
1

FSR: Formal Analysis and Implementation Toolkit
for Safe Inter-domain Routing

Anduo Wang∗ Limin Jia† Wenchao Zhou∗ Yiqing Ren∗ Boon Thau Loo∗

Jennifer Rexford‡ Vivek Nigam∗ Andre Scedrov∗ Carolyn Talcott¶

University of Pennsylvania∗ Carnegie Mellon University† Princeton University‡ SRI International¶

{anduo,wenchaoz,yiqingr,boonloo}@seas.upenn.edu, {vnigam,scedrov}@math.upenn.edu liminjia@cmu.edu
jrex@cs.princeton.edu clt@csl.sri.com

Abstract—Inter-domain routing stitches the disparate parts of
the Internet together, making protocol stability a critical issue
to both researchers and practitioners. Yet, researchers create
safety proofs and counter-examples by hand, and build simulators
and prototypes to explore protocol dynamics. Similarly, network
operators analyze their router configurations manually, or using
home-grown tools. In this paper, we present a comprehensive
toolkit for analyzing and implementing routing policies, ranging
from high-level guidelines to specific router configurations. Our
Formally Safe Routing (FSR) toolkit performs all of these
functions from the same algebraic representation of routing
policy. We show that routing algebra has a natural translation
to both integer constraints (to perform safety analysis with SMT
solvers) and declarative programs (to generate distributed imple-
mentations). Our extensive experiments with realistic topologies
and policies show how FSR can detect problems in an AS’s iBGP
configuration, prove sufficient conditions for BGP safety, and
empirically evaluate convergence time.

I. INTRODUCTION

The Internet’s global routing system does not necessarily
converge, depending on how the Border Gateway Protocol
(BGP) policies of individual networks are configured. Since
protocol oscillations cause serious performance disruptions
and router overhead, researchers devote significant attention
to BGP stability (or “safety”). Abstract formal models of
BGP [15], [12], [14], [13], [36] allow researchers to explore
how local policies affect BGP stability and identify policy
guidelines that, if universally adopted by ISPs, ensure global
safety [9], [8], [11], [4], [10], [33]. While our understanding
of BGP safety has improved dramatically in the past decade,
each research study still proceeds independently—manually
creating proofs and counter-examples, and sometimes build-
ing simulators or prototypes to study protocol overhead and
transient behavior during convergence.

To aid the design, analysis, and evaluation of safe in-
terdomain routing, we propose the Formally Safe Routing
(FSR) toolkit. FSR serves two important communities. For
researchers, FSR automates important parts of the design
process and provides a common framework for describing,
evaluating, and comparing new safety guidelines. For net-
work operators, FSR automates the analysis of internal router
(iBGP) and border gateway (eBGP) configurations for safety
violations. For both communities, FSR automatically generates
realistic protocol implementations to evaluate real network

configurations (e.g., to study convergence time) prior to actual
deployment. The ideas underlying FSR also unify research in
routing algebras [13], [36] with recent advances in declarative
networking [22] to produce provably-correct implementations
of safe interdomain routing.

Declarative
Networking

Engine

SMT Solver
(Yices)

Policy Configurations

R
ou

tin
g

M
ec

ha
ni

sm
(P

at
h-

ve
ct

or
)

S
af

et
y

R
eq

ui
re

m
en

t
(S

tri
ct

 M
on

to
ni

ci
ty

)

Distributed
Implementation

Safety
Analysis Result

Fig. 1. FSR Architecture.

Given policy configurations as input, FSR produces an
analysis of safety properties and a distributed protocol im-
plementation, as shown in Figure 1. FSR has three main
underlying technologies:

Policy configuration as algebra: Our extensions to routing
algebra [13], [36] allow researchers and network operators to
express policy configurations in an abstract algebraic form.
These configurations can be anything from high-level policy
guidelines (e.g., proposed constraints that a researcher wants to
study) or a completely specified policy instance (e.g., an iBGP
configuration or a multi-AS network that an operator wants
to analyze). Router configuration files can be automatically
translated into the algebraic representation, easing the adoption
of FSR.

Safety analysis: To automatically analyze the policy configu-
ration, FSR reduces the convergence proof to a constraint sat-
isfaction problem, solved using the Yices SMT (Satisfiability
Modulo Theories) solver [42]. The solver determines whether
it is possible to jointly satisfy the policy configuration and
the safety requirement of “strict monotonicity” (the rightmost
input in Figure 1, drawn from previous work [36]). If all
constraints can be satisfied, the routing system is provably
safe; otherwise, the solver outputs a smallest subset of the

2

constraints that are not satisfiable to aid in identifying the
problem and fine-tuning the configuration.

Safe implementation: To enable an evaluation of proto-
col dynamics and convergence time, FSR uses our ex-
tended routing algebra to automatically generate a dis-
tributed routing-protocol implementation that matches the pol-
icy configuration—avoiding the time-consuming and error-
prone task of manually creating an implementation. Given
the policy configuration and a formal description of the path-
vector mechanism (the leftmost input in Figure 1), FSR
generates a correct translation to a Network Datalog (NDlog)
specification, which is then executed using the RapidNet
declarative networking engine [31], [27]. NDlog enables a
direct translation from routing algebra to NDlog programs.

In practice, FSR’s safe implementation can be used as
an emulation platform for studying BGP performance. By
changing the left input in Figure 1, researchers can also exper-
iment with alternative routing mechanisms, such as HLP [38].
Researchers and network operators can use FSR to evaluate a
variety of policy configurations prior to actual deployment on
a legacy routing platform. In a more radical form, we envision
that the FSR-generated protocol implementation could run in
the operational network.

FSR toolkit is built on our insights into how to combine
the use of routing algebra with an existing SMT solver
and declarative networking engine. FSR bridges the design,
analysis and implementation of routing protocols within one
unified framework. Our main research contributions are:

• Unified policy specifications: We extend routing algebra
to enable automated translation from a policy configuration
to a distributed protocol implementation. We propose an
automatic way to translate SPP (Stable Paths Problem) [12]
instances to an algebraic representation. This allows FSR
to apply safety analysis based on routing algebras to SPP
instances, in addition to policy guidelines.
• Automated safety analysis: We formulate the safety
analysis as a constraint solving problem. Given a policy
configuration, FSR automatically generates the constraints
as inputs to a standard SMT solver, relieving users from
manually constructing safety proofs. The analysis leverages
the natural mapping from input algebra and safety require-
ments to constraints.
• Generating NDlog implementations: We show how to
automatically translate from routing algebra to a provably-
correct NDlog program, bringing together two major tech-
niques for modeling routing protocols. The translation
bridges the gap between formal analysis of abstract routing
configurations and actual implementation of routing proto-
cols.
• Experiments on Internet topologies: We demonstrate that
FSR is effective through case studies, including detecting
iBGP configuration problems, proving sufficient conditions
for BGP safety, evaluating how convergence time scales
with network size, convergence behavior of eBGP instances,
and impact of alternative routing mechanisms on conver-
gence.

Paper roadmap: After a brief overview of routing algebra
in Section II, we describe in Section III how we apply
and extend routing algebra to express policy configurations
suitable for both analysis and implementation. Section IV
defines safety analysis as a constraint satisfiability problem,
and describes how FSR fully automates the analysis using an
SMT solver. In Section V, we describe how FSR automatically
generates a distributed NDlog implementation. We present our
experimental evaluation in Section VI, discuss related work in
Section VII, and conclude in Section VIII.

II. ROUTING ALGEBRA: BACKGROUND

The main input to FSR is the policy configuration, specified
in our extended version of routing algebra. In addition to
concisely specifying routing policy, the routing algebra enables
us to use existing results [36] to analyze safety. This section
presents a brief overview of the routing algebra and an exam-
ple that encodes the Gao-Rexford guideline. We also discuss
the shortcomings of the existing representation for encoding
export filters, to set the stage for our extended algebra in
Section III.

A. Abstract Routing Algebra
Routing algebra is an abstract structure that describes how

network nodes calculate routes, and the preference for one
route over another1. A node can refer to an AS or internal
router, depending on whether we are considering iBGP or
eBGP policy configurations respectively. We use an example
policy of shortest hop-count routing to show the relationship
between the abstract algebra and a concrete policy. We will
use the terms route and path interchangeably in the paper.

An abstract routing algebra is a tuple 〈Σ,�,L,⊕〉, with the
following components:
Path signatures (Σ): Path signatures describe the attributes of
the paths, so that routes can be ranked. A special element φ ∈
Σ, represents the signature for prohibited paths. In the hop-
count example, Σ is the set of natural numbers (corresponding
to the path length) and ∞ is the signature for prohibited path
(i.e., all paths with cost ∞ are excluded from consideration).
Path preference relation (�): Intuitively, if a � b, then a is
preferred to b. Since the ordering is total over the elements
of Σ, one can use this ordering for selecting the best path.
To ensure prohibited paths are never selected, α ≺ φ for any
signature α 6= φ. To select the shortest path, the “less than or
equal” (≤) relation on natural numbers is used as �.
Link labels (L): Link labels describe the attributes of links
between immediate neighbors. In the shortest hop-count rout-
ing example, neighboring nodes are one hop apart, so each
link’s attribute is set to 1 (i.e., L = {1}).
Path concatenation (⊕): The concatenation function captures
how an AS computes a new route based on a route received
from a neighbor. The function takes a label and a signature,
and returns a new signature. To compute path lengths, ⊕ is
the addition (+) function on natural numbers for summing up
the cost of a link and an existing path.

1The algebra presented in [36] differs slightly from the algebra in the later
publication on metarouting [13], which is the algebra we use here.

3

Complex policies can be represented as compositions of
simpler policies [13]. For example, ASes often rank routes
based on multiple attributes (e.g., the next-hop AS, the path
length, and so on) in a series of “tie-breaking” steps. This
is naturally captured by the lexical product operator, where
A⊗ B denotes the lexical product of algebras A = 〈ΣA,�A
,LA,⊕A〉 and B = 〈ΣB ,�B ,LB ,⊕B〉. Each link label for a
link uv in the resulting algebra is a pair, consisting of the
labels for uv in A and B. Similarly, each signature for a
path P is a pair composed of signatures from A and B. The
concatenation function is the pairwise concatenation of the
labels and signatures. The preference relation is also pairwise
in lexical order: the first components are compared using �A,
if equal then the second components are compared using �B .
For instance, the widest shortest hop-count policy is the lexical
product of a policy that prefers higher bandwidths with a
policy that prefers shorter paths.

B. Example: Gao-Rexford Guideline
To illustrate the use of algebra to encode policy guide-

lines, we consider an example based on business relationships
between neighboring ASes. We focus our discussion on a
policy guideline where an AS prefers routes through customers
over routes through peers or providers (called “guideline A”
in [9]). Similar algebraic encodings have been presented in
prior work [36], but our illustration here serves to highlight a
shortcoming of existing algebraic representations, in addition
to being used as one driving example in the paper.

Links and paths are distinguished based on their attributes,
mapping naturally to label set L, and signature set Σ, respec-
tively. Consequently, the representation of the policy guideline
in algebra is straightforward:
Link labels and route signatures. Routes are classified
based on the business relationship between neighboring ASes.
Routes received from a customer, provider, or peer are clas-
sified with path signatures C, P, and R, respectively. In addi-
tion, the signature φ explicitly denotes all prohibited routes.
Therefore, Σ = {C,P,R, φ}. Likewise, labels c/p/r denote
three classes of links to customers, providers, and peers, and
L = {c, p, r}.
Preference relations. Each AS prefers routes via customers
over those via providers or peers, which is straightforwardly
encoded as C ≺ P and C ≺ R. To have a total ordering on
the signatures, we must define a preference relation between
provider (P) and peer (R) routes. Using P = R implies that an
AS can decide which routes are preferred based on other tie-
breaking methods. So, our encoding uses the following three
constraints: C ≺ P , C ≺ R, and P = R.
Concatenation. The signature of a new route depends only on
the node’s relationship with its neighbor, as captured by the
link label; for example p⊕C = P , p⊕R = P , and p⊕P =
P . However, an AS does not export routes learned from one
peer or provider to other peers and providers, as illustrated
in Figure 2. The figure shows a node u deciding whether to
export (to its neighbor v) a route to destination d. Figure 2(a)
shows that u is a provider of v, making uv a provider link and
vu a customer link. Node u can export customer routes (C)

v u
p

c
d

C

Allowed paths

v u
r

r
d

C

v u
c

p
d

C/P/R

(a) exports only customer routes to provider

(b) exports only customer routes to peer

(c) exports all routes to customer

v u
p

c
d

P/R

Prohibited paths

v u
r

r
d

P/R

Fig. 2. Export policy for Gao-Rexford guideline. The bold line indicates a
route to destination d, with an associated route signature. Each unidirectional
link between nodes u and v has a link label.

to v, but any peer (R) and provider (P) routes are filtered. In
algebra, route filtering is expressed by generating a prohibited
path (φ). For import policies, if v decides not to import a
path of signature s from u, we can encode this import policy
as l ⊕ s = φ where l is the label for link vu. Our example
policy involves export filtering. An export filter at node u can
be modeled as an import filter at the receiving node v. The
export filters in Figure 2(a) can be represented by c ⊕ P =
φ and c ⊕ R = φ, where the customer v filters any routes
that u learned from its own peers or providers. The complete
definition of the concatenation operator is:

⊕ C R P
c C φ φ
r R φ φ
p P P P

The row names refer to link labels (c, r, and p), while
column names refer to signatures (C, R, and P). Note that
the above table is used to enumerate all possible ⊕ operator
outputs given input labels and signatures. A closed form policy
such as shortest-path can be written by expressing ⊕ as a
function directly, as we described in Section II-A. Converting
export policies at one node to import policies at another is fine
for analyzing safety—the two representations are equivalent.
However, the distinction matters when generating distributed
implementations, as we do in FSR. Our extended algebra
clearly identifies which node performs the filtering, so FSR
can generate faithful distributed implementations, as discussed
in Section II.

III. UNIFIED POLICY SPECIFICATION

FSR analyzes safety and generates a distributed implemen-
tation, given an input policy configuration. We support a
wide range of policy configurations, ranging from high-level
guidelines to specific instances, as summarized in Table I.
For example, the shortest hop-count routing policy discussed
in Section II does not specify the network topology but
completely specifies the path preferences; in contrast, the Gao-
Rexford guideline merely constrains the preferences and filters
based on business relationships. In other settings, a researcher
may analyze specific BGP “gadgets” that violate a proposed
safety guideline; similarly, network operators may verify the
safety of their network configuration. In these settings, the
topology, preferences, and permitted paths are much more

4

Policy Topology Preferences Filters
Hop-count General Specific None

Gao-Rexford General Constrained Constrained
IGP-cost Specific Specific Constrained

SPP instance Specific Specific Specific

TABLE I
SPECTRUM OF POLICY CONFIGURATIONS

concrete, and can be expressed naturally as instances of the
Stable Paths Problem (SPP) [12].

While the existing algebra can express a wide range of
policies, the concatenation operator does not indicate which
node performs route filtering—the importing node, the export-
ing node, or a combination of the two. In this section, we
introduce separate operators for import and export filtering,
to enable automated translation from a policy configuration to
a distributed protocol implementation. In the second half of
this section, we propose an automatic way to translate SPP
instances to an algebraic representation. Together, these two
extensions enable FSR to automatically generate distributed
implementations and analyze safety for a wide range of policy
configurations.

A. Separating Import and Export Filters
The routing algebra in Section II does not distinguish

whether routes are filtered during export or import—an im-
portant distinction when generating distributed protocol imple-
mentations. To specify the two filters separately, we replace
the original ⊕ operator with three concatenation functions
for export (⊕E) and import (⊕I) filtering, and a simple
concatenation function for route generation ⊕P . The result
of l⊕E s is either E (export), or F (filtered). For example, if
node u does not export routes with signature s to node v, we
can encode the export filter as l⊕E s = F , where the label of
link uv is l; otherwise l⊕E s = E. The result of l⊕I s is either
I (import) or F (filtered). For example, if u does not import
a path with signature s from w, we can encode this import
filter as l⊕I s = F where l is the label for link wu; otherwise
l ⊕I s = I . Whenever an incoming route advertisement is
received, the import filter (⊕I) is first applied. If accepted,
a new route is generated (⊕P), and exported after filtering
(⊕E).

A similar extension that distinguishes between import and
export labels was proposed in [39]. Their approach is equiva-
lent to ours, for the purpose of safety analysis. We chose ours
because it provides a straightforward translation to declarative
networking implementations.

Revisiting the Gao-Rexford example from Section II-B, the
three concatenation operators ⊕I , ⊕P , and ⊕E are defined as
follows:
⊕I C P R ⊕P C P R ⊕E C P R
c I I I c C C C c E F F
r I I I r R R R r E F F
p I I I p P P P p E E E

Each row of the leftmost (rightmost) table corresponds to
one import (export) policy in Figure 2, from top to bottom;
for example, in the rightmost table, the first row exports only

customers routes to a provider. Since there are no import
restrictions, the leftmost table has I for all its entries. The
center table shows the ⊕P operator, where new routes have
their signatures (C, R, and P) set according to the labels (c,
r, and p) respectively.

For safety analysis, we need to combine the import and
export filters into a single concatenation operator (⊕). At a
high level, this is as simple as assigning the signature φ (for
prohibited paths) to any path filtered by either the import or
the export policy. However, for a path vu ◦ Pud, the import
filter at v depends on the label l of the link vu, but the export
filter at u depends on the label l̄ of the reverse link uv. We
can generate ⊕ as follow: for each label l and signature s,
if l̄ ⊕E s = F or l ⊕I s = F , then l ⊕ s = φ; otherwise
l ⊕ s = l ⊕P s. In the Gao-Rexford example, neighboring
ASes have a bilateral business relationship, leading to link
labels of p̄ = c, c̄ = p, and r̄ = r and the combined ⊕ table
shown earlier in Section II-B.

In addition to the above Gao-Rexford guideline example,
our algebra extensions can be used to specify a variety of
import and export filters. For example, if the signature includes
the entire AS path, we can easily specify an import (export)
policy that disallows routes that traverse a particular AS, by ex-
pressing ⊕E (⊕I) to output F values whenever a route passes
through a particular AS. The lexical product [13] can then be
used to compose multiple policies, for instance, combining the
Gao-Rexford guideline with a policy that excludes particular
paths by AS.

B. Converting SPP Instances to Algebra
Researchers and network operators often want to analyze

concrete policy configurations to explore small “gadgets” that
violate a policy guideline or verify a real network configuration
is safe. The Stable Paths Problem (SPP) [12] is a common way
to represent concrete policy configurations. An SPP instance
consists of a topology, where each node has a ranked list of
“permitted paths” that it could learn from its neighbors. For
real router configurations, one can use existing approaches [28]
to extract per-node rankings. In the absence of these router
configurations, SPP instances can still be extracted by observ-
ing actual protocol executions over a period of time.

As an illustrative example, Figure 3 as presented in [6]
shows an example internal BGP (iBGP) configuration, where
the squares (a, b, and c) are route reflectors and the circles
(d, e, and f) are egress nodes that each have an externally-
learned route (r1, r2, and r3) to the destination. The solid lines
denote iBGP sessions (labeled with its IGP cost) and dotted
lines denote additional (IGP) links. Each node has an ordered
list of permitted paths, ranked from most to least preferred;
for instance, node a prefers the route aber2 over adr1.

To convert an SPP instance to an algebraic representation,
we need an automatic way to construct the equivalent link
labels, path signatures, preference relations, and concatenation
operator. [19] has shown a formal translation of SPP to routing
algebra . While the goal of our translation is the same as
theirs, the algebra we use is of a slightly different form. At
a high level, we assign a unique label to each link, and a
unique signature to each path. Then, we convert the ranking of

5

d

a
b

e f

c
(aber2)
(adr1)

(cadr1)
(cfr3)

(bcfr3)
(ber2)

r1 r2 r3
(r1)

(daber2)
(dacfr3)

(r2)
(ebadr1)
(ebcfr3)

(r3)
(fcber2)
(fcadr1)

10
10

10
5

5 5

Fig. 3. iBGP configuration instance

permitted paths into a series of preference relations, and define
the concatenation function to connect the permitted paths and
exclude any filtered routes. Using the SPP instance in Figure 3
as an example:
Labels and signatures. Since a concrete configuration
does not have any meaningful classification of links and
routes, we assign each link uv a unique label con-
stant luv , and each permitted path p = un · · ·u0 a
unique signature rp. In our iBGP example, the label
set L is {lab, lac, lad, lba, lbc, lbe, lca, lcb, lcf , lda, leb, lfc}, and
the signature set Σ is {r1, r2, r3, raber2, radr1, rbcfr3, rber2,
rcadr1, rcfr3, rdaber2, rdacfr3, rebadr1, rebcfr3, rfcber2,
rfcadr1}.
Preference relations. Each node has a ranked list of permitted
paths, of the form r1, r2, ...rn. We translate this list into the
equivalent pairwise preferences: r1 ≺ r2, r2 ≺ r3, ...rn−1 ≺
rn. For instance, at node a, raber2 ≺ radr1. The preference
relation is defined as the collection of preference relations at
each node.
Concatenation. The ⊕ operator constrains the relationship
between label and signature constants. In particular, for any
permitted path ruvp at node u, ruvp = luv ⊕ rvp; for instance,
raber2 = lab ⊕ rber2. Any other paths are disallowed by
assigning the signature φ; for instance, lcb⊕rber2 = φ because
path cber2 is not listed as a permitted path.

Using the above process, we have also encoded various
eBGP gadgets [12] in algebra as SPP instances.

C. Expressiveness of Algebra
Routing algebra is a useful abstraction for specifying a wide

range of routing policies, which we demonstrate through our
case studies (Section VI). There are a few known limitations
with routing algebra as defined in [36], [13]. For instance,
the inability to express the incompatibility of MEDs from two
different neighbors. However any concrete routing configura-
tion that uses MED can be easily encoded in algebra as SPP
instances described in Section III-B, which is what is needed
by FSR to analyze concrete iBGP configurations.

IV. AUTOMATED SAFETY ANALYSIS

Given any algebra, FSR fully automates the process of
safety analysis, relieving users from the manual and error-
prone process of proving safety for each new algebra. The key
insight is that the safety analysis can be translated automat-
ically into integer constraints checkable by a standard SMT
solver. Applying our technique of encoding SPP instances
using algebra (Section III-B), FSR can check safety for both

high-level policy guidelines and concrete configurations. After
a brief review of safety analysis based on routing algebra, we
explain how to generate the integer constraints and present
three examples that illustrate the conversion process and
resulting safety analysis.

A. Strict Monotonicity Implies Safety
FSR uses the safety requirement of strict monotonicity, in

order to automatically check that a given policy configuration
converges. This is an important property of a routing algebra,
which ensures that a path does not become more preferred as
it grows longer. Formally:

Monotonicity: s � l ⊕ s, ∀l ∈ L,∀s ∈ Σ
Monotonicity ensures that a path Pv from v to the destination
is not less preferred than a longer path uv ◦ Pv , where uv is
a link from u to v. In the definitions above, s represents the
signature of Pv and l is the label for uv.

FSR uses the stricter form of monotonicity, where l and l⊕s
cannot be equally preferred, defined as follows:

Strict Monotonicity: s ≺ l ⊕ s, ∀l ∈ L,∀s ∈ Σ
Sobrinho has proved the following theorem [36].
Theorem 4.1: If the routing algebra is strictly monotonic,

then the path-vector protocol converges.
Theorem 4.1 reduces the convergence analysis of protocols

to modeling the routing policies in a routing algebra, and
proving that the algebra is strictly monotonic. Note that
strict monotonicity is a sufficient, not necessary condition.
Hence, there are safe systems that cannot be specified as
a strictly monotonic algebra. Consequently, FSR will report
these systems as unsafe (i.e. false positives). However, this
sufficient condition is still very useful in practice to analyze
the safety of BGP systems.

The strict monotonicity is actually the most general condi-
tion known that guarantees safety regardless of the network
topology. This enables researchers and network operators
using FSR to benefit from this theoretical result by providing
automated tool support.

B. Converting Policies to Yices Constraints
Policy configurations expressed in routing algebra have a

natural representation as integer constraints. Path signatures
can be mapped to integers, and path preferences can be
expressed as comparisons (≤) between these integers. By
definition [36], the preference relation � needs to be a total
relations, and ≤ is indeed a total order. This mapping is also
complete because we can always map the signatures onto the
integer domain, when the� is a total order. Strict monotonicity
imposes additional constraints on the preference relation, also
naturally captured by comparing integers. This observation al-
lows FSR to leverage SMT solvers, which determine whether a
set of constraints (i.e., first-order logic formulas) are satisfiable
based on a set of theories (e.g., integer theory). Translating
from algebraic input to SMT constraints is straightforward,
making this approach preferable to other alternatives (e.g.,
SAT solvers) that would require greater effort to generate
encoding.

In addition, an SMT solver produces valuable output, be-
yond the basic “yes/no” answer. If the constraints can be

6

satisfied, the solver returns a concrete instance (example) that
satisfies all of the constraints. For instance, we consider the
simple constraint x < 2 when x is an integer. An SMT
solver can prove that there exists a value instantiating x that
makes x < 2 true, and returns x = 1 as an example. If the
constraints cannot be satisfied, the solver returns a smallest
subset of constraints that are not satisfiable—an invaluable aid
in identifying the problematic parts of the policy configuration.
In our FSR implementation, we utilize the Yices [42] SMT
solver, although the technique we present here can be applied
to SMT solvers in general. Our technique generalizes to other
SMT solvers well because our encoding only requires the basic
integer theory which is readily included in most SMT solvers.

Input to SMT solver: Given a policy configuration written in
routing algebra, FSR generates integer constraints for safety
analysis recognizable by the solver. FSR generates two kinds
of constraints based on the sufficient conditions required
for safety in Section IV-A: (1) route preference constraints
based on � relation (2) strictly monotonic constraints based
on ⊕ function. FSR automatically generates these integer
comparison constraints, allowing us to leverage Yices built-in
integer support for enforcing total ordering. More concretely,
we generate constraints from the algebraic specification via
the following three steps:
• Step 1: For each signature, we define a variable of the
type positive integer.
• Step 2: For each s1 � s2 in the specification, we generate

a constraint s1 ≤ s2. Since signatures are integers, the ≤
relation imposes a total ordering.
• Step 3: For any signature s and s′, and label l, for each
definition of s′ = l⊕s in the specification, a constraint s <
s′ is generated. This constraint enforces strict monotonicity.
To check for (non-strict) monotonicity, we could generate
s ≤ s′ instead.

SMT solver output: The conjunctions of all constraints are
checked by Yices for satisfiability. If Yices returns sat, an
assignment of integers to variables (signatures) exists that
satisfies all of the constraints. This means that the algebra
is strictly monotonic, and by Theorem 4.1, any path-vector
protocol that implements the policy configurations converges.
On the other hand, if Yices returns unsat, specific input
constraints that form an unsatisfiable core are provided. Un-
satisfiable core (or unsat core) is a minimal set of inputs
constraints that cannot be conjunctively satisfied. It is often
significantly smaller than the set of input constraints.

Given the natural mapping of the original input specifica-
tions in algebra and Yices constraints, one can easily identify
the preference relation for each violating constraint. The user
can use these violating preferences as hints to identify (and
fix) specific problematic parts of the policy configuration.
Note that, there can be multiple unsatisfiable cores (i.e. many
configuration conflicts), and Yices only outputs one of them
at each invocation. To fix all the configuration problems, the
user can attempt removing all unsatisfiable cores one by one
in an iterative fashion.

Policy compositions: The lexical product (Section II-A) of a
monotonic algebra and a strict monotonic algebra is strictly

monotonic [13]. For policy configurations in the form of a
lexical product over algebras, safety analysis can be performed
by analyzing each algebra separately. Consider the lexical
product A ⊗ B of two algebras A, B. Analysis starts from
algebra A, and if it is strictly monotonic, the composed policy
is safe. If A is monotonic, then B is checked. If B is strictly
monotonic, then the composed algebra is safe, otherwise it is
deemed unsafe. If A is not even monotonic, then the composed
policy is deemed unsafe.

C. Yices Examples
We present several examples to demonstrate the three-step

process of generating Yices constraints from algebraic input
and the analysis process.
Shortest Hop-Count: We start with the simplest example
using shortest hop-count. The algebraic specification of this
policy is presented in Section II-A. We show the Yices
encoding of the constraints below:
(define-type Sig (subtype (n::nat) (> n 0)))
(assert (forall (s::Sig) (< s s+1)))

The first line declares a type (Sig) for signatures, which
is the subset of positive integers. Yices provides the built-in
type nat for integers. Yices uses prefix syntax, so n > 0
is encoded as (> n 0). Step 1 and 2 are omitted since the
signatures are already integers, and the preference relation �
is already specified using ≤.

The second line corresponds to step 3, and encodes the strict
monotone constraint. assert is the keyword to tell Yices to
insert this constraint into the logical context to be checked for
satisfiability. Since the domain of the signatures is infinite, we
cannot enumerate all strict-monotonicity constraints; instead,
we universally quantify using forall over all signatures.

As expected, Yices returns sat for this policy.
Gao-Rexford Guideline A: Our second example analyzes the
safety of Gao-Rexford guideline A, with the routing algebra
presented earlier in Section II-B. The constraints are expressed
in Yices as:
(define-type Sig (subtype (n::nat) (> n 0)))
(define C::Sig) (define P::Sig) (define R::Sig)
;; preference relations
(assert (< C R)) (assert (< C P)) (assert (= R P))
;; strict monotonicity
(assert (< C C)) (assert (< C R)) (assert (< C P))
(assert (< R P)) (assert (< P P))

The first four statements define the three classes of
signatures—customer (C), provider (P), and peer (R)—as
positive integers (step 1). The next three constraints correspond
to step 2, encoding the route preference constraints of C < R,
C < P and R = P . The next five constraints correspond to
entries in the combined concatenation operator in Section II-B
after omitting constraints in the form S < φ, which are already
ensured to be true because any signature is strictly preferred
over the signature for prohibited path φ by definition. This
corresponds to step 3, which encodes strict monotonicity of
the algebra.

Interestingly, Yices returns unsat for the above input, indi-
cating that the algebra is not strictly monotonic. One of the
violating constraints is resulted from c⊕C = C, which states
that a customer route that is sent from a customer link is still a

7

customer route. This is a known property of the Gao-Rexford
guideline, which requires an additional constraint on acyclicity
in the customer-provider relationship for safety.

Another approach to guaranteeing safety in
Gao-Rexford is to use another algebra that is strictly
monotonic as the tie breaker, in the event of a tie between
two equally preferred route classes (e.g., provider and peer,
or routes from same classes). As an example of policy
composition, we first use Yices to prove that the algebra
encoding guideline A is monotonic (s � l⊕s ∀l ∈ L,∀s ∈ Σ),
and then compose guideline A with a strictly monotonic
algebra such as shortest hop-count; the resulting protocol
converges.

To perform the above analysis, we modify the strict mono-
tonicity constraints in the above Yices encoding to check for
monotonicity constraints. This requires changing each < to ≤,
e.g. (assert (<= C C)), etc. When we check the constraints,
Yices returns sat, and provides a possible instantiation C=1,
P=2, R=2.

In addition to guideline A, we have applied FSR to
analyze a number of guidelines including Gao-Rexford
guideline B [9] and also guidelines that ensure safe
backup routing [8].

Internal BGP Configuration Instance: As our final example,
we use FSR to analyze the six-node iBGP configuration in
Figure 3, using our technique for encoding SPP instances in
algebra (Section III-B). In Section VI, we present our experi-
ences analyzing a larger network based on the Rocketfuel [37]
dataset, and also the analysis of well-known eBGP gadgets.

We use the same three-step process to generate solver
constraints. First, each permitted path in the SPP instance
is mapped to an integer variable. Second, a constraint is
generated for each route preference, derived from the per-node
rankings in SPP. Finally, for each entry of the concatenation
function, we generate a strict monotonic constraint as de-
scribed in step 3. All in all, eighteen constraints are generated.

The number of constraints depends on the number of per-
mitted paths which, in turn, depends on the network topology.
In contrast, the previous two examples are independent of
the network topology. These differences reflect the broad
applicability of FSR, in analyzing policy configurations that
range from partially to fully specified (see Table I).

For these input constraints, Yices returns unsat, meaning
that the algebra violates strict monotonicity. In fact, this iBGP
system is known to be unsafe [6].

However, given eighteen constraints, pinpointing the prob-
lem manually is quite difficult. For larger networks with even
more constraints, manual analysis becomes even harder. Fortu-
nately, Yices can generate the minimal set of constraints (unsat
core) that cannot be satisfied. More details on pinpointing
configuration problems with unsat core are in Section VI-B.

Here, the unsat core includes the rankings of nodes a, b
and c’s and strict monotonicity constraints involving available
routes of those nodes, but does not include constraints for
the route preferences of node d, e, and f. This leads to
the conclusion that there are potential problems with the
configurations of the route reflectors a, b, and c. In fact, each

reflector prefers other reflector’s client over its own, which
causes an oscillation [6].

Once the problem is identified, the network operator can
change the network settings such as topology, so that the route
preferences of nodes a, b, and c are changed, and use FSR to
analyze the safety of the new configuration. As validation, we
rerun Yices with a modified configuration that does not include
the preference cycle among the reflector nodes, and the solver
returns sat.
Soundness of SPP Safety Analysis. For an SPP instance,
each AS only knows the preference relation among the routes
that are in its own routing table, and the policy configurations
do not enforce any order among routes that originate from
different nodes. However, the safety analysis of the routing
algebra requires a total ordering of all routes. The output of
sat means that there exists one strictly monotonic algebra
that extends the route preference relation specified in policy
configurations to be a total order. Applying Theorem 4.1
directly, we know that a protocol that implements this extended
algebra is safe. We argue that a protocol that implements the
extended algebra has exactly the same behavior as a protocol
that implements the original policy configurations where the
preference relation is only a partial order. The reason is
that additional preferences in the extended relation describes
preferences between routes that have different sources, which
are not relevant to the route selection process in practice
anyway; and therefore will not affect the protocol behavior.

V. DISTRIBUTED IMPLEMENTATIONS

In addition to convergence analysis, FSR generates a proto-
col implementation from the policy configurations. FSR uses
a declarative networking language called Network Datalog
(NDlog) as an intermediary language to bridge the gap be-
tween the abstract routing algebra and efficient distributed
implementations.

Our choice of NDlog is motivated by the following. First,
the declarative features of NDlog allows for straightforward
translation from the algebra to NDlog programs. Second,
NDlog enables a variety of routing protocols and overlay
networks to be specified in a natural and concise manner.
In fact, NDlog specifications are orders of magnitude less
code than imperative implementations. For example, tradi-
tional routing protocols such as the path vector and distance-
vector protocols can be expressed in a few lines of code [24],
and a more complex protocol such as the Chord distributed
hash table can be expressed in 47 lines. This makes possible
a clean and concise proof (via logical inductions) of the
correctness of the generated NDlog programs with regard to
the algebra. The compact specifications also makes it easy
to incorporate alternative routing mechanisms to the basic
path-vector protocol, as we will later demonstrate in our
evaluation section. Finally, when compiled and executed, these
declarative protocols perform efficiently relative to imperative
implementations [22].

Declarative techniques have been widely used for distributed
protocol implementations, including, overlay networks [23],
fault tolerance protocols [35], cloud computing [1], sensor
networks [2], overlay network compositions [25], and wireless

8

routing [21]. All these are evidences of NDlog’s widespread
applicability.

In FSR prototype, we use the open-source RapidNet [31]
declarative networking engine as a basis for executing NDlog
programs. NDlog programs are compiled by RapidNet into
distributed execution plans that are based on the Click [20]
execution model. Our generated NDlog implementation is
composed of two components: one implements the rout-
ing mechanisms, the other implements the routing policies.
FSR provides a built-in module implementing the path-vector
mechanism, which we discuss in detail in Section V-A. The
component implementing policies is directly translated from
the algebra. In Section V-B, we show how FSR translates the
algebra into NDlog programs.

A. Generalized Path Vector Mechanism
FSR takes as input, a generalized path-vector protocol, as

its default routing mechanism. The NDlog implementation is
shown below, and for the rest of this paper we refer to it as
the GPV program. GPV implements a path-vector protocol that
computes the most preferred path based on a routing algebra.

NDlog is a distributed variant of Datalog. An NDlog pro-
gram is composed of several rules. Each rule has the form p

:- q1, q2, ..., qn., which can be read informally as “q1
and q2 and ... and qn implies p”. Here, p is the head of the
rule, and q1, q2,...,qn is a list of predicates that constitutes
the body of the rule. A rule is triggered (evaluated) once
all the body predicate values (tuples) are generated. Once
triggered, the head tuple is generated. Rule execution is done
in a continuous, long-running fashion using a distributed query
processor, where rule head tuples are continuously updated
(inserted or deleted) in an incremental fashion [26] as the body
tuples are updated.
//GPV program
gpvRecv sig(@U,SNew,PNew) :- msg(@U,V,D,S,P),

PNew=f_concatPath(U,P), V=f_head(P),
SNew=f_concatSig(L,S), label(@U,V,L),
f_import(L,S)=true.

gpvStore route(@U,D,S,P) :- sig(@U,S,P), D=f_last(P).

gpvSelect localOpt(@U,D,a_pref<S>,P) :- route(@U,D,S,P).

gpvSend msg(@N,U,D,S,P) :- localOpt(@U,D,S,P),
label(@U,N,L), f_export(L,S)=true.

In NDlog, the names of predicates, function symbols, and
constants begin with a lower-case letter, while variable names
begin with an upper-case letter. Similar to most implementa-
tions of Datalog, NDlog includes a limited set of function calls
beginning with “f_”, and user-defined arithmetic functions be-
ginning with “a_”. These functions include boolean predicates,
arithmetic computations, and simple list operations.

The above program manipulates the following tuples.
label(@U,V,L)2 tuples, where each tuple represents an edge
from the node itself (U) to one of its neighbors (V) of attribute
L. A set of computed routes, stored as sig(@U,S,P) tuples
at each source node U, where S and P are the signature and

2NDlog supports a location specifier, expressed with “@” symbol followed
by an attribute. This attribute is used to denote the source location of the
corresponding tuple. For example, label tuples are stored based on the
value of the U attribute.

Algebra NDlog Predicates / functions
� f_pref
⊕P f_concatSig
⊕I f_import
⊕E f_export

TABLE II
ALGEBRA AND NDlog MAPPING.

path of the route respectively. Route advertisement messages
exchanged among nodes are represented by msg(@U,V,D,S,P)

tuples. Each tuple denotes a message that is sent by node V to
U, and the advertised route is for destination D with path P and
signature S. We provide a high-level description of the above
program, broken down by rules:
• Receiving routes. Rule gpvRecv is triggered upon receiv-

ing a route advertisement (msg tuple) from a neighboring
node. Based on the route advertisement, the rule generates
a new route with a new path PNew and a new signature
SNew. The f_concatSig implements the simple concate-
nation function ⊕P , while the function f_import(L,S),
implements the import filter ⊕I in algebra. It evaluates to
true if and only if L⊕IS= I .
• Storing routes. Rule gpvStore builds a route table at each

node, which stores all the candidate routes to the destination,
by using the information in its locally maintained sig table.
• Selecting routes. Rule gpvSelect computes the optimal

route (represented as localOpt tuples) based on the route

table. The user-defined aggregate function a_pref computes
the optimal route by using the route preference function
f_pref (as its comparison function) , which implements the
� relation in algebra.
• Sending routes. Rule gpvSend propagates new routes

to neighbors. Whenever a node’s local optimal routes
localOpt(@U,D,S,P) to destination D is updated, the up-
dated route is re-advertised to all neighbors N. Similar to
import policies, we use the f_export function to filter out
routes: rule gpvSend only generates a message if the route is
not filtered by the export policy. f_export(L,S) implements
⊕E , and it returns true if and only if L⊕ES= E.
GPV provides a template for users to plug in customize

policy configurations. One of the advantages of using NDlog
is its ease of incorporating routing policies in algebraic form
with routing mechanisms (e.g. GPV). Signature generation is
achieved by performing a predicate unification of labels and
signatures recursively in NDlog rules, and applying the appro-
priate function (f_concatSig) for generating new signatures.
The recursive signature generation (from other signatures) is
encoded in only 4 rules in NDlog. Import and export filters are
simply boolean functions (f_export, f_import) in rule bodies
which are triggered when true. While it is certainly possible to
use an imperative language instead, NDlog provides the right
balance of features in terms of compact specifications, ease of
proofs and translation from algebra.

B. Converting Policies to NDlog Functions
Table II summaries the correspondence between definitions

in algebra, and the function names in the generated NDlog

9

programs. We use the extended algebra introduced in Sec-
tion III-A, which distinguishes between simple concatenation
function ⊕P , import filter ⊕I , and export filter ⊕E . Functions
f_pref, f_concatSig, f_import, and f_export are directly
generated from input routing algebra as follows:
• Step 1. For each s1 � s2 in the specification, add a

statement to f_pref(S1,S2) that returns true if S1= s1 and
S2= s2.
• Step 2. For any signature s and s′, and label l, for each

definition of s′ = l ⊕P s in the specification, generate a
statement in f_concatSig(L,S) that returns s′ if L= l and
S= s.
• Step 3. For any signature s and label l, if l ⊕E s = F ,

generate a statement in f_export(L,S) that returns false if
L= l and S= s. Similarly define f_import(L,S) for import
filter ⊕I .
To deploy the NDlog implementation on a concrete topol-

ogy, each router takes additional configuration information
automatically generated from the topology:
• Step 4. For each link in the input topology, generate a
corresponding label tuple (assigned a value from the set L).
A sig tuple is also generated for each one-hop path to the
destination. Signatures associated with these one-hop paths
are typically known as the origination set [13], a subset of
Σ defined as part of the input algebra.
Note that the above steps can be generated on a per-node

basis, based on each node’s input algebra. If the algebra
directly uses functions and relations for which NDlog has
built-in support (e.g. integer arithmetic), then steps 1 to 3 can
simply use NDlog’s built-in functions.
Policy Composition: If the network designers choose to use
the compositional feature of the routing algebra, the compo-
sitional operators can be straightforwardly mapped to NDlog
templates as well. In particular, the lexical product of two
policy algebras can also be concisely represented in NDlog by
encoding the labels and signatures as a pair, and customizing
the f_pref comparator function to check the first attribute, and
then the second attribute in the case of a tie-breaker. We omit
a detailed discussion due to space constraints.

C. NDlog Examples
We present examples to demonstrate the process of gener-

ating NDlog programs from input algebra.
Shortest Hop-Count: For shortest hop-count, the label for
each link is 1, so for a node u, for each of u’s neighbor v,
FSR generates a tuple label(@u,v,1). If u has a direct link
to the destination d, then a tuple sig(@u,1,[ud]) is defined.
This completes Step 4.

Next the concatenation and preference function are gener-
ated (Step 1 and 2). The concatenation function is defined
as integer addition, and the preference relation is integer ≤
relation.
#def_func f_concatSig(L,S) { return L+S }
#def_func f_pref(S1,S2) { return S1 <= S2 }

Finally, the shortest hop-count policy does not have any
import or export filtering, so they are the constant true

function (Step 3).

#def_func f_export(L,S) { return true }
#def_func f_import(L,S) { return true }

Gao-Rexford Guideline A: Based on the network topology,
for a node u, FSR generates a label(@u,v,ch) tuple for each
of its neighbor v, and ch is ‘c’ if v is u’s customer; ‘p’, if v is
u’s provider; and ‘r’, if v is u’s peer. Similarly, for each initial
route of length 1, sig(@u,ch,[ud]) is defined and ch is ‘C’
if the link ud is a customer link; ‘P ’, if ud is a provider link;
and ‘R’, if ud is a peer link. This corresponds to Step 4.

Next, in Step 1 and 2, definitions for functions implementing
⊕P and � are generated as follows.
#def_func f_concatSig(L,S) {

if (L==’c’) && (S==’C’) return ’C’
if (L==’c’) && (S==’P’) return ’C’
if (L==’c’) && (S==’R’) return ’C’
if (L==’p’) && (S==’C’) return ’P’
.... }

#def_func f_pref(S1,S2) {
return (S1==’C’ && S2==’R’) || // C < R

(S1==’C’ && S2==’P’) // C < P }

f_concatSig returns the signature S based on the link L, as
defined by the earlier input algebra c⊕P ∗ = C, p⊕P ∗ = P ,
r ⊕P ∗ = R, where ∗ stands in for any signature C, P , or
R. For each entry in ⊕P , FSR generates an if clause, and
we omit the rest of the definitions. f_pref returns true if S1

is a customer route (C). This forces a customer route to be
preferred over a peer/provider routes (R and P respectively).
This is a direct translation from the earlier input algebra for
Gao-Rexford, namely C ≺ P and C ≺ R.

Finally, import and export functions are generated based on
the filters ⊕I and ⊕E . Since guideline A does not specify
import filters, f_import is the constant function that always
returns true. The export function returns true if the route
is not filtered (l ⊕E s = E); false if the route is filtered
(l ⊕E s = F).
#def_func f_import(L,S) { return true }
#def_func f_export(L,S) {
if (L==’c’ && S==’P’) return false
if (L==’c’ && S==’R’) return false
if (L==’r’ && S==’P’) return false
if (L==’r’ && S==’R’) return false
return true }

SPP Instances: Since SPP imposes explicit rankings,
the f_pref function would compare signatures for a given
source/destination pair. Based on per-node rankings of paths,
f_pref(S1,S2) will return true if S1 is preferred over S2, and
false otherwise. To speed up the comparison process, one pos-
sible optimization (enhancement to step 2) is to store the per-
node rankings in an ordered table for fast retrieval. Similarly,
for export filters, one can maintain a table of permitted paths to
be exported, and the f_export simply checks that a particular
path is in the permitted export list, before it is exported. Import
filters can be implemented similarly.

D. Correctness of NDlog implementation
In order to apply Theorem 4.1 and show that the NDlog

implementation of a strictly monotonic algebra converges, we
need to show the correctness of the NDlog implementation.
The correctness depends on two conditions: first, the NDlog
program correctly implements the path-vector protocol, and
second, the NDlog program correctly implements the input

10

algebra. Prior work has experimentally validated [22] and for-
mally proven [40] the correctness of an NDlog implementation
of the path-vector protocol. In addition, [30] has formally
proven correct NDlog’s operational semantics. We hence focus
on the second condition.

We introduce several notations to set up our proofs. We
define ι to be a function that maps the set of links in the
network topology to the set of labels in L. Given a concrete
network topology, ι is the correct assignment of labels to links,
i.e. ι(uv) = l if the label of link uv is l. The function σ0
maps initial routes (route of length 1) to their signatures. σ0
is the correct signature assignments to initial routes. Given a
destination d, σ0([ud]) = s if the signature of route [ud] is s.

Given ι, σ0 and an algebra A, function σι,σ0,A maps each
route to its signature. When it is clear from the context, we
omit the subscripts, and write σ.

σ(p) =

{
σ0(p) p = [ud]
ι(uv)⊕ σ(p′) p = uv ◦ p′

Finally we define a function nd(t) that returns the NDlog
term that represents t.

A key aspect is to prove that NDlog computes the signatures
for routes correctly, formally:

Theorem 5.1 (Correctness of NDlog translation): Given
any path p, if sig(nd(u), nd(s), nd(p)) is generated by prog,
and s 6= φ, then s = σ(p).

Detailed proofs can be found in Appendix A

VI. EVALUATION

We present several case studies that span analysis and
implementation to demonstrate several ways of using FSR:
(1) automatically generating a proof of safety or pinpointing
configuration problems of both policy guidelines and specific
instances, (2) empirically evaluating protocol dynamics and
temporal properties that cannot be easily checked in formal
analysis, and (3) deploying and evaluating alternative routing
mechanisms.

In all cases, the inputs required to our tool for analysis
and experimentation are the routing mechanism, input policies
(specified in the form of algebra), and a network topology
(synthetically generated or obtained from either CAIDA [3]
or Rocketfuel [37]).
Evaluation environment. FSR provides an interface for users
to specify policy configurations using algebraic specifications,
which are compiled into NDlog programs. FSR uses the
RapidNet [31], [27] declarative networking engine to compile
the NDlog programs into applications (with an execution
model similar to Click [20]) executable in ns-3 [29], an
emerging discrete event-driven simulator similar to the popular
ns-2. Like its predecessor, ns-3 emulates all layers of the
network stack, supporting configurable loss, packet queuing,
and network topology models. It also allows for a simulation
mode, enabling a comprehensive examination under various
network topologies and conditions, as well as an deployment
mode where different hosts in a testbed environment execute
the deployed system over a real network. The ability to run
the same application in these two modes enables us to execute
each NDlog program at scale in simulation and in an actual
implementation running on a testbed, providing two avenues
for augmenting the formal analysis.

A. Convergence Time vs. Network Size

Our first case study presents a scenario where a researcher
empirically evaluates policy guidelines using the distributed
NDlog implementation automatically generated from the alge-
braic specifications. To ensure strict monotonicity, we compose
the basic Gao-Rexford guideline A policy with the shortest
hop-count as the tie-breaker (using algebra’s composition
operator), as described in Section IV-C. The researcher has
already analyzed the composed policy for its safety properties
using Yices, but would like to measure the convergence
time with respect to the depth of the AS hierarchy. A prior
study [32] proved that, the worst case upper-bound of the
convergence time for Gao-Rexford guideline is 2 × (d + 1)
phases (rounds of route advertisements), where d is the length
of the longest customer-provider chain. The researcher can use
the implementation that FSR generates from GPV (Section V),
and policy configurations (Section III-A). We present our
results using RapidNet’s simulation and deployment modes.

Simulation mode: Our first experiment is carried out in
RapidNet’s simulation mode. As our input topologies, we
utilize the AS-level network graph (with annotated customer-
provider relationships) provided in the CAIDA dataset [3]. The
simulation is performed in a quad-core machine with Intel
Xeon 2.33GHz CPUs and 4GB memory running Linux 2.6.
In the simulation setup, all links have 100 Mbps in bandwidth
and 10 ms latency.

To fit the simulation into memory and use a similar net-
work size for our subsequent testbed evaluation, we extract
subgraphs from CAIDA’s global network topology as follows:
we remove all stub ASes3, randomly select an AS R as the root,
and then extract the AS hierarchy (transitively) provided by the
AS. We include an AS to be part of the subgraph rooted at R if
there exists a route consisting only of peer/customer links from
R to the AS. We choose 14 such subgraphs with the length of
the longest customer-provider chains ranging from 3-16. For
each subgraph, we executed the GPV protocol with guideline
A, and measured the convergence time (from start of protocol
until all nodes have computed routes to all destinations).

Figure 4 (CAIDA-Sim) shows the protocol convergence
time as the length of the longest provider-customer chain
increases. As a basis of comparison, we plot the theoreti-
cal worst-case convergence time [32]. Our protocol mech-
anism is configured to batch and propagate routes every
second, a feature easily achieved using NDlog’s time-based
predicates [23]. For instance, given the longest customer-
provider chain of 10, the execution should converge within
at most 2 × (10 + 1) phases, namely 22 seconds. We make
the following two observations from our simulation results.
First, the convergence time increases linearly with the length
of the longest customer-provider chain, validating the trend
shown in the prior theoretical results. Second, we observe that,
in practice, the protocol converges faster than the theoretical
worst case. Upon further investigation based on execution logs,
we realize the faster convergence is because customers at the
“leaves” of the customer-provider tree typically have multiple

3The pruned topology contains 5220 ASes and 23101 links.

11

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 6 8 10 12 14 16

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Longest Customer-Provider Chain

CAIDA-Sim
CAIDA-Testbed

Theoretic Worst Case

Fig. 4. Convergence time (seconds) for BGP
against longest customer-provider chain.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.1 0.2 0.3 0.4

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 (
M

B
p
s
)

Time (seconds)

NoGadget
Gadget

Fig. 5. Average per-node bandwidth utilization
(MBps) for iBGP with gadget.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 (
M

B
p
s
)

Time (seconds)

PV
HLP

HLP-CH

Fig. 6. Average per-node bandwidth utilization
(MBps) for HLP.

paths to the root providers and can leverage peer-to-peer links,
and hence rarely require the full depth to propagate routes.

Deployment mode: Our second experiment validates our
simulation results using RapidNet’s deployment mode. Here,
we utilize 32 quad-core machines with a similar hardware/-
software configuration as our simulation experiment. The
machines are connected using high-speed Gigabit Ethernet.
We run up to 5 RapidNet instances per machine, and configure
the neighbor links among RapidNet instances to be consistent
with the earlier CAIDA setup in simulation. As before, we set
the propagation period to 1 second.

Figure 4 (CAIDA-Testbed) shows that the convergence time
obtained in the testbed closely mirrors that of our earlier
simulation results. Our tool can switch between simulation
and deployment based evaluation easily. Simulation and de-
ployment modes of RapidNet uses the same compiled code
base, with a configuration flag indicating running the network
stack in simulation or using actual sockets. In the rest of this
section, we primarily present results obtained in the simulation
mode.

All in all, our first set of experiments based on the Gao-
Rexford guideline is encouraging. Not only are we able to
use Yices to check the guideline for safety, we are able to
(with minimal effort) generate distributed implementations that
provide additional performance insights using actual Internet
topologies.

B. Pinpoint iBGP Configuration Errors

We emulate a scenario where a network operator uses our
FSR toolkit to study the safety properties of an existing iBGP
network configuration. As the input topology, we utilize the
intradomain topology (with inferred link weights) of AS 1755
from the Rocketfuel [37] dataset, which contains 87 routers
and 322 links. Pairwise IGP costs are computed a priori
based on the shortest paths. The iBGP reflector-client topology
is synthetically configured as a 6-level hierarchy with 53
reflectors.

Given the above input topology, we execute a GPV protocol
on all 87 routers, and have each router within the AS compute
the best route to a remote destination outside the AS, under
the condition that several egress routers are aware of external
routes to this particular destination. At each router, the route
preference is based on the IGP cost from the router to the
egress routers, i.e., the route with the lowest IGP cost is

selected. This policy is similarly configured using routing
algebra, and compiled into NDlog implementations.

To experiment with FSR’s ability to detect configuration
errors, we embed a gadget similar to Figure 3 into the
iBGP topology. This embedding is achieved by selecting three
neighboring routers from the graph and setting their IGP cost
to the egress routers the same as those in Figure 3. One goal of
our experiment is to see whether our tool can detect this unsafe
gadget embedded in a larger network instance, and observe its
performance implications in actual executions.

Safety analysis: The algebraic representation of the SPP
instance of the network is extracted and analyzed for safety. In
the absence of real router configurations, we extract the per-
node rankings from NDlog implementation runs as follows.
We execute the GPV protocol in NDlog on all 87 routers,
and populate the permitted paths of each router based on its
incoming route advertisements. These permitted paths are then
sorted based on IGP costs described above, to generate per-
node rankings. FSR directly translates these per-node rankings
expressed in algebra into constraints used by our SMT solver
to perform safety analysis.

In total, the extracted SPP instance contains 259 constraints
generated for strict monotonicity, and 292 constraints for
per-node rankings. On a quad-core machine in our testbed,
the SMT solver returns unsat within 100 ms, and reports
a minimal unsatisfiable core consisting of six constraints.
Interestingly, these six constraints not only form a dispute
wheel, but are also directly attributed to the routers in the
embedded gadget that we deliberately introduced earlier. This
provides a “hint” for network operators to fix the configuration
error starting from the errant constraints.

Experimentation: Upon fixing the configuration errors, we
experimentally evaluated both iBGP configurations imple-
mented using NDlog. Similar to the earlier CAIDA experi-
ments, all the links are set to 100 Mbps bandwidth, 10 ms
latency, and up to 3ms jitter. Figure 5 shows our comparison of
average per-node bandwidth utilization over time for the iBGP
protocol with and without the embedded gadget (shown as
Gadget and NoGadget after the fix). Compared with Gadget,
we observe a 91% decrease in communication overhead, and
82% decrease in convergence time in NoGadget. Note that
the embedded IBGP gadget [6] causes transient oscillation,
and hence result in higher bandwidth utilization for Gadget,
as compared to NoGadget.

12

C. eBGP Gadget Analysis
FSR’s applicability extends beyond high-level guidelines

and iBGP configurations. We briefly summarize our experi-
ences of using FSR to analyze well-known eBGP gadgets:
GOODGADGET, BADGADGET and DISAGREE [12]. These
experiments highlight the use of NDlog implementations gen-
erated from NDlog implementations of SPP instances.
Analysis: The input algebra for these three gadgets are SPP
instances described in Section III-B, where the algebra is
used to encode per-node permitted paths and rankings. Our
analysis results are as expected: GOODGADGET is safe, while
BADGADGET and DISAGREE are unsafe. These results match
the manual proofs in prior work [12], but are obtained auto-
matically by our solver.
Experimentation: We further experimentally evaluate the
gadgets using the automatically-generated NDlog implementa-
tion. In all cases, we provide an input topology, which contains
one or more gadgets on a subset of the nodes. For GOODGAD-
GET, as the number of gadgets increases, both the convergence
time and communication cost increase. The increase is due to
route recomputation, which occurs when a previously com-
puted best path is overwritten by a longer path with a higher
local preference. Nevertheless, all GOODGADGET scenarios
converge as expected. On the other hand, the BADGADGET
execution never converges—the protocol continued to transmit
a high rate of update messages indefinitely. For DISAGREE, a
gadget that can temporarily oscillate between two stable states
before eventually converging, the protocols takes a longer time
to converge as the percentage of conflicting links increases4.

D. Alternative Routing Mechanism
While we have adopted GPV as the default mechanism,

given that FSR is an extensible framework, other routing
mechanisms can also be used, as long as they are implemented
in NDlog. In our final case study, we demonstrate how re-
searchers can supply FSR with a different routing mechanisms
to study their impact on convergence behavior. We consider
the Hybrid Link-State and Path-Vector (HLP) [38] protocol
that has been proposed as an enhancement to the path-vector
protocol. HLP capitalizes on the assumption that the ASes
running BGP can be partitioned into domains that form a
customer-provider hierarchy. HLP uses the regular link-state
protocol within each customer-provider hierarchy, and a path-
vector protocol (called Fragment Path-Vector, where paths
that are internal to the hierarchy are hidden) across different
hierarchies. We implement HLP in NDlog by using just 10
rules (11 rules if we also specify that internal paths are
hidden).

We configure the network topology as a 10-domain
network. Each domain is a 20-node acyclic hierarchi-
cal structure rooted by a top provider, where each node
(with the exception of the top provider) has 1 or 2
providers. We configure the topology and policies within a
domain based on the Gao-Rexford guideline A. Link latencies
within one domain are set to 10 ms. In addition, there are a

4A conflicting link is a link where the two adjacent nodes always prefer to
route through each other.

total of 84 cross-domain links throughout the network; these
links are configured to have 50 ms latency. In all cases, links
are set to have a bandwidth of 100 Mbps. For cost hiding, we
set 5 as the threshold.

Figure 6 shows the bandwidth utilization of HLP over time,
with and without cost hiding (shown as HLP-CH and HLP,
respectively). As a basis of comparison, we execute the path-
vector protocol (shown as PV). We note that as expected, HLP
converges faster than PV, requiring 0.35 seconds compared to
0.4 seconds for PV. Moreover, the per-node communication
cost for HLP and PV is 1.09 MB and 1.75 MB, respectively.
HLP-CH further reduces the communication cost to 0.59 MB
per node.

Beside HLP, other possibilities include multi-path routing
protocols, and neighbor-specific BGP mechanisms, which
typically require further customization to user-defined func-
tions, for instance, propagating the top-k paths instead of the
current best. Such comparisons are tremendously useful for
researchers to study the full design space in both policies and
mechanisms.

VII. RELATED WORK

We discuss two bodies of work most related to FSR:
Formal models for safe BGP systems. FSR does not propose
new formal model or sufficient conditions for safe inter-
domain routing. Instead, FSR leverages routing algebra [36],
[13], and adds practical extensions in order to generate dis-
tributed implementations. By casting convergence analysis as a
constraint satisfiability problem, FSR automates safety analysis
of routing polices using SMT-solvers. FSR can be viewed as
a practical toolkit that can be applied to recent advances in
formal models [39], [6], [16], [19] for inter-domain routing.

Tools for BGP analysis. Existing tools for analyzing BGP
today comes in the form of configuration checkers or runtime
debugging of deployed systems. For instance, rcc is a tool
for statically checking BGP configurations for possible faults.
Other runtime debugging platforms include [5], [18]. Prior
to deployment, one may also perform custom simulations,
using platforms such as simBGP [34]. These systems are
often debugged in a post-mortem fashion. Routing protocols
are developed first, and then debugged over time as errors
are uncovered. As a result, subtle bugs may require a long
time to be encountered, and in some cases, once identified,
errors are difficult to isolate in a distributed setting. While
simulations provide an arguably more controlled environment,
they are removed from actual implementations and also require
the programmer to correctly implement the protocols in the
simulator.

Compared with all of the above tools, the methodology
of FSR is fundamentally different. The input to FSR are
routing algebras that encode policy configurations. Instead of
analyzing the implementation, FSR performs safety analysis
on the algebra representation. FSR generate provably correct
NDlog implementations from the algebra, and the safety results
obtained in analysis carry over to the implementation.

13

VIII. CONCLUSION

In this paper, we present Formally Safe Routing (FSR),
a unified toolkit for analyzing and evaluating BGP policy
configurations, ranging from high-level guidelines to specific
network instances. FSR leverages recent advances in routing
algebra and declarative networking. One key contribution of
FSR is its ability to perform safety analysis and generate
an implementation from the same algebraic representation
of routing policy. We show that routing algebra has a very
natural translation to both integer constraints and declarative
networking programs. This allows research on inter-domain
routing to leverage mature technologies, such as SMT solvers
and RapidNet, to automate complex and error-prone tasks for
researchers and practitioners alike.

Our experiences with FSR have been promising. Using our
prototype, we have analyzed a wide range of policy configura-
tions. We have combined safety analysis and experiments with
the protocol implementations to pinpoint configuration errors
and gain insights into the performance of existing protocols. To
encourage widespread adoption, we plan to release FSR as an
open-source toolkit for the research community. To illustrate
FSR in action, please see [7] for a video demonstration of
our current FSR prototype, based on the scenario used in
Section VI-A.

Another interesting avenue of exploration is enhancements
to routing algebra itself. As we discussed in Section III-C and
IV-A, FSR has some limitations with regards to expressing
configurations with MEDs, and the safety requirement (strict
monotonicity) is only a sufficient condition. These shortcom-
ings are tied to the underlying routing algebra that FSR uses.
In the future, we are interested in adapting FSR to use recent
advances in routing algebra [17], as the underlying formalism
to capture a wider range of safe configurations.

Our longer-term goal is to fundamentally change the way
inter-domain routing protocols are designed, implemented, and
configured. We believe that FSR’s rigorous and formal ap-
proach is a significant step in the right direction. Starting from
the foundations laid in this paper, we plan to extend FSR in two
main directions. First, we want to incorporate the most recent
advances in routing algebra [16] to analyze, for example, new
policy guidelines such as neighbor-specific BGP [41] and the
interactions between iBGP and eBGP. Second, we plan to
exploit the close connection between NDlog programs and
state-transition systems. This would allow FSR to use a model-
checker to generate traces of protocol oscillations for unsafe
policy configurations.

ACKNOWLEDGMENT

The authors would like to thank Shivkumar Muthukumar
and Harjot Gill for their valuable help in the RapidNet
code base. Alexander Gurney provided useful insights into
routing algebra, in particular handling of MEDs and the
strict monotonicity condition. This research is funded in
part by NSF grants (CCF-0820208, CNS-0830949, CNS-
0845552, CNS-1040672, CPS-0932397, IIS-0812270, and TC-
0905607), AFOSR grants (FA9550-08-1-0352, FA9550-09-1-
0643), ONR grants (N00014-09-1-0770, N00014-11-1-0555),

a gift from Cisco System, and the Alexander von Humboldt
Foundation.

REFERENCES

[1] ALVARO, P., CONDIE, T., CONWAY, N., ELMELEEGY, K., HELLER-
STEIN, J. M., AND SEARS, R. Boom analytics: exploring data-centric,
declarative programming for the cloud. In Proceedings of the 5th
European conference on Computer systems (2010), EuroSys ’10, ACM.

[2] CHU, D., POPA, L., TAVAKOLI, A., HELLERSTEIN, J. M., LEVIS, P.,
SHENKER, S., AND STOICA, I. The design and implementation of a
declarative sensor network system. In Sensys (2007).

[3] DIMITROPOULOS, X., KRIOUKOV, D., FOMENKOV, M., HUFFAKER,
B., HYUN, Y., CLAFFY, K., AND RILEY, G. AS relationships: inference
and validation. ACM SIGCOMM Computer Communication Review
(2007).

[4] FEAMSTER, N., JOHARI, R., AND BALAKRISHNAN, H. Implications of
autonomy for the expressiveness of policy routing. In ACM SIGCOMM
(2005).

[5] FELDMANN, A., MAENNEL, O., MAO, Z. M., BERGER, A., AND
MAGGS, B. Locating Internet routing instabilities. In ACM SIGCOMM
(2004).

[6] FLAVEL, A., AND ROUGHAN, M. Stable and flexible iBGP. In ACM
SIGCOMM (2009).

[7] FSR DEMONSTRATION VIDEO. http://netdb.cis.upenn.edu/
rapidnet/sigcomm11demo.html.

[8] GAO, L., GRIFFIN, T. G., AND REXFORD, J. Inherently safe backup
routing with BGP. In IEEE INFOCOM (2001).

[9] GAO, L., AND REXFORD, J. Stable Internet routing without global
coordination. In ACM SIGMETRICS (2000).

[10] GRIFFIN, T. G. The stratified shortest-paths problem. In COMSNETS
(2010).

[11] GRIFFIN, T. G., JAGGARD, A., AND RAMACHANDRAN, V. Design
principles of policy languages for path vector protocols. In ACM
SIGCOMM (2003).

[12] GRIFFIN, T. G., SHEPHERD, F. B., AND WILFONG, G. The stable paths
problem and interdomain routing. IEEE Trans. on Networking 10 (2002),
232–243.

[13] GRIFFIN, T. G., AND SOBRINHO, J. L. Metarouting. In ACM
SIGCOMM (2005).

[14] GRIFFIN, T. G., AND WILFONG, G. An analysis of BGP convergence
properties. In SIGCOMM (1999).

[15] GRIFFIN, T. G., AND WILFONG, G. A Safe Path Vector Protocol. In
INFOCOM (2000).

[16] GURNEY, A., AND GRIFFIN, T. G. Neighbor-specific BGP: An algebraic
exploration. In ICNP (2010).

[17] GURNEY, A. J. Construction and Verification of Routing Algebras.
Ph.D. Thesis. University of Cambridge. 2009.

[18] HAEBERLEN, A., AVRAMOPOULOS, I., REXFORD, J., AND DR-
USCHEL, P. NetReview: Detecting when interdomain routing goes
wrong. In NSDI (2009).

[19] JAGGARD, A. D., AND RAMACHANDRAN, V. Relating two formal
models of path-vector routing. In INFOCOM (2005).

[20] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND KAASHOEK,
M. F. The Click Modular Router. ACM TOCS 18(3) (2000), 263–297.

[21] LIU, C., CORREA, R., LI, X., BASU, P., LOO, B. T., AND MAO, Y.
Declarative Policy-based Adaptive MANET Routing. In ICNP (2009).

[22] LOO, B. T., CONDIE, T., GAROFALAKIS, M., GAY, D. E., HELLER-
STEIN, J. M., MANIATIS, P., RAMAKRISHNAN, R., ROSCOE, T., AND
STOICA, I. Declarative networking. In Communications of the ACM
(2009).

[23] LOO, B. T., CONDIE, T., HELLERSTEIN, J. M., MANIATIS, P.,
ROSCOE, T., AND STOICA, I. Implementing Declarative Overlays. In
SOSP (2005).

[24] LOO, B. T., HELLERSTEIN, J. M., STOICA, I., AND RAMAKRISHNAN,
R. Declarative Routing: Extensible Routing with Declarative Queries.
In SIGCOMM (2005).

[25] MAO, Y., LOO, B. T., IVES, Z., AND SMITH, J. M. MOSAIC: Unified
Platform for Dynamic Overlay Selection and Composition. In CoNEXT
(2008).

[26] MENGMENG LIU, NICHOLAS TAYLOR, WENCHAO ZHOU, ZACHARY
IVES, AND BOON THAU LOO. Recursive Computation of Regions and
Connectivity in Networks. In ICDE (2009).

[27] MUTHUKUMAR, S. C., LI, X., LIU, C., KOPENA, J. B., OPREA,
M., AND LOO, B. T. Declarative toolkit for rapid network protocol
simulation and experimentation. In SIGCOMM (demo) (2009).

[28] N. FEAMSTER AND H. BALAKRISHNAN. Detecting BGP configuration
faults with static analysis. In NSDI (2005).

[29] NETWORK SIMULATOR 3. http://www.nsnam.org/.

http://netdb.cis.upenn.edu/rapidnet/sigcomm11demo.html
http://netdb.cis.upenn.edu/rapidnet/sigcomm11demo.html
http://www.nsnam.org/

14

[30] NIGAM, V., JIA, L., LOO, B. T., AND SCEDROV, A. Maintaining Dis-
tributed Logic Programs Incrementally. In ACM SIGPLAN Symposium
on Principles and Practice of Declarative Programming (PPDP) (2011).

[31] RAPIDNET: A DECLARATIVE TOOLKIT FOR RAPID NETWORK SIMU-
LATION AND EXPERIMENTATION. http://netdb.cis.upenn.edu/rapidnet/.

[32] SAMI, R., SCHAPIRA, M., AND ZOHAR, A. Searching for stability in
interdomain routing. In IEEE INFOCOM (2009).

[33] SCHAPIRA, M., ZHU, Y., AND REXFORD, J. Putting BGP on the right
path: A case for next-hop routing. In ACM SIGCOMM HotNets (Oct.
2010).

[34] SIMBGP. http://www.bgpvista.com/simbgp.php.
[35] SINGH, A., DAS, T., MANIATIS, P., DRUSCHEL, P., AND ROSCOE, T.

Bft protocols under fire. In Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation (2008), NSDI’08,
USENIX Association.

[36] SOBRINHO, J. An algebraic theory of dynamic network routing.
IEEE/ACM Trans. Netw. 13 (October 2005).

[37] SPRING, N., MAHAJAN, R., AND WETHERALL, D. Measuring ISP
topologies with Rocketfuel. In ACM SIGCOMM (2002).

[38] SUBRAMANIAN, L., CAESAR, M., EE, C. T., HANDLEY, M., MAO,
M., SHENKER, S., AND STOICA, I. HLP: A next-generation interdo-
main routing protocol. In SIGCOMM (2005).

[39] TAYLOR, P., AND GRIFFIN, T. A model of configuration languages for
routing protocols. In PRESTO (2009).

[40] WANG, A., BASU, P., LOO, B. T., AND SOKOLSKY, O. Declarative
network verification. In PADL (2009).

[41] WANG, Y., SCHAPIRA, M., AND REXFORD, J. Neighbor-specific BGP:
More flexible routing policies while improving global stability. In ACM
SIGMETRICS (2009).

[42] YICES. http://yices.csl.sri.com/.

APPENDIX A
PROOF OF CORRECTNESS

To prove Theorem 5.1, we make a few assumptions. First, ι
and the complement of the label operation l̄ has the property
that the label assigned to a link vu is the complement of the
link assigned to uv.

(Property A): ι(uv) = ι(vu).
For example, in the Gao-Rexford guideline, the reverse direc-
tion of a customer link is a provider link.

We also assume that generated functions and predicates
faithfully implement the algebraic specifications, which are
formally stated below.

(Property B):
• f_export(nd(l), nd(s)) = true iff l ⊕E s = E.
• f_import(nd(l), nd(s)) = true iff l ⊕I s = I .
• f_concatSig(nd(l), nd(s)) = nd(s′) iff l ⊕P s = s′.
• f_pref(nd(s1), nd(s2)) = true iff s1 � s2.
• label(@nd(u), nd(v), nd(l)) :- . is in prog iff ι(uv) = l.
• sig(@nd(u), nd(s), nd(p)) :- . is in prog iff σ0(p) = s.

Given an algebra A, and a network topology represented
by ι and σ0, let prog be the NDlog program that is translated
from A, and ι and σ0.

We first prove the following lemma (containing two parts
i and ii), which state that the generated signature tuples are
correct; and that if a route update message is generated, then
the route’s signature is correctly computed, and the export
policies have been applied:

Lemma A.1:
(i) Given any path p, if sig(nd(u), nd(s), nd(p)) is gener-

ated by prog, and s 6= φ, then s = σ(p).
(ii) Given any path p, if msg(nd(u), nd(v), nd(d), nd(s),

nd(p)) is generated by prog, and s 6= φ, then s = σ(p),
and ι(vu)⊕E s = E.

Proof (sketch): By induction of the length of p.

We abbreviate nd(t) to t when it is clear from the context
that NDlog representation of t is required.

In the base case, the length of p is 1. We know that σ(p) =
σ0(p) and by our assumptions (Property B), we know that if
sig(u,s,p) is generated by prog, then s = σ0(p). So part (i)
holds.

By examining the GPV program, msg(n,u,d,s,p) tu-
ple is only generated when gpvExport is applied. So
we know that s = σ(p) (s and p comes from
the sig tuple), and that f_export(l,s) = true and
label(u,n,l) is true. Use Property B again, we know that
l ⊕E s = E, and ι(un) = l, so part (ii) holds.

In the inductive case, to prove part (i), we examine the
gpvSig rule. The new path and signature is generated from
the tuple msg(u,v,d,s,p). Using induction hypotheses, we
know that s = σ(p), and ι(vu) ⊕E s = E. If a new
sig(u,snew,pnew) is generated, then it must be the case that
f_import(l,s) = I where l = ι(uv). Using property A, we
know that ι(uv) = ι(vu). By examining the way we generate
⊕ from ⊕p, ⊕E and ⊕I , we know that snew = ι(uv)⊕ σ(p),
which is equal to σ(pnew) (Property B). We can prove part
(ii) in similar ways as we prove part (i) in the base case.

Lemma A.1 implies Theorem 5.1.

Anduo Wang is a Ph.D. student in the Computer and Information Science de-
partment at the University of Pennsylvania. She received her B.S. degree from
Tianjin University in 2004 and M.S. Degree from University of Pennsylvania
in 2009,

Limin Jia is a Systems Scientist in the Cylab at Carnegie Mellon University.
She received her Ph.D. in Computer Science from Princeton University in
2008.

Wenchao Zhou is a Ph.D. student in the Computer and Information Science
department at the University of Pennsylvania. He received his B.S. degree
from Tsinghua University in 2006 and M.S. Degree from University of
Pennsylvania in 2009,

Yiqing Ren is a masters student in the Computer and Information Science
department at the University of Pennsylvania. She received her B.S. degree
from Shanghai Jiaotong University in 2006.

Boon Thau Loo is an Assistant Professor in the Computer and Information
Science department at the University of Pennsylvania. He received his Ph.D.
degree in Computer Science from the University of California, Berkeley in
2006.

Jennifer Rexford is a Professor in the Computer Science department at
Princeton University. Jennifer received her BSE degree in electrical engineer-
ing from Princeton University in 1991, and her MSE and Ph.D. degrees in
computer science and electrical engineering from the University of Michigan
in 1993 and 1996, respectively.

Vivek Nigam is an Alexander von Humboldt Fellow in the Computer
Science department at the Ludwig-Maximilians University of Munich. He
was previously a post-doctoral researcher in the Mathematics department at
the University of Pennsylvania. He received his Ph.D. from LIX - École
Polytechnique in 2009.

Andre Scedrov is a Professor in the Mathematics department, and holds a
joint appointment in the Computer and Information Science department at the
University of Pennsylvania. He received his Ph.D. at the State University of
New York, Buffalo in 1981.

Carolyn Talcott is a Program Director in the Computer Science Laboratory of
SRI International, where she leads the Symbolic Systems Technology group
and the Pathway Logic Project. She holds a Ph.D. in computer science from
Stanford University in 1985 and a Ph.D. in chemistry from the University of
California, Berkeley in 1966.

http://netdb.cis.upenn.edu/rapidnet/
http://www.bgpvista.com/simbgp.php
http://yices.csl.sri.com/

	Introduction
	Routing Algebra: Background
	Abstract Routing Algebra
	Example: Gao-Rexford Guideline

	Unified Policy Specification
	Separating Import and Export Filters
	Converting SPP Instances to Algebra
	Expressiveness of Algebra

	Automated Safety Analysis
	Strict Monotonicity Implies Safety
	Converting Policies to Yices Constraints
	Yices Examples

	Distributed Implementations
	Generalized Path Vector Mechanism
	Converting Policies to NDlog Functions
	NDlog Examples
	Correctness of NDlog implementation

	Evaluation
	Convergence Time vs. Network Size
	Pinpoint iBGP Configuration Errors
	eBGP Gadget Analysis
	Alternative Routing Mechanism

	Related Work
	Conclusion
	References
	Appendix A: Proof of correctness
	Biographies
	Anduo Wang
	Limin Jia
	Wenchao Zhou
	Yiqing Ren
	Boon Thau Loo
	Jennifer Rexford
	Vivek Nigam
	Andre Scedrov
	Carolyn Talcott

