
Toward a Lightweight Model of BGP Safety
Matvey Arye

Princeton University
Rob Harrison

Princeton University
Richard Wang

Princeton University
Pamela Zave
AT&T Labs

Jennifer Rexford
Princeton University

Abstract—For the past ten years, researchers have used the Sta-
ble Paths Problem (SPP) to analyze the stability properties of the
Border Gateway Protocol (BGP). Analysis of SPP has revealed
several combinations of topologies and routing configurations (or
gadgets) where BGP cannot converge to a unique stable solution.
Researchers typically analyze SPP by hand, using a trial-and-
error process to (i) generate small SPP instances that exhibit
undesirable properties and (ii) prove sufficient conditions for SPP
solvability. In this paper, we present a formal, machine-readable
SPP model encoded in the Alloy lightweight modeling language.
The model consists of nodes with ranked sets of permitted paths,
and a set of predicates for analyzing SPP instances. We also
present an automated way to generate the smallest set of unique
gadgets with no stable solution, or multiple stable solutions,
including some previously-unknown gadgets. We use our model
to verify sufficient conditions on SPP instances (e.g., “no dispute
wheel implies a unique stable solution”), illustrating how our
Alloy model can aid researchers in analyzing BGP.

I. INTRODUCTION

The Border Gateway Protocol (BGP)—the Internet’s in-
terdomain routing protocol—is notoriously vulnerable to os-
cillation. Conflicting local policies in different Autonomous
Systems (ASes) can prevent the routing system from converg-
ing to a stable selection of routes to a destination. Over the
past ten years, the research community has made tremendous
progress in understanding BGP safety, including example
unsafe configurations (or gadgets) and sufficient conditions
on local policies to ensure a safe routing system [1]–[10]. In
this paper, we explore how modern model checkers can aid
research on BGP safety by freeing researchers from much of
the manual effort of constructing counter-examples and proofs,
while providing a convenient way to explore new ideas and
precisely communicate their results to others.

Research on BGP safety often uses a more abstract model
of BGP-like protocols known as the Stable Paths Problem
(SPP) [3]. Any BGP configuration can be translated to an
SPP instance, where each node has a ranked list of permitted
paths and selects the highest-ranked path consistent with its
neighbors’ choices. Figure 1 shows three example SPP in-
stances. Using this static representation of the routing system,
researchers can identify SPP instances that have no stable
states or multiple stable states, and prove whether certain
constraints are sufficient to ensure safety. As such, our first
step is to construct and evaluate a model of SPP, as discussed
in the rest of this paper; that is, we focus on BGP solvability—
determining whether SPP instances are unsolvable, uniquely
solvable, or multiply solvable. While unique solvability is
a necessary condition for BGP safety [9], having a single
stable state is not a sufficient condition. Ultimately, a complete

treatment of BGP safety will require a dynamic model, such
as the Simple Path Vector Protocol (SPVP) [2]. We plan to
consider protocol dynamics as part of future work.

To analyze BGP solvability, we use Alloy [11] to create a
machine-readable definition of SPP that is nearly as concise as
the version presented in the original SPP paper [3]. Then, we
use the Alloy Analyzer to automatically analyze SPP instances
up to a specified size, to either verify the assertions or generate
counter-examples. Sometimes we specify assertions we know
to be false (e.g., “all SPP instances are uniquely solvable”) to
generate “counter-examples” of unsafe gadgets. Other times
we specify assertions we expect to be true (e.g., “no dispute
wheel implies unique solvability”) and verify that it holds for
all instances smaller than the given size. Developing such a
model is more lightweight than developing a formal proof
but the analysis is limited to a given instance size. In the
process, we automatically generate many of the misbehaving
gadgets that have dominated the BGP literature, along with
some interesting new gadgets. We also automatically verify
known sufficient conditions for BGP solvability, and discover
some promising directions for future research.

This paper makes the following contributions. First, we pro-
vide a machine-readable SPP model immediately available for
automatic, “push-button” analysis. Informally-proven asser-
tions about SPP instances can now be quickly and accurately
validated on topologies of varying sizes. Section II presents
the Alloy model in a series of steps, ranging from the model of
nodes and paths, to the permitted paths, and ultimately to the
solvability assertions. Section III presents our iterative process
for reducing counter-examples by iteratively adding constraints
to the model to prevent the Alloy Analyzer from generating
isomorphisms of previously-generated examples. This section
also shows an example of using Alloy Analyzer to verify a
sufficient condition for unique solvability. We present related
work in Section IV and conclude the paper in Section V.

II. STABLE PATHS PROBLEM AS AN ALLOY MODEL

Before describing our Alloy model of SPP, we introduce
some basic concepts of the Alloy Modeling Language and the
Alloy Analyzer. The basic building blocks of an Alloy model
are sets of atoms and relations between those atoms. A model
consists of signatures that define these atoms and constraints,
called facts, on these atoms. Each unique combination of
atoms and relations that satisfies these constraints is called
an instance. Finally, the programmer makes assertions about
these instances using predicates that evaluate some property
of the model. The Alloy Analyzer then reports if any instances

� �

�

�

�

�

�

���

��

����

��

���

��

���

���

���		
��
��

��	
�������

�

�

�

�

�

���

��

��

���

��

���

���

�		
��
��

��	���������������

� �

�

���

��

���

��

����
���

������������������

Fig. 1. We classify instances, called gadgets, of the SPP according to their solvability properties: unsolvable, solvable, and multiply solvable. The above
figure shows an example of each type of instance. Numbered nodes represent abstract models of autonomous systems. The 0 node, called the destination, is
special in that all other nodes share information about paths for reaching the destination. Listed next to each node is a set of paths that the node is willing to
take to the destination, ordered in a highest-lowest preference. For example, Node 1 in BAD GADGET prefers the path from 1-3-0 more than its own path
1-0.

violate these assertions. Such instances are called counter-
examples. This particular feature of Alloy makes it a good
fit for studying SPP; with the appropriate constraints on paths
and the (clearly erroneous) assertion that all SPP instances
are solvable (or uniquely solvable), the Alloy Analyzer will
generate counter-examples like the gadgets in Figure 1.

A. Describing SPP Instances in Alloy

An SPP instance consists of a set of nodes, which abstractly
represent Autonomous Systems, and a set of paths between
those nodes. There is one destination node to which all other
source nodes select a path. Each source has a set of permitted
paths it is willing to select; these paths are uniquely ranked
and can only be the empty path or a sequence of source nodes
ending at the destination. These core components of SPP are
easily expressed in Alloy, as shown in Figure 2.1 Nodes and
paths are defined as atoms, and permitted paths are defined
as a relation between a source and a sequence of paths. The
position of a path in the sequence represents its ranking, where
the first path is the most preferred.

1 abstract sig Node {}
2
3 one sig DstNode extends Node {}
4 sig SrcNodes extends Node {PermittedPaths: seq Path}
5
6 abstract sig Path {}
7 one sig EmptyPath extends Path {}
8 sig NonEmptyPaths extends Path {nodes: seq Node}

Fig. 2. An SPP instance consists of source nodes and a single destination
node. Permitted paths are an ordered sequence of nodes or an empty path.

The SPP formalism imposes constraints on paths and the
ranking of permitted paths, as captured in Figures 3 and 4,
respectively. The first fact in Figure 3 requires that each non-
empty path terminates at the destination node and contains no
cycles. We implicitly assume a fully-connected graph, since
any misbehaving gadget remains a misbehaving gadget after

1While we have not provided a formal treatment of Alloy language syntax,
we believe that the code is fairly intuitive on its own and should be somewhat
understandable even to the unfamiliar reader.

adding additional links. As such, we do not model the links
in the topology or check that a path is feasible on the graph
which simplifies the model. The second fact states that paths
are unique.

1 fact validNonEmptyPaths {
2 all path : NonEmptyPaths |
3 let path_nodes = path.nodes |
4 some path_nodes and
5 !(path_nodes.hasDups) and
6 path_nodes.last = DstNode }
7
8 fact noRepeatedPaths {
9 all disj p1,p2 : NonEmptyPaths |

10 p1.nodes != p2.nodes }

Fig. 3. validNonEmptyPaths constrains the set of non-empty paths to
ensure that they consist of some nodes, have no repeated nodes, and terminate
at the destination node. noRepeatedPaths ensures that each unique non-
empty path traverses a different sequence of nodes. The | symbol is read
“such that”.

Finally, Figure 4 shows the facts that constrain the permitted
paths at each source node. The first fact ensures that each
source’s set of permitted paths contains at least one non-empty
path, that all non-empty paths begin with that particular source,
and that the set of permitted paths contains the empty path
which is always ranked last. The second fact ensures that each
path included in the model is a permitted path for some source
node, to avoid generating numerous equivalent SPP instances.
Together, the code from Figures 2-4 completely specifies valid
SPP instances. This model is nearly as concise as the original
description of SPP in the literature [3], and yet has a machine-
readable form amenable to automated analysis.

B. Asserting Solvability of SPP Instances

Solvability of an SPP instance is based on a set of selected
paths. This set, also called a selection, contains exactly one
path from the PermittedPaths of every SrcNode and
thus represents a unique mapping from SrcNodes to a single
Path beginning at that node. Based on the paths selected at
adjacent nodes, each SrcNode derives a set of choices.
This set contains all the paths the SrcNode could possibly

1 fact validPermittedPaths {
2 all snode: SrcNodes |
3 let rankedPaths = snode.PermittedPaths |
4 rankedPaths.first != EmptyPath and
5 rankedPaths.last = EmptyPath and
6 not (rankedPaths.hasDups) and
7 all p: rankedPaths.elems |
8 p.nodes.first = snode }
9

10 fact allPathsBelongToSomePermittedPath {
11 all p : NonEmptyPaths |
12 let first_node = p.nodes.first |
13 some first_node.PermittedPaths.indsOf[p] }

Fig. 4. The fact validPermittedPaths constrains the set of
permitted paths so that at there is at least one non-empty path per
node, no path has two ranks, the lowest ranked path is the empty
path, and the first node in each ranked path is the source node.
allPathsBelongToSomePermittedPaths specifies that each path
atom is part of a permitted path for some node.

take to get to the DstNode either directly or through one of
the selected paths of its adjacent nodes. A particular selection
is considered a solution to an instance of the SPP if, at each
source node, the selected path is the highest ranked path from
its set of choices. Intuitively, a solution is stable because in
a dynamic setting no node would change its selected path since
it is the most preferred choice given the paths available from
its neighbors. An SPP instance with at least one solution is
solvable; it is uniquely solvable if there is exactly one solution
and multiply solvable if several solutions exist.

We now build a predicate that tests whether an SPP instance
is uniquely solvable by quantifying over all possible selections
and checking whether they are solutions. For simplicity, we
consider a topology with three source nodes. We represent
a single path by a SrcNode→Rank2 path tuple where the
Rank corresponds to the preference index of the path in the
PermittedPaths relation of the SrcNode in the tuple.
Recall that a selection contains a single path from each
SrcNode’s set of permitted paths. Thus a valid selection is
a set of path tuples with a single tuple for every SrcNode
in the instance, as seen in lines 6-8 of Figure 5. We explore
all possible selections by quantifying over every possible path
ranking. Each unique combination of rankings corresponds to
a single unique valid selection and the one keyword on line
3 verifies that there is only a single such selection that is
a solution, as required for unique solvability. By quantifying
over the node rankings, rather than all sets of three paths,
we substantially reduce the search space the Analyzer must
explore. The predicate is specific to a topology with three
source nodes because Alloy does not support second-order
logic which is necessary to quantify over a variable number
of items. Instead, we simply (and automatically) generate a
separate predicate for each SPP instance size we analyze.

We now define what it means for a selection to be a solution.

2This is Alloy notation for a two-element tuple where the first element is
a SrcNode and the second is a Rank, which is not a formal type in Alloy
but used here for clarity.

1 pred OneSolvable3[] {
2 some disj node1, node2, node3: SrcNodes |
3 one rank1: (node1.PermittedPaths).inds,
4 rank2: (node2.PermittedPaths).inds,
5 rank3: (node3.PermittedPaths).inds |
6 let selection = (node1→rank1)
7 + (node2→rank2)
8 + (node3→rank3) |
9 SelectionIsSolution[selection] }

Fig. 5. oneSolvable3 checks that an SPP instance is uniquely solvable
by quantifying over all possible selections and ensuring that only one is a
solution. We can include multiply-solvable instances simply by changing the
keyword one to some.

A selection is a solution if and only if it contains the paths
that are the most highly ranked paths of the set of choices for
each node. This constraint is illustrated in Figure 6.

1 pred SelectionIsSolution
2 [selected: SrcNodes→seq/Int] {
3 let choices = GetChoices[selected] |
4 selected = GetBest[choices] }

Fig. 6. SelectionIsSolution takes a selection in the form of
SrcNode→Rank and determines whether it is a solution. First, it generates
the list of choices based on the selection. Next it tests that the selection is
equivalent to the best paths for each node from of its list of choices.

Last, we define the functions GetChoices and GetBest
in Figure 7. GetChoices returns all SrcNode→Rank pairs
that satisfy isValidChoice—that is, all pairs where the
path corresponds to the EmptyPath, goes directly to the
DstNode, or is consistent with a neighbor’s selected path. To
find the rank of the neighbor’s selected path, line 10 performs
a join, denoted by the period, that takes the selected set of
SrcNode→Rank tuples and returns the Rank in the tuple
where the first element equals secondNode. The function
GetBest filters the set of SrcNode→Rank tuples to return
the tuple with the best Rank for each SrcNode. Line 20
performs a join to get the set of Ranks contained in the set
of choices for a node.

III. USING ALLOY TO ANALYZE SPP SOLVABILITY

Our Alloy model enables us to study solvability properties
of different SPP instances. We first analyze unsolvable gadgets
(with no stable state) and multiply solvable gadgets (with
multiple stable states), after eliminating redundant gadgets
that share the same basic structure. Then, we use Alloy to
verify constraints on SPP solvability. Finally, we use Alloy to
explore why the dispute wheel is not a necessary condition
for solvability.

A. Elimination of Redundant SPP Gadgets

Our model finds many unsolvable and multiply-solvable
SPP instances. However, many of these gadgets are, in fact,
very similar. Some gadgets differ only in the numbering of the
nodes and associated paths, and others simply have extra paths

1 fun GetChoices [selected: SrcNodes →seq/Int]:
2 SrcNodes →seq/Int {{
3 node: SrcNodes, rank: seq/Int |
4 isValidChoice[node, rank, selected] }}
5
6 pred isValidChoice [node: SrcNodes,
7 rank: seq/Int, selected : SrcNodes →seq/Int]{
8 let path = node.PermittedPaths[rank] |
9 let secondNode = path.nodes[1] |

10 let secondNodeSelRank = second_node.selected |
11 let secondNodeSelPath =
12 secondNode.PermittedPaths[secondNodeSelRank] |
13 (path = EmptyPath) or
14 (secondNode = DstNode) or
15 (path.nodes.rest = secondNodeSelPath.nodes)
16
17 fun GetBest[choices: SrcNodes →seq/Int]:
18 SrcNodes →seq/Int {{
19 node: SrcNodes, bestRank: seq/Int |
20 let choiceRanksForNode = node.choices |
21 bestRank = min[choiceRanksForNode] }}

Fig. 7. Given a selection, GetChoices returns all choices for all
nodes. isValidChoice tests if a choice is valid. GetBest filters the
SrcNode→Rank tuples, returning the best tuple for each node.

that have no influence on solvability. Manually inspecting
all of these gadgets is immensely tedious and provides little
insight. Instead, we need an effective way to automatically
characterize and eliminate these redundant gadgets to produce
a minimal set of distinct unsolvable gadgets.

The Alloy Analyzer generates counterexamples to the pro-
grammer’s assertions in an arbitrary order. As a result, our
model could return large gadgets with additional paths that do
not impact solvability. To generate a minimal set of gadgets,
we apply an iterative process where we (i) force the Analyzer
to generate small gadgets (by constraining the model to a small
number of source nodes and permitted paths) that violate our
solvability predicate and (ii) encode each new gadget as a
predicate that excludes all such gadgets on the next execution
of the Analyzer. After exhausting all gadgets of a given size,
we consider gadgets with one additional node or path to see
if any new gadgets (besides embeddings of smaller gadgets)
arise. This automated process produces a small set of generic
unsovlable gadgets up to a particular target size.

Figure 8 shows an elimination predicate for the DIS-
AGREE gadget, where each of two source nodes prefers the
path through the other node over its own direct path to the
destination. To generalize the gadget, the nodes are quantified
with the some quantifier, so any renumbering of nodes would
still match the predicate. In addition the predicate specifies
the relative order of path rankings, instead of fixed ranking
numbers. As a result, any gadget that has the specified paths
in the correct relative order will still match the predicate
including those instances with extra paths that do not effect
solvability.

Using this automated process, we fully explored gad-
gets with up to four source nodes, which required several
days of processing. The automated analysis produced the 13

1 pred Disagree {
2 some node1, node2: SrcNode |
3 some node1path2, node1path1
4 node2path2, node2path1: Path |
5 some disj i12, i11: (node1.PermittedPaths).inds |
6 some disj i22, i21: (node1.PermittedPaths).inds |
7
8 node1path2.nodes[0] = node1 &&
9 node1path2.nodes[1] = node2 &&

10 node1path2.nodes[2] = DstNode &&
11 node1path1.nodes[0] = node1 &&
12 node1path1.nodes[1] = DstNode &&
13 node2path2.nodes[0] = node2 &&
14 node2path2.nodes[1] = node1 &&
15 node2path2.nodes[2] = DstNode &&
16 node2path1.nodes[0] = node2 &&
17 node2path1.nodes[1] = DstNode &&
18
19 node1.PermittedPaths[i12] = node1path2 &&
20 node1.PermittedPaths[i11] = node1path1 &&
21 node2.PermittedPaths[i22] = node2path2 &&
22 node2.PermittedPaths[i21] = node2path1 &&
23 i12 < i11 && i22 < i21 }

Fig. 8. Representing a generic version of DISAGREE.

gadgets—five unsolvable instances and eight multiply-solvable
instances—shown in Figure 9. The well-known DISAGREE
and BAD GADGET have exactly two permitted paths per
node. Many of the other gadgets are very similar to these two
well-known instances, just with additional nodes. For example,
the gadget to the right of DISAGREE is remarkably similar to
DISAGREE except for the addition of node 3. These gadgets,
which would have been difficult to generate by hand, provide
useful insight when we explore new conditions for solvability.

B. Verifying a Sufficient Condition for Solvability

In addition to identifying interesting gadgets, BGP re-
searchers also look for conditions that classify SPP instances
as solvable or potentially unsolvable. The dispute wheel is a
well-known construct for determining SPP solvability; if no set
of nodes in an SPP instance form a dispute wheel, then the
instance is safe—guaranteed to converge to a unique, stable
solution [3]. However, some SPP instances that have a dispute
wheel are still safe. Therefore, the property “no dispute wheel”
is a sufficient, but not necessary, condition for safety (and
unique solvability).

To verify these results, we created a predicate that checks
for the existence of a dispute wheel. A dispute wheel consists
of a circular chain of nodes, where each node has a rim path
and a pass-through path, where the rim path of the current
node always goes through the pass-through path of the next
node in the chain. Any node in the chain is either a pivot
node—where the rim path is more preferred than the pass-
through path (which, in this case, is also called a leg path)—or
a non-pivot node—where the rim path is the same as the pass-
through path. A predicate that can check for the existence of a
dispute wheel in systems of three source nodes is presented in
Figure 10. The DWLink function checks that two consecutive

� �

�����������

� �

�

�	

�

��

�

�
	�

	

� �
��

�

�	�

�

�
	�

�
��

�

� �
��	

�	

��	

�

�
	

�

��

�	

� �
��	

�	

��	

�	

�
	

�
��	

�	

� �
�	

�

��

��

�
	��

	
 �
�

� �
�

�

� �

�

��

�

��

�

�������

� �

�

��

�

�	�

�

� 	�

� �

�

��

�	

��	

�

�
	

� �

�

��	

�	

��	

�	

�
	

�	�

�

��

	�

���

�

� �

�

�	�

��

���

�

�
	�

�
�

� ��
 �

�
	��

	�
 �
�	�

��

� �

�

� �

�

� �
�	

�

��

�

�
	�

	
 �
��

�

�

��	�
����������������

��	�������������������������

Fig. 9. These are the 13 simplest unique representations of all gadgets for instances of SPP under four nodes.

nodes form a valid link in the chain and the DW3 predicate
uses DWLink to check for chains of three nodes.

With these predicates, we can now verify well-known prop-
erties about dispute wheels. Our model verifies the assertion
that no dispute wheel implies unique solvability (i.e., the test
for sufficiency passes). We can also verify that the presence of
a dispute wheel does not imply that an instance is not uniquely
solvable (i.e., the test for necessity fails) as Alloy can provides
us with many counterexamples.

C. Exploring New Conditions for Unique Solvability

We suspect that a stronger condition that is both necessary
and sufficient could be built by starting with the dispute wheel
predicate and progressively adding conditions that prevent
the predicate from matching uniquely-solvable SPP instances.
Using our model, we can validate (or invalidate) such new
conditions for necessity and sufficiency of unique solvability
in a “push-button” manner.

Many of the uniquely-solvable instances contain latent
dispute wheels. In these instances, some nodes form a dispute
wheel, but some node in the wheel also possesses a permitted
path that is more preferred than the rim and pass-through
paths, preventing the selection of the rim path and ultimately
preventing the dispute wheel from affecting the instance’s
solvability. By ignoring the rankings of paths outside of the
wheel, the dispute wheel construction does not ensure that the
contention actually manifests itself.

First, we were curious if the dispute wheel condition is
necessary in cases where a latent dispute wheel could not
occur. To answer this question we decided to explore the

1 pred DWLink
2 [currPassThruRank: seq/Int, currNode:SrcNodes,
3 nxtPassThruPath: NonEmptyPaths] {
4 some currRimRank:
5 prevs[currPassThruRank]+ currPassThruRank |
6 let currRimPath =
7 currNode.PermittedPaths[currRimRank] |
8 currRimPath in NonEmptyPath and
9 currRimPath.nodes.rest =

10 nxtPassThruPath.nodes }
11
12 pred DW3 [] {
13 some disj node1, node2, node3: SrcNode |
14 some rank1: (node1.PermittedPaths).inds |
15 some rank2: (node2.PermittedPaths).inds |
16 some rank3: (node3.PermittedPaths).inds |
17 let path1 = node1.PermittedPaths[rank1] |
18 let path2 = node2.PermittedPaths[rank2] |
19 let path3 = node2.PermittedPaths[rank3] |
20 DWLink[rank1, node1, path2] and
21 DWLink[rank2, node2, path3] and
22 DWLink[rank3, node3, path1] }

Fig. 10. DWLink checks that currNode and can be a link in dispute
wheel given that nxtPassThruPath is the leg of the next node. On line
5 prevs is an Alloy function that returns the set of all ranks less than
currPassThruRank. So the rim rank of the current node is either less
than or equal to the pass-through rank of the node which corresponds to the
current node being a pivot and non-pivot node, respectively. DW3 checks that
there is a dispute wheel of three nodes.

set of instances with unembedded dispute wheels. A dispute
wheel is unembedded if all of the paths in the SPP instance
are either rim paths or pass-through paths and every node is

� �

� �

�

�

�

��� ����

���

���

��

����

��

Fig. 11. A gadget with an unembedded dispute wheel that is still solvable.

either a pivot or non-pivot node. Such an instance cannot have
a latent dispute wheel since all non-empty permitted paths
are part of the dispute wheel. We ran a test for necessity on
this set of unembedded instances. To our surprise, we found
a counterexample—a solvable instance with an unembedded
dispute wheel, as shown in Figure 11. This instance actually
has a single stable solution: the empty path for nodes 1 and
2, and 30 and 430 for nodes 3 and 4, respectively. Yet all of
the paths in the instance are part of the dispute wheel3.

We developed a revised dispute wheel predicate to exclude
instances like the one in Figure 11. The revised dispute wheel
ensures that each leg path is an independent leg. A path is an
independent leg if only the first node of the path belongs to the
set of pivot and non-pivot nodes. The original dispute wheel
has no such constraint—a valid leg path could be any permitted
path in the SPP instance. The revised dispute wheel is more
tightly constrained than the original predicate. Thus, we run
a test for sufficiency to ensure that we did not over-constrain
the predicate. We verified that “no revised dispute wheel” did
indeed imply solvability on topologies of up to four source
nodes. We verified that all SPP instances with an unembedded
revised dispute wheel are not uniquely solvable. Therefore,
this predicate passes the test for necessity on unembedded
instances, a test which failed for the original dispute wheel
condition.

We are still working on the set of constraints that is both
necessary and sufficient for BGP safety. Our Alloy model has
been invaluable by providing us with counterexamples to our
assertions. This allows us to test our constraints much more
quickly than developing proofs for each assertion, leading to
a faster development cycle for our research.

IV. RELATED WORK

Lightweight modeling of network protocols: Zave’s work
on verification of Chord demonstrated the utility of applying
lightweight modeling to network protocols [12]. Our study
analyzes configurations of BGP policy rather than the protocol
itself. Also, Zave’s work modeled protocol dynamics, whereas
we consider a purely static model of BGP path selection.

BGP modeling: The static SPP model [3] and the dynamic
SPVP model [2], provide rigorous ways to reason about BGP
safety. Subsequent work identified conditions, some necessary

3The dispute wheel includes nodes 3→2→1→4. Paths 2140, 3240, and
430 are the rim paths. Paths 240, 30, and 40 are the pass-through paths. Path
140 is both a rim and pass-through path since node 1 is a non-pivot node.

and others sufficient, for ensuring BGP safety [1]–[10]. In
our work, we represent SPP in the Alloy modeling language
and automatically generate instances that are unsolvable (or
multiply-solvable) and verify conditions for BGP solvability.
Recent research shows that all multiply-solvable instances are
subject to persistent routing oscillation [9]. Still, to verify the
full range of known conditions for BGP safety, we need to
go beyond our static model (of SPP) to a dynamic model (of
SPVP).

Formal methods applied to BGP: Recent work on For-
mally Safe Routing (FSR) [13] supports automatic analysis
of SPP instances (as well as more abstract routing policies)
expressed using routing algebra. The FSR work shows how
to translate SPP instances and routing policies into integer
constraints, enabling the use of SMT solvers to analyze safety.
Rather than analyzing existing SPP instances, our models
generate SPP instances that (dis)obey solvability conditions.

V. CONCLUSIONS AND FUTURE WORK

The end goal of our research is to use lightweight veri-
fication to improve how researchers (and perhaps ultimately
practitioners) analyze BGP safety. This paper takes an impor-
tant first step by modeling BGP solvability using the Alloy
modeling language and the Alloy Analyzer. In future work,
we will expand our models to capture the protocol dynamics
of SPVP, so we can use Alloy to reason about safety and
verify the relationship between the static and dynamic models
of BGP. Further, accounting for SPVP dynamics permits the
verification and exploration of other well-known constraints on
SPP instances such as the Gao-Rexford conditions and Safety
Under Filtering. We also want to use our models to explore
new necessary and sufficient conditions for BGP safety.

REFERENCES

[1] T. G. Griffin and G. Wilfong, “An analysis of BGP convergence
properties,” in ACM SIGCOMM, pp. 277–288, 1999.

[2] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “Policy disputes in path
vector protocols,” in IEEE ICNP, pp. 21–30, 1999.

[3] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” IEEE/ACM Trans. on Networking, vol. 10,
no. 2, pp. 232–243, 2002.

[4] L. Gao and J. Rexford, “Stable Internet routing without global coordi-
nation,” IEEE/ACM Trans. on Networking, vol. 9, no. 6, pp. 681–692,
2001.

[5] L. Gao, T. G. Griffin, and J. Rexford, “Inherently safe backup routing
with BGP,” in IEEE INFOCOM, 2001.

[6] T. G. Griffin, A. Jaggard, and V. Ramachandran, “Design principles of
policy languages for path vector protocols,” in ACM SIGCOMM, 2003.

[7] T. G. Griffin and J. L. Sobrinho, “Metarouting,” in ACM SIGCOMM,
2005.

[8] N. Feamster, R. Johari, and H. Balakrishnan, “Implications of autonomy
for the expressiveness of policy routing,” in ACM SIGCOMM, 2005.

[9] R. Sami, M. Schapira, and A. Zohar, “Searching for stability in inter-
domain routing,” in IEEE INFOCOM, pp. 549–557, 2009.

[10] Y. Wang, M. Schapira, and J. Rexford, “Neighbor-specific BGP: More
flexible routing policies while improving global stability,” in ACM
SIGMETRICS, pp. 217–228, 2009.

[11] “Alloy community.” http://alloy.mit.edu/community/.
[12] P. Zave, “Why the Chord ring-maintenance protocol is not correct

(Extended Abstract),” tech. rep., AT&T Research, March 2011.
[13] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam,

A. Scedrov, and C. Talcott, “FSR: Formal analysis and implementation
toolkit for safe interdomain routing,” Tech. Rep. MS-CIS-11-10, U.
Pennsylvania, May 2011.

http://alloy.mit.edu/community/

	Introduction
	Stable Paths Problem as an Alloy Model
	Describing SPP Instances in Alloy
	Asserting Solvability of SPP Instances

	Using Alloy to Analyze SPP Solvability
	Elimination of Redundant SPP Gadgets
	Verifying a Sufficient Condition for Solvability
	Exploring New Conditions for Unique Solvability

	Related Work
	Conclusions and Future Work
	References

