
Greening Backbone Networks: Reducing Energy
Consumption by Shutting Off Cables in Bundled Links

Will Fisher, Martin Suchara, and Jennifer Rexford
Princeton University

Princeton, NJ 08544, U.S.A.
{wafisher, msuchara, jrex}@princeton.edu

ABSTRACT
In backbone networks, the line cards that drive the links be-
tween neighboring routers consume a large amount of en-
ergy. Since these networks are typically overprovisioned, se-
lectively shutting down links during periods of low demand
seems like a good way to reduce energy consumption. How-
ever, removing entire links from the topology often reduces
capacity and connectivity too much, and leads to transient
disruptions in the routing protocol. In this paper, we ex-
ploit the fact that many links in core networks are actually
“bundles” of multiple physical cables and line cards that can
be shut down independently. Since identifying the optimal
set of cables to shut down is an NP-complete problem, we
propose several heuristics based on linear optimization tech-
niques. We evaluate our heuristics on topology and traffic
data from the Abilene backbone as well as on two synthetic
topologies. The energy savings are significant, our simplest
heuristic reduces energy consumption by 79% on Abilene
under realistic traffic loads and bundled links consisting of
five cables. Our optimization techniques run efficiently us-
ing standard optimization tools, such as the AMPL/CPLEX
solver, making them a practical approach for network opera-
tors to reduce the energy consumption of their backbones.

1. INTRODUCTION
Reducing energy consumption has been an impor-

tant part of networking research, with the most promi-
nent topics pertaining to the energy consumption of
servers and wireless devices. Unfortunately, the en-
ergy consumption of wired networks has been tradi-
tionally overlooked. The potential savings in this area
are significant—powering wired networks in the United
States alone costs an estimated 0.5–2.4 billion dollars
per year [1]. Moreover, more energy-efficient network
architectures would allow network deployments in less
developed parts of the world [2]. In this work, we de-
scribe optimization techniques that allow significant en-
ergy savings in wide-area networks.

The capacity of backbone networks is overprovisioned
in order to accommodate traffic shifts, and to allow
rerouting when links fail. The average link utilization in
backbone networks of large Internet service providers is

estimated to be around 30–40%. While some overprovi-
sioning is necessary, it is possible to reduce the energy
consumption by dynamically reducing the available ca-
pacity, and bringing links back up as needed. For exam-
ple, network utilization in off-peak hours may decrease
by a factor of three or more, which allows for a signif-
icant reduction in capacity while still leaving enough
spare bandwidth for unexpected traffic shifts. As the
power consumption of backbone routers and their line
cards is essentially independent of the link load [3], it
is natural to consider powering off routers or line cards
during periods of low utilization. Even though today’s
backbone routers cannot put line cards in “sleep mode,”
or bring shutdown interfaces back up quickly, we believe
that these advances will come in the years ahead, espe-
cially if they offer a big energy savings.

In core networks, pairs of routers are typically con-
nected by multiple physical cables that form one log-
ical bundled link [4] that participates in the intrado-
main routing protocol. Bundled links are also some-
times called aggregate links or composite links, and
they are standardized by IEEE 802.1AX [5]. Link bun-
dles are prevalent because when capacity is upgraded,
new links are added alongside the existing ones, rather
than replacing the existing equipment with a higher-
capacity link. For example, a 40 Gbps bundled link may
comprise of four OC-192 cables with capacity 10 Gbps
each. Bundled links are also necessary when the aggre-
gate capacity of the bundle exceeds the capacity of the
fastest available link technology. In today’s backbone
networks, a vast majority of links would be bundled,
with bundles consisting of two to approximately twenty
cables, a majority between the two extremes. Our ap-
proach is to power down individual cables in the bundle
(and the line cards that serve them) during periods of
low utilization. This results in significant energy sav-
ings because line cards represent a large fraction of the
router energy consumption [3].

In our work, we propose that network operators run
a network-management system that exploits opportu-
nities to selectively power down individual cables in
bundled links, based on the current or projected traffic

matrix. The network-management system must solve
an optimization problem that takes the network topol-
ogy and traffic matrix as input, and identifies the maxi-
mum number of cables that can be powered down while
still having sufficient headroom for carrying the offered
traffic. Since finding the optimal solution is an NP-
complete problem, we introduce several heuristics whose
performance we evaluate in a realistic setting. To the
best of our knowledge, this is the first work that con-
siders the reduction of power consumption by turning
off cables in a bundled link. The work that is closest in
spirit to ours is [6] which considers powering down en-
tire routers and links. Their approach is similar to ours
in that they also formulate the problem as an integer
linear program, and solve the problem using heuristics
that determine the order of edges to remove.

The rest of the paper is organized as follows. In sec-
tion 2 we formulate the NP-complete optimization prob-
lem and in section 3 we describe several heuristics that
solve it. In section 4 we demonstrate the performance
of the heuristics on the Abilene network and on two
synthetic topologies. The related work and conclusions
appear in sections 5 and 6 respectively.

2. MAXIMIZING SHUTDOWN CABLES
To maximize energy savings, the network-management

system solves an optimization problem that considers
the network topology, a traffic matrix, and the bundle
size (i.e., the number of cables per link). An optimal
solution shuts down the maximum number of cables,
while still routing all traffic demands on paths with suf-
ficient bandwidth. In this section, we formulate the
optimization problem and explain why a naive solution
can perform quite badly.

2.1 Network Topology and Traffic Flow
The network is represented as a directed graphG(V,E)

that consists of a set V of routers and a set E of links,
where each link (u, v) ∈ E between two routers u, v ∈ V
has a capacity c(u, v). Each link consists of B cables
that can be shut down independently. For example,
when links are indivisible we have B = 1; when a 40
Gbps link consists of four 10 Gbps links, we have B = 4.
The traffic demand between a pair of routers is repre-
sented as a triple (sd, td, hd) where sd ∈ V is the ingress
router, td ∈ V is the egress router, and hd is the amount
of traffic exchanged between the ingress-egress router
pair. Let D denote the collection of all these demands.
The network topology G(V,E), bundle size B, and traf-
fic demands D are the inputs to the optimization prob-
lem.

Given the three inputs, the network-management sys-
tem calculates a network configuration that employs the
fewest cables such that all the traffic demands are satis-
fied. In particular, the output of the optimization prob-

Variable Description

G(V,E) backbone router and link representation
|V |, |E| cardinality of set V and E, respectively

c(u, v) capacity of edge (u, v)
B number of cables in a bundle

D set of demands
sd source of demand d ∈ D
td destination of demand d ∈ D
hd flow requirement for demand d ∈ D
fd(u, v) flow on edge (u, v) of demand d
f(u, v) total flow on edge (u, v)
nuv number of powered cables in link (u, v)

Table 1: Summary of notation.

lem is (i) a set of cables to shut down and (ii) the paths
that the traffic should take over the remaining cables in
the network. For any given solution, let fd(u, v) repre-
sent the flow of commodity d that is assigned to edge
(u, v). The total flow assigned to edge (u, v) is denoted
f(u, v) and can be obtained by simply summing the cor-
responding flows of all demands: f(u, v) =

∑
D fd(u, v).

To avoid overloading the links, the load f(u, v) on link
(u, v) should not exceed the corresponding link capacity
c(u, v).

In practice, network operators do not run their net-
works at full utilization, to prevent transient congestion
and accommodate shifts in traffic over time. Still, in our
problem formulations, we simply impose a constraint
that f(u, v) is less than or equal to c(u, v). In prac-
tice, we envision that the network-management system
would “scale up” the traffic demands D to account for
variation in traffic, or “scale down” the link capacities
c(u, v) to have sufficient spare capacity to tolerate typ-
ical fluctuations in traffic. The network-management
system may also periodically reoptimize the choice of
paths, as well as the cables to power down, to adjust to
larger changes in the traffic matrix over the course of
the day or week. As such, in the rest of the paper, we
assume that the traffic matrix and link capacities are
fixed, and that the network-management system need
only enforce that link load does not exceed capacity.

2.2 Naive Solution: Maximize Spare Capacity
Given that optimization problems with variables re-

stricted to integers are usually NP-complete, a seem-
ingly natural way to formulate the problem is to max-
imize the spare capacity by directing traffic over paths
that minimize the sum of loads over all links. Then,
the spare capacity on each link could be powered down,
subject to the constraint of removing capacity in dis-
crete units. Formulating the problem in this way is

2

useful because it leads to a simple linear-programming
solution that will be used for:

(i) determining if a given network topology can satisfy
all demands (important for determining whether
any cables could be shut down),

(ii) calculating the maximum amount of spare capac-
ity (serving as an upper bound on the energy sav-
ings of any solution constrained by the bundle
size), and

(iii) providing an initial distribution of traffic that can
serve as a starting point for heuristics that search
for better solutions.

The resulting linear-programming problem formula-
tion is as follows:

min
∑

(u,v)∈E f(u, v)
s.t.

∑
D fd(u, v) ≤ c(u, v) ∀(u, v) ∈ E,∑
v∈V fd(u, v) =

∑
v∈V fd(v, u) ∀d, u 6= sd, td,∑

v∈V fd(sd, v) =
∑

v∈V fd(v, td) = hd ∀d.
(1)

The objective function minimizes the total flow summed
over all links. A capacity constraint ensures that no
edge carries more traffic flow than its capacity. A flow-
conservation constraint ensures that no flow is lost or
created except at the source and destination. The fi-
nal constraint ensures that the sum of the flows leaving
the source, or entering the destination, of commodity d
sums to hd. Obviously the optimization problem has a
feasible solution exactly when the given network topol-
ogy can satisfy all of the demands; therefore, we use this
optimization in the next section as a building block to
test feasibility after a cable is powered down.

In addition, we can use the linear-programming so-
lution to obtain an upper bound on the energy savings
of any feasible solution as follows. For each edge (u, v)
we simply “round down” by using one fewer cable in
the bundle than is needed to carry the traffic f(u, v)
obtained by the solution. For example, if a solution as-
signs 6.3 Gbps of traffic to an edge (u, v) whose capacity
is 10 Gbps, and the edge consists of ten 1 Gbps cables,
we remove four cables to have 6 Gbps of capacity. It is
easy to verify that no flow assignment that satisfies all
the demands can use fewer cables.

A lower bound is obtained similarly. By “rounding
up” to the next discrete number of cables (e.g., from
6.3 Gbps to 7 Gbps), we obtain an approximate solu-
tion that provably satisfies all the demands, serving as a
strawman heuristic for identifying which cables to shut
down. Unfortunately, the following subsection shows
that this technique often results in extremely subopti-
mal solutions, leading us to formulate our problem as
an integer optimization problem.

2.3 Integer Linear Program Formulation
To see why the naive solution is suboptimal, consider

the example in Figure 1. The network has k + 1 edges
on the direct path from source S to each destination Ti,
and all edges have unit capacity. The source S has a
small amount of traffic to send to each destination Ti;
that is, demands (S, Ti, ε) for i = 1, 2, . . . , n, where ε�
1. Similarly, S sends a small amount of traffic to B0;
that is, a demand (S,B0, ε). And, each node Bi sends
a small of traffic to its right neighbor; that is, demands
(Bi, Bi+1, ε) for i = 0, 1, . . . , k − 1 and (Bk, Ti, ε) for
i = 1, 2, . . . , n. Let us also assume that B = 1.

The optimal solution of the linear program (1) uses
the shortest path for each demand to maximize the
spare capacity. Therefore, the demands connecting S
and Ti follow the shortest path with k + 1 hops, rather
than the longer path through the Bi nodes. Similarly,
each of the links in the lower path carry a small amount
of traffic due to the demands with a source or destina-
tion of B0, B1, . . . , Bk. As such, all links need to be
used and hence the cost of this solution is (k + 1)n +
(k + 1) + n = k(n + 1) + 2n + 1 cables. A better solu-
tion would place all of the demands connecting S and
Ti on the lower paths through nodes Bi, so that the
links along the direct paths could be shut down. This
solution requires only k + n+ 1 cables. Looking at the
ratio of the two solutions, we see that

lim
k→∞

k(n+ 1) + 2n+ 1
k + n+ 1

= n+ 1.

That is, the optimal solution is better by a factor of
n+ 1.

Since the naive solution performs poorly, we consider
an integer linear program that takes the bundle size B
into account explicitly. This can be achieved by modify-
ing the optimization problem (1) to minimize the num-
ber of powered cables, where nuv ∈ N is the number of

length k
Demands:

…

…

T1

T2

(S,Ti): ε
(S,B1): ε
(Bi,Bi+1): ε
(B T): ε

…

S
2

Tn

…

(Bk,Ti): ε

…B0

BkB1

Number of links needed:
a) Shortest path: kn + k + n = k(1+n) + n
b) l kb) Optimal: k + n

Let n be an arbitrary constant. Because
lim (k ‐> inf) (k(1+n) + n) / (k + n) = 1 + n() (()) / ()
the optimal number of links needed is
~n times lower.

Figure 1: The simple linear program is highly
suboptimal in this example.

3

powered cables in link (u, v). The resulting objective is

minimize
∑

(u,v)∈E

nuv.

We also need to add a constraint guaranteeing that each
edge has enough active cables to carry the traffic:

f(u, v) ≤
(nuv

B

)
c(u, v) ∀(u, v) ∈ E.

Note that the constraint nuv ≤ B need not be added as
it is implied by the other constraints.

This formulation is an NP-complete integer linear
program. NP-hardness is obtained by reducing a less
general NP-complete problem, the simple two-commodity
integral flow in directed graphs (simple D2CIF) prob-
lem [7]. We only need to use two demands that cor-
respond to the two commodities in simple D2CIF, all
edges have a unit capacity, and we have one cable per
link. A feasible solution of our problem correspond to a
yes instance of simple D2CIF. The problem is clearly in
NP as given a solution, we can verify its cost in polyno-
mial time. To make the problem tractable, the next sec-
tion introduces heuristics that can be solved almost as
easily as the original linear program, and which achieve
energy efficiency comparable to the optimum.

3. EFFICIENT HEURISTICS
In this section, we present three heuristics that solve

the integer linear programming (ILP) formulation of
section 2.3. The heuristics remove cables in certain or-
der until no further cables can be removed. The heuris-
tics differ in the order in which they consider the cables,
as well as in the number of cable combinations they con-
sider for removal.

3.1 Fast Greedy Heuristic (FGH)
We start by solving the linear program (1) to obtain

the flow f(u, v) assigned to each edge. Then we remove
the maximal number of cables so that all the flows are
still satisfied. After these cable removals (i.e., “round-
ing up”), we proceed by identifying the edge with the
greatest spare capacity, i.e., we find the (u, v) for which

arg max
(u,v)

(
nuvc(u, v)

B
− f(u, v)

)
, (2)

where nu,v denotes the number of remaining cables after
the cable removals. We try to remove one cable from
the edge (u, v) because after the removal, the excess
traffic that needs to be rerouted is the smallest. With
the cable removed, we solve the linear program (1) with
the new link capacities to find the new distribution of
the traffic. If the problem has a feasible solution, we
permanently remove the cable that was identified in 2.
Otherwise, we do not remove the cable and mark the
corresponding edge as final—no additional cables are

removed from final edges. We continue by identifying
the edge with the greatest spare capacity, ignoring all
final edges, until all edges become final.

This algorithm is attractive due to its simplicity. How-
ever, it is clear that if the algorithm makes the “wrong”
choice by removing a suboptimal cable, it will never
backtrack to correct the mistake. The effects of this
design can be seen on the topology in figure 1. When
some cable (Bi, Bi+1) is removed, the rerouted traffic
must take a long path, and the optimal set of cables
can no longer be removed due to this rerouting. There-
fore, the next heuristic improves on FGH by making
more careful choices.

3.2 Exhaustive Greedy Heuristic (EGH)
To improve over FGH, the EGH algorithm calcu-

lates a penalty value for each candidate cable, and re-
moves the cable that leads to the smallest increase in the
penalty. The penalty considers the path that the excess
traffic needs to follow after a cable is removed, and in-
creases as traffic must flow over ever longer paths. The
penalty associated with removing a cable is calculated
as the difference of the objective value of the linear pro-
gram (1) after and before the removal. The higher the
increase of the objective, the longer the reroute must be.
We call the heuristic exhaustive because the penalty al-
lows us to do a “look-ahead” operation on each cable,
and then decide how to proceed.

The EGH heuristic is similar to FGH in that the lin-
ear program (1) is solved first, and the maximal number
of cables is removed. No edge is marked as final yet.
Then the cable with the smallest penalty is removed
if the removal results in a feasible solution. Otherwise
the corresponding edge is marked as final. We con-
tinue removing cables with the smallest penalty until
all edges are final. The penalty favors solutions that
choose shorter paths on the presumption that satisfy-
ing demands with fewer links makes it easier to drop
cables later on. This heuristic finds the optimal solu-
tion on the topology in figure 1. However, further im-
provements could be achieved if we consider more cable
combinations for removal before making each decision.

3.3 Bi-level Greedy Heuristic (BGH)
The BGH heuristic improves on EGH by consider-

ing cables for potential removal in pairs. A penalty is
associated with the potential removal of each pair of
cables, and the cable pair with the smallest penalty is
removed first. Should removing the pair of cables make
the solution infeasible, we consider the cable pair with
the second lowest penalty, and so on, until no pair of
cables can be removed. Finally, the one last cable with
the lowest penalty is removed, if this is possible without
affecting feasibility.

The BGH heuristic is more time consuming than the

4

other ones because all pairs of cables need to be consid-
ered. However, the running time can be improved sig-
nificantly by adding checks that stop the computation
if removing one cable causes the optimization problem
to become infeasible. If so, we need not consider the
pairs of cables that include the concerned cable.

4. EXPERIMENTAL EVALUATION
In this section we evaluate the three heuristics using

simulations. First we describe our experimental setup.
Then we quantify the energy savings on both synthetic
and realistic topologies. We also discuss the running
time of the optimizations which would need to be per-
formed by the network operator.

4.1 Experimental Setup
The heuristics were implemented as optimization prob-

lems in AMPL, and solved using the CPLEX optimiza-
tion solver. The heuristics are simple to implement,
and the core of the AMPL/CPLEX calculations is a
repeated optimization of the linear program (1). An
implementation where a separate flow variable fd(u, v)
is only maintained for distinct classes of demands that
share a common destination allowed us to significantly
reduce the number of variables compared to maintain-
ing a separate variable fd(u, v) for every demand. Our
AMPL/CPLEX optimizations were performed on a Sun
V880 server running Solaris 10 (64-bit version) with
eight 1.2 GHz SPARC III CPUs.

The performance of the heuristics was evaluated on
the Abilene topology and on two synthetic topologies—
a two level hierarchical graph, and the Waxman graph,
which are frequently used to simulate wide area network
topologies. The parameters of the topologies are sum-
marized in table 2. The Abilene topology uses realistic
edge capacities, and the demands were determined by
measurements. The hierarchical graph was generated
by GT-ITM [8]. In the Waxman graph, the probability
that two nodes are connected by an edge decays expo-
nentially by the distance between them. This probabil-
ity is fixed at P (u, v) = ae−d/(bL) where a and b are
constants, d is the distance between u and v, and L
is the maximum distance between any pair of nodes in
the graph. Realistic demands were generated using a
classical entropy model for urban traffic that appears
in [9].

Name Topology Nodes Edges Demands

hier50 hierarchical 50 148 2,450
wax50 Waxman 50 169 2,450

Abilene backbone 39 28 253

Table 2: Summary of network topologies.

4.2 Energy Savings
The performance of the three heuristics on the Abi-

lene topology is depicted in figure 2. The same figure
also depicts the upper and lower bound on the energy
savings. How these bounds were obtained was described
in section 2.2. We note that the upper bound is not
tight and it is impossible to achieve it for small values
of the bundle size B.

An important observation in figure 2 is that the en-
ergy savings increase sharply as B increases from 1 to
2 or 3. That is, while switching entire links on or off as
suggested previously [6] would only allow us to reduce
the energy consumption of the associated line cards by
54%, if all links consist of three cables, the savings in-
crease significantly to 73%. This shows the importance
of considering link bundles in energy optimizations.

We observe that the performance of the three heuris-
tics in figure 2 is almost indistinguishable and differs
by at most a couple percent. This was also the case in
all the other experiments, and thus our evaluations of
the synthetic topologies only depict the simplest Fast
Greedy Heuristic (FGH). The power savings in the syn-
thetic topologies are depicted in figure 3. For these
topologies we reconfirm that the energy savings increase
sharply as the bundle size increases to 2 or 3 cables.

4.3 Running Time
Since a network operator would need to use one of our

heuristics to reoptimize the solution when the offered
load changes significantly, it is important to understand
the running time, which is summarized in table 3. Al-
though the number of cables that can be removed in-
creases proportionally with increasing bundle size B,
the running time is essentially independent of the bun-
dle size for all heuristics because the vast majority of

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12

E
ne

rg
y

S
av

in
gs

 (
%

)

Bundle Size

Min & max savings
FGH
EGH
BGH

Figure 2: Energy savings on the Abilene topol-
ogy as a function of the bundle size.

5

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12

E
ne

rg
y

S
av

in
gs

 (
%

)

Bundle Size

Min & max savings
FGH

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12

E
ne

rg
y

S
av

in
gs

 (
%

)

Bundle Size

Min & max savings
FGH

Figure 3: Energy savings of FGH on the Wax-
man graph (top) and the hierarchical topology
(bottom).

the cables are powered down in the initial step.
The running time of the heuristics differs significantly

because FGH and EGH need to solve the linear program
(1) up to O(|E|2) times, and BGH up to O(|E|3) times.
Moreover, in the average case FGH identifies an edge
for removal after examining a constant number of edges,
resulting in O(|E|) executions of the linear program.

Because the energy savings of the three heuristics
do not differ significantly, it is clear that the simplest
heuristic (FGH) should be preferred. It can be executed
rapidly while achieving significant energy savings.

5. RELATED WORK
The authors of [2] acknowledge the energy efficiency

problems of wide area networks and outline two solu-
tions that save energy by putting network interfaces and
other router and switch components to sleep. In coordi-
nated sleeping routers act in concert to aggregate traffic
onto as few active paths as possible. The drawback is
the need for a dynamic protocol. In uncoordinated sleep-

Topology FGH EGH BGH

Abilene 8± 2 sec 50± 8 sec 5± 2 min
Waxman 50± 20 min 17± 5 hr *

Hierarchical 14± 4 min * *

Table 3: Table of running times with mean and
standard deviation. Asterisk represents imprac-
tical running time.

ing routers only use local information at the cost of only
being able to save energy during idle packet interarrival
periods. Our solution combines the benefits of both so-
lutions by relying on centralized pre-calculation of the
best configuration. Another approach is used in [10]
where it is proposed that network hardware should sup-
port slow-speed mode with low power consumption.

Cutting edge hardware designs of ethernet interfaces
used in hosts and switches in local area networks exploit
periods of inactivity to operate in low power modes. For
example, Broadcom [11] as well as Intel [12] introduced
network interface cards that contain programmable sleep
timers that allow the link to remain off for a certain
time, and algorithms have been developed to optimize
the length of the idle periods [13]. Unfortunately, the
power usage of current routers in wide area networks
remains essentially independent on the actual load [3],
and depends only on the sum of the power draw of
the chassis and the appropriate number of line cards.
Our work attempts to address this problem by devel-
oping optimization methods to put unneeded line cards
to sleep. Similar approaches that allow to power down
individual hardware components are [6] and [14]. These
works, however, do not model bundled links. Further-
more, the greedy heuristics in [6] also differ in the order
in which they consider edges for removal. Whereas our
solution recalculates the flow assignment before each
edge removal to identify which edge is the best to re-
move, their solution considers edges in a fixed order de-
termined before the first edge removal. Although [14]
solves a more general problem where traffic is rerouted
on alternate paths dynamically as the demands change,
they assume that the end-to-end paths are fixed and
given on the input. [15] optimizes the energy consump-
tion of data centers by powering down unneeded links
and switches while still meeting performance and fault
tolerance goals.

6. CONCLUSION
The Internet has experienced a tremendous growth

and so has its energy consumption. This paper de-
veloped and evaluated techniques that save energy in
core networks by selectively powering down individual
cables of large bundled links. First we showed that

6

the problem formulation is an integer linear program
that is NP complete. Then, we developed several easy-
to-implement heuristics. We demonstrated that the
AMPL/CPLEX solver can efficiently solve these heuris-
tics, and we presented an analysis of the energy savings
on several realistic topologies. As our solution can be
implemented using existing hardware technologies, we
believe that our heuristics will be of significant interest
to the network operators community.

7. REFERENCES
[1] K. W. Roth, F. Goldstein, and J. Kleinman,

“Office and telecommunications equipment in
commercial buildings - volume I: Energy
consumption baseline,” Technical Report
72895-00, Arthur D. Little, Inc., 2002.

[2] M. Gupta and S. Singh, “Greening of the
Internet,” Proceedings of ACM SIGCOMM, 2003.

[3] J. Chabarek, J. Sommers, P. Barford, C. Estan,
D. Tsiang, and S. Wright, “Power awareness in
network design and routing,” IEEE INFOCOM,
2008.

[4] R. Doverspike, K. K. Ramakrishnan, and
C. Chase, “Structural overview of ISP networks,”
in Guide to Reliable Internet Services and
Applications (C. Kalmanek, S. Misra, and
R. Yang, eds.), Springer, 2010.

[5] IEEE Computer Society, IEEE Standard
802.1AX: Link Aggregation, 2008.

[6] L. Chiaraviglio, M. Mellia, and F. Neri,
“Reducing power consumption in backbone
networks,” IEEE ICC, 2009.

[7] S. Even, A. Itai, and A. Shamir, “On the
complexity of time table and multi-commodity
flow problems,” IEEE FOCS, 1975.

[8] E. W. Zegura, GT-ITM: Georgia Tech
internetwork topology models (software), 1996.

[9] B. Fortz and M. Thorup, “Optimizing
OSPF/IS-IS weights in a changing world,” IEEE
Journal on Selected Areas in Communications,
2002.

[10] S. Nedevschi, L. Popa, G. Iannaccone,
S. Ratnasamy, and D. Wetherall, “Reducing
network energy consumption via sleeping and
rate-adaptation,” USENIX NSDI, 2008.

[11] “Broadcom website.”
http://www.broadcom.com/.

[12] “Intel website.” http://www.intel.com/.
[13] M. Gupta and S. Singh, “Energy conservation

with low power modes in Ethernet LAN
environments,” IEEE INFOCOM, 2007.

[14] N. Vasić and D. Kostić, “Energy-aware traffic
engineering,” EPFL Technical Report, 2008.

[15] B. Heller, S. Seetharaman, P. Mahadevan,
Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown, “ElasticTree: Saving energy in data
center networks,” USENIX NSDI, 2010.

7

