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Abstract

As 3D acquisition devices and modeling tools become widely avail-
able there is a growing need for automatic algorithms that analyze
the semantics and functionality of digitized shapes. Most recent
research has focused on analyzing geometric structures of shapes.
Our work is motivated by the observation that a majority of man-
made shapes are designed to be used by people. Thus, in order to
fully understand their semantics, one needs to answer a fundamen-
tal question: “how do people interact with these objects?” As an
initial step towards this goal, we offer a novel algorithm for auto-
matically predicting a static pose that a person would need to adopt
in order to use an object. Specifically, given an input 3D shape, the
goal of our analysis is to predict a corresponding human pose, in-
cluding contact points and kinematic parameters. This is especially
challenging for man-made objects that commonly exhibit a lot of
variance in their geometric structure. We address this challenge by
observing that contact points usually share consistent local geomet-
ric features related to the anthropometric properties of correspond-
ing parts and that human body is subject to kinematic constraints
and priors. Accordingly, our method effectively combines local re-
gion classification and global kinematically-constrained search to
successfully predict poses for various objects. We also evaluate
our algorithm on six diverse collections of 3D polygonal models
(chairs, gym equipment, cockpits, carts, bicycles, and bipedal de-
vices) containing a total of 147 models. Finally, we demonstrate
that the poses predicted by our algorithm can be used in several
shape analysis problems, such as establishing correspondences be-
tween objects, detecting salient regions, finding informative view-
points, and retrieving functionally-similar shapes.
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etry and Object Modeling—Geometric algorithms, languages, and
systems;

Keywords: shape analysis, affordance analysis

Links: DL PDF WEB DATA CODE

1 Introduction

With the increasing availability of digitized 3D models, there is a
growing need for automatic algorithms that can assist in semantic
parsing of geometric shapes. To meet this need, a variety of shape
analysis algorithms have been proposed in recent years, including
methods for saliency estimation, shape segmentation, feature de-
tection, symmetry analysis, and surface correspondence; and, many

Figure 1: Given an input shape, our algorithm predicts a human
pose using a trained affordance model. The predicted joint angles
and surface contact points can be used to detect functional simi-
larities between the shapes, establish a set of key point correspon-
dences, and mark semantically salient surface regions.

tools have used these algorithms for analyzing, searching, organiz-
ing, designing, and editing 3D shapes [Mitra et al. 2013].

Most previous algorithms have focused on geometric analysis,
mainly using techniques that compute global shape properties, ex-
tract part structures, and/or detect local shape features. While these
algorithms have advanced greatly within recent years, they usually
can provide little information about the semantics or function of
an object, and they often struggle to provide any information for
classes of objects with high intra-class shape diversity.

In this paper, we propose a new shape analysis tool based on
object affordance – a quality of an object that allows someone to
perform an action [Gibson 1977]. We observe that knowing how a
human interacts with an object provides useful information about
its semantics and function, even when the shape of the object is
difficult to parse.

As a demonstration of this idea, consider the six shapes depicted
in Figure 1. Although the shapes are quite different from one an-
other globally, and they share limited similarity in part shapes and
arrangements (one does not even have wheels), it is easy to tell that
they are all some form of bipedal device based on the riding pose
taken by the person shown in red. Moreover, by simply observing
the person’s pose, we can immediately tell the relevant symmetries
of the objects, the functions of some parts (e.g., the handlebar is
for grasping by a hand), semantic correspondences between points
on different surfaces (e.g., all points contacted by the right foot are
in functional correspondence), and important geometric properties
to preserve during shape editing (e.g., maintain the spatial relation-
ships between pedals, seats, and handlebars).

The main challenge in leveraging affordance for shape analysis is to
automatically predict the pose that a human will take when using a
given object. We need an algorithm that can produce a semantically
appropriate human pose for any given 3D model. We address this
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challenge with an algorithm that leverages consistency of anthro-
pometric features across different shapes and poses. Our approach
relies upon the following observations: (i) local geometric features
strongly correlate with geometry of corresponding body parts (e.g.
we sit on relatively flat areas and grab cylinder-like regions), (ii)
human poses are subject to kinematic constraints and priors (e.g. a
knee cannot bend backwards), (iii) humans exhibit bilateral sym-
metry, and (iv) shape surfaces cannot be penetrated by a person.

Although local geometric features provide very strong cues for
human-object interaction [Norman 1988], they alone are not suf-
ficient for predicting contact points in most cases (e.g. grasping a
bike’s frame is as easy as holding its handles). This motivates a joint
bottom-up and top-down search that leverages both local features (i)
and global constraints (ii, iii, iv). For the bottom-up search we use
a classifier to predict candidate contact points on the surface, and
our top-down optimization searches for the most plausible pose that
allows reaching the high-probability contacts. Our pipeline relies on
training data to learn pose priors and geometric features of contact
points for different body parts. The main technical contribution of
this work is a polynomial-time optimization algorithm that finds
an approximate minimum in the combinatorial space of body-to-
contact assignments. Our algorithm stems from the insight that after
learning a pose prior one can sample a large number of poses from
the prior and pre-compute probability distributions for positions of
body parts. This allows our method to quickly find combinations of
high-probability contact points that can be reached with plausible
poses.

To summarize, the main contributions of this paper are: (i) we intro-
duce Shape2Pose, a novel affordance-inspired shape analysis tool
that predicts human pose parameters and surface contact points, (ii)
we develop an efficient polynomial-time algorithm for exploring
the combinatorial space of contact assignments by pre-computing a
probability distribution for body parts, and (iii) we create a dataset
of 147 models from diverse object classes with annotated ground
truth poses. Finally, we thoroughly evaluate our method and demon-
strate favorable performance in comparison to direction extensions
of related methods.

2 Related Work

This work describes a geometry analysis tool for semantic under-
standing of shapes from an affordance perspective. In this section
we review the current research on shape analysis and affordance
analysis.

Shape Analysis. The availability of 3D shape repositories and
the rising number of applications that leverage geometric data de-
mand algorithms for structural analysis and structure-aware ma-
nipulation of shapes [Mitra et al. 2013]. Previous work concen-
trates on detecting symmetries [Mitra et al. 2012], upright ori-
entation [Fu et al. 2008], geometric variations [Ovsjanikov et al.
2011; Kim et al. 2013], consistent segmentations [Golovinskiy and
Funkhouser 2009; Huang et al. 2011; Sidi et al. 2011], region clas-
sification [Kalogerakis et al. 2010], and correspondences [Huang
et al. 2012; Kim et al. 2012] in collections and in individual shapes.
These analyses can facilitate synthesis [Kalogerakis et al. 2012],
exploration [Ovsjanikov et al. 2011; Kim et al. 2012], and inter-
active modeling [Gal et al. 2009; Chaudhuri et al. 2011]. In this
work we extend this toolkit with affordance analysis that predicts
contact points and pose parameters, essentially detecting invariant
structural relations that can serve to facilitate applications and to
relate diverse shapes via common use patterns.

Affordance Analysis. Recent work in computer vision demon-
strates that observing how people interact with shapes can help in
shape recognition [Delaitre et al. 2012; Fouhey et al. 2012; Wei
et al. 2013]. But even without observing the actual interaction, one
can predict a list of semantic tags to represent the types of actions
an object affords [Fritz et al. 2006; Hermans et al. 2011], note
that this analysis is also commonly performed jointly with object
classification [Sun et al. 2009; Stark et al. 2008]. A more detailed
affordance representations also demonstrated to be fruitful, for ex-
ample predicting an approximate alignment of a human model to a
shape [Grabner et al. 2011; Gupta et al. 2011]. A recent approach
by [Jiang et al. 2013] uses a probabilistic framework to select a
pose from a list of six most common poses and rigidly align it to
models in a 3D scene. They also demonstrate applications in object
labeling and automatic object placement [Jiang et al. 2012; Jiang
and Saxena 2012; Jiang and Saxena 2013]. The main advantage of
our work is that it does not assume that there is a small set of dis-
crete poses; instead, we search a continuous pose parameter space.
This finer representation enables higher accuracy and applications
beyond shape classification.

Grasp Prediction. Modeling and predicting grasping interac-
tions received special attention in robotics [Bohg et al. 2013].
Data-driven techniques often rely on machine learning and train
on annotated example shapes to predict graspable regions based on
their geometric features [Saxena et al. 2006; Saxena 2009; Lenz
et al. 2013]. Alternatively, one can use shape retrieval to find a
similar object in an annotated database and transfer a grasping
pose [Goldfeder and Allen 2011]. For more complex geometries
the query shape can also be decomposed into graspable parts [Bard
and Troccaz 1990; Przybylski et al. 2012]. Finally, applications that
require a robot to be able to manipulate an object often rely on a
physical simulation [Rosales et al. 2011; Feix et al. 2013]. Previous
work in graphics also leverages kinematic models to create realisti-
cally looking grasping actions that are similar to example captured
data [Pollard and Zordan 2005; Ying et al. 2007; Zhao et al. 2013].

These previous approaches focus on robot and virtual hand inter-
action, while we focus on shape analysis. Also note that a grasping
interaction has a simple functional purpose (to be able to pick some-
thing up), while in our work we face the challenge of producing se-
mantic poses without hardcoding into the algorithm the functional
context of the pose.

3 Human-Centric Shape Analysis

The key idea behind our work is to leverage the prediction of ob-
ject affordances during shape analysis. Following the insight that
the pose adopted by a human body when interacting with a shape
provides strong and persistent cues about its semantics and function
[Gibson 1977], we propose a system that integrates affordance anal-
ysis into semantic parsing of 3D shapes. To investigate this idea,
we have developed an algorithm called Shape2Pose that simulta-
neously predicts kinematic parameters for a static human pose and
points of contact between a human body and the shape’s surface,
and then we use the algorithm to assist classical problems in 3D
shape analysis, including salience estimation, surface correspon-
dence, viewpoint selection, and shape retrieval.

The main difference from previous work on shape parsing in com-
puter graphics [Mitra et al. 2013] is that we supply extra critical
information to our analysis algorithm: the shape and deformation
modes of a human body. This extra input allows our algorithm to
search for specific geometric structures and spatial arrangements of
relevance to a person using the object. That is, rather than asking
the system: “what significant patterns you can find in this shape?”



we ask it: “how can this human body be posed to interact with this
shape?” The second question is far more specific, easier to solve,
and more likely to reveal semantic information relevant to the func-
tion of an object.

The main difference from recent work on affordance analysis in
computer vision [Jiang et al. 2013; Grabner et al. 2011] is that we
establish human-object contact points by searching a continuous
space of human body deformations (rather than a small, discrete
number of fixed poses). This difference is important for providing
precise contact point labels for shape parsing applications and for
analyzing object classes with large intra-class pose variations (e.g.,
gym equipment). It is akin to docking flexible molecules to mini-
mize an energy function based on explicit atomic bonds rather than
aligning molecules to fit roughly with rigid transformations.

The advantages of our approach are highlighted in Figure 2. In the
three examples shown, each of the input shapes has global shape
that is quite different from any of the others, multiple partial sym-
metries, many local geometries that could be labeled as salient,
many similarly-shaped surfaces that could serve as human contact
points, and multiple places that could support a typical human pose.
However, by fitting a human pose into the shape to optimize both
the plausibility of joint angles and the precise locations of contact
points (e.g., hands on the steering wheel, feet on the foot pedals,
etc.), the functionally relevant human pose and contact points can
be identified automatically (our result is shown in red). Moreover,
from the predicted human pose, important shape features can be de-
tected (handles for grasping), semantic similarities between shapes
can be found (used in a sitting position), and functional annotations
can be inferred (the pose suggests steering wheels are turned by a
person).

4 System Overview

Our system consists of two stages: training and prediction.

For the training stage, the input is a collection of shapes with manu-
ally prescribed contact points and poses represented by joint angles,
and the output is an affordance model represented by an objective
function that measures the quality of a pose for any novel shape.
The affordance model incorporates terms learned from examples to
model the local geometry of contact points and the joint angles for
human interaction poses, and it includes penalty terms for devia-
tions from reflectional symmetry and intersections with the shape.

For the prediction stage, the input is a novel shape, and the output is
a set of joint angles and contact points for a likely human interaction
pose. The key algorithm in this stage searches the combinatorial
space of human poses to find the one with small energy according to
the affordance model. It interleaves sampling from the distribution
of likely contact points, constraining the search to consider likely
solutions in the joint distribution. In order to align these two distri-
butions that are defined over different domains, we sample a large
number of poses from the joint angle distributions, and for each re-

Figure 2: Predicted poses for some partially symmetric shapes from
the cockpit and gym equipment datasets.

gion in space store a probability of it being reached by a body part.
Since distribution of body parts and potential contact points are now
defined in Euclidean space, they can be aligned with a rigid trans-
formation. The peaks in joint probability under such an alignment
define a candidate pose. For each of the best candidate poses, we run
an inverse kinematic optimization to evaluate the exact value of the
affordance model, returning the best found as the final solution. For
example, in Figure 3, given a bicycle (a), our system predicts high
probability contacts (b), and computes distribution of body parts
(c). Optimizing the joint probability leads to the final kinematically
plausible pose (d).

The following two sections describe the algorithmic components of
these stages in more detail.

4.1 Learning an Affordance Model

In the training stage of our process, we learn an affordance model
for a class of shapes. Our goal in this stage is to build an en-
ergy function that can be used to evaluate the interaction between
a shape S and a human pose represented by a rigid transforma-
tion T , joint angles q = {q1, ..., qn}, key body parts P (back,
pelvis, palms, and toes), and contact point assignments m : P !
S [ {ground, unassigned}.1

Our affordance model is defined as the minimizer of an energy func-
tion over the space of possible poses for the shape:

E(T, q ,m, S) = wdistEdist(T, q ,m, S) + wfeatEfeat(m, S)
+wposeEpose(q) + wsymEsym(T,m, S) + wisectEisect(T, q , S) (1)

The first two terms on the right are local penalties defined for
salient parts on the body assigned to contact points on the shape
(p 6! unassigned): Edist penalizes parts that do not touch the tar-
get point (Section 4.1.1), and Efeat penalizes contact assignments if
the local surface geometry is ill-suited for placement of the corre-
sponding part (Section 4.1.2). The remaining terms define global
pose constraints: Epose penalizes implausible poses (Section 4.1.3),
Esym penalizes misalignment of object and human symmetries (Sec-
tion 4.1.4), and Eisect penalizes surface intersections (Section 4.1.5).
We set weights wdist = 1000, wfeat = 10, wpose = 0.3, wsym = 1 and
wisect = 0.05 for all experiments presented in this paper. We now
describe the energy terms in more detail.

4.1.1 Contact Distance. If a body part is assigned to a surface
point, we want to ensure they actually make contact. Hence, we
penalize large separations between them. This can be viewed as a
hard constraint, since it is enforced with very high weight.

Edist = Â
p2P, m(p)6=unassigned

kT pq � m(p)k2 (2)

where pq is the position of p given joint angles q . If a part is as-
signed to the ground, we measure the separation in height.

4.1.2 Feature Compatibility. Feature compatibility measures
how likely it is for a surface point to be in contact with a par-
ticular body part. For example, hands should be placed on gras-
pable points, and the pelvis on areas that resemble seats. Given
training shapes S1, S2, . . . , SM with annotated ground truth contacts
mi : P ! Si, we learn a regression model Vp : S ! [0, 1] for each
body part p 2 P which estimates the probability that it will be
placed on a point on a query surface S. The model relies on lo-
cal shape features to predict which regions are compatible with the
body part: for instance, large flat areas afford sitting. The same pre-
dictor is used for symmetric body parts, such as hands.

1 Some parts may be unassigned and rest in free space: p ! unassigned,
or may be placed on the ground plane: p ! ground.



(a) Input Shape (b) Predicted Contact Probabilities (c) End Effector Probabilities (d) Predicted Pose

Pelvis Palms Toes …
Figure 3: Example execution of our pose prediction pipeline: (a) starting with the input shape, we (b) classify surface regions as potential
contact points (darker color indicates higher confidence), (c) find end effector probability distributions, and (d) find the best pose, minimizing
terms from (b) and (c).

We sample 1000 · A points CSi = {c1, c2, .., cK} with the iterative
farthest-point algorithm on each shape Si, where A is the shape’s
surface area in square meters. Geometric features are computed at
these points. The features include principal component analysis on
local neighborhoods, local symmetry axes, height above the ground
plane, curvature, shape diameter function, and a histogram of dis-
tances to points in a human-sized neighborhood (please refer to the
appendix for details).

Next, we produce a training signal V i
p for each body part p and

training shape Si, which has value 1 at the ground truth con-
tact point mi(p) and falls off smoothly to zero in a geodesic
neighborhood. Specifically, the signal V i

p(c j) at sample point c j is

exp
⇣

�g(c j , mi(p))2

t2

⌘
, where g(·, ·) is the geodesic distance, and t is

chosen so that the signal at 20cm from the contact point is 0.4.
Figure 4(a) shows several training signals overlaid on shapes.

Finally, for each body part p, we train a random regression for-
est [Breiman 2001] with 30 trees to estimate the function Vp. During
the prediction stage, the regression forest is used to predict feature
compatibility at each candidate contact point assigned to a body
part. The overall compatibility energy Efeat is given by the sum:

Efeat = Â
p2P

� logVp(m(p)) (3)

For parts mapped to the ground plane or unassigned, compat-
ibility is estimated from training data statistics. Specifically,
Vp(ground) = Mground

p /M, where Mground
p is the number of times

part p was placed on the ground (or similarly, unassigned). To
avoid infinite energy we set a lower bound of 0.1 on the unassigned
compatibility.

Figure 4(b) shows high-probability contacts predicted by the model
on a scanned query shape (for this result we omitted features that
require a polygonal surface, such as curvature and shape diameter).
Note that while locally supported features are useful for identifying
potential contact regions, especially in partially occluded shapes
such as this scan, they usually provide only a weak and diffuse
indication of actual contact points. For example, there is confu-
sion between hands and backs since the training examples have
both armrests and backs with flat, unbroken vertical structure. Only
the global pose prior can resolve this ambiguity, as shown in Fig-
ure 4(c).

4.1.3 Pose Prior. The pose prior distinguishes plausible poses
from implausible ones. We learn the pose prior from training ex-
amples and represent it as mixtures of Gaussians over joint angles.
We use the same skeletal model, constructed from linked hinge and
ball-and-socket joints, in all examples (see Figure 5).

(a) Training Examples (b) High-probability contacts

Pelvis

Palm
Back

(c) Predicted Pose
…

Figure 4: Example predictions on a 3D Kinect scan of a chair. (a)
We train affordance priors on the chairs dataset, then (b) predict
high-probability contact points, and (c) predict the final pose. Note
that while predictions based on local geometric features are robust
to occlusions, they still suffer from large variance in the geometry
of the chairs. Thus, the pose prior provides an essential cue for final
positioning of contact points.

Each pose is represented as a concatenated 40-dimensional vector
of joint angles q . We use mean-shift clustering to group the input
poses into L clusters (in our experiments we obtain L  2 for most
datasets, except for Gym Equipment where L  5). Within each
cluster l, the variation of the ith joint angle qi is represented by a
Gaussian with learned mean µ l

i and standard deviation s l
i . We also

observe that natural poses are often symmetric, so for each pair
of symmetric joints (qi, q sym

i ) (e.g. left and right knees) we learn
a Gaussian representing its deviation from perfect left-right sym-
metry: |qi � q sym

i | ⇠ N (µsym
i , s sym

i ). For the angle qi controlling
left-right bending of the spine, we set q sym

i = 0 to discourage tilting.
Our final pose prior energy is:

Epose = min
l2L

40

Â
i

|qi � µ l
l |2

(s l
i )

2 +

�
|qi � q sym

i |� µsym
i

�2

(s sym
i )2 (4)

Figure 5 shows the distribution of end effectors generated by sam-
pling pose priors in different datasets. Note that we chose to model
the distribution of each joint angle independently, to allow a wide
range of poses of varying plausibility. Even with this fairly general
prior, we are able to achieve good results.

4.1.4 Symmetry. We observe that the parts of shapes with which
humans interact typically have local bilateral symmetry, presum-
ably to reflect the symmetry of the human body. Hence, we pe-
nalize poses which are not symmetric with respect to a local
symmetry plane, if one can be detected. We run the algorithm
of Podolak et al. [2006] to find all prominent symmetry planes
supported by approximately symmetric neighborhoods of diame-
ter 1m. These planes define mirror maps over Euclidean space:
SP = {sp : R3 ! R3}. Given a candidate pose, we penalize devia-
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Figure 5: Example pose distributions in the gym dataset. For the
skeletal structure on the left, we show the distribution in positions of
body parts. Each point corresponds to a relative body part position
in a different pose.

tions from symmetry in the most prominent plane sp⇤, if any, within
2 meters. We also penalize improbable separations between the cen-
ter of local surface symmetry sp⇤

c and the center of the human hc.
The separation d = T hc � sp⇤

c is assumed to follow a Gaussian
N (µc, sc) learned from training data. The final symmetry energy
is:

Esym = wplane Â
p2P

km(psym)� sp⇤(m(p))k+ wcenter
|d � µc|2

s2
c

(5)

where psym is the body part symmetric to p. wplane = 3 and
wcenter = 0.5 in all experiments.

4.1.5 Surface Intersection. The final energy term helps avoid in-
tersections between the shape and the human. For simplicity, we
assume the body is represented as a skeleton, with linear bones
B = {b1, b2, . . . , bK} connecting joints. For each link bi we com-
pute its intersections IS(bi) with the input shape S, ignoring inter-
sections within 5cm of body parts assigned to contact points. We as-
cribe higher penalty if the bone intersects the surface orthogonally.
The intersection energy is the sum of maximal per-link penalties:

Eisect = Â
bi2B

max
q2IS(bi)

|normal(q) · direction(bi)| (6)

4.2 Predicting a Human Pose

In the prediction stage of our system, we use a learned affordance
model to predict an interaction pose (T, q ,m) for a novel shape S.
The key challenge is to sample the space of human-shape interac-
tions efficiently. To address this challenge, we interleave sampling
from contact point assignments and joint angles.

Note that our pose representation is overspecified: if contact points
m are assigned, one can solve for (T, q) using inverse kinemat-
ics. Similarly, given T and q , one can infer contact points m via
nearest neighbors (or keep them unassigned), since distance to as-
signed contact points Edist dominates other energy terms. However,
parameterizing the problem by just (T, q), or by just m, makes it
difficult to efficiently explore minima of the overall energy func-
tion E(T, q ,m, S), since energy terms would then be expressed in
terms of the complex nonlinearities of a nearest neighbor search or
an IK solve. The key insight behind our optimization procedure is
that it is possible to sample high-probability contact assignments m
and high-probability poses q independently, since they contribute
to different major energy terms in Equation 1, Efeat(m) and Epose(q)
respectively.

We sample high probability assignments of contact point m(p) for
each body part p independently, by picking candidate points on the
shape whose compatibility energy with p is lower than the cost of
leaving them unassigned. The toy situation in Figure 6(a) shows
points with high feature compatibility for two different types of
body parts (green and blue).

∞

∞ ∞ 41

A=0

C=4

B=1

E=1

D=2

F=0

G=1
(a) Contact "
Energies

(b) Pose Prior

left
right

green

θ1=μ1

θ2=μ2

3
4

4
9

4

E1=3+4+1

9
1 7 10

∞

(c) End Effectors "
Distribution

∞ ∞ ∞ ∞

5 ∞ ∞ 5

7 8

2 2

00

4 4

E3=1+u+1
(d) Sampled Poses

∞

∞ ∞ 2

∞

E4=1+10+0

E2=2+u+0

Figure 6: We demonstrate our optimization procedure for a toy ex-
ample: (a) the classified surface, where each point has a certain
energy penalty, (b) a pose prior for a two-angle skeleton, (c) dis-
tribution of end effectors (left and right) with respect to the green
reference point, and (d) some sampled poses with the final energies,
where u is the penalty for keeping an end effector unassigned.

We sample plausible poses with low energy Epose by directly sam-
pling the joint angle Gaussians from the pose prior. In our exper-
iments we sample 50,000 poses: the whole process takes only a
fraction of a second. If we fix an anchor point and assume T is the
identity transform, we can co-align the sampled poses and produce
a distribution of salient body part positions relative to the anchor.
Figure 6(c) shows the distribution of left and right end-effectors
with respect to the green point for a toy two-angle skeleton. Now,
given an initial assignment of a body part m(p0) and a transforma-
tion T , we can treat p0 as the anchored point and align the distribu-
tions over the surface to look for contact points that can be reached
with a high-probability pose.

In practice, we discretize the space into a grid of 10cm3 voxels, each
storing a portion of the energy of the most plausible sampled pose
that places a given body part in this voxel. The stored partial energy
is the sum of pose prior penalties (Equation 5) due to all joints on
the path to the body part from the anchor. Thus, a lower bound on
the overall energy of a pose can be estimated by simply adding up
the entries of the voxels containing the individual body parts. Note
that joints might contribute to more than one partial energy if paths
to different body parts overlap: if so, we average their contributions
over overlapping paths. Because of these simplifications, as well as
the finite resolution of the grid, the grid penalty is only an approxi-
mate lower bound on Epose.

Next, we try every sampled contact point as an anchor for the cor-
responding body part, and consider 32 rotations around the up axis.
The anchor and the rotation define the transform T , which aligns
part distribution grids to the surface (Figure 6(d) shows four exam-
ple alignments). Given the aligned grid, we estimate a lower bound
on the feature, pose and symmetry energy, as well as the corre-
sponding pose, by greedily assigning body parts to contact points.
Each successive assignment m(pi) is chosen to be the one that least
increases Efeat + Epose + Esym, where symmetry is measured w.r.t.
the previously assigned i � 1 points, and the pose prior is bounded
from below by the entry in the aligned grid cell containing the as-
signed contact point. In our toy example, for each alignment, we
show penalties due to each contact point, and the final energy pro-
duced by selecting the best contacts (for simplicity we omit the
symmetry term). Note that although contact points F,A have the
best feature compatibility, and G,C,E would be the least distorted
pose, the optimal pose combining both features and pose prior is
defined by a different set of points: G,B,D.

Finally, in order to produce the overall best pose, we must compute
the full energy, which requires knowledge of the exact joint an-
gles q . We sort all candidate poses in order of increasing estimated
lower bound on energy, and for each pose we minimize Edist + Epose
with respect to q via inverse kinematics. We solve for q using a
variant of the Jacobian inverse technique (similar to the method



described by Buss [2005]). In brief, given target positions {m(pi)}
and current body part positions {pq ,i}, we find the contact distance
energies i = 1, 2 . . . k: ei = km(p) � pq ,ik2, and pose energy due
to each angle j = 1, 2 . . . n: ek+ j = Epose(q j). The Jacobian matrix
J has k rows with derivatives for contact distance ∂Edist(pi)/∂ q j,
and n rows for pose priors ∂Epose(q j)/∂ q j. We solve the damped
least squares problem: Dq = (JT J + l 2I)�1JT e, and iteratively up-
date q until the energy Edist + Epose stops improving. As a further
refinement, we perform fine-scale greedy optimization of contact
assignments up to a search radius of 1.5 times the grid cell size,
to fix potential misalignments due to grid discretization. We iterate
through the poses until the lower bound on energy of all remain-
ing poses is higher than the current best pose, following which we
terminate and return the best pose.

5 Results

In this section, we present results of experiments with our affor-
dance analysis technique. The goals of these experiments are to: 1)
test whether our algorithm can correctly predict human poses for
diverse classes of objects, 2) test whether the algorithm works for
shapes where people use them in unusual poses, 3) compare the
results of our algorithm to alternative approaches, and 4) evaluate
the impact of different aspects of our algorithm on the final results.

For these experiments, we created a benchmark of 6 data sets com-
prising a total of 147 polygonal models extracted from [van Kaick
et al. 2013; Kim et al. 2013; Trimble 2013]. Each data set contains
a collection of shapes from one object class with great shape di-
versity and interesting human-object interactions (gym equipment,
cockpits, bicycles, carts, chairs, and bipedal devices). All shapes are
represented as polygon soups without color or structure and have
consistent up-right orientation and scale.

To generate ground-truth affordances for these data sets, we asked a
student volunteer to manually provide ground truth poses for typical
human interactions in a two stage procedure. First, the volunteer
prescribed contact points for salient body regions (pelvis, back,
arms and toes), with the possibility of assigning a point to a ground
or leaving it unassigned. Then we ran an inverse kinematics pro-
cedure to produce a pose that allowed reaching the contact points.
In the second stage the volunteer fixed the implausible poses by
directly editing the joint angles. This process resulted in a single
ground-truth pose for each shape.

Pose Prediction. To test our algorithms for predicting poses for
new shapes, we ran a leave-one-out experiment for each dataset (i.e.
we train on all except for one model and then predict the pose for
the omitted model).

Figures 1, 2, and 7 show representative results. Qualitative inspec-
tion of these results suggests that our method successfully predicts
correct poses among a diverse set of objects and for a wide range
of poses. It also appears that the poses predicted by our algorithm
yield significant semantic information about an object. For exam-
ple, the relationships between poses predicted for the shopping cart
and wheel barrow in the bottom left of 7 reveal the similarities in
their functions (they both are pushed by people), provide cues about
structural relationships between parts (e.g., the handles on both are
for grasping, the two handles of the wheelbarrow have symmetric
functions, etc.), and suggest ways that the shape could be optimized
to improve human affordance (e.g., the handles of the wheelbarrow
could be spaced further apart).

In order to quantitatively evaluate the correctness of the poses pre-
dicted by our algorithm, we measure the distances between all pre-
dicted and ground-truth joint positions for each model. Figure 9

Figure 7: Example predicted poses for different classes of shapes.

show plots of the errors, where each point on a curve represents
the fraction of joints whose error is less than the distance threshold
listed on the horizontal axis (ranging from 0 to 25 centimeters).
From these plots, we see that our algorithm (the red curve) predicts
positions within 20cm of their manually prescribed locations for
70%-85% of joints in all datasets, except the gym equipment which
is still over 50%.

Comparison. In order to evaluate the benefits of our particular
implementation of affordance analysis, we compare to potential al-
ternative techniques. Note that none of the existing methods address
the problem we are trying to solve in this paper (predicting kine-
matic parameters for the interaction pose), and so we must compare
to extensions of existing techniques:

• Shape Matching - we investigate whether global shape similar-
ity provides enough information to predict a pose. In particular,
we use the method of [Huang et al. 2013] to co-align all shapes
in the entire dataset. Then, given a query shape, we find the most
similar model and transfer contact points from that model via
closest co-aligned points. Then we run our inverse kinematics
optimization to produce a valid pose.

• Rigid Pose - we compare to affordance analysis techniques that
model the affordance with a small set of rigid poses. In particu-
lar, we execute our algorithm, but disallow any deviations from
a best mean pose in a mixture of Gaussians.

• Local - we compare our method to surface classification meth-
ods. In particular, we pick the best contact point to every body
part and then run the inverse kinematics optimization to produce
a valid pose.

Figure 8 shows visualizations of results predicted with these meth-
ods, and Figure 9 shows plots of their average prediction errors for
each data set in comparsion to our method. These results suggest
that our algorithm provides the most accurate predictions for most
data sets. Looking in more detail, we find that the global shape
matching approach (blue curve) fails if the training dataset does



Our Rigid Pose LocalShape Matching

Figure 8: A comparison of our method to possible alternatives:
shape matching, computing affordance with a rigid pose, and using
only local region classifier.

not have a globally similar shape (e.g. the cockpits fail, since other
models in the training data only include one-seat or five-seat exam-
ples). Also, since shape matching is not aware of local geometry
of functional parts it often misaligns contact points (e.g. the han-
dles are transferred to the front wheel of the bipedal vehicle). That
said, the technique performs well on object classes that have sim-
ilar global structure, such as chairs. Matching a rigid pose (green
curve) performs well only on datasets where the variance in poses
is relatively small (e.g. cockpits), and degrades quickly as relative
arrangement of functional parts becomes more diverse (all other
datasets). Classification of local geometry features (purple curve)
provide very weak cues about shape affordance without the addi-
tional global pose constraints. This last result confirms our expec-
tation that human-centric shape analysis can provide information
beyond that of local shape analysis.

Training Data Size. We test how the size of training data af-
fects the performance of our method. Specifically, in this leave-one-
out experiment we use random training sets of different sizes for
each test shape. Figure 10 shows changes in accuracy for different
classes of shapes as we vary the number of training examples. Note
that there is a general upward trend in accuracy as we use more
training models, however the curves are not strictly increasing be-
cause training subsets are chosen at random independently for each
experiment. We also observe that the first few training examples
significantly boost the accuracy, but the curves remain relatively flat
after about 15 training models for most classes of shapes. If shapes
and poses exhibit higher variance, such as in the Gym Equipment
dataset, more training examples are necessary, and an overall lower
accuracy is achieved.

Mixed Classes. Although our method is designed for analyzing
relatively homogeneous datasets, we perform a stress-test experi-
ment where both training and test data are heterogenous. Specifi-
cally, we pick three very dissimilar classes of shapes and execute
our algorithm as-is on datasets obtained by mixing pairs of classes,
without any class-specific annotations. Figure 11 shows the accu-
racy curves for pose predictors trained on each class separately

Figure 9: We quantitatively compare our technique to potential al-
ternatives, such as predicting poses using global shape matching,
using a small set of rigid poses, or using only local features. This
plot depicts fraction of correct joint positions (y-axis) for a given
distance threshold (x-axis, given in centimeters).

Figure 10: Effect of size of training set on accuracy of final poses.
In this figure each curve shows the accuracy of predicted poses
(y-axis) relative to the number of training examples (x-axis), for
different threshold distances (10cm and 20cm).

(dashed lines) and trained on the mixed datasets (solid lines). Note
that for related shapes (e.g. chairs and cockpits) the drop in perfor-
mance is small, and it is somewhat more significant for less similar
classes of shapes (e.g. bicycles and either chairs or cockpits). In the
future, it would be interesting to combine geometry-based classifi-
cation algorithms with our pose prediction method to facilitate both
recognition of objects as well as the quality of predicted poses in
heterogenous model collections.

In the remainder of the results section we evaluate contribution of
different aspects of our algorithm to the final results.

Contact Point Classification. First, we evaluate how well our
surface classification step can use local geometric features to pre-
dict contact points. We evaluate each contact type for each dataset
separately in our leave-one-out experimental setup. In particular,
given a prediction function and a threshold tval we find a set of
positively-labeled points C(tval) = {c j}, s.t. Vi(c j) > tval. Then,



Figure 11: Effect of highly heterogenous datasets. We plot the ac-
curacy of our method using a pose predictor trained separately
on different classes of shapes (dashed lines) and trained on mixed
datasets (solid lines).

Figure 12: Precision-recall curves for different types of contact
points; higher recall means that the ground truth contact was cho-
sen as a candidate, and higher precision means that candidate con-
tacts are near a true contact. Clearly, local features alone are not
sufficient to detect contact points.

we compute precision for the set C(tval) assuming that the point
is true positive if it is within tgt = 10cm of a ground truth contact.
We similarly compute recall for the set of ground truth contacts
assuming that a true contact was detected if there is a positive pre-
diction within tgt. See Figure 12 for precision and recall for values
of tval 2 [0, 1]. The curves for predictions of palm and toe place-
ments are rather low, further confirming that local geometry alone
is not sufficient to robustly predict the best human pose.

Energy Terms. Next, we investigate the importance of other en-
ergy terms by excluding one term at a time. Figure 14 shows
some typical failure examples and Figure 13 quantitatively eval-
uates overall quality of resulting poses using our leave-one-out
experimental setup with per-joint error metric. We found that our
energy terms play different roles depending on the dataset. For ex-
ample, performance on cockpits significantly degrades if pose prior
is omitted, since these models typically have more candidate con-
tacts. The symmetry penalty plays an important role for chairs since
it provides additional cues when larger areas (e.g. seat and back) are
detected as candidate contacts. Finally, we found that intersection
plays a relatively minor role with respect to our evaluation metric.
However, it eliminates some visual artifacts, such as a person’s legs
penetrating through the seat.

Computational Complexity and Timing. Finally, we discuss the
computational complexity of our method. Note that our optimiza-

Figure 13: We evaluate how much different energy terms affect the
quality of the final results. These plots show the fraction of correctly
mapped joints (y-axis) for different error thresholds (x-axis), and
each curve corresponds to an energy weight assigned to zero. Re-
sults for other datasets are available in the supplemental material.

wpose=0 wisect=0

Penetrating!
the surface

wsymm=0
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Figure 14: Typical failures due to the absence of different energy
terms.

Data N Prep Train Opt
Bicycles 30 80s 115s 130s
Bipedals 30 225s 200s 590s
Cockpits 21 1150s 550s 970s

Carts 11 235s 25s 15s
Chairs 30 50s 60s 80s

Gym Equipment 25 345s 270s 500s

Table 1: Some average (per model) execution times on different
datasets. Preparation time is spent on point and feature compu-
tation. Training involves point feature classifiers and pose priors
(where the former takes the majority of the time), note that once the
model is trained local feature classification takes only a fraction of
a second. The last column records the timing for our optimization
procedure.

tion procedure starts by trying different rotations around every can-
didate contact point, so the outer loop executes NcandNrot times. For
each iteration, one can find the minimal energy contact assignment
by visiting every candidate contact and lookup its value in end ef-
fector probability distribution grid. Thus, the final complexity of
our algorithm is O(N2

cand), if we assume that number of rotations is
constant.

We report the average running time our algorithm on 2.6 GHz In-
tel processor at different stages in Table 1. The optimization time
ranges from 2s (for some carts) to as much as an hour for one of the
car models with large surface area. Evidently from the complexity
analysis the running time is mostly affected by the total number of
surface points that were classified as potential contacts, and thus,
suffers if there are many false positives during the classification
stage. Note that poses are detected for a vast majority of models in
the order of 10 minutes. While training a surface classifier can take
up to a few minutes, the classification (i.e. evaluating the random
regression forest) takes only a fraction of a second. On average, the
most time-consuming step at the prediction stage is the data prepa-
ration (sampling surface points, computing geodesic distances, and
computing local geometric features) which is highly non-optimized
and can take up to 30 minutes per model.



Figure 15: We quantitatively evaluate the quality of sparse corre-
spondences produced by our method vs shape matching. This plot
shows the fraction of correctly predicted contact points (y-axis) that
are within a distance threshold ground truth contact point (x-axis,
in centimeters).

6 Applications

In this section, we investigate applications of our affordance pre-
diction algorithm for shape analysis in computer graphics. We con-
jecture that predicting how people use an object provides opportu-
nities for novel “human-centric” algorithms to analyze and process
shapes. The following paragraphs describe a few early investiga-
tions of this idea.

Sparse Correspondence. Establishing semantically similar
points between related 3D models is an important problem in
geometry analysis with applications in morphing, property transfer,
and similarity measurement. A common scenario is that one
has a pre-processed collection of 3D models and wants to find
correspondences from key points on shapes in the collection to the
surface of a new model.

Since human contact points provide a strong and persistent feature
among a large variety of man-made objects, and since their global
arrangements and local geometric features are constrained by hu-
man biomechanics, we conjecture that the contact points computed
by our affordance algorithm provide good predictors for sparse cor-
respondences between shapes (i.e., all points predicted in contact
with the left-palm are marked in correspondence).

To test our methods in this setting, we train the affordance model
on a dataset with annotated contacts, and then use it to predict con-
tacts on a new input surface. Figure 15 shows a plot measuring the
accuracy of the predicted surface contact points averaged over all
datasets. Note that about 80% of contact points are predicted within
20cm distance of their true location by our method (the red curve).

To evaluate the quality of our results with respect to the state-of-the-
art in surface correspondence, we compared to the Global Matching
method described in the previous section [Huang et al. 2013] (the
blue curve in Figure 15). Note that our method provides better con-
tact point correspondences on average. More details can be found
in the supplemental results.

Salience Estimation. Predicting the functional “importance” of
a surface patch or object part is a critical problem in 3D shape
analysis, with applications in feature detection, mesh processing,
etc. Previous methods have considered salience measures based on
analysis of curvatures [Gal and Cohen-Or 2006; Lee et al. 2005],
shape similarities [Shilane and Funkhouser 2007], and other prop-
erties [Chen et al. 2012].

We propose a new human-centric measure of salience. Intuitively
speaking, we try to predict the importance of a point on an object
to a person using the object. To do so, we execute the proposed

(a) Human-centric saliency [this paper]

(b) Mesh saliency [Lee et al., 2005]

Figure 16: Comparison of surface salience estimates using a) our
predicted human poses versus b) traditional methods based on mesh
curvatures. Surface regions shown with more red are stronger pre-
dictions.

affordance analysis algorithm and then analyze the relationships be-
tween points on the object surface and predicted human poses, pro-
moting positions within reach of a human, nearby human contact
points, and along direct visibility sightlines. Specifically, for any
point q and pose (T, q ,C) with rigid transform T , joint angles q , and
contact points C, our human-centric salience measure is the sum
of three terms: S(q,T, q ,C) = SP(q,C) + SC(q,C) + SV (q,T, q),
where SP(q,C) measures the proximity of q to the centroid of C,
SC(q,C) measures the proximity of q to the closest contact point in
C, and SV (q,T, q) measures the visibility of q to a person in pose
(T, q). Details on the computation of this function can be found in
the appendix.

We have computed this new salience measure using the predicted
poses for all 147 meshes in the test data sets. Figure 16 shows
visualizations of the results (top row) in direct comparison with
a more traditional mesh salience method based on surface curva-
tures (bottom row) [Lee et al. 2005]. These comparisons suggest
that our salience estimator captures a different notion of surface
importance than previous work – it models relevance to a person
using the object. See the supplemental materials for more examples
and comparisons.

View Selection. Automatic placement of a virtual camera for dis-
play of a 3D mesh is a classical problem in computer graphics.
Traditionally, research on this problem has focused on selection of
“zoomed-out” views, which show the entire mesh in frame, usu-
ally with the centroid of the object at center of the frame and the
orientation chosen to maximize visible surface area, mesh salience,
or some other property of the projected view [Secord et al. 2011].
A much less-studied problem is how to automatically select views
for “zoomed-in” images, where details of an object are shown via
close-ups, for example.



(a) Human-centric viewpoint selection [this paper]

(b) Mesh-centric viewpoint selection

Figure 17: Comparison of zoomed viewpoints selected using a) es-
timated human poses versus b) a typical method based on mesh
centeredness and salience.

We propose that affordance analysis can be useful to guide auto-
matic selection of views for zoomed-in images. Intuitively, if we
are going to show only a fraction of an object, it makes sense to
focus on the part of relevance to a person. To investigate this idea,
we implemented an automatic view selection algorithm that places
the centroid of a predicted human pose at the center of the frame and
then selects the view direction that maximizes the sum of human-
centric salience over the visible surface area.

Figure 17 shows results of our algorithm (top row) on several cock-
pit examples, where the zoom factor is approximately 2X and the
view direction is constrained to be looking down at a 30 degree
angle. Note that our method automatically selects views that fo-
cus on the driver’s seat and dashboard in a way that matches ones
commonly found in car catalogs. The lower images show a com-
parison to results that would be achieved by centering the image on
the centroid of the object and then rotating to maximize the sum
of mesh salience over the visible surface area, a logical alternative
motivated by [Lee et al. 2005]. More comparisons can be found in
the supplemental material.

Shape Retrieval. Similarity-based retrieval of shapes is common
problem in graphics, vision, and robotics. Given a query object,
the goal is to find similar objects in a database, where similarity
is usually defined by matching global shapes, structural properties,
and/or local shape features. In this section, we consider a new way
to measure the similarity of two shapes – based on the similarity
of the poses people are in when they use them. Intuitively, human
poses are similar for related actions (sitting, riding, pushing, etc.)
and thus similarities between poses can reveal functional similari-
ties between objects.

To investigate this idea, we implemented a “pose-based” retrieval
system that uses the average distance between predicted joint lo-
cations (after optimal rigid pose alignment) as a similarity metric
for shape retrieval. Figure 18 shows representative results for this
system, where the left-most image is a query followed by sorted list
of the most similar models. Note how the top ranked matches with
pose-based retrieval reveal similarities in human use rather than
overall shape. For example, a person might be looking for a bicycle
that is ridden with an up-right posture (Figure 18a), a front-leaning
speedy bicycle (Figure 18b). We find that affordance is one of the
most persistent cues for some classes of objects, such as benchpress
gym equipment (Figure 18c), and thus could be used to enhance
retrieval results for certain types of retrieval tasks.

Query Retrieved Results

Figure 18: Some pose-based shape retrieval results, where in each
row the query shape is on the left. Our automatically predicted
poses are rendered for reference.

7 Conclusion and Future Work

In this paper, we propose that predicting shape affordances is use-
ful for computer analysis of 3D models. We investigate this idea
by implementing a novel algorithm for generating the static pose
that a person would most likely adopt when interacting with an
object. Our algorithm uses a combination of local anthropometric
classifiers as well as global biomechanics constraints to search for
a plausible pose. To test this algorithm, we created human pose an-
notations for a dataset of diverse shapes from various object classes
and developed experiments to measure the accuracy of algorithmic
predictions. We find that our algorithm produces results within a
20cm tolerance in the vast majority of cases and makes predictions
better than any tested extension of existing techniques. Finally, we
investigate how the algorithm can be used in novel way for human-
centric shape analysis by describing novel methods for coarse sur-
face correspondence, salience estimation, viewpoint selection, and
shape retrieval.

This work has several limitations that suggest topics for future
work. First, our algorithm performs only static analysis of an ob-
ject’s shape, which is not sufficient to understand all functional
interactions with a human. A higher level reasoning is necessary
for some scenarios, e.g. in Figure 19 one needs to understand the
purpose of weightlifting (semantics), how parts of an elliptical de-
vice and a treadmill move over time (dynamics), and that push-
ing wheelbarrow might be easier using the handles (biomechanics).
Future work could incorporate biomechanical models, contact dy-
namics, and other physical simulations to produce more accurate
and general affordance models at higher computational cost. It also
would be interesting to consider objects suitable only for some body
shapes (e.g. children vs adult bicycles), objects that are used with-
out body contact (e.g. a TV set), and objects that can be used in
multiple poses (e.g. one can sit or slouch on a chair).

Second, we investigate only a few low-level shape analysis appli-
cations in this paper. Those applications were chosen because they
provide fundamental building blocks for other applications, but fur-
ther work is required to investigate the applicability of our method
in a broader sense. For example, we conjecture that affordance anal-
ysis might: 1) help autonomous agents to interact appropriately with
unlabeled objects in virtual worlds (e.g., sit here, grab it like this,
etc.); 2) help automatic segmentation and recognition algorithms



Figure 19: A few failure examples for our method. Note that in
some cases understanding the functional use of the shape is essen-
tial for estimating the pose (e.g. lifting weights is not about sitting
comfortably). Similarly one would need to model the dynamics of
an object as it is being used to understand that it will be difficult
to use the elliptical machine while sitting, or walk on a treadmill
in the opposite direction. Finally, there could be multiple ways to
plausibly interact with a shape, such as pushing the wagon from
the front. For these cases a more accurate biomechanical model
might help suggest the most efficient interaction given the dynamics
and semantics.

to assign functional labels to parts of 3D models (e.g., this looks
like a handle, but it’s probably not one because a person can’t grab
it easily); 3) provide a way to align collections of shapes consis-
tently for database exploration (e.g., rotate them all so that a person
using the object is looking left); 4) guide optimization of shapes
to better fit people with specific body shapes (e.g., adjust this to
better fit a child); or 5) help makers of instructional tools to provide
visualizations of how people typically use an object (e.g., here’s
how you should sit on this gym equipment). Exploring these and
other applications is beyond the scope of this paper, but provides
interesting topics for future work.

In the end, we believe that this work is just a first step towards the
challenging goal of understanding the semantics of human-object
interaction. Capturing such interactions can provide us with insights
on what are the important structural properties of shapes, how ob-
jects relate to one another, and how objects can be optimized to
facilitate certain interactions. Leveraging pose prediction for these
kinds of applications outlines novel and interesting research direc-
tions in geometry analysis.
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Appendix

This section provides implementation details omitted from previous
sections to improve clarity of exposition.

Point Features. We estimate geometric features at a sparse set
of candidate contact points on an input shape S. First, we densely
sample 100000 · A points Pdense from the surface, where A is the sur-
face area in square meters. We next compute approximate geodesic
distances between the points by connecting each point to its 10
nearest neighbors and running the Dijkstra algorithm on the re-
sulting graph. Our features are as follows: for a point c 2 S we
take its geodesic neighborhood in Pdense and compute eigenvalues
l and eigenvectors v of the covariance matrix. We next define the
following features: l1/l0, l2/l0, v0 · up, v2 · up, and the variance
in height of the neighborhood. These features are estimated for
geodesic neighborhoods of radii 6, 12, 18, 24, and 30 cm. Addi-
tionally, we compute (absolute) curvature, SDF (shape diameter
function) [Shapira et al. 2008], average curvature and SDF over
a geodesic neighborhood of radius 18cm, the distance to the best
local reflection plane [Podolak et al. 2006], the point height, and an
8-bin histogram of distances to other points on the shape up to a
representative human armspan of 1.8m.

Salience Estimation. The human-centric salience estimator
S(q,T, q ,C) for any point q, and pose (T, q ,C) with rigid transform
T , joint angles q and contact points C is computed as follows:

S(q,T, q ,C) = SP(q,C) + SC(q,C) + SV (q,T, q)

where SP(q,C) is a Gaussian function of the distance from q to the
centroid Ĉ of C (SP(q,C) = lP exp

�
�kq � Ĉk2/2s2

P
�
, lP =

4, sP = 1m). SC(q,C) is a Gaussian function of the dis-
tance from q to the closest point c⇤ in C (SP(q,C) =
lC exp

�
�kq � c⇤k2/2s2

C
�
, lC = 1, sC = 10cm). SV (q,T, q)

is a function that estimates the visibility of q to a person
in pose (T, q) with four factors accounting for occlusion,
depth, foveation, and surface normal orientation: SV (q,T, q) =
SVO(q, e) · SV D(q, e, d) · SV F(q, e, d) · SV N(q, e), where e and
v are the estimated eye position and view direction of (T, q),
respectively, n is the normal to the surface at q, and the four factors
are computed as follows. SVO(q, e) is 1 if q is visible to e, and 0 oth-
erwise; SV D(q, e, d) = exp

�
�((q � e) · d)2/2s2

V D
�
(sV D = 1m);

SV F(q, e, d) = (((q � e) · d)/kq � ek)a(a = 8); and,
SV N(q, e) = (((q � e) · n)/kq � ek)b (b = 8).


