would not have been received by the controller oth-
erwise. This could be problematic for some SDN applications,
such as the ones that generate an entire path when a packet ar-
rives at an ingress switch. Indeed, these applications would not
expect to see packet-in events for packets on interior ports. Yet,
there would be rules in those interior switches. To handle this
situation, HOTSWAP can generate packet-ins for rules matching
ingress links first, see what internal rules get pushed in the net-
work, and prevent packets-in events from being generated for these
rules. Ingress links can be identified by building the forwarding
graph corresponding to each forwarding equivalence class (using
techniques similar to HSA [8]).

Compare algorithm. The handleFlowMod algorithm (see Fig-
ure 6) monitors the network state N ′ generated by C′ during the
replay. For any C′ generated rule, the algorithm checks whether
it matches exactly a C generated rule. In this case (lines 5–7),
no action is required and the corresponding rule entry remains in-
stalled in the switch. When the forwarding rules generated by C′

and C differ, the algorithm takes “reconciliation” actions (lines 9–
23) to ensure that the resulting network state is compatible with C′

1: replay(switch)
2: generated_packets← ∅
3: for fwd_rule ∈ sort(switch.fwd_table, key = priority) do

4: if fwd_rule ∈ to_be_replayed then

5: while packet_in ← generate_packet_in(fwd_rule) ∈
generated_packets do

6: packet_in← generate_packet_in(fwd_rule)
7: end while

8: controller.send(packet_in)
9: generated_packets← generated_packets ∪ fwd_rule

10: end if

11: end for

Figure 5: The replay algorithm.

1: handleFlowMod(flow_mod, switch)
2: to_be_deleted← ∅
3: to_be_installed← ∅
4: if flow_mod ∈ switch.fwd_table then

5: to_be_replayed← to_be_replayed− {flow_mod}
6: else

7: if flow_mod ⊂ switch.fwd_table then

8: for rule ∈ flow_mod ⊂ switch.fwd_table do

9: to_be_deleted← to_be_deleted ∪ {rule}
10: to_be_replayed← to_be_replayed− {rule}
11: end for

12: else

13: if switch.fwd_table ⊂ flow_mod then

14: for rule ∈ switch.fwd_table ⊂ flow_mod do

15: to_be_deleted← to_be_deleted ∪ {rule}
16: to_be_replayed← to_be_replayed− {rule}
17: end for

18: end if

19: end if

20: to_be_installed← to_be_installed ∪ {flow_mod}
21: end if

Figure 6: The HandleFlowMod algorithm.

intent. The algorithm distinguishes two cases: when a C′ gener-
ated forwarding rule corresponds to (i) a subset of existing rule(s)
(lines 9–13) and, (ii) a superset of existing rule(s) (lines 15–20).
In the first case, the algorithm marks less specific rules for dele-
tion. Indeed, since C′ defines more specific behavior, the algorithm
needs to make sure that the less specific forwarding rules installed
by C are not hiding relevant packets to C′. For instance, consider
again sw1 for which a packet-in event corresponding to 10/8 is
generated during the replay. Without loss of generality, consider
that the generated packet is 10.0.0.1. Upon reception of this
packet, C′ pushes the 10/9 rule. Since this rule is a strict subset of
10/8, HOTSWAP marks the 10/8 rule as to be deleted. Indeed, if
HOTSWAP does not delete that rule, C′ will never receive a packet-
in event for 10.128/9 as these packets would match the old rule.

In the second case, C′ defines less specific behavior with respect
to C. As in the previous case, HOTSWAP marks more specific rules
generated by C as to be deleted to ensure that the traffic will be
forwarded according to C′. As an example, consider sw2 and con-
sider that the replay algorithm generates first a packet-in matching
10.128/9. Upon reception of this packet, C′ pushes the 10/8 rule.
HOTSWAP therefore marks both the 10/9 and 10.128/9 entries as
to be deleted. This prevents the packet-in matching 10/9 to be gen-
erated, which reduces the number of replayed events. In both cases,
it marks the rule generated by C′ for installation (line 20).

5. EVALUATION
To evaluate our prototype, we used the restart experiment dis-

cussed in Section 2. We ran a Floodlight controller using the default
forwarding application on top of HOTSWAP. After the network had
reached a stable state, we launched a new controller instance and

used HOTSWAP to replay and swap the two controllers at times
t = 15s and t = 20s, respectively. We configured HOTSWAP

to use the replay algorithm of Figure 5, and repeated the experi-
ment 15 times. For each experiment, HOTSWAP managed to swap
the controllers without losing a single packet or causing any in-
crease in the network delay (see Figure 1). This clearly contrasts
with the disruption that occurred with the naive approach. On aver-
age, HOTSWAP took only 375ms to generate and replay all network
events and 7ms to perform the controller swap.

Since HOTSWAP’s goal is to perform controller upgrade and not
only restart, we used it to upgrade a Floodlight controller running
v0.85 to v0.90. Again, we did not observe a single packet loss or
any increase in the network delay. The network state remained per-
fectly intact despite the fact that the v0.90 release fixed 37 bugs [3].

Finally, we evaluated HOTSWAP overhead with respect to an
unmodified version of FlowVisor by using the cbench tool [13]
(with the default configuration). When configured to record ev-

ery packet-in, the unoptimized HOTSWAP implementation induced
an overhead of approximately 25%. As discussed in Section 3,
recording every single packet-in must be considered as a worst-case
scenario as most applications only require a subset of the network
events to be maintained. In contrast, HOTSWAP did not induce any
significant overhead when using the stateless replay algorithm.

6. RELATED WORK
A number of different tools that record network traffic for the pur-
pose of debugging SDN networks have been proposed in recent
years. The OFRewind system [17] is probably the most closely
related to HOTSWAP as it also records and replay (filtered) network
events using a hypervisor. However, OFRewind is not concerned
with recreating state in a correct manner and only provides coarse
grained filtering ability. The ndb tool [6] provides a trace view of
OpenFlow forwarding tables traversed by data packets in the net-
work. Unlike HOTSWAP, ndb aims at troubleshooting the data
plane, and not at reconstructing the state in the controller. Recent
work by Scott et al. [15] aims at finding a minimal causal sequence
of events responsible for triggering a bug. While HOTSWAP is con-
cerned about filtering network events, our aim is to find the minimal
set of events needed to create a correct controller state.

While distributed controller architectures such as Onix [9] and
ONOS [11] can create new controller instances and synchronize
state among them, they do not solve the controller upgrade when
the entire architecture must be upgraded (e.g., where the new con-
troller may use different data structures and algorithms than the old
one). In contrast, nothing prevents HOTSWAP from bootstrapping
a distributed controller.

Finally, there is a large body of work in the programming lan-
guages community on techniques for upgrading a software while
it is running—see Kitsune [7] for a recent example. Applying
these techniques to controller upgrade is possible, but would have
to be considered on a per controller basis, while HOTSWAP is con-
troller independent.

7. CONCLUSIONS
Dynamic software updates are notoriously difficult to implement

correctly, and SDN controllers are no exception. And yet, SDN
programmers need mechanisms for gracefully upgrading controller
programs. This paper shows how HOTSWAP enables disruption-
free software upgrade in practice, while ensuring key correctness
properties. HOTSWAP is highly general as it does not make any
assumption on the network applications or the controller and is easy
to use as it only requires minimal input from the SDN programmer.

In ongoing work, we are exploring how HOTSWAP can be ap-
plied to contexts in which state synchronization is problematic, in-
cluding distributed controllers. We also plan to develop a program-
ming API that facilitates upgrades either by making state depen-
dencies more explicit or by supporting run-time code patching.

Acknowledgements. The authors wish to thank the HotSDN
referees for their helpful comments. Our work is supported in
part by the NSF under grants CNS-1111698, CNS-1111520, CCF-
1253165, and CCF-0964409; by the ONR under award N00014-
12-1-0757; and by a Google Research Award.

8. REFERENCES
[1] Cisco IOS In Service Software Upgrade.

http://tinyurl.com/acjng7k.

[2] Floodlight OpenFlow Controller.
http://floodlight.openflowhub.org/.

[3] Floodlight v0.90 Release Notes.
http://tinyurl.com/aaya7yg.

[4] Juniper Networks. Unified ISSU Concepts.
http://tinyurl.com/9wbjzhy.

[5] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments using
container-based emulation. CoNEXT. ACM, 2012.

[6] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and
N. McKeown. Where is the debugger for my
software-defined network? In HotSDN, 2012.

[7] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks, and J. S.
Foster. Kitsune: Efficient, general-purpose dynamic software
updating for C. OOPSLA, pages 249–264. ACM, 2012.

[8] P. Kazemian, G. Varghese, and N. McKeown. Header space
analysis: Static checking for networks. In NSDI’12,
Berkeley, CA, USA, 2012. USENIX Association.

[9] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A distributed control platform for
large-scale production networks. In OSDI. USENIX
Association, Oct. 2010.

[10] J. Moy, P. Pillay-Esnault, and A. Lindem. Graceful OSPF
Restart. RFC 3623, 2003.

[11] On.Lab. ONOS: Open network operating system.
http://tinyurl.com/pjs9eyw.

[12] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In ACM

SIGCOMM, 2012.

[13] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W.
Moore. OFLOPS: An Open Framework for Openflow Switch
Evaluation. PAM, 2012.

[14] S. Sangli, E. Chen, R. Fernando, J. Scudder, and Y. Rekhter.
Graceful Restart Mechanism for BGP. RFC 4724, Jan. 2007.

[15] C. Scott, A. Wundsam, S. Whitlock, A. Or, E. Huang,
K. Zarifis, and S. Shenker. How Did We Get Into This Mess?
Isolating Fault-Inducing Inputs to SDN Control Software.
Technical Report UCB/EECS-2013-8, EECS Department,
University of California, Berkeley, Feb 2013.

[16] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the
production network be the testbed? In OSDI, Oct. 2010.

[17] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann.
OFRewind: Enabling record and replay troubleshooting for
networks. In USENIX Annual Technical, June 2011.

http://tinyurl.com/acjng7k
http://floodlight.openflowhub.org/
http://tinyurl.com/aaya7yg
http://tinyurl.com/9wbjzhy
http://tinyurl.com/pjs9eyw

	Introduction
	Controller Upgrade Problems
	The HotSwap System
	Implementation
	Evaluation
	Related work
	Conclusions
	References

