
Composing Software Defined Networks

Joshua Reich∗, Christopher Monsanto∗, Nate Foster†, Jennifer Rexford∗, David Walker∗
∗Princeton †Cornell

Abstract
In Software Defined Networking (SDN), an application
comprising many disparate tasks must be converted to
a single set of packet-processing rules on the switches.
Unfortunately, today’s SDN platforms do not support ex-
pressing these tasks as separate modules, and composing
them to create an application. This leads to monolithic
programs that are neither portable, nor reusable. In this
paper, we present the FV system that presents each mod-
ule with an abstract view of the network topology cus-
tomized to the application logic, where one module may
implement the “switching fabric” for another. For exam-
ple, a firewall module may run on “one big switch” that
is implemented by a routing module. The programmer
can specify network views, as well as the relationship
between (virtual) switches in different views. For exam-
ple, conceptually the firewall functionality runs before
the routing functionality. Using sequential composition,
the FV compiler can synthesize a single set of rules and
queries for each physical switch. FV includes a core lan-
guage for defining policies as mathematical functions in
an imperative style familiar to Python programmers, as
well as a module language that supports abstraction (i.e.,
network views) and protection (i.e., specifying what traf-
fic a module can measure and control). FV enables the
creation of sophisticated SDN applications, as illustrated
by example programs running on our FV prototype.

1 Introduction
Network management is a difficult task. Operators must
configure a array of services executing simultaneously
on multiple devices, from routing and traffic monitoring,
to access control and server load balancing. Software-
defined networking (SDN) provides programmers with
the basic controls for addressing these problems, but it
does not provide the abstractions that are needed to man-
age the accompanying complexity. Programmers must
reason manually, in unstructured, ad hoc ways about low-
level dependencies between code in different modules, as

well as between code and the physical network. The re-
sult is applications that are neither portable nor reusable.

Modularity is essential for managing complexity in
any software systems, and SDNs are no exception. The
unique challenge in SDNs is that the modules that
make up an application ultimately execute on the same
devices—i.e., they process the same traffic using the
same flow table entries on the same switches. Although
some SDN platforms support abstractions for “slicing”
the network (to allow different applications to handle
different portions of the traffic) [21, 7], “virtualizing”
the network (to decouple programs from the underlying
topology) [15, 19], or “composing” monitoring queries
with a forwarding policy [4], these abstractions do not
effectively address the question of how to build a single
application out of multiple, separately defined and reuse-
able modules that affect the handling of the same traffic.

This paper presents FV, a language that provides a
collection of flexible programming constructs for sup-
porting “programming in the large.” These constructs
make it possible to build sophisticated controller appli-
cations by composing simpler modules together. Each
module has the illusion of running over a network topol-
ogy tailored to that module—a network view. A load bal-
ancer or firewall module may see the network as “one big
switch” [2, 15, 9], while a learning switch module may
see the links between switches on which it operates.

1.1 Constructing Modular SDN Applications

To highlight the challenges of building modular SDN ap-
plications, consider the following enterprise scenarios.

Combining Ethernet, IP, and gateway routing: En-
terprise networks often consist of several Ethernet is-
lands interconnected by gateway routers to an IP core,
as shown in Figure 1(a). To implement this behavior, an
SDN programmer would have to write a single, mono-
lithic program that handles network events differently
depending on the role the switch is playing in the net-
work. This program would implement MAC learning

(a) Combining Ethernet, a (b) Combining server load (c) Combining Ethernet routing,
gateway, and an IP core balancing and routing ARP, and Web monitoring

Figure 1: Example modular SDN applications.

and flooding to unknown destinations for switches within
Ethernet islands, shortest-path routing on IP prefixes for
switches in the IP core, and gateway logic for devices
connecting an island to the core. Note that the gateway
logic would be complicated, as the switch would need to
act simultaneously as a switch, router, and bridge.

A better alternative would be to implement the Ether-
net islands, IP core, and gateway routers using separate
modules operating on a subset of the topology, as shown
in Figure 1(a). This design would allow the gateway
router to be decomposed into three virtual devices: one
in the Ethernet island, another in the IP core, and a third
interconnecting the other two. Likewise, its logic could
be decomposed into three orthogonal pieces: a repeater
that responds to ARP queries for its gateway address, a
standard Ethernet switch, and a standard IP router. The
programmer would write these modules separately and
the controller would compose them into a single program
that installs rules on the underlying physical switches.

Combining routing and middleboxes: Enterprises
often run middleboxes such as firewalls or server load
balancers. Ideally operators would be able to distribute
middlebox functionality across a collection of commod-
ity switches instead of using expensive appliances, as
shown in Figure 1(b). To achieve this today, a program-
mer would have to write an application that simultane-
ously implements the load balancer and routing logic,
carefully constructing forwarding rules that pick a server
replica and also forward packets to that destination.

As above, a better alternative would be to decompose
this functionality into separate modules. One module
would implement the load balancer against a network
view containing of one switch with two ports—one con-
nected to the Internet and another to the internal hosts, as
shown in Figure 1(b). A second module would route traf-
fic across the underlying physical topology, constructing
the “switching fabric” for the virtual switch configured
by the load balancer. This design would allow the pro-
grammer to replace the load balancer application—e.g.,
with a firewall—without having to change the underlying
forwarding logic, and vice versa. Again, the controller

would combine these modules into a program that com-
putes the rules for the underlying switches.

Combining routing, broadcast, and monitoring: En-
terprise networks often handle discovery and ordinary
traffic, as shown in Figure 1(c). Today, a programmer
would need to write a single program that handles both
classes of traffic. This program would “bake in” a sin-
gle way of handling discovery, and would install special
rules for handling broadcast packets (to avoid performing
MAC learning). Ideally the programmer would be able
to write two modules—one for discovery and another
for ordinary traffic. The discovery module would flood
queries and replies while the other module would per-
form MAC learning. Later, the discovery module could
be replaced with one implementing a directory mapping
between MAC and IP addresses as in VL2 [5], without
having to change the other module.

Continuing the example, suppose the programmer
needed to extend the application to monitor the total
amount of Web traffic. If the application were written as
a single monolithic program, they would need to modify
the program to combine the monitoring and forwarding
logic to produce a single set of rules that simultaneously
count the port-80 traffic and forward traffic based on the
destination, even though each packet can match at most
one rule. Doing this would entail manually constructing
the “cross-product” of the two policies, and query and
sum the relevant traffic counters to monitor the Web traf-
fic [4]. A better alternative would be to write a single
new module that monitors Web traffic, and compose it
with the forwarding modules.

1.2 Language Support for Policy and Composition

To effectively build sophisticated SDN applications, pro-
grammers need abstractions for developing individual
modules and for specifying how those modules should
be combined together into a single program. One ap-
proach, which is used in most existing SDN controller
platforms [6, 1, 22, 3], is to offer programmers the same
abstractions for constructing modules as are used for
interacting with physical switches—i.e., the OpenFlow

2

API. But this approach means that programs that ab-
stract away from the underlying topology must handle
an interface that is both “wide” (with many different
network events), and “flat” (with few higher-level con-
structs). These programs must invoke network event
handlers, transform virtual forwarding tables to physical
ones, and maintain virtual network state, such as coun-
ters. Doing this is not impossible, but it requires a huge
effort. Moreover, in practice, virtual switches are typi-
cally implemented using hypervisors, which makes cer-
tain forms of composition such as deeply nested virtu-
alization impractical [2]. Finally, if one is virtualizing
the OpenFlow API, one might want or need to build any
higher-level abstractions multiple times—once in the hy-
pervisor and once on top of the hypervisor.

This paper describes a different approach. We present
a language for programming SDNs called FV, that in-
cludes a collection of powerful new constructs that make
it easy to express many different patterns of program
composition. Using FV, programmers can write the code
for a single module using high-level abstractions instead
of manipulating low-level forwarding table configura-
tions. They can also define network views that abstract
away from the underlying physical topology and write
programs against these views. To construct a view, the
programmer defines a topology of virtual switches, and
a mapping from virtual ports to ports in an underlying
network (which may itself consist of a mix of virtual and
physical elements). The programmer also identifies the
traffic that can enter and leave the virtual network at each
edge port (i.e., , a subset of the “flowspace”). The imple-
mentation of each virtual switch—that is, its “switching
fabric”—is provided by one or more other modules. Fi-
nally, they can combine modules written against these
views using simple operators that support either sharing
or isolating the underlying network.

FV is based on our earlier work on the Frenetic lan-
guage [4, 12], but extends it with a generalized packet
model, stack-based operations for manipulating packet
contents, and an explicit sequential composition opera-
tor. Thse constructs make it easy to express complicated
packet-processing pipelines naturaly, as the composition
of several phases without having to manually stitch those
phases together. In addition, abstractions traditionally
provided by hypervisors such as slicing and topology
virtualization become completely trivial to implement.
Moreover, because they are expressed at the language-
level, these constructs can be freely combined and are
not limited to a single level of nesting.

The paper makes the following research contributions:

• We demonstrate how to create modular SDN applica-
tions using network views;

• We extend the Frenetic language with a generalized

packet model, sequential composition operators, and
familiar imperative control operators (Section 2);

• We present constructs for creating network views and
combining modules, and describe compilation tech-
niques for implementing these features on physical
switches (Section 3); and

• We describe a prototype implementation and evalua-
tion of FV on a case study (Section 4);

The paper ends with a discussion of related work in Sec-
tion 5, and a conclusion in Section 6.

2 Core FV
FV is an extension and redesign of the Frenetic lan-
guage [4]. Like Frenetic, FV contains a high-level
language for specifying static policies, which may be
thought of as “snapshots” of a network’s global forward-
ing behavior. Indeed, many of the elements of FV, espe-
cially parallel policy composition, are inspired directly
from Frenetic, but other elements, such as the sequen-
tial (functional) policy composition are new. The latter
comes from a new perspective on the basic interpretation
of policies as abstract mathematical functions. As the
examples in this section and the next show, these oper-
ators facilitate decomposition of complex network man-
agement tasks into simpler parts, and are also critical in-
frastructure for defining network views.

Like Frenetic, FV programs handle dynamic behavior
by generating a series of static policies, which are pro-
cessed by the underlying run-time system and installed
in the network. In Frenetic, such a series was gener-
ated using functional reactive programming, while in FV,
we adopt an imperative style in which programmers may
install an initial policy and imperatively update it over
time. We believe this imperative style will be more famil-
iar to typical systems programmers. On the other hand,
this imperative style does not lend itself directly to good
composition properties as two modules separately updat-
ing the global network policy are likely to clobber each
other. Hence, without further support (in the form of
network views) this new programming framework, while
enjoying a familiar “look and feel”, is structurally infe-
rior. In Section 3 we show how to define and create net-
work views, how to confine a series of imperative policy
updates to a single view, and how to manage the interac-
tions between views so that views defined separately can
productively interact. The rest of this section, explains
the core FV programming infrastructure.

2.1 Static Policies

In conventional SDN platforms, forwarding policies are
usually specified using lists of pattern-action rules, with
one list for each switch. When a packet arrives at a
switch, the switch performs the action associated with

3

the first (i.e., highest priority) matching pattern in the
list. Representing policies using lists of rules makes im-
plementations easy, as there is a one-to-one correspon-
dence between the rules defined by the programmer and
the forwarding table entries on each switch. But on the
other hand, they make it difficult to construct sophisti-
cated policies out of simple building blocks. If list L1

defines a set of actions A1 for a given packet and list L2

defines a different set of actions A2, then the list obtained
by concatenating L1 with L2 will not necessarily define
the union of actions A1 and A2, which is often what the
programmer wants. In particular, concatenation can have
a variety of unexpected effects depending on how the
rule priorities and patterns interact. Hence, instead of
depending upon prioritized lists of simple pattern-action
rules, FV defines a higher-level language of static poli-
cies aimed at making it easy for programmers to describe
the forwarding behavior of the network in a composi-
tional way.

FV programmers are encouraged to think of every FV
policy as a function from located packets (packets an-
notated with the current switch and ingress port) to sets
of located packets and to ignore how those functions are
implemented by the underlying run-time system. By in-
terpreting policies as mathematical functions, we lift the
level of abstraction at which programmers operate, en-
able several additional forms of composition, which fall
out as an almost inevitable consequence of our design.

Primitive actions. The simplest FV policy is one that
does nothing but apply a basic action to a located packet,
yielding a new set of located packets as a result. For
example, the fwd(port) action, when interpreted as a
function, receives any located packet as an argument and
produces the singleton set containing the same packet re-
located to port port as a result. The drop action, on
the other hand, receives any located packet as an argu-
ment and produces the empty set of packets. Intuitively,
a policy that generates the empty set has dropped its in-
put. The passthrough action accepts any packet and
returns the singleton set containing that packet. The all
action receives any packet located at port p on switch s
and produces an output set containing the same packet
at each output port on s except p. Finally, the action
modify(h=v) receives a packet as an input and pro-
duces the singleton set containing the same packet—at
the same location (!)—except that header h is set to v. In
summary, some actions produce one result (forwarding,
modification), some actions produce no results (drop-
ping) and some actions produce many results (flooding).

Functional composition. On its own, the ability to
modify a packet while leaving it in place is not useful—
one only cares about the modified packet if it is ulti-
mately forwarded to some destination. To couple packet

modification with transport, we use functional composi-
tion. Typically, when given two functions, f and g, their
composition f ◦ g is defined as the function h such that
h(x) = g(f(x)). Since our policies are interpreted as
functions, we use a similar notion. The only difference
is that since our policies are functions from packets to
sets of packets, when given two policies C1 and C2, we
define their composition C1 >> C2 as the function C3
such that:
C3(packet) = C2(p1) U ... U C2(pn)
when {p1,...,pn} = C1(packet)

In other words, we apply C1 to the input, generating a
set of packets (p1,..., pn) and then apply C2 to each of
those results, taking their union as the final result. As
an example, consider the following policy, which modi-
fies the VLAN tag of any incoming packet to 1 and then
forwards the modified packet out port 3.
modify(vlan=1) >> fwd(3)

As a more elaborate example, consider a complex pol-
icy P2, designed for forwarding traffic with a variety of
different VLAN tags (tags 1, 2, 3, etc.) across a network.
Now, suppose we would like to apply the policy for tag
1 to a particular subset of the traffic arriving on network.
To do so, we may write a policy P1 to select and tag
the relevant traffic. To use P1 and P2 in combination,
we exploit functional composition: P1 >> P2. Such
a program is quite modular: if a programmer wanted
to change the forwarding component, she would change
P2, while if she wanted to change the set of packets ad-
mitted to the VLAN-1 network, she would change P1.
In the next section, we will see how to use this paradigm
to structure the construction of general-purpose virtual
networks.

Policy restriction and parallel composition. Actions
and compositions of actions are universal policies: they
apply to all packets. To restrict the basic packet-
forwarding functions defined by actions, FV supports
policy restriction, & C, where P is a predicate over pack-
ets and C is another policy. Interpreted as function, P &
C applies the function C to the input packet if it satisfies
P , and otherwise returns the empty set.

Predicates include all_packets and no_-
packets, which match all or no packets respectively,
conjunction (&), disjunction (|), and negation (˜). The
predicate match(h=v) tests whether header h matches
the basic value v. As an example, consider the policy P3
below, which forwards packets on port 1 with destination
IP matching 1.1.1.* (multiple arguments to match
implicitly conjoin the matches).
match(inport=1, dstip="1.1.1.*") & fwd(2)

The policy P4, below, forwards packets on port 1 with
destination IP matching 1.1.2.* to port 5.
match(inport=1, dstip="1.1.2.*") & fwd(5)

4

To compose policies P3 and P4, FV includes a par-
allel composition operator: P3 | P4 behaves as if P3
and P4 were executed on every packet simultaneously.
In other words, given an input packet p, P3 | P4(p)
returns the set of packets S1 U S2 when P3(p) re-
turns S1 and P4(p) returns S2.

Continuing our example, if a programmer wanted to
apply the policy P3 | P4 to particular switch s1 and a
different policy P6 to switch s2, she could construct the
following composite policy P7.
P5 = P3 | P4
P6 = ...
P7 = match(switch=s1) & P5

| match(switch=s2) & P6

After recognizing a security threat from source IP ad-
dress, say address 1.2.3.4, the programmer might go
one step further creating policy P8.
P8 = ˜match(srcip="1.2.3.4") & P7

An equivalent, but often convenient alternative to such
the negations is a policy constructed using subtraction to
quotient out unwanted forwarding behavior:
P8’ = P5 - match(srcip="1.2.3.4")

We will sometimes use the policy if_-
, which works as a conditional: if the cur-
rent packet has srcip="1.1.1.1", then
if_(match(srcip="1.1.*.*"), drop,
passthrough) drops the packet. Conditional policies
can be encoded using parallel composition, restriction,
and negation.

A generalized packet model. So far, we have pre-
sented the packets processed by our static policies as
records that maps standard header fields (e.g., , source
IP, destination, IP, etc.) to values. However, in order
to use these static policies in a context involving multi-
level abstract networks, we generalize this packet model
in two ways.

First, we allow programs to define and use virtual
fields. For example, in the next section, we will ex-
plain how our compiler uses virtual fields vinport,
voutport, and vswitch. Policies can be written
against such fields as though they are ordinary fields such
as source IP or destination MAC. The compiler is respon-
sible for compiling virtual, extended packets into real
packets that represent the same information. In our case,
the compiler could use bits of the VLAN field to encode
the additional headers. Other mechanisms such as MPLS
labels could also be used. In any event, the programmer
need not concern themselves with how the encoding is
achieved—he or she is free to define policies over these
high-level, abstract packets.

Second, each field of a packet may carry a stack of val-
ues. To support this model, FV includes two additional
primitive actions: push and pop. For example, consider
a packet A defined as follows.

{switch: p2, inport: 3, ... }

The physical switch is p2 and physical ingress port is 3.
Applying push(switch=v1) would yield the follow-
ing packet B:
{switch: [v1, p2], inport: 3, ... }

The switch field is now a stack with virtual switch
v1 on top and physical switch p2 underneath. When
interpreting predicates such as match(switch=p2),
only the topmost value on the stack is used. Hence,
match(switch=p2) is true when interpreted over
packet A and false when interpreted over packet B. As we
will see in the next section, our compiler pushes new vir-
tual identifiers on these stacks to “lift” a packet up on to
a virtual switch and to interpret the static policy for that
virtual switch over the packet. As a special case, match-
ing a header against the value None tests if the stack for
the header in question is empty. Note that, like match,
we allow multiple arguments to push and pop which
simply mean to push (or pop) more than one value at a
time from the current packet.

As an aside, the primitive modify action may be
thought of as a pop followed by a push of the same
value. Another other action is the move action, which
pops a value off of one field and pushes it on to another
field. Our compiler uses move to move a value from
the virtual switch field vswitch to the real switch field
switch to create the illusion that a policy defined over
a high-level virtual switch is running on the bare hard-
ware. Using this mechanism, high-level policies cannot
distinguish between execution on a virtual network and
execution on a physical network.

Summary. So far, we have defined a static policy
language over a generalized packet model whose pri-
mary components are: (1) primitive actions such as
passthrough, fwd, drop, all, modify, push,
pop, and move that each define packet transformaton
functions, (2) a restriction operation (&) that limits the
set of packets to which a policy applies, (3) a parallel
composition operation (|) that forms the union of two
policies, (4) functional composition (>>), and (5) a con-
ditional (if_) that selects a policy depending of whether
a predicate holds or not. These operators are completely
general and may be applied in any order or nested to ar-
bitrary depth; the underlying run-time system is respon-
sible for analyzing and deploying the policy as a prior-
itized list of rules implementable on conventional SDN
hardware. Figure 2 summarizes the syntax of the static
policy definition language.

2.2 Using static policies

Once the programmer has defined a static policy, they
may use it by installing it on a network view. Figure 3
presents a complete FV program. The function hub
takes a network view as an argument and defines a policy

5

Predicates:
P ::= all_packets | no_packets |

match(h=v) | P & P | (P | P) | ˜P

Actions:
A ::= drop | passthrough | fwd(loc) |

modify(h=v) | all | push(h=v) |
pop(h=v) | move(h1=h2)

Policies:
C ::= A | if_(P ,C,C) | (C | C) | P & C |

C - P | C >> C

Figure 2: Summary of static policy syntax

def hub(net):
pol = all # define pol
net.install_policy(pol) # install it

Figure 3: A complete program: hub.py.

that floods incoming packets and then installs that policy
on the network. The next section describes how to define
and manage custom network views.

2.3 Crafting dynamic policies

The hub in Figure 3 implements an unchanging, static
policy, but many SDN policies are dynamic—they re-
act to network events such as switches coming up, new
flows arriving, or changes in network load. A dynamic
FV policy is really just a Python program that calls
net.install_policy multiple times, thereby in-
stalling a series of static policies on switches in sequence.
To further help users build dynamic policies, we have
developed some additional libraries such as the bucket
library, which is described next.

Buckets. Many SDN applications require a means to
monitor and react to network traffic. The bucket is a sim-
ple FV abstraction for doing so. Abstractly, a bucket is
simply an ordered list of packets. Underneath the cov-
ers, the run-time system takes care of the details involved
in implementing this abstraction: it installs rules to di-
vert packets to the controller, polls statistics on switches
when needed, and represents the information content of
buckets efficiently.

Buckets may be created and then referenced inside
policies. If b is a bucket, the policy fwd(b) sends
the relevant packets to the bucket b, as opposed to some
specified port. Buckets support the Python iterator pro-
tocol, so a programmer may use standard constructs such
as for loops to process the packets that appear in a
bucket. Figure 4 presents a deep packet inspection func-
tion based on buckets. The policy does nothing but draw
packets out of the network. If desired, the policy could
have both forwarded packets with source IP 1.2.3.4

def dpi(net):
b = bucket()
pol = match(srcip="1.2.3.4") & fwd(b)
net.install_policy(pol)
for pkt in b:
print "I see packet: ", pkt

Figure 4: Deep packet inspection.

def learn(net):
pol = all
net.install_policy(pol)
q = query_unique(net, all_packets,

fields=["srcmac", "inport"])
for pkt in q:
pred = match(dstmac=pkt.srcmac)
pol -= pred # (A)
pol |= pred & fwd(pkt.inport) # (B)
net.install_policy(pol)

Figure 5: Ethernet learning switch.

to the bucket b, and flooded all packets (including those
with source IP 1.2.3.4) using parallel composition:
pol = match(srcip="1.2.3.4") & fwd(b) | all

Because the pattern of allocating a bucket, defining a
policy to forward packets matching a predicate (pred)
to the bucket, and installing that policy on a particu-
lar network (net) is a common idiom, FV packages
these operations together into queries. The expression
query(net, pred) generates the stream of packets
that results. In addition, instead of injecting all packets
that match the query into the stream, one may choose to
inject just those packets with unique values in a particu-
lar set of headers. For example,
query_unique(net, all_packets,
fields=["srcmac", "inport"])

generates a stream of packets, with one packet per source
MAC-ingress port pair.

Putting it together: Ethernet learning switch Fig-
ure 5 presents a simple learning switch that illustrate the
pieces of FV discussed so far. Initially, the learn func-
tion installs a default policy that floods. Next, it defines
a query q that generates a stream of packets with unique
source MAC and inport.1 For each packet pkt in the
stream, the code creates a predicate that tests destination
MAC addresses against pkt’s source MAC. The code
the constructs a new policy that (a) stops flooding when
it sees that destination MAC address, and (b) forwards
packets out pkt’s inport when it does see that destina-
tion MAC address. This new policy is installed, updating
the old one. Readers familiar with NOX will appreciate
how much simpler, more abstract, and more direct this
code is than the corresponding NOX program [6].

1For the purposes of this example, we assume that hosts do not
move so each source MAC will be associated with at most one inport.

6

3 Composing Networks
The central goal of the FV language is to provide pro-
grammers with a means to craft modular network man-
agement applications. The core language described in
the previous is an important stepping stone towards this
goal as it provides programmers with several flexible and
uniform ways to construct complex policies from simple,
independent pieces. However, the language is missing
two key features: abstraction (i.e., information hiding)
and protection (i.e., control over which parts of a policy
influence which traffic). In this section, we show how to
wrap the FV core in a module system based around the
idea of defining virtual network views. These network
views support abstraction of physical networks and they
also allow programmers ensure that separately-defined
views interact in a controlled fashion. In the following
subsections, we (a) describe the interaction mechanisms
FV provides for working with network views, (b) show
how network views are defined and sketch how they are
compiled back in to the FV core language so they can
be processed by our run-time system and loaded on to
switches, and (c) demonstrate how the process of view
creation can be automated.

3.1 Network interactions

When decomposing a complex network management
problem in to a set of tasks, the programmer must be
mindful of how those tasks interact. As a initial exam-
ple, consider two separately-defined network manage-
ment functions A() and B(), which both install network
policies.
def A(net):

net.install_policy(polA)

def B(net):
net.install_policy(polB)

def both(net):
A(net); B(net)

Recall that the semantics of net.install_policy
is to completely replace the current network policy with
a new one. Such a semantics, when coupled with an im-
plementation that provides per-packet consistent update,
makes it easy to reason about network forwarding behav-
ior and easy to support powerful verification tools [18].
Yet the downside is that A and B above do not collabo-
rate: A installs its policy globally across net, and then B
installs its policy, completely clobbering what A had just
done. Consequently, we must define new mechanisms
that allow A and B to be defined separately and yet also
interact productively to solve a complex network man-
agement problem. To do so, FV admits three non-trivial
interaction modes: sharing, isolation and abstraction.

Sharing. When two collaborators share an underlying
network, they can both see and control all traffic that

runs over that network. A canonical use-case for shared
networks occurs when one of or more of the collabora-
tors “reads”, monitoring network traffic, while the other
“writes”, controlling packet forwarding—with only one
writer, there are no write-conflicts to resolve. For exam-
ple, the hub, defined in Figure 3, might share a network
with the dpi function in Figure 4. Such sharing can be
orchestrated as follows.
def dpi_and_hub(net):
net1 = share(net)
net2 = share(net)
run(hub, net1)
run(dpi, net2)

Above, we first generate the shared sub-networks net1
and net2 and then we run the hub and dpi in sepa-
rate threads on the distinct but shared networks. Without
sharing, either the hub’s policy (all) would be installed
and no DPI monitoring would occur, or the dpi policy
(fwd(b)) and packets would be forwarded to the bucket
but not to their proper recipients. Using the sharing inter-
action mode, both policies are installed simultaneously.
This is achieved inside our run-time system by listen-
ing for policy changes on either shared network and then
merging those changes. In effect, the global policy in-
stalled on the network is as follows.
all | (match(srcip="1.2.3.4") & fwd(b))

Isolation. To contrast the sharing interaction mode,
consider the case for isolation. In the following code
fragment, we define two simple forwarding policies: one
for registered traffic (traffic that satisfies the predicate
reg_pred) and one for unregistered traffic (traffic that
satisfies the disjoint predicate unreg_pred).
reg_pol =

match(switch=1) & reg_pred & fwd(2)
| match(switch=2) & fwd(3)

unreg_pol =
match(switch=1) & unreg_pred & fwd(2)

| match(switch=2) & web_pred & fwd(3)

In the first policy, all registered traffic is forwarded out
port 2 (connected to switch 2) and then out of port 3;
in the second policy all unregistered traffic is forwarded
to switch 2, but only the web traffic is allowed to pro-
ceed. If these two policies are registered simultaneously
on a shared network then unregistered traffic will be for-
warded to switch 2 via unreg_pol, and once there
will be forwarded via reg_pol out of port 3. In other
words, reg_pol unintentionally acts to defeat the se-
curity measures put in place by unreg_pol. To ensure
traffic does not ping-pong back and forth between po-
lices, programmers may use isolation.
def reg_traffic(net):
net.install_policy(reg_pol)

def unreg_traffic(net):
net.install_policy(unreg_pol)

7

def reg_and_unreg_traffic(net):
run(unreg_traffic, isolate(net1))
run(reg_traffic, isolate(net2))

All traffic about to enter an isolated network is logically
copied on to that network at ingress points, processed by
the rules of the network and then copied off the network
at egress points. (We show how to define ingresses and
egresses in the next section.) Hence, logically, all traf-
fic at the entry point on switch 1 is copied on to both
networks. The unregistered policy does not specify an
action for the registered traffic so that traffic is dropped
off the isolated unregistered network. Conversely, the
unregistered traffic is dropped off the registered network.
Hence, combined, the two policies collaborate to forward
both kinds of traffic properly. However, the policies for
both are defined independently (perhaps by different pro-
grammers); each policy may be edited or altered inde-
pendently of the other.

Abstraction. One flaw in the above program design is
that the programmer responsible for crafting reg_pol
must be careful not to accidentally process traffic at the
ingress of their network that should be handled by the
unregistered network. A second flaw of the above de-
sign is that this portion of network policy is designed
to do nothing more than establish a differing firewalls
for registered and unregistered traffic. Doing so does
not require knowledge of the detailed topology. Instead,
the policies may be implemented over simpler “one-big-
switch” abstractions of the underlying network.

FV can help programmers rectify both design flaws
by allowing them to define abstractions or transforma-
tions of the underlying network. These transformations
can refine the traffic admitted to the network, refine the
traffic emitted from the network, hide the existence of
physical devices and change the apparent topology of the
network. To generate a new abstract network for cus-
tomization on top of net, the programmer simply calls
abstract(net); the next section will explain how to
configure such abstract networks. In terms of protec-
tions, abstract() is identical to share().

Putting it all together The third scenario discussed in
Section 1.1 presents a chance to demonstrate how these
concepts fit together. Both the address resolution and
web monitoring programs are only concerned with links
attached to end-hosts, while the Ethernet code must con-
sider how internal links are used as well. Consequently,
both of the former programs will operate on abstracted
views, while the latter will run on an unabstracted view in
this example. Figure 6 graphically outlines the sequence
of isolate, share, and abstract calls required.

Figure 6: Application of isolation, sharing, abstraction.

3.2 Defining Network Views

To define network views, programmers can either use a
high-level specification mechanism or a low-level speci-
fication mechanism; the former is more concise but less
flexible; the latter is more verbose, but more powerful.

High-level specifications. Figure 7 presents the defi-
nition of the simplest possible abstract network, which
makes two physical switches appear as though they are
just one. It then deploys the hub policy, defined in Fig-
ure 3, on top of the virtual switch. The high-level take-
away from this example is simply that the virtual switch
definition and the forwarding policy are defined by com-
pletely separate pieces of code. The given virtual switch
can be replaced by another switch that includes 3, 4,
etc.physical switches connected via an arbitrary topol-
ogy. Likewise, to choose to run a learning switch instead
of a hub on the virtual network, the programmer need
only change one line of code, replacing the call to hub
with the call to learn, defined in Figure 5.

Examining the details of Figure 7, the central elements
involved in defining a virtual network are the virtual map
(vmap) and the virtual topology (vtopo). The virtual
map associates each virtual switch and port in the net-
work with a physical switch and port. For instance, the
second line of the vmap definition in Figure 7, marked
(B), read left to right, dictates that virtual switch V’s
second port is implemented as physical switch 2, port 1.

Additionally, one may specify a forwarding policy that
routes packets along the physical network to their (vir-
tual) destination. If missing, as in our example, a short-
est path routing policy is automatically generated for us
using the virtual topology.

Low-level specifications. The low-level specification
language can be thought of as a compiler intermediate
language: It serves as the target for compilation of the
high-level virtual network specifications, and is itself fur-
ther compiled into ordinary, core FV policies. While we
view it as an intermediate language, programmers are
still free to craft topology transformations in it directly.

Figure 8 re-presents the virtual hub specified in Fig-

8

V = Switch(1) # virtual
P1 = Switch(1); P2 = Switch(2) # physical
vmap = {
(V, 1): [(P1, 1)], # (A)
(V, 2): [(P2, 1)] # (B)

}
def virt_hub(net):

vnet = abstract(net)
vnet.from_vmap(vmap)
vnet.topology = Graph({V, ports={1, 2}})
hub(vnet)

Figure 7: High-level virtual hub.

ure 7. In fact, the code of Figure 8 is essentially the out-
put of the first phase of our specification compiler, mod-
ified slightly for presentation. The components to focus
on in this new figure are the specification of the network
ingress policy, egress policy, and physical policy. These
three components are specified using core FV policies.
The primary task of these policies is to manage and use
the virtual fields vinport (the virtual inport where the
packet entered the switch), voutport (the virtual out-
port the packet is destined to) and vswitch (the virtual
switch the packet is currently travelling across).

To understand the compilation process, begin by con-
sidering the ingress_policy in Figure 8. This defi-
nition was generated by extracting the ingress informa-
tion contained in lines A and B of Figure 7. It states
that if a packet arrives on physical switch P1, inport 1
then the vinport should be set to 1 and if a packet ar-
rives on physical switch P2, inport 1 then the vinport
should be set to 2. In either case, the vswitch field
should be set to record the fact that the packet has en-
tered virtual switch V. Notice that ingress_policy
does not move (that is, modify the outport field) the
packet anywhere—it does not need to. That will be taken
care of by the combination of the physical policy and the
client policy. The beauty of the basic FV design is that
it is possible to separately specify a distinct logical com-
ponent and then to compose it with other components to
create a meaningful policy.

The egress_policy defines when packets leave a
virtual switch. Again, the specification in Figure 8 is
generated from information contained in lines A and B of
Figure 7. This policy states that when a packet arrives
at on physical switch P1 (on any port), and is destined
for virtual outport 1, or arrives at on physical switch P2
(on any port), and is destined for virtual outport 2 then it
is about to exit the virtual switch. When a packet leaves
a virtual switch, we remove its virtual headers using the
pop command.

Finally, the physical_policy describes the avail-
able routes across the virtual switch. For instance, the
first disjunct of the physical_policy states that if

ingress_policy =
match(switch=P1, inport=1) &
push(vswitch=V, vinport=1)

| match(switch=P2, inport=1) &
push(vswitch=V, vinport=2)

egress_policy = match(vswitch=V) &
if_(match(switch=P1, voutport=1)
| match(switch=P2, voutport=2),
pop("vswitch", "vinport", "voutport"),
passthrough)

physical_policy = match(vswitch=V) & (
match(switch=P1, voutport=1) & fwd(1)

| match(switch=P1, voutport=2) & fwd(2)
| match(switch=P2, voutport=1) & fwd(1)
| match(switch=P2, voutport=2) & fwd(2))
def virt_hub(net):
vnet = abstract(net)
vnet.ingress_policy = ingress_policy
vnet.physical_policy = physical_policy
vnet.egress_policy = egress_policy
vnet.topology = vtopo
hub(vnet)

Figure 8: Low-level virtual hubs.

the virtual switch is V and the physical switch is P1 and
the virtual outport is set to 1 then the packet should be
forwarded out of port 1. Otherwise, if the virtual out-
port is 2 then the packet should be forwarded out of port
2. Notice that the physical policy does not set the for-
warding policy; it provides alternate paths through the
physical switching fabric. The compiler arranges for the
client policy to set the virtual outport (or not if the client
chooses to drop a packet) and thereby determines the
eventual route for packets through the physical network.

There are several reasons why programs written at this
level of abstraction have more power than those writ-
ten in the terse high-level language. First, these low-
level policies give programmers the flexibility to set the
ingress and egress policies with more precision. For in-
stance, if the programmer wish to admit only a subset
of the traffic arriving on physical switch P1, inport 1, to
the their network, she could add an additional constraint
to the policy. For example, rewriting the first disjunct of
the ingress policy as follows blocks entry by packets with
source IP 1.2.3.4.
match(switch=P1, inport=1)

& ˜match(srcip=1.2.3.4)
& push(vswitch=V, vinport=1)

More generally, the implementer of a network can pro-
vide transparent services to client programs by refining
network definitions at this level of abstraction. As an-
other simple example, consider the possibility of mon-
itoring the traffic flowing from physical switch P1 to
physical switch P2. To do so, we might set up a bucket
b and siphon off the appropriate traffic by modifying the
physical policy:
match(vswitch=V, switch=P1) & (

9

def virtualize_policy(ingress_policy,
egress_policy,
physical_policy,
user_policy):

return if_(˜match(vswitch=None,
vinport=None,
voutport=None),

(ingress_policy # A
>> move(switch="vswitch", # B

inport="vinport") # C
>> user_policy # D
>> move(vswitch="switch", # E

vinport="inport", # F
voutport="outport")), # G

passthrough)
>> physical_policy # H
>> egress_policy # I

Figure 9: Syntactic virtualization transformation.

match(voutport=1) & fwd(1) |
match(voutport=2) & fwd(2) & fwd(b))

Other possibilities include erecting a firewall between
switches or balancing the load across a set of physical
switches. Importantly, while the code fragments pre-
sented here illustrate the use of static policies for the sake
of simplicity, we can just as easily set up dynamic poli-
cies that react to network events such as changes in load
or new switches coming online or going offline.

Compiling to core FV. Compilation is a simple syn-
tactic transformation on the combination of the low-
level specification components (the ingress policy, the
egress policy, and the physical policy) and the high-
level (virtual) user policy. Figure 9 defines a function
virtualize_policy that implements the core ele-
ments of the transformation. In this figure, we have
elided just a few, fairly minor elements of the translation.
Nonetheless, the fact that we can implement the core el-
ements of an arbitrary topology transformation in just a
few lines highlights the remarkable expressive power of
the core FV policy language.

To understand the transformation, let us look at a
sample packet P = {switch:P2, inport:1} and
trace through the effect of the transformation on the vir-
tualized hub in Figure 8. The first step is to check if
the incoming packet is already virtualized. We do so by
testing for the presence of virtual headers. If the packet
hasn’t been virtualized, we assume that it is at the ingress
of a virtual switch and we must calculate the routing pa-
rameters (virtual switch, virtual inport, virtual outport)
for the physical policy to begin routing the packet. Other-
wise, we assume that the packet is inside a virtual switch
that spans more than one physical switch. In such a situa-
tion, we already have the necessary routing information,
and do not need to consult the ingress or user policies.

In this case, P has not been virtualized, and we take

the first branch of the if_ policy, marked A in Figure 9.
Next we invoke the ingress_policy which, by the
second disjunct, pushes the headers vswitch=V and
vinport=2, giving us the packet P’:
{switch:P2, inport:1, vswitch:V, vinport:2}

Our next step will be to calculate the outport of the
virtual switch that P’ should leave the virtual switch (if
any). The user_policy is responsible for determin-
ing the outport. Before running it, however, we must lift
the packet’s apparent environment to the same level of
abstraction as the user_policy. To do this, we move
the virtual switch header to the physical switch header
and do the same for the virtual inport and physical inport
headers (lines B and C). After the move, we obtain the
packet P’’:
{switch:[V, P2], inport:[2, 1], ...}

and, since policies can only inspect the top of the stack
of any header, the virtualization is transparent to the user
policy (applied to the packet at line D). The tenant floods,
which, respect to our virtual topology and inport, gener-
ates the packet P’’’:

{switch:[V, P2], inport:[2, 1], outport:1, ...}.

Finally, before sending P’’’ to the physical policy
for routing along the virtual switch fabric, we must re-
store the virtual headers, as it is in general important to
know both the current physical parameters and the (des-
tination) virtual parameters. After one final move (lines
E, F, G), we obtain the final packet Proute, which will
traverse the network:
{switch:P2, inport:1,
vswitch:V, vinport:2, voutport:1}.

We now pipe Proute into the physical policy for the
first hop (line H). The physical policy, by the third dis-
junct, sends Proute out of port 1, and the egress policy
(line I) does not apply as we have yet to leave V. On the
next hop, we process Proute’:
{switch:P1, inport:2,
vswitch:V, vinport:2, voutport:1}.

This packet has already been virtualized, so we do not
calculate virtual headers for it and instead skip straight
to the physical policy, which sends the packet out of port
1. This time, however, the forwarded packet matches
the egress policy, which pops the virtual headers before
sending the packet. This insures two properties: first, if
the next hop is a host, the packet has no virtual headers
and therefore does not need a VLAN header, which pre-
vents many hosts from properly processing the packet.
Second, if there was another virtual switch next, the
packet at the next hop would arrive without virtual head-
ers, triggering the first branch of the if_ policy to calcu-
late the necessary virtual headers for routing the packet
along the virtual switch’s fabric.

10

def topology_to_vmap(topo):
vmap = {}
for switch,port in boundary(topo):

vmap[(v_switch, Port(len(vmap)))] =
[(switch, port)]

return vmap

vn = abstract(net)
for t in net.topology_changes:

vmap = topology_to_vmap_dict(t)
vn.from_vmap(vmap)

Figure 10: Automated “big switch” view construction.

3.3 Automating Dynamic Views

FV is not limited to the static view definitions shown ear-
lier. Indeed, FV allows programmers to write dynamic
views that adapt to the current network topology.

More precisely, a dynamically changing topology can
be considered a stream of static topologies. FV provides
access to this stream via a network’s topology_-
changes attribute. Figure 10 shows a function can
automatically create an appropriate transformation map-
ping between a single “big switch” and an arbitrary un-
derlying network topology. Each time the network topol-
ogy changes, the topology_changes attribute gen-
erates a new static topology from which a new map-
ping is automatically calculated and a new view built.
Generating other transformed views (e.g., spanning tree,
multicast trees) becomes as simple as modifying the
topology_to_vmap function.

4 Case Study: Gateway Forwarder
FV’s key contribution lies in making it easy to write mod-
ular network applications. This is not a contribution that
can be easily assessed through quantitative plots. Rather,
in this section we demonstrate how FV can succinctly ad-
dress the motivating scenarios presented in Section 1.1.
Space constraints restrict us to delving into only two
of those scenarios in the following discussion. How-
ever, the complete code solutions integrated with the
FV compiler/runtime system and Mininet are available
at http://www.frenetic-lang.org/2.

Fundamentally, the logic needed to implement the so-
lution outlined in Figure 1, consists of a client program
paired with a view for each of Ethernet, Gateway, and IP
core. Of these, the logic of the gateway forwarding is the
most interesting.

C is the center node switch
V1, V2, V3 are virt. switches

ingress_policy =
match(at=None) & (

match(switch=C, inport=1)

2Code will be released no later than the NSDI camera-ready dead-
line.

& push(vswitch=V1, vinport=1)
| match(switch=C, inport=2)
& push(vswitch=V1, vinport=2)

| match(switch=C, inport=3)
& push(vswitch=V3, vinport=2)

| match(switch=C, inport=4)
& push(vswitch=V3, vinport=3))

| ((match(at=(1, 3))
& push(vswitch=V1, vinport=3)

| match(at=(2, 1))
& push(vswitch=V2, vinport=1)

| match(at=(2, 2))
& push(vswitch=V2, vinport=2)

| match(at=(3, 1))
& push(vswitch=V3, vinport=1)) >>

pop("at"))

egress_policy = pop("vswitch",
"vinport",
"voutport")

(C)
physical_policy = lambda vnet:

match(vswitch=V1, voutport=1) & fwd(1)
| match(vswitch=V1, voutport=2) & fwd(2)
| (match(vswitch=V1, voutport=3) &

(push(at=(2, 1)) >> vnet.vpolicy)
| match(vswitch=V2, voutport=1) &

(push(at=(1, 2)) >> vnet.vpolicy)
| match(vswitch=V2, voutport=2) &

(push(at=(3, 1)) >> vnet.vpolicy)
| match(vswitch=V3, voutport=1) &

(push(at=(2, 2)) >> vnet.vpolicy)
| match(vswitch=V3, voutport=2) & fwd(3)
| match(vswitch=V3, voutport=3) & fwd(4)

vtopo = Graph()
vtopo.add_node(V1,

ports={Port(1), Port(2), Port(3)})
vtopo.add_node(V2,

ports={Port(1), Port(2)})
vtopo.add_node(V3,

ports={Port(1), Port(2), Port(3)})
vtopo.add_edge(V1, V2)
vtopo.add_edge(V2, V3)

gw_ip is IP for V2, gw_mac is MAC for V2

def gateway(net):
pol = ˜match(dstip=gw_ip)

& match(switch=V2, inport=1)
& fwd(2)

net.install_policy(pol)

respond_to_arp(gw_ip, gw_mac)

q = query_unique(net,
match(switch=V2, inport=2),
fields=["dstip"])

for pkt in q:
mac = arp.resolve(pkt.dstip)
pol |= match(dstip=pkt.dstip)

& modify(dstmac=mac) & fwd(1)
net.install_policy(pol)

def virt_gateway(net):
vnet = abstract(net)

11

(A)
vnet.partial_virt = (C, 1): (V1, 1),

(C, 2): (V1, 2),
(C, 3): (V2, 2),
(C, 4): (V2, 3)

vnet.ingress_policy = ingress_policy
vnet.egress_policy = egress_policy
(B)
vnet.physical_policy = physical_policy(vnet)
vnet.topology = vtopo

run(learning_switch, vnet)
run(ip_core, vnet); run(gateway, vnet)

Since the view seen by the gateway has only two ports,
port 1 coming from the Ethernet and port 2 coming
from the IP core, all the gateway needs to do for incom-
ing packets on port 1 is either respond to them with
the appropriate MAC address (if the packet is an address
resolution request) or, otherwise, forward across to the IP
core. Traffic in the reverse direction is hardly more com-
plicated. Incoming packets must be destined for an ad-
dress on the local LAN. Thus for each new destination IP,
that address must be resolved to the corresponding layer
two MAC and then fowarded out port 1. Once pack-
ets leave the gateway forwarder on port 1 or port
2, they will be handled appropriately by either the learn-
ing switch or IP client programs, respectively, without
any need for special purpose logic in the gateway for-
warder. Furthermore, the same gateway forwarding code
will work under multiple different implementations of ei-
ther adjacent client program.

The implementation of the virtualization is similar to
the low-level virtual hub in Figure 8, except for two more
advanced implementation techniques. The first feature,
on the line below the marker (A), signals to FV that
only partial virtualization is desired. This has the effect
of vnet inheriting net’s topology, and rewiring links
to C to V1 and V3 (the topology on V1, V2, and V3 is
captured by vtopo). It also has the effect of making the
ingress, egress, and physical policies passthrough pack-
ets not on vtopo without virtualization.

The second implementation technique (lines (B) and
(C)) exploit lazy packet evaluation of policies by con-
structing a recursive policy (vnet.vpolicy refers to
the completely virtualized policy). This technique is nec-
essary to simulate packet forwarding behavior on virtual
switches that are not mapped to any underlying physical
switch, such as the gateway V2 (we use the internal at
header as local state to disambiguate what virtual switch
we are actually at).

5 Related Work
FV’s module language supports rich interactions be-
tween modules, encompassing abstraction, isolation,
and sharing, as discussed in Section 3.1, One or both
of these first two have been supported to some degree in

Figure 11: Case study topology.

second-generation SDN controllers (e.g., [20, 7, 14, 10,
17]). Most controllers are either commercial platforms,
or ongoing open-source efforts, making it difficult to pin-
point the features of each system precisely. Based on
publicly-available information, we compare FV to previ-
ous work based on form(s) of interaction supported:

Isolation: Some platforms use virtualization to support
isolation by allowing each module to handle traffic for a
different tenant or traffic class [20, 7, 14]. FV not only
supports these isolation features, but allows them to be
used in combination with both sharing and abstraction.

Abstraction: Some controller platforms allow appli-
cations to run on a completely abstracted view of the
topology in which the network appears as one layer-2
switch [14] or a subgraph of the physical network [20, 7].
Others provide underlying facilities such as global net-
work information bases which could be used to support
abstraction [10, 17]. And yet others such OpenStack’s
Quantum [16] project incorporate such capabilities into
cloud orchestration platforms. Yet, none provide the
fundamental capability to flexibly describe how to run
one module on an arbitrary virtual topology of virtual
switches implemented by another module, as in FV.

Sharing: While we are not aware of any controller
platform supporting sharing, the Frenetic [4] language
does provide limited sharing to single-writer, multiple-
reader programs. However, the output of one program
cannot be used as the input to another, nor does it provide
the abstraction and isolation features needed to produc-
tively compose multiple writers.

Beyond recent work on SDN controllers, network vir-
tualization has long been an active research area. The
term “network virtualization” has many different inter-
pretations, such as early VLAN and VPN technologies,
overlay networks running on end hosts, and techniques
for embedding virtual topologies on a shared network in-
frastructure. In contrast, our work on FV does not target
a specific use case (e.g., sharing a network testbed, host-
ing multiple tenants in a data center, dividing physical
resources, or hiding the internal network topology). In-

12

stead, these are specific applications that could run on
top of FV. Instead, FV is a general platform for building
modular, portable, and reusable control applications.

FV is part of a line of research on applying pro-
gramming language techniques to SDN, including re-
search on FML [8], Nettle [22], Resonance [13], and Fre-
netic [4, 11]. Our main contribution is a strong empha-
sis on building modular programs through composition.
This work goes far beyond our original Frenetic system
to support “programming in the large” through abstract
network views and sequential composition, as well as a
familiar imperative style of programming.

6 Conclusion and Future Work
We believe the right level of abstraction for programmers
is not a low-level interface to the data-plane hardware,
but instead a higher-level language for writing and com-
posing modules. FV is a new language that allows SDN
programmers to build large, sophisticated controller ap-
plications out of small, self-contained modules. It pro-
vides the programmatic tools that to allow network man-
agers to master the complexities of their domain.

References
[1] Beacon: A Java-based OpenFlow control platform., Nov 2010.

See http://www.beaconcontroller.net.
[2] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker. Virtu-

alizing the network forwarding plane. In PRESTO. ACM, 2010.
[3] Floodlight OpenFlow Controller. http://floodlight.

openflowhub.org/.
[4] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rex-

ford, A. Story, and D. Walker. Frenetic: A network programming
language. In ICFP, Sep 2011.

[5] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz,
P. Patel, and S. Sengupta. VL2: A scalable and flexible data
center network. In SIGCOMM, 2009.

[6] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McK-
eown, and S. Shenker. NOX: Towards an operating system for
networks. SIGCOMM CCR, 38(3), 2008.

[7] S. Gutz, A. Story, C. Schlesinger, and N. Foster. Splendid iso-
lation: A slice abstraction for software-defined networks. In
HotSDN, Aug 2012.

[8] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and
S. Shenker. Practical declarative network management. In
WREN, pages 1–10, 2009.

[9] E. Keller and J. Rexford. The ’platform as a service’ model
for networking. In Internet Network Management Workshop and
Workshop on Research in Enterprise Networking, Apr 2010.

[10] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A distributed control platform for large-scale
production networks. In OSDI, Oct 2010.

[11] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A com-
piler and run-time system for network programming languages.
SIGPLAN Not., 47(1):217–230, Jan 2012.

[12] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A compiler
and run-time system for network programs. In POPL, Jan 2012.

[13] A. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance:
Dynamic access control in enterprise networks. In WREN, Aug
2009.

[14] Nicira. It’s time to virtualize the net-
work, 2012. http://nicira.com/en/
network-virtualization-platform.

[15] Nicira. Networking in the era of virtualization. 2012.
[16] OpenStack. OpenStack Quantum, 2012. http://wiki.

openstack.org/Quantum.
[17] http://www.noxrepo.org/pox/about-pox/.
[18] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.

Abstractions for network update. In SIGCOMM, Aug 2012.
[19] S. Shenker. The future of networking and the past of protocols,

Oct 2011. Invited talk at Open Networking Summit.
[20] R. Sherwood, M. Chan, G. Gibb, N. Handigol, T.-Y. Huang,

P. Kazemian, M. Kobayashi, D. Underhill, K.-K. Yap, G. Appen-
zeller, and N. McKeown. Carving research slices out of your pro-
duction networks with OpenFlow. SIGCOMM CCR, 40(1):129–
130, 2010.

[21] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar. Can the production network be
the testbed? In OSDI, Oct 2010.

[22] A. Voellmy and P. Hudak. Nettle: Functional reactive program-
ming of OpenFlow networks. In PADL, Jan 2011.

13

http://www.beaconcontroller.net
http://floodlight.openflowhub.org/
http://floodlight.openflowhub.org/
http://nicira.com/en/network-virtualization-platform
http://nicira.com/en/network-virtualization-platform
http://wiki.openstack.org/Quantum
http://wiki.openstack.org/Quantum
http://www.noxrepo.org/pox/about-pox/

	Introduction
	Constructing Modular SDN Applications
	Language Support for Policy and Composition

	Core FV
	Static Policies
	Using static policies
	Crafting dynamic policies

	Composing Networks
	Network interactions
	Defining Network Views
	Automating Dynamic Views

	Case Study: Gateway Forwarder
	Related Work
	Conclusion and Future Work

