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Abstract

One of the challenges in 3D shape matching arises from the fact that in many applications, models should be con-
sidered to be the same if they differ by a rotation. Consequently, when comparing two models, a similarity metric
implicitly provides the measure of similarity at the optimal alignment. Explicitly solving for the optimal alignment
is usually impractical. So, two general methods have been proposed for addressing this issue: (1) Every model is
represented using rotation invariant descriptors. (2) Every model is described by a rotation dependent descriptor
that is aligned into a canonical coordinate system defined by the model. In this paper, we discuss the limitations of
canonical alignment and present a new mathematical tool, based on spherical harmonics, for obtaining rotation
invariant representations. We describe the properties of this tool and show how it can be applied to a number of
existing, orientation dependent, descriptors to improve their matching performance. The advantage of this is two-
fold: First, it improves the matching performance of many descriptors. Second, it reduces the dimensionality of the
descriptor, providing a more compact representation, which in turn makes comparing two models more efficient.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques

1. Introduction

Over the last decade, tools for acquiring and visualizing 3D
models have become integral components of data process-
ing in a number of disciplines, including medicine, chem-
istry, architecture and entertainment. With the proliferation
of these tools, we have also witnessed an explosion in the
number of available 3D models. As a result, the need for the
ability to retrieve models from large databases has gained
prominence and a key concern of shape analysis has shifted
to the design of efficient and robust matching algorithms.

One of the principal challenges faced in the area of shape
matching is that in many applications, a model and its im-
age under a similarity transformation are considered to be
the same. Thus, the challenge in comparing two shapes is
to find the best measure of similarity over the space of all
transformation. The need for efficient retrieval makes it im-
practical to explicitly query against all the transformations,
and two different solutions have been proposed:

� Normalization: Shapes are placed into a canonical co-

ordinate frame (normalizing for translation, scale and ro-
tation) and two shapes are assumed to be near-optimally
aligned when each is in its own frame. Thus, the best mea-
sure of similarity can be found without explicitly trying all
possible transformations.

� Invariance: Shapes are described in a transformation in-
variant manner, so that any transformation of a shape will
be described in the same way, and the best measure of
similarity is obtained at any transformation.

We have found that while traditional methods for transla-
tion and scale normalization provide good matching results,
methods for rotation normalization are less robust and ham-
per the performance of many descriptors.

In this paper we present a novel tool, called the Spher-
ical Harmonic Representation, that transforms rotation de-
pendent shape descriptors into rotation independent ones.
This tool contributes to the challenges of designing effective
shape retrieval algorithms in three ways. First, it is a gen-
eral tool that can be applied to many existing shape descrip-
tors. Second, for most shape descriptors, the spherical har-
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monic representation provides better matching results than
those obtained by rotation normalization. Finally, the spher-
ical harmonic representation provides a reduction in the di-
mensionality of the shape descriptor, thereby reducing both
the space for storage and the time for comparison – key prop-
erties for the implementation of interactive shape retrieval
systems.

The rest of this paper is structured as follows: In Section 2
we describe previous work in the area of shape retrieval. The
spherical harmonic representation is presented in Section 3,
which reviews the principal properties of spherical harmon-
ics and provides a method for obtaining rotation invariant
representations of spherical-based shape descriptors. In Sec-
tion 4 we describe the mathematical properties of the spheri-
cal harmonic representation and discuss questions of invert-
ibility. We provide a generalization of our method to voxel
grids in Section 5. In Section 6 we provide empirical results
comparing matching results of normalized descriptors with
their rotation invariant representations. We provide an analy-
sis of these results in Section 7 and we conclude in Section 8
by summarizing our results and discussing topics for future
work.

2. Related Work

The problem of shape matching has been well studied in the
graphics/vision literature and many methods for evaluating
model similarity have been proposed. This paper is moti-
vated by the increased availability and accessibility of 3D
models, and focuses on the problem of shape retrieval from
within large databases of models. In this context, the chal-
lenge is to provide a robust and efficient method for comput-
ing model similarity.

To address this challenge, many methods have focused on
separating the matching problem into two components: An
offline step, in which abstracted distinguishing information
is extracted from each model independently, and an online
step, in which the information between two models is com-
pared. In order to allow for efficient retrieval, the offline step
is usually designed to extract information which allows for
simple and efficient comparison between models. In partic-
ular, many existing methods describe a 3D shape with an
abstracted shape descriptor that is represented as a function
defined on a canonical domain. Shapes are then compared by
computing the difference between their descriptors, so that
no explicit establishing of correspondences is necessary, and
the online process can be efficient.

However, in the context of shape retrieval, one of the prin-
cipal difficulties faced by these approaches is that a model
and its image under a similarity transformation are consid-
ered to be the same. Thus, the challenge in comparing two
models is to find the best measure of similarity over the
space of all transformations. This challenge has been ad-
dressed in two different ways:

� Normalizing the models by finding a canonical transfor-
mation for each one.

� Characterizing models with a transformation invariant de-
scriptor so that all transformations of a model result in the
same descriptor.

(While explicitly solving for the optimal transformation us-
ing either exhaustive search or methods such ICP 13 � 14, the
Generalized Hough Transform15, or Geometric Hashing 16,
are also possible, these approaches cannot be applied to
database retrieval tasks since the online comparison of mod-
els becomes inefficient.) Many hybrid methods exists and
a few representative examples are shown in Table 1, which
describes how these methods address translation, scale and
rotation.

Representation Tr Sc Rot

Crease Histograms 2 I N I
Shape Distributions 3 I N I
Extend Gaussian Images 4 I N N
Shape Histograms 5 (Shells) N N I
Shape Histograms 5 N N N
Spherical Extent Functions 6 N N N
Wavelets 7 N N N
Reflective Symmetry Descriptors 8 N N N
Higher Order Moments 9 N N N
Exponentation EDT 12 N N N

Table 1: A summary of a number of shape descriptors, showing
if they are (N)ormalized or (I)nvariant to each of translation, scale
and rotation.

In general, models are normalized by using the center of
mass for translation, the root of the average square radius
for scale, and principal axes for rotation. We have found that
while the methods for translation and scale normalization are
robust for whole object matching 10, rotation normalization
via PCA-alignment does not provide provide a robust nor-
malization for many matching applications. This is due to
the fact that PCA-alignment is performed by solving for the
eigen-values of the covariance matrix. This matrix captures
only second order model information, and the assumption
in using PCA is that the alignment of higher frequency in-
formation is strongly correlated with the alignment of the
second order components. (Appendix A provides an anal-
ysis of this from a signal processing framework.) We have
found that for many shape descriptors this assumption does
not hold, and the use of principal axes for alignment hampers
the performance of these descriptors.

Many of the descriptors that have used PCA-alignment
represent a 3D shape as either a spherical function or a voxel
grid, which rotates with the model. Examples of such de-
scriptors have included:
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� The Extended Gaussian Image 4, which describes the dis-
tribution of normals across the surface of the model

� Shape Histograms 5, which describe the distribution of
points on the model across all rays from the origin

� Spherical Extent Functions 6, which describe the maximal
extent of a shape across all rays from the origin

� Reflective Symmetry Descriptors 8, which describe the re-
flective self-similarity of a shape with respect to reflec-
tions about all planes through the origin

� The voxel description of Funkhouser et al. 12, which de-
scribes a model by computing the negative exponential of
its Euclidean Distance Transform

For these type of descriptors, we propose a solution to the
rotation problem by providing a mathematical tool, based on
spherical harmonics, for obtaining a rotation invariant repre-
sentation of the descriptors. Our approach is a generalization
of the Fourier Descriptor 11 method to the sphere, character-
izing spherical functions by the energies contained at differ-
ent frequencies. This idea was intially proposed in 12, and
this paper presents a detailed description of the descriptor,
its properties, and empirical results demonstrating its effi-
cacy in improving the matching performance of a number of
existing shape descriptors.

3. Spherical Rotation Invariance

In this paper, we present a tool for transforming rotation
dependent spherical and voxel shape descriptors into rota-
tion invariant ones. The key idea of our approach is to de-
scribe a spherical function in terms of the amount of energy
it contains at different frequencies. Since these values do not
change when the function is rotated, the resulting descriptor
is rotation invariant. This approach can be viewed as a gen-
eralization of the Fourier Descriptor method 11 to the case of
spherical functions.

3.1. Spherical Harmonics

In order to be able to represent a function on a sphere in a
rotation invariant manner, we utilize the mathematical notion
of spherical harmonics to describe the way that rotations act
on a spherical function. The theory of spherical harmonics
says that any spherical function f

�
θ � φ � can be decomposed

as the sum of its harmonics:

f
�
θ � φ ���

�
∑
l � 0

m � l

∑
m ��� l

almY m
l
�
θ � φ �
	

(This decomposition is visualized in step (1) of Figure 1.)
The key property of this decomposition is that if we restrict
to some frequency l, and define the subspace of functions:

Vl � Span
�
Y � l

l � Y � l � 1
l ��	�	�	� Y l � 1

l � Y � l
l �

then:
� Vl is a Representation For the Rotation Group: For any

function f � Vl and any rotation R, we have R
�
f ��� Vl .

Figure 1: We compute a rotation invariant descriptor of a spher-
ical function by (1) decomposing the function into its harmonics,
(2) summing the harmonics within each frequency, and (3) comput-
ing the norm of each frequency component. (Spherical functions are
visualized by scaling points on the unit sphere in proportion to the
value of the function at that point, where points with positive value
are drawn in light gray and points with negative value are drawn in
dark gray.)
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This can also be expressed in the following manner: if πl
is the projection onto the subspace Vl then πl commutes
with rotations:

πl
�
R
�
f � � � R

�
πl
�
f � �
	

� Vl is Irreducible: Vl cannot be further decomposed as the
direct sum Vl � V

�
l
�

V
� �

l where V
�

l and V
� �

l are also (non-
trivial) representations of the rotation group.

The first property presents a way for decomposing spheri-
cal functions into rotation invariant components, while the
second property guarantees that, in a linear sense, this de-
composition is optimal.

3.2. Rotation Invariant Descriptors

Using the properties of spherical harmonics, and the obser-
vation that rotating a spherical function does not change its
L2-norm we represent the energies of a spherical function
f
�
θ � φ � as:

SH
�
f � ����� f0

�
θ � φ ��� ��� f1

�
θ � φ �	� ��	�	�	 


where the fl are the frequency components of f :

fl
�
θ � φ ��� πl

�
f � �

m � l

∑
m ��� l

almY m
l
�
θ � φ �

(shown in steps (2) and (3) of Figure 1.)

This representation has the property that it is independent
of the orientation of the spherical function. To see this we let
R be any rotation and we have:

SH
�
R
�
f � � ����� π0

�
R
�
f � ��� ��� π1

�
R
�
f � ��� ��	�	�	 


����� R � π0
�
f � ��� ��� R � π1

�
f � ��� ��	�	�	 


����� π0
�
f ��� ��� π1

�
f �	� ��	�	�	 
 � SH

�
f �

so that applying a rotation to a spherical function f does not
change its energy representation.

3.3. Further Quadratic Invariance

We can make our representation still more discriminating by
refining the case of the second order component. Using the
results from Appendix A we know that the L2-difference be-
tween the quadratic components of two spherical functions
is minimized when the the two functions are aligned with
their principal axes. Thus, instead of describing the constant
and quadratic components by the two scalars � f0 � and � f2 � ,
we can represent them by the three scalars a1, a2, and a3,
where after alignment to principal axes:

f0  f2 � a1x2  a2y2  a3z2 	

However, care must be taken because as functions on the
unit sphere, x2, y2, and z2 are not orthonormal. By fixing
an orthonormal basis � v1 � v2 � v2 
 for the span of � x2 � y2 � z2 


we can replace the harmonic representation SH
�
f � defined

in Section 3.2 with the more discriminating representation:

SHQ
�
f � ��� R � 1 � a1 � a2 � a3 �
��� f1 � ��� f3 � ��	�	�	 


where R is the matrix whose columns are the orthonormal
vectors vi.

4. Properties of the Spherical Harmonic Representation

This section provides a mathematical analysis of some of
the properties and limitations of the spherical harmonic rep-
resentation. In particular, we describe how the similarity of
spherical descriptors, defined as the optimum over all rota-
tions, relates to the similarity of their harmonic representa-
tions. We also describe the way in which information is lost
in going from a spherical shape descriptor to its harmonic
representation.

1. Similarity: The L2-difference between the harmonic rep-
resentations of two spherical functions is a lower bound
for the minimum of the L2-difference between the two
functions, taken over all possible orientations. To see this,
we let f

�
θ � φ � and g

�
θ � φ � be two spherical functions, and

observe that:

� SH
�
f ��� SH

�
g ��� 2 �

�
∑
l � 0

� � fl ����� gl � � 2

� �
∑
l � 0

� � fl � gl � � 2 ��� f
�
θ � φ ��� g

�
θ � φ ��� 2 	

Similarly, if we consider the rotation invariant represen-
tation described in Section 3.3, we get:

� SH
�
f ��� SH

�
g ��� � � SHQ

�
f ��� SHQ

�
g ���

� � f � g � 	
But as we have shown, the harmonic representations are
invariant to rotation, so we get:

� SH
�
f ��� SH

�
g ��� � � SHQ

�
f ��� SHQ

�
g ���

�
min

R � SO � 3 � � f � R
�
g �	� 	

2. Information Loss: In general, if a spherical function
f
�
θ � φ � is band-limited with bandwidth b, then we can

express f as:

f
�
θ � φ ���

b

∑
l � 0

l

∑
m ��� l

almY m
l
�
θ � φ �
	

Thus, the space of spherical functions with bandwidth b is
of dimension O

�
b2 � . The harmonic representation, how-

ever, is of dimension O
�
b � so that a full dimension worth

of information is lost in going from a spherical function
to its harmonic representation. This information loss hap-
pens in two different ways:
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� First, we treat the different frequency components in-
dependently. Thus if we write:

f �
b

∑
l � 0

fl and g �
b

∑
l � 0

Rl
�
fl �

where Rl are rotations, then the descriptors of the
functions f and g will be the same. That is, the de-
scriptor is unchanged if we apply different rotations
to the different frequency components of a spherical
function. Figure 2 shows a visualization of this for
two spherical functions. The one on the bottom is ob-
tained from the one on the top by applying a rotation
to only one of the frequency components. Though the
two functions differ by more than a single rotation,
there spherical harmonic descriptors are the same.
(An analagous form of information loss occurs with
Fourier Descriptors where the phases of different fre-
quencies are discarded independently.)

Figure 2: The bottom spherical function is obtained by rotating
one of the frequency components of the top one. Despite the fact
that there is no rotation transforming the function on the top to the
one on the bottom, the descriptors of the two functions are the same.

� Second, for each frequency component fl , the har-
monic representation only stores the energy in that
component. For l � 2 it is not true that if � f � � � g �
then there is a rotation R such that R

�
f � � g. Thus

knowing only the norm of the l-th frequency compo-
nent does not provide enough information to recon-
struct the component up to rotation. (This form of in-
formation loss does not occur with Fourier Descrip-
tors, as two circular functions with the same ampli-
tude and frequency can only differ by phase/rotation.)
Figure 3 shows a visualization of this for three spher-
ical functions. The functions are all of the same fre-
quency and have the same amplitude, but there is no
rotation that can be applied to transform them into
each other.

Figure 3: Three spherical functions of the same amplitude and
frequency are shown. Note that there is no rotation transforming
any one of them into the other.

5. Extensions to Voxel Descriptors

In Section 3 we presented a method for obtaining rotation
invariant representations of spherical functions. In this sec-
tion we show how this method can be generalized to obtain
rotation invariant representations of voxel descriptors.

5.1. Rotation Invariant Representations

In order to obtain a rotation invariant representation of a
voxel grid we use the obsevation that rotations fix the dis-
tance of a point from the origin. Thus, we can restrict the
voxel grid to concentric spheres of different radii, and ob-
tain the spherical harmonic representation of each spheri-
cal restriction independently. This process is demonstrated
in Figure 4: First, we restrict the voxel grid to a collection
of concentric spheres. Then, we represent each spherical re-
striction in terms of its frequency decomposition. Finally, we
compute the norm of each frequency component, at each ra-
dius. The resultant rotation invariant representation is a 2D
grid indexed by radius and frequency.

5.2. Properties

In addition to the information loss described in Section 4, the
method described above also loses information as a result of
the fact that the representation is invariant to independent
rotations of the different spherical functions. For example,
the plane in Figure 5 (right) is obtained from the one on the
left by applying a rotation to the interior part of the model.
While the two models are not rotations of each other, the
descriptors obtained are the same.

6. Experimental Results

To measure the efficacy of the spherical harmonic repre-
sentation, we computed a number of spherical shape de-
scriptors, and compared matching results when the spheri-
cal functions were aligned by PCA with the results obtained
when the spherical harmonic representation was used.

In order to evaluate our method we computed the follow-
ing spherical descriptors:

� Extended Gaussian Image 4: This is a description of a
surface obtained by binning surface normals.
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Figure 4: We compute a rotation invariant descriptor of a voxel
grid by intersecting the model with concentric spheres, computing
the frequency decomposition of each spherical function, and com-
puting the norms of each frequency component at each radius. The
resultant rotation invariant representation is a 2D grid indexed by
radius and frequency.

Figure 5: The model on the right is obtained by applying a rota-
tion to the interior part of the model on the left. While the models
differ by more than a single rotation, their rotation invariant repre-
sentations are the same.

� Radial Distribution: This is a description of a surface
that associates to every ray through the origin, the average
distance and standard deviation of points on the intersec-
tion of the surface with the ray.

� Spherical Extent Function 6: This is a description of a
surface associating to each ray from the origin, the value
equal to the distance to the last point of intersection of the
model with the ray.

� Sectors: This is a description of a surface associating to
each ray from the origin, the amount of surface area that
sits over it. This is a continuous implimentation of the
shells in Shape Histograms 5, with sectors chosen to cor-
respond to a single cell within the 64 � 64 representation
of the sphere.

� Shape Histogram 5: This a finer resolution of the Sec-
tor descriptor that breaks up the bounding sphere of the
model into a collection of shells and computes the sector
descriptor for the intersection of the model with each one.

� Voxel 12: This is a description of a shape as a voxel grid,
where the value at each point is given by the negatively
exponentiated Euclidean Distance Transform of the sur-
face.

We evaluated the performance of each method by testing
how well they classified models within a test database. The
database consisted of 1890 “household" objects provided by
Viewpoint 17. The objects were clustered into 85 classes,
based on functional similarities, largely following the group-
ings provided by Viewpoint and classes ranged in size from 5
models to 153 models, with 610 models that did not fit into
any meaningful classes 12. Classification performance was
measured using precision/recall plots, which which gives the
percentage of retrieved information that is relevant as a func-
tion of the percentage of relevant information retrieved.

We computed the spherical representations as 64 � 64
grids corresponding to regular sampling along the lines of
longitude and lattitude and we used SPharmonicKit 2.5 18

to obtain the spherical harmonic representation as an array
of 33 floating point numbers. Both the spherical descriptors
and their spherical harmonic representations were compared
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using the L2-difference. The results of the classification ex-
periment are show in in Figure 6.

Figure 6: Precision vs. Recall plots comparing the performance
of aligned spherical descriptors with the performance of their har-
monic representations. Note that for most of the representations the
harmonic descriptor outperforms the canonically aligned one.

As the results indicate, the application of the Spherical
Harmonic Representation improves the performance of most
of the descriptors. The improvement of the matching results
is particularly meaningful when we consider the fact that the
Spherical Harmonic Representation reduces a 2D descriptor
into a 1D array of energy values. Thus, the representation not
only provides better performance, but it does so with fewer
bits of information.

7. Discussion

In this section we present a discussion of the results in Sec-
tion 6. In particular, we analyze the case of the Extended
Gaussian Image, and discuss how this reflects on the gen-
eral limitations of the Spherical Harmonic Representation.
We also evaluate the implications of the Spherical Harmonic
Representation for database retrieval.

7.1. Limitations

The analysis described in Appendix A provides a mathe-
matical interpretation of the failing of PCA-alignment. This
analysis makes the assumption that we are looking at the

general class of spherical functions, so that frequency com-
ponents align independently. However, in certain shape ap-
plications this may not be the case and the descriptors ob-
tained may fall into a restrictive subset of spherical func-
tions. In these cases it is possible that the alignment of
different frequency components are correlated and PCA-
alignment performs well.

Such a case may occur when the spherical functions are
primarily axis aligned, so that, up to rotation, they can be
described as:

∑akxk  bkyk  ckzk

and the alignments of the different frequency components
are strongly correlated. This is the case for the Extended
Gaussian Image 4 which describes a polygonal model by the
distribution of normal vectors over the unit sphere. When
the database of models is restricted to household objects,
the obtained descriptors are primarily axis aligned (see Fig-
ure 7) and principal axis alignment may provide optimal
alignment, (as indicated by the improved performance in
Figure 6).

Figure 7: Images of models of a vase, a chair, and scissors, with
their associated Extended Gaussian Images. Note that the EGIs are
mainly axial functions and consequently are well aligned by PCA.

7.2. Implications for Model Databases

Much of the research presented in this paper is guided by
the increased proliferation and accessibility of 3D models.
These models have been gathered into databases, and one of
the challenges has been to design matching implementations
that are well suited for database retrieval. The spherical har-
monic representation presented in this paper addresses this
challenge in two ways:

1. While a spherical function of bandwidth b requires O
�
b2 �

space, its spherical harmonic representation is of size
O
�
b � . Consequently, the spherical harmonic representa-

tions provide a more compact representation of the de-
scriptors, and can be compared more efficiently. (For
each method compared in Section 6, Table 2 shows the
space requirements of the descriptor and its Spherical
Harmonic Representation.)

2. Furthermore, the Spherical Harmonic Representations
are based on a frequency decompostion of a spherical
function. Consequently, the representation is inherently
multiresolutional and this property can be used to guide
indexing schemes for efficient retrieval.
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Representation PCA-Aligned Harmonic

EGI 64 � 64 33
Spherical Extent Function 64 � 64 33
Radial Distribution 2 � 64 � 64 2 � 33
Sectors 64 � 64 33
Shape Histogram 4 � 64 � 64 4 � 33
Voxel 32 � 64 � 64 32 � 33

Table 2: The number of floating point numbers used to describe
each representation. This table demonstrates that the Spherical Har-
monic Representation provides a representation that reduces the di-
mensionality of the space required for storing the descriptor.

8. Conclusion and Future Work

In this paper we have introduced the Spherical Harmonic
Representation, a rotation invariant representation of spheri-
cal functions in terms of the energies at different frequencies.
We have shown that this representation provides a method
for improving the performance of many canonically aligned
spherical descriptors in tasks of shape matching. In addition
to providing better matching performance this rotation in-
variant representation also reduces the dimensionality of the
existing descriptors improving both the time and space re-
quirements of these methods.

This work suggests a number of challenges that we would
like to consider in the future: First, we would like to explore
the possibility of generalizing this method to voxel grids us-
ing Zernike moments. Second, we would like to consider
methods for reducing the rotation independence of the dif-
ferent frequency components, and, in the case of voxel grids,
of the different radial components. Finally, we would like
to explore extending this method to capture more rotation
invariant information in the higher frequency components,
allowing us to truly reconstruct each frequency component
uniquely up to rotation.
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Appendix A: A Signal Processing Framework for PCA

This appendix presents a signal processing framework for
analyzing the implications and limitations of model align-
ment via PCA. We define a spherical function characterizing
the radial variance of a shape along different rays from the
origin. In particular, for a model S and a direction v we set:

RV
�
S � v � � lim

α � 0

�
C � v � α ��� S

� x � 2
2π

�
1 � cos

�
α � � dx

where C
�
v� α � is the cone with apex at the origin, angle α

and direction v, and 2π
�
1 � cos

�
α � � is the area of the inter-

section of the cone with the unit sphere (see Figure 8). That
is, RV

�
S � v � gives the sum of the square of the distances of

the points lying on the intersection with S and the ray, from
the origin, with direction v. Figure 9 shows a visualization of
the Radial Variance for a cube by scaling the radius of each
point on a sphere in proportion to the value of the function at
that point. Note that the function scales the points at the cor-
ners of the cube more drastically because: (1) we integrate
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Figure 8: The value of the Radial Variance in the direction v is
defined by intersecting the model with a cone, in the direction v,
with small angle α, and integrating the square of the distance over
the intersection of the model with the cone.

Figure 9: The Radial Variance can be visualized by displacing the
radius at a point on the sphere, in proportion to the value of the
function at that point.

the square of the distance to the origin over each patch, and
(2) the angle between the point on the sphere and the sur-
face normal is large, so that more surface area projects onto
a spherical patch.

What is valuable about this function is that for any surface
S, the function has the property that:

�
S

xix j dx ��� RV
�
S � v �
� xix j � S2 	

That is, the second (and 0-th) order components of the radial
variance are precisely the terms of the covariance matrix of
the model. This function gives a representation of the initial
model in a signal processing framework that allows us to
make two observations:

1. Because of the orthogonality of the frequency compo-
nents, principal axis registration does not take into ac-
count information at non second-order frequencies and
hence makes no guarantees as to how they align.

2. Aligning two models using their principal axes provides
the optimal alignment for their second order components,
as will be shown in the following theorem:

Theorem: If f and g are two spherical functions consist-
ing of only constant and second order harmonics, then the

L2-difference between the two is minimized when each is
aligned to its own principal axes.

Proof: Because f and g consist of only constant and second
order terms, we can represent the functions by symmetric
matrices A and B where

f
�
v � � vtAv and g

�
v � � vtBv	

If we assume that A and B are already aligned to their prin-
cipal axes we get:

A �
��

a1 0 0
0 a2 0
0 0 a3

��
and B �

��
b1 0 0
0 b2 0
0 0 b3

��
Thus, if R is any rotation we get:

� Rt � f �
� g � � �
α � β � Trace

�
ARBRt �  β

3

∑
i � j � 1

aib j

where α ��� S2 x4dx and β ��� S2 x2y2dx define the lengths
and angles between the functions x2

i on the unit sphere. We
would like to show that the dot product is maximized when
R is a permutation matrix so that RARt is diagonal.

Using the fact that the differentials of a rotation R are de-
fined by RS where S is a skew-symmetric matrix, it suffices
to solve for:

0 � d
dt 			 t � 0

Trace
�
A
�
R  tRS � B � Rt � tSRt � �

� Trace
�
RtAR

�
SB � BS � �

But S is a skew-symmetric matrix so that, SB � BS is a sym-
metric matrix with 0’s along the diagonal:

SB � BS �
��

0
�
b2 � b1 � S12

�
b3 � b1 � S13�

b2 � b1 � S12 0
�
b3 � b2 � S23�

b3 � b1 � S13
�
b3 � b2 � S23 0

��
Thus, if RtAR is a diagonal matrix then the derivative is zero,
independent of the choice of S. Conversely, if the bi are dis-
tinct and RtAR is not diagonal, we can always choose values
for S12, S13, and S23 such that the derivative is non-zero, im-
plying that if RtAR is not diagonal it cannot maximize the
dot product. (Note that if b1 � b2 � b3 then B is a constant
multiple of the identity so that the dot product is independent
of the choice of rotation. Similarly, if bi � b j then rotations
in the plane spanned by xi and x j also do not change the dot
product.)

This shows that the L2-difference between f and g is at an
extremum if and only if A and B are both diagonal matrices.
The minimum L2-difference is then attained when ∑aibi is
maximal. So that if a1 
 a2 
 a3 then we must also have
b1 
 b2 
 b3, and the L2-difference between f and g is min-
imized precisely when f and g are aligned to their principal
axes.
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