
A Type System for Expressive Security Policies∗

David Walker

Cornell University

Abstract

Certified code is a general mechanism for enforcing se-
curity properties. In this paradigm, untrusted agent
code carries annotations that allow a host to verify
its trustworthiness. Before running the agent, the
host checks the annotations and proves that they im-
ply the host’s security policy. Despite the flexibility
of this scheme, so far, compilers that generate proof-
carrying code have focused on simple memory and
control-flow safety rather than more general security
properties.

Security automata can enforce an expressive col-
lection of security policies including access control
policies and resource bounds policies. In this paper,
we show how to take specifications in the form of se-
curity automata and automatically transform them
into signatures for a typed lambda calculus that will
enforce the corresponding safety property. Moreover,
we describe how to instrument typed source language
programs with security checks and typing annota-
tions so that the resulting programs are provably se-
cure and can be mechanically checked. This work
provides a foundation for the process of automatically
generating secure certified code in a type-theoretic
framework.

1 Introduction

Strong type systems such as those supported by Java
or ML provide provable guarantees about the run-
time behaviour of programs. If we type check pro-
grams before executing them, we know they “won’t
go wrong.” Usually, the notion “won’t go wrong” im-
plies memory safety (programs only access memory
that has been allocated for them), control flow safety
(programs only jump to and execute valid code), and

∗This material is based on work supported in part by the
AFOSR grant F49620-97-1-0013. Any opinions, findings, and
conclusions or recommendations expressed in this publication
are those of the authors and do not reflect the views of this
agency.

abstraction preservation (programs use abstract data
types only as their interfaces allow). These properties
are essential building blocks for any secure system
such as a web browser, extensible operating system,
or server that may download, check and execute un-
trusted programs. However, in order to build such
systems, we must restrict program behaviour much
more drastically; standard type safety properties are
not sufficient to enforce realistic access control poli-
cies or to restrict the dissemination of secret infor-
mation.

Certified code is a general framework for verify-
ing security properties in untrusted code. To use
this security architecture, a programmer or compiler
must attach a collection of annotations to the code
that they produce. These annotations can be proofs,
types, or annotations from some other kind of for-
mal system. Regardless, there must be some way of
reconstructing a proof that the code obeys a certain
security policy, for upon receiving annotated code,
an untrusting web browser or operating system will
use a mechanical checker to verify that the program
is safe before executing it.

In theory, certified code is very general, but in
practice, compilers that emit certified code have fo-
cused on a relatively limited set of properties. For ex-
ample, Necula and Lee’s proof-carrying code (PCC)
implementation [14, 13] uses a first-order logic and
they have shown that they can check many interest-
ing properties of hand-coded assembly language pro-
grams including access control and resource bound
policies [16]. However, the main focus of their proof-
generating compiler Touchstone [15] is the generation
of efficient code; the security policy they enforce is the
standard type and memory safety. Other frameworks
for producing certified code including Morrisett et
al.’s [12, 9, 8] Typed Assembly Language (TAL) and
Kozen’s efficient code certification (ECC) [5] concen-
trate exclusively on standard type safety properties.

The main reason that certified code has been used
in this restricted fashion is that automated theorem
provers are not powerful enough to infer properties
of arbitrary programs and, except in rare cases, con-
structing proofs by hand is prohibitively expensive.
Researchers have been able produce proofs of type
safety for their code because they place heavy re-
strictions on the programming languages that they
compile and when they cannot prove type safety stat-
ically, they insert dynamic checks, completing the

1



proof at run time. For example, using arrays safely
requires that they prove each access is in bounds.
The Touchstone compiler uses a theorem prover to
attempt to complete this proof statically, but when
it cannot do so, it inserts a run-time check.

In order to construct a tractable system for se-
cure certified code, we will follow the model devel-
oped for standard type safety proofs: Instrument the
program with run-time security checks and then elim-
inate those checks that a theorem prover can verify
statically. For an interesting class of security prop-
erties, this strategy will guarantee that any program
can be automatically rewritten so that it is provably
safe; the programmer need not be burdened by ex-
tensive proof obligations.

1.1 Security Automata and SASI

Unlike memory safety and control-flow safety, prop-
erties that must be enforced across all applications,
security policies may vary from one application to the
next. Schneider [19] has proposed security automata
as a flexible mechanism for enforcing a much larger
class of security policies than are possible in tradi-
tional type systems. Security automata are defined
similarly to other automata [4]. In the model we will
use in this paper, these machines possess either a fi-
nite or a countably infinite set of states, and rules for
making transitions from one state to the next when
they receive inputs. One of the states in the automa-
ton is designated as the bad state. Security automata
enforce safety properties by monitoring programs as
they execute: Before an untrusted program is allowed
to execute a security-sensitive operation, the security
automaton checks to see if that operation will cause a
transition to the bad state. If so, the automaton ter-
minates the program. If not, the program is allowed
to execute the operation and the security automaton
makes a transition to a new state.

By monitoring programs in this way, security au-
tomata are sufficiently powerful that they can restrict
access to sensitive files or operations, or bound the
use of resources. They can also enforce the safety
properties typically implied by type systems such as
memory safety and control-flow safety. Security au-
tomata can only enforce safety policies. Hence, some
interesting security policies including information flow
and resource availability cannot be enforced by this
mechanism. However, Schneider [19] points out that
for some of these applications, we can still use a secu-
rity automaton: The automaton must simply enforce
a stronger property than is required. For example,
we can ensure no secret information flows to the out-
side world by disallowing access to the network. This
safety property can be enforced by a security automa-
ton, but it reduces the number of legal programs that
can be written.

The following diagram depicts a security automa-
ton that enforces the policy that code must not per-
form a send on the network after reading a file:

start has_read

read(f)

read(f)

send()

The security automaton actually has three states:
a start state, a has read state, and the bad state,
which is not shown in the diagram. For the purpose of
this example, we will assume that there are only two
security-sensitive or protected operations: the send
operation and the read operation. Each of the arcs
in the graph is labeled with one of these operations
and indicates the state transition that occurs when
the operation is invoked. If there is no outgoing arc
from a certain state labeled with the appropriate op-
eration, the automaton makes a transition to the bad
state. For example, there is no send arc emanating
from the has read state. Consequently, if a program
tries to use the network in the has read state, it will
be terminated.

We can enforce the policies specified by security
automata by instrumenting programs with run-time
security checks. For example, consider a program
that executes the send operation at some point dur-
ing computation. According to the security policy,
we must be in the start state in order for the send to
be safe. A program instrumentation tool could en-
force this policy by wrapping the code invoking send
with security checks:

let new state = checksend(current state) in
if new state = bad then

halt
else

use()

The first statement invokes the security automa-
ton to determine the next state given that a send
operation is invoked in the current state. The second
statement tests the next state to make sure it is not
the bad one. If it is bad, then program execution is
terminated.

After performing the initial transformation that
sandboxes all protected operations, a program opti-
mizer might attempt to eliminate redundant checks
by performing standard program optimizations such
as loop-invariant removal and common subexpression
elimination. An optimizer might also use its knowl-
edge of the special structure of a security automaton
to eliminate more checks than would otherwise be
possible.

An implementation developed by Erlingsson and
Schneider [21] attests to the fact that security au-
tomata can enforce a broad, practical set of security
policies. Their tool, SASI, automatically instruments
untrusted code with checks dictated by a security au-
tomaton specification and optimizes the output code
to eliminate checks that can be proven unnecessary.
The tool is both flexible and efficient and they have
implemented a variety of security policies from the
literature. For example, using SASI for the Intel Pen-
tium architecture, they have specified the memory

2



and control-flow safety policy enforced by Software
Fault Isolation (SFI) [22]. The SASI-instrumented
code is only slightly slower than the code produced
by the special-purpose, hand-coded MiSFIT tool for
SFI [20]. As another example, using SASI for the
Java Virtual Machine, they have been able to reim-
plement the security manager for Sun’s Java 1.1. The
SASI-instrumented code is equally as efficient as the
Java security manager in some cases and more effi-
cient in others. SASI is more flexible than the Java
security model because individual systems or users
can customize the set of protected operations rather
than having that set dictated by the Java language
specification.

1.2 An Overview

This paper presents a framework for automatically
compiling programs into certified code that satisfies
security automaton specifications. More specifically,
we show how to instrument strongly-typed programs
that do not necessarily follow the security policy with
run-time security checks and typing annotations. The
output from the instrumentation algorithm type checks
in a new strongly typed language and the soundness
of the language’s type system ensures that the au-
tomaton security policy will never be violated. Fur-
thermore, because the type system is defined inde-
pendently of the instrumentation algorithm, untrusted
parties can write their own instrumentation and op-
timization transformations. If the output program
type checks then the code obeys the security policy.
Thus, we also provide a new way to certify that un-
trusted code obeys expressive security policies.

In order to accomplish these goals, we have em-
bedded predicates into the type system of the target
language. Each protected operation is given a type
that uses the predicates to specify a precondition re-
stricting the application of the function. The pre-
condition states that the function must not cause the
program to enter the bad state. Now, each time the
function is applied, the type checker must be able to
prove that the calling context satisfies the precondi-
tion. If it can do so, the program satisfies the security
policy.

In general, in order to complete the proof of safety,
the program will have to contain run-time security
checks. Intuitively, these security checks have types
that express post-conditions containing information
about the automaton transition function. The post-
conditions can be used to help prove the precondi-
tions on the protected operations.

Using these predicates (P), we can check that the
pseudo-code from the previous section is safe:

let new state = checksend(current state) in

P1: transitionsend(current state, new state)

if new state = bad then

halt

else

P2: new state 6= bad

send()

The predicates P1 and P2, together with the infor-
mation that the automaton is actually in the state

designated current state, are sufficient to prove that
the precondition on the send operation has been sat-
isfied.

Our techniques offer a number of advantages over
previous security architectures:

1. Given any well-typed source program, instru-
mentation is automatic and guaranteed to suc-
ceed. Programmers are not burdened with the
obligation to produce proofs or to write down
annotations that imply their programs obey the
security policy.

2. The security policy is compiled into a signa-
ture that gives each security-sensitive function
a type that restricts the use of that function.
Because we compile into a typed language, a
single mechanism, the type-checker, is responsi-
ble for verifying both the fundamental memory
safety and type abstraction properties as well as
the more sophisticated security properties. All
checks can be performed during a single pass
over the program.

3. The language of types specifies the interface
to programs allowing separate compilation, in-
dependent checking, and safe linking of client
programs. Therefore, program instrumentation
and optimization can be performed offline and
the results can be checked when the program is
downloaded. The program instrumentation and
optimization tools are not part of the trusted
computing base.

4. Because security constraints are compiled into
a typed language, we can leverage extensive
research in type-directed compilation to com-
pile instrumented programs into low-level typed
languages. We believe we can extend the tech-
niques developed by Morrisett et al. [12] and
produce secure Typed Assembly Language.

The remaining sections of this paper describe the
approach in more detail. We begin by describing a
source language for program instrumentation (Sec-
tion 2). Next, in Section 3, we present a formal model
for security automata based on work by Alpern and
Schneider [1, 19]. At this point, we define a typed lan-
guage, λA, for encoding security automata and spec-
ify how to construct a signature that will specialize
the language so that it enforces the policy specified
by a particular automaton (Section 4). In Section 5,
we show how to instrument insecure programs and
discuss possible optimizations to the procedure. The
last section discusses related and future work.

2 The Insecure Source Language

Before we can describe security automata formally,
we must describe the language that we wish to make
secure. For the purposes of this paper, we use a
simply-typed lambda calculus augmented with a fi-
nite set of base types and some constants. The syntax
of the language appears in Figure 1.

There are two classes of constants, a countably
infinite set of objects a of base type and finite set
of function constants f . The latter denotes poten-
tially insecure operations, for example, operations

3



base types b ∈ BaseType
types τ ::= b | (τ1, . . . , τn)→ 0
constants a ∈ A

protected ops f ∈ F
value vars g, x ∈ ValueVar
values v ::= a | f | x |

fixg(x1:τ1, . . . , xn:τn).e
expressions e ::= v0(v1, . . . , vn) | halt

Figure 1: Source Language Syntax

that send bits on the network or read files. We will
refer to these functions as the “protected functions”
or “protected operations” and in the next section we
will show how to use security automata to restrict ac-
cess to them. Ordinary (unrestricted) functions may
be constructed using the notation:

fixg(x1:τ1, . . . , xn:τn).e

where the arguments x1 to xn have types τ1 to τn and
g, the name of the function itself, may appear recur-
sively in e. When an argument is unused or a func-
tion is not recursive, we will often use an underscore
in place of the name of the argument or function.

The only distinctive element of our lambda calcu-
lus is that it is presented in continuation-passing style
(CPS) [18]. Functions written in a CPS style never
“return” to their caller; instead, they are passed an
auxiliary function, or continuation. When the func-
tion has completed its computation, it calls this con-
tinuation. We signify the fact that our functions
never return using the notation “→0” in their type.
The symbol halt terminates computation. Although
CPS is not strictly necessary, this decision will sim-
plify the presentation of the target language. For the
remainder of the paper, we will assume familiarity
with CPS.

We will assume a static semantics for the lan-
guage given by a typing judgements Γ ` v : τ and
Γ ` e where Γ is a finite map from value variables
to types. The former judgement concludes value v
is well-formed and has type τ while the latter judge-
ment says simply that e is well-formed. CPS expres-
sions do not return values and consequently, their
judgements need not specify a type.

The types for constants are given by a signature
Csource where Csource(a) has the form b and Csource(f )
has the form (b1, . . . , bn, (b)→ 0)→ 0. For the pur-
poses of this paper, the protected operations f oper-
ate on objects of base type and accept a single contin-
uation. This restriction is not a fundamental limita-
tion of the work, but allowing higher-order protected
operations does cause some complications.1 Other-
wise, the typing rules for the language are completely
standard and have been omitted.

We also assume a standard small-step operational
semantics for our language denoted by e1 7−→ e2.
Function constants must obey their signature and are

1The needed extensions complicate the semantics of the
target language, but offer little additional insight into the
solution of the problem. See Section 4.4 for more explanation.

Q a finite or countably infinite set of states
q0 a distinguished initial state
bad the single “bad” state
F a finite set of function symbols (f)
A a countable set of constants (a)
δ a computable (deterministic) total

function: F→ (Q × ~A)→ Q

Figure 2: Elements of a Security Automaton

assumed to be total. Hence:

if Csource(f ) = (b1, . . . , bn, (b)→ 0)→ 0)
then f (a1, . . . , an, vcont) 7−→ vcont(a)

(for some a with type b)

when ai has type bi. As we mentioned above, halt
terminates computation. In other words, there does
not exist an expression e such that halt 7−→ e. We
will use this instruction to terminate programs that
misbehave. Once again, the remaining operational
rules are standard and have been omitted.

2.1 An Example: The Taxation Applet

Using our simple source language, we can write a
“taxation applet.” When invoked, this applet sends a
request out for tax forms. After sending the request,
the applet reads a private file containing the customer
salary before computing the taxes owed. We will as-
sume files and integers (int) are available as base
types; send (across the network for the tax forms)
and read (file) are the two protected operations.2

fix (secret:file,xcont:(int)→ 0).
let = send() in % send for forms
let salary = read(secret) in % read salary
let taxes = salary in % compute taxes!!
xcont(taxes)

The customer would like to ensure information
about his or her salary is not leaked on the network.
In the following sections, we will satisfy the customer
by showing how to specify and enforce the “no send
after read” policy that was discussed informally in
the introduction.

3 Security Automata

Our definition of security automata is derived from
the work of Alpern and Schneider [1] who use similar
automata to define and reason about safety and live-
ness properties. Schneider [19] extended this work by
defining the class of security enforcement mechanisms
that monitor program execution. He proved that
these enforcement mechanisms are specified by secu-
rity automata and that they can enforce any safety
property.

2In this example and others, we use the notation
let x1, . . . , xn = v(v1, . . . , vn) in e as an abbreviation for the
function application:

v(v1, . . . , vn, fix (x1:τ1 , . . . , xn:τn).e)

4



For our purposes, a security automaton (A) is a
6-tuple containing the fields summarized in Figure 2.
Like an ordinary finite automaton, a security automa-
ton has a finite or a countably infinite set of states
Q, and a distinguished initial state q0. The automa-
ton also has a single bad state (bad). Entrance into
the bad state indicates that the security policy has
been violated. All other states are considered “good”
or “accepting” states. The automaton’s inputs cor-
respond to the application of a function symbol f to
arguments a1, . . . , an where f is taken from the set
F (dictated by the insecure language) and a1, . . . , an

are taken from the set A.
A security automaton defines allowable program

behaviours by specifying a transition function δ. For-
mally, δ is a deterministic, total function with a sig-

nature F→(Q×~A)→Q where ~A denotes the set of lists
a1, . . . , an. Upon receiving an input f (a1, . . . , an),
an automaton makes a transition from its current
state to the next state as dictated by this transi-
tion function. If the security policy permits the op-
eration f (a1, . . . , an, vcont) 7−→ vcont(a) in the cur-
rent state then the next state will be one of the
“good” ones. On the other hand, if the security policy
disallows the action f (a1, . . . , an, vcont) 7−→ vcont(a)
then δ(f )(q, a1, . . . , an) will equal bad. All programs
must respect the basic typing rules so at minimum,
for all f , q, a1, . . ., an there exists a state q′ such
that q′ is not bad and δ(f )(q, a1, . . . , an) = q′ only if
C(f ) = (b1, . . . , bn, (b)→ 0)→ 0 and C(ai) = bi. Fur-
thermore, once the automaton enters the bad state,
it stays there. Formally, for all f and a1, . . . , an,
δ(f )(bad, a1, . . . , an) = bad. Finally, the transition
function δ must be computable. Moreover, the im-
plementor of the security policy must supply code for
a family of functions δf such that δf (q1, a1, . . . , an)
equals δ(f )(q1, a1, . . . , an). In the following sections,
we will use these functions to instrument untrusted
code with security checks.

The language accepted by the automaton A, writ-
ten L(A), is a set of strings where a string is a finite
sequence of symbols s1, . . . , sn and each symbol si is
of the form f (a1, . . . , am). The string s1, . . . , sn be-
longs to L(A) if Accept(q0, s1, . . . , sn) where Accept
is the least predicate such that:

Definition 1 (String Acceptance) For all states
q and (possibly empty) sequences of symbols s1, . . . , sn,
Accept(q, s1, . . . , sn) if q 6= bad and:

1. s1, . . . , sn is the empty sequence or

2. s1 = f (a1, . . . , am) and δ(f )(q, a1, . . . , am) = q′

and Accept(q′, s2, . . . , sn)

We are now in a position to define the security
policy for our taxation applet. Informally, the policy
we desire is “no network send after any file has been
read.” Furthermore, for the sake of future examples,
access to some files will be restricted; in order to de-
termine whether or not the applet has been granted
access to the file f , we will have to invoke the function
read?(f), which has been provided by the implemen-
tor of the file system.

The corresponding security automaton has three
states: start, the initial state; has read, the state we
enter after any file read; and, of course, the bad state.

The protected operations, F, are send and read and
the constants, A, include all files and the integers.
The transition function δ, written in pseudo-code, is
the following:

δsend(q) =
if q = start then

start
else

bad

δread(q, f) =
if q = start ∧ read?(f) then

has read
else if q = has read ∧ read?(f) then

has read
else

bad

4 The Secure Target Language

So far, we have defined two languages, a lambda cal-
culus for writing applications and a specification lan-
guage for describing security properties. This section
presents a third language, λA, that serves as a target
for the compilation of the other two. The security
automaton specifications are compiled into an inter-
face that gives types to the protected functions and
the corresponding automaton functions (i .e. δsend).
The types on protected functions specify sufficient
preconditions that the type system for the new lan-
guage can enforce the security policy. Application
programs, such as the taxation applet, are compiled
into λA expressions by inserting typing annotations
and run-time checks. These instrumented programs
type check against the interface, implying they obey
the security policy.

In the following section, we will describe the main
constructs in the language λA independently of any
security policy. In section 4.2, we will show how to
specialize the language by constructing the typed in-
terface for a particular security automaton. Section 5
describes an algorithm for instrumenting application
programs.

4.1 The Syntax and Semantics of λA

The secure language contains three main parts: the
predicates P , the types τ , and the term level con-
structs. We will explain each of these parts in suc-
cession. Figure 3 presents the syntax of the entire
language.

Predicates Predicates, P , may be variables ρ or
%, indices (constant predicates) ι, or functions of a
number of arguments ι(P1, . . . ,Pn). There are three
distinct kinds of predicates:

• Predicates that correspond to values of base
type (kind Val).

• Predicates that correspond to security automa-
ton states (kind State).

• Predicates that describe relations between val-
ues and/or states (kind (κ1, . . . , κn)→B where
B is the boolean kind).

5



kinds κ ::= Val | State | B | (κ, . . . , κ)→B
indices ι, â, q̂
index sig I : indices→ kinds
pred. vars ρ, %
predicates P ::= ρ | ι | ι(P1, . . . ,Pn)
predicate ctxt ∆ ::= · | ∆, ρ:κ | ∆,P
base types b ∈ BaseType + S
types τ ::= b(P) | ∀[∆].(P , τ1, . . . , τn)→ 0 | ∃ρ:κ.τ

constants a, q, f
constant sig C : constants→ types
value vars g, x
values v ::= x | a | fixg[∆].(P , x1:τ1, . . . , xn:τn).e | v[P ] | v[·] | pack[P , v] as τ
expressions e ::= v0(v1, . . . , vn) | halt | letρ, x = unpackv in e | ifv (q→ e1 | → e2)

Figure 3: Syntax of λA

Most security policies depend upon the properties
of particular values, and consequently, we must track
these values in the type system. This is the role of the
predicates with kind Val. For each value a of base
type, there is a corresponding index that we will write
using the notation â. For example, the file foo has

an associated index
�

foo. Using the index
�

foo, we
can specify precise properties of foo including “foo
is readable” or “foo is writeable.” In our examples,
we will use the meta-variable ρ for predicate variables
that range over indices of kind Val.

We are careful to distinguish between indices and
values in order to separate computation performed at
compile time (type checking) and computation per-
formed at run time. Indices, and more generally,
predicates are used exclusively at compile time; we
erase these annotations before running the program.
If we want to use the information contained in a pred-
icate at run time, we must use the corresponding
value instead. This design has the advantage that
we need only pass run-time data around when we ac-
tually need it rather than because we required it to
type check the program. Furthermore, a type-erasure
semantics is a practical necessity if the type system
is to be used in low-level certified code [12, 2].

The second kind of predicate allows us to specify
information about automaton states. Again, for ev-
ery automaton state q, there is an associated index
q̂. We will usually use the predicate q̂ to indicate the
program is currently executing in state automaton q.
Sometimes in our examples (and in particular for the
states start and has read), we will omit the hat nota-
tion; context is enough to discriminate between states
and their associated indices. The meta-variable % will
range over variables of kind State.

Finally, the language of predicates contains a set
of relations. These relations will serve two purposes.
The first purpose is to describe the transition func-
tion of the security automaton. For example, the
transition function for the automaton of Section 3
can be described by two predicates, δsend(Pq1 ,Pq2)
and δread(Pq1 ,Pq2 ,Pfile). The former predicate may
be read “in state Pq1 , executing the send operation
causes a transition to state Pq2 .” The latter predicate
is similar. The predicate δsend(start, start) states
that performing a send operation in the start state

causes a transition to the start state. These pred-
icates will be discussed in more detail in the next
section when we describe how to instantiate the lan-
guage signature for a particular automaton.

The second relation we will need is the special
predicate 6= (·, ·) of kind (State, State) → B. We
will use this predicate to denote the fact that some
state q is not equal to the bad state and consequently
that it is safe to execute an operation that causes a
transition into q.

We specify the well-formedness of predicates using
the judgement Φ ` P : κ where Φ is a type-checking
context containing three components: a predicate
context ∆, a finite map Γ from value variables to
types, and another predicate P ′ indicating the cur-
rent state of the automaton. The latter two compo-
nents are not used for specifying the well-formedness
of predicates (they will be used for type-checking
terms). The signature I assigns kinds to the indices.
Kinds for variables are determined by the predicate
context ∆. The kind of a function symbol must agree
with the kinds of the predicates to which it is ap-
plied. The formal rules are uninteresting so we have
removed them to Appendix A.

Figure 4 gives the rules for provability of pred-
icates. The judgement Φ ` P indicates that the
boolean-valued predicate P is true, and the judge-
ment Φ ` P ′ in state indicates that the program is
currently executing in the automaton state P ′. We
will elaborate on how these judgements are used when
we describe the static semantics of functions.

Aside from the special predicate 6= (·, ·), our pred-
icates are completely uninterpreted. This decision
makes it trivial to show the decidability of the type
system. However, some optimizations may not be
possible without a stronger logic. To remedy this sit-
uation, implementers are free to add axioms to the
type system provided they also supply a decision pro-
cedure for the richer logic. In Section 5.2, we show
how to add security policy-specific axioms that allow
many unnecessary security checks to be eliminated.

Types As mentioned above, security policies often
depend upon the properties of particular values. In
order to reflect values into the type structure, we use
singleton types b(P) where P is either a index or

6



Φ ` P Φ ` P in state

∆1,P ,∆2; Γ;P ′ ` P (1)

Φ `6= (q̂, q̂′)
(q̂ 6= q̂′)

(2)

∆;Γ;P ` P in state (3)

Figure 4: Static Semantics: Provability

a variable of kind Val and b is one of base types.
For example, our file foo will be assigned the type

file(
�

foo).
In many situations, we will not be able to infer the

state of the security automaton statically. As a re-
sult, we will have to pass representations of automa-
ton states around at run time and check them dy-
namically to determine their values. These state rep-
resentations will have the singleton type S(P) where
P has kind State and S is the new base type for
automaton states.

In many circumstances, we may not know or even
care which state or value we are manipulating. For in-
stance, the math library may not contain any security-
sensitive operations. We would simply like these func-
tions to manipulate integers without being specific
about which ones. In this case, we will use the ex-
istential type ∃ρ:Val.int(ρ) to indicate we have an
integer, but we do not know which one. As we will
see in Section 5, this existential encodes the generic
(non-singleton) base types from the source language.

The final type constructor is a modified function
type ∀[∆].(P , τ1, . . . , τn)→ 0. The predicate context
∆ abstracts a series of predicate variables for un-
known values or states and requires that a sequence
of boolean-valued predicates be satisfied before the
function can be invoked. The predicate P in the first
argument position is not an argument to the function.
Rather, it is another precondition requiring that the
function be called in the state associated with P . The
actual arguments to the function must have types τ1

through τn.
We specify the well-formedness of types using the

judgement Φ ` τ . A type is well-formed if ∆ con-
tains the free predicate variables of the type. Func-
tion types ∀[∆].(P , τ1, . . . , τn)→ 0 also require that
P has kind State and that the predicates occuring in
∆ have kind B. Once again, the formal rules may be
found in Appendix A. Because predicates are unin-
terpreted, we can use standard syntactic equality of
types up to alpha conversion of bound variables.

Values and Expressions The typing rules for val-
ues have the form Φ ` v : τ and state that the value
v has type τ in the given context. The judgement
Φ ` e states that the expression e is well-formed. Re-
call that CPS expressions do not return values, and
hence the latter judgement is not annotated with a
return type. Figure 5 presents the formal rules. In
these judgements, we use the notation Φ, ρ:κ to de-
note a new context in which the binding ρ:κ has been

appended to the list of assumptions in Φ. The oper-
ation is undefined if ρ appears in Φ. The notations
Φ,P and Φ, x:τ and the extension to Φ,∆ are similar,
although P may already appear in Φ.

The values include variables and constants. The
treatment of values is standard, and as in the insecure
language, a signature C gives types to the constants.

The value v[P ] is the instantiation of the poly-
morphic value v with the predicate P . We consider
this instantiation a value because predicates are used
only for type-checking purposes; they have no run-
time significance. The value v[·] is somewhat similar:
if v has type ∀[P ,∆].(· · ·)→ 0 and we can prove the
predicate P is valid in the current context, we give
v[·] the type ∀[∆].(· · ·)→ 0. Again, the notation [·]
is used only to specify that the type-checker should
attempt to prove the precondition; it will not influ-
ence the execution of programs. In a system with
a more sophisticated logic than the one presented in
this paper, we might not want to trust the correct-
ness of complex decision procedures for the logic. In
this case, we would replace [·] with a proof of the
precondition and replace the type checker’s decision
procedure with a much simpler proof-checker.

Target language function values differ from source
language functions in that they specify a list of pre-
conditions using the predicate context ∆. Every func-
tion also expresses a state precondition P . The func-
tion can only be called in the state denoted by P .
Static semantics rule (10) contains the the judge-
ment Φ ` P in state, which ensures this invariant is
maintained. This rule also enforces the standard con-
straints that argument types must match the types
of the formal parameters. Finally, because the predi-
cate context is empty, any preconditions the function
might have specified must have already been proven
valid.

Rule (6) states that we type check the body of a
function assuming its preconditions hold. In this rule,
we use the notation Φ← P to denote a context Φ′ in
which the state component of Φ has been replaced by
P . For example, suppose a function g is defined in
the context ∆′; Γ′;P ′. The type checker can use any
of the predicates in ∆′ to help prove g is well-formed
but it cannot assume that g will be called in the state
P ′. The function g is defined here, but may not be
used until much later in the computation when the
state is different (P ′′ perhaps).

It is tempting to define a predicate “in state(P)”
and to include this predicate in the list of function
preconditions ∆. Using this mechanism, it may ap-
pear as though we could eliminate the special-purpose
state component of the type-checking context. Un-
fortunately, this simplification is unsound. Consider
the following informal example:

% Assume current state = start
letg:∀[in state(start)].(τ1, . . . , τn)→ 0 = · · · in
% Prove precondition:
letg′:∀[ ].(τ1, . . . , τn)→ 0 = g[·] in
% Change the state to q′ where q′ 6= start:
let = op() in
% g is not called in the start state!
g′(v1, . . . , vn)

In the last line, the function g is invoked in a state q′

when the function definition assumed it would be in-

7



Φ ` v : τ

Φ ` x : τ
(Φ(x) = τ)

(4)

Φ ` a : τ
(C(a) = τ)

(5)

Φ ` τg

(Φ,∆, g:τg, x1:τ1, . . . , xn:τn)← P ` e

Φ ` fixg[∆].(P , x1:τ1, . . . , xn:τn).e : τg

(where τg = ∀[∆](P , τ1, . . . , τn)→ 0)

(6)

Φ ` v : ∀[ρ:κ,∆].(P ′, τ1, . . . , τn)→ 0 Φ ` P : κ

Φ ` v[P ] : (∀[∆].(P ′, τ1, . . . , τn)→ 0)[P/ρ]
(7)

Φ ` v : ∀[P ,∆].(P ′, τ1, . . . , τn)→ 0 Φ ` P

Φ ` v[·] : ∀[∆].(P ′, τ1, . . . , τn)→ 0 (8)

Φ ` P : κ Φ ` v : τ [P/ρ]

Φ ` pack[P , v] as ∃ρ:κ.τ : ∃ρ:κ.τ (9)

Φ ` e

Φ ` v0 : ∀[].(P , τ1, . . . , τn)→ 0
Φ ` v1 : τ1 · · · Φ ` vn : τn

Φ ` P in state

Φ ` v0(v1, . . . , vn)

(10)

Φ ` halt (11)

Φ ` v : ∃ρ:κ.τ Φ, ρ:κ, x:τ ` e

Φ ` letρ, x = unpackv ine (12)

Φ ` v : S(ρ) Φ ` q : S(q̂)
Φ′ ` e1[q̂/ρ] Φ, 6= (ρ, q̂) ` e2

Φ ` if v (q→ e1 | → e2)

(where Φ = ∆, ρ:State,∆′; Γ;P
and Φ′ = ∆, (∆′[q̂/ρ]); Γ[q̂/ρ];P [q̂/ρ])

(13)

Φ ` v : S(q̂) Φ ` q : S(q̂)
Φ ` e1

Φ ` ifv (q→ e1 | → e2) (14)

Φ ` v : S(P) Φ ` q : S(q̂)
Φ, 6= (P , q̂) ` e2

Φ ` if v (q→ e1 | → e2)

�
P 6= ρ
P 6= q̂ � (15)

Figure 5: Static Semantics: Values and Expressions

voked in the start state. The example highlights the
main difference between the state predicates and the
others: The validity of the predicates in ∆ is invariant
throughout the execution of the program whereas the
validity of a state predicate varies during execution
because it depends implicitly on the current state of
the machine.

Existential values are handled in standard fash-
ion. The value pack[P , v] as ∃ρ:κ.τ creates an exis-
tential package that hides P in τ using ρ. The corre-
sponding elimination form, let ρ,x = unpackv′ ine
unpacks the existential v′, substituting v for x and
P for ρ into the remaining expression e. As with
polymorphic types, we assume a type-erasure inter-
pretation of existentials.

Finally, the conditional ifv (q→ e1 | → e2) tests
an automaton state v to determine whether v is the
state q or not. If so, the program executes e1 (see
rule (13)) and if not, the program executes e2. A
variant of Harper and Morrisett’s typecase [3] oper-
ator, if also performs type refinement. If v has type
S(ρ) then it refines the type-checking context with
the information that ρ = q̂ by substituting q̂ for ρ.
On the other hand, if v is not q, the second branch
is taken and the context is refined with the informa-
tion 6= (ρ, q̂). Programs can use this mechanism to
dynamically check whether or not they are about to
enter the bad state and prevent it.

There is no need to use the if v construct if we
know which state a value v represents. For example,
we know the expression if q (q → e1 | → e2) will
reduce to e1 and therefore e2 is dead code and the test
is wasted computation. However, during the proof
of soundness of the type system, such configurations
arise and cause difficulties. To avoid these difficulties,
we follow the strategy of Crary et al. [2] and add
the trivialization rules (14) and (15) which deal with
these redundant cases. Each rule type checks only
the branch of the if statement that will be taken.

Operational Semantics The operational semantics
for the language is given by the relation e 7−→s e′ (see
Figure 6). The symbol s is either empty (·) or it is a
protected function symbol applied to some number of
arguments (f (a1, . . . , an)). Most operations, and, in
fact, all of the operations shown in Figure 6, emit the
empty symbol. However, this figure does not show
the operation of the protected functions. In the next
section, we will explain the operational semantics of
the protected functions f in the context of a signature
for a particular security automaton.

We have given a typed operational semantics to
facilitate the proof of soundness of the system. How-
ever, inspection of the rules will reveal that evalua-
tion does not depend upon types or predicates, pro-
vided the expressions are well-formed. Therefore we
can type-check a program and then erase the types
before executing it.

4.2 The Security Automaton Signature

In order to specialize the generic language, we con-
struct a typed interface or signature for the constants
in the language. The signature for a security automa-
ton A, shown in Figure 7, has three parts: the type

8



v(v1, . . . , vn) 7−→· em[v, v1, . . . , vn/g, x1, . . . , xn] if v = v′ φ1 · · ·φm

and v′ = fixg[θ1, . . . , θm].(x1:τ1, . . . , xn:τn).e0

and for 1 ≤ i ≤ m,
φi = [·] and θi = Pi and ei = ei−1, or
φi = [P ′

i ] and θi = ρi:κi and ei = ei−1[P
′
i/ρi]

let ρ,x = unpack(pack[P , v] as τ) in e 7−→· e[P , v/ρ, x]

if q′ (q→ e1 | → e2) 7−→· e1 if q′ = q

if q′ (q→ e1 | → e2) 7−→· e2 if q′ 6= q

Figure 6: Operational Semantics for λA

Type and Value Signature

I(â) = Val for a ∈ A
I(q̂) = State for q ∈ Q

I(δf ) = (State, State,

n
� ��� �

Val, . . . , Val)→B
if Cinsecure(f ) = (b1, . . . , bn, (b)→ 0)→ 0

Ctarget(a) = b(â) if Cinsecure(a) = b
Ctarget(q) = S(q̂) if q ∈ Q
Ctarget(δf ) = ∀[%1:State, ρ1:Val, . . . , ρn:Val, 6= (%1, bad)].(%1,S(%1), b1(ρ1), . . . , bn(ρn),

∀[%2:State, δf (%1, %2, ρ1, . . . , ρn)](%1,S(%2))→ 0)→ 0
if Cinsecure(f ) = (b1, . . . , bn, (b)→ 0)→ 0

Ctarget(f ) = ∀[%1:State, %2:State, ρ1:Val, . . . , ρn:Val, 6= (%2, bad), δf (%1, %2, ρ1, . . . , ρn)].
(%1, b1(ρ1), . . . , bn(ρn),∀[].(%2,∃ρ:Val.b(ρ))→ 0)→ 0

if Cinsecure(f ) = (b1, . . . , bn, (b)→ 0)→ 0

Operational Signature

δf [q̂1][â1] · · · [ân][·](q1, a1, . . . , an, vcont) if δ(f )(q1, a1, . . . , an) = q2

7−→· vcont[q̂2][·](q2) and for 1 ≤ i ≤ n, Cinsecure(ai) = bi

and Cinsecure(f ) = (b1, . . . , bn, (b)→ 0)→ 0

f [q̂1][q̂2][â1] · · · [ân][·][·](a1, . . . , an, vcont) if for 1 ≤ i ≤ n, Cinsecure(ai) = bi

7−→f (a1,...,an) vcont(pack[â, a] as ∃ρ:Val.b(ρ)) and Cinsecure(f ) = (b1, . . . , bn, (b)→ 0)→ 0
(for some a such that Cinsecure(a) = b)

Figure 7: Signature for λA

9



signature I, the value signature C, and the opera-
tional signature. These signatures are derived from
the insecure language signature Cinsecure for constants
and from the security automaton specification.

The type signature gives each constant â from the
insecure language and state q̂ from the security au-
tomaton kinds Val and State respectively. Further-
more, for each protected function f , the type signa-
ture specifies a predicate δf . The invariant the type
system ensures is that for all q̂1, q̂2, â1, . . . , ân, we will
be able to prove the predicate δf (q̂1, q̂2, â1, . . . , ân)
only if the corresponding automaton transition holds.
In other words, only if:

δ(f )(q1, a1, . . . , an) = q2

The value signature specifies that objects a and
states q are given the correct singleton types. For
each protected function symbol f in the insecure lan-
guage, the signature gives types to a pair of function
values. The function δf is supplied by the imple-
menter of the security policy; it is used to dynami-
cally determine the automaton state transition func-
tion given the program executes the function f in
the state %1 with arguments identified by ρ1,. . . ,ρn.
When δf has computed the transition, it calls its con-
tinuation, passing it the next state %2 so the contin-
uation can test this state to determine whether it is
the bad state. The continuation assumes the predi-
cate δf (%1, %2, ρ1, . . . , ρn). Before calling the function
f itself, we require that the type-checker be able to
prove that f will make a transition to some state
other than the bad state. Hence the precondition on
f states that we must know the automaton transition
we are making (δf (%1, %2, ρ1, . . . , ρn)) and moreover
that that the new state %2 is not equal to bad.

4.3 Properties of λA

A predicate P is valid with respect to an automaton
A, written A |= P , if:

• P is 6= (q̂, q̂′) and q 6= q′, or

• P is δf (q̂1, q̂2, â1, . . . , ân) and
A.δ(f )(q1, a1, . . . , an) = q2

We say that an expression e is secure with respect
to a security automaton A in state q, writtenA;q ` e,
if

1. q 6= bad

and there exist predicates P1, . . . ,Pn such that:

2. A |= Pi, for 1 ≤ i ≤ n

3. P1, . . . ,Pn; ·; q̂ ` e

If we can prove that an expression e is secure in
our deductive system then the expression should not
violate the security policy when it executes. The
soundness theorem below formalizes this notion. The
first part of the theorem, Type Soundness, ensures
that programs obey a basic level of control-flow safety.
More specifically, it ensures that expressions do not
get stuck during the course of evaluation. An expres-
sion e is stuck if e is not halt and there does not

exist an e′ such that e 7−→s e′. Hence, Type Sound-
ness implies a program will only halt when it executes
the halt instruction and not because we have applied
a function to too few or the wrong types of argu-
ments. The second part of the theorem, Security,
ensures programs obey the policy specified by the se-
curity automaton A. In other words, the sequence of
protected operations executed by the program must
form a string in the language L(A). In this second
statement, we use the notation |s1, . . . , sn| to denote
the subsequence of the symbols s1, . . . , sn with all oc-
curences of · removed.

Theorem 1 (Soundness)
If A; q0 ` e1 then

1. (Type Soundness) For all evaluation sequences
e1 7−→s1 e2 7−→s2 · · · 7−→sn

en+1, the expres-
sion en+1 is not stuck.

2. (Security) If e1 7−→s1 e2 7−→s2 · · · 7−→sn
en+1

then |s1, s2, . . . , sn| ∈ L(A)

Soundness can be proven syntactically in the style
of Wright and Felleisen [23] using the following two
lemmas. The proof appears in Appendix B.

Lemma 2 (Progress) If A; q ` e then either:

1. e 7−→s e′ or

2. e = halt

Lemma 3 (Subject Reduction) If A; q ` e and
e 7−→s e′ then

1. if s = · then A; q ` e′

2. and if s = f (a1, . . . , an) then A;q′ ` e′ where
δ(f )(q, a1, . . . , an) = q′

Finally, inspection of the typing rules will reveal
that for any expression or value, there is exactly one
typing rule that applies and that the preconditions
for the rules only depend upon subcomponents of the
terms or values (with possibly a predicate substitu-
tion). Judgements for the well-formedness of types
and predicates are also well-founded so the type sys-
tem is decidable:

Theorem 4 It is decidable whether or not Φ ` e.

4.4 Language Extensions

If security policies depend upon higher-order func-
tions or immutable data structures such as tuples and
records, we will have to track the values of these data
structures in the type system using singleton types as
we did with values of base type. The simplest way
to handle this extension is to use an allocation se-
mantics [10, 11]. In this setting, when a function
closure fixg[∆](· · ·).e is allocated, it is bound to a
new address (`). Instead of substituting the closure
through the rest of the code as we do now, we would
substitute the address (`) through the code and give

it the singleton type τ(ˆ̀) where τ is ∀[∆](· · ·)→ 0.
All the other mechanisms remain unchanged. We de-
cided not to present this style of semantics in this pa-
per because it adds extra mechanism but gives little

10



|b| = ∃ρ:Val.b(ρ)
|(τ1, . . . , τn)→ 0| = ∀[%:State, 6= (%, bad)].(%,S(%), |τ1|, . . . , |τn|)→ 0

|x| = x
|a| = pack[â, a] as ∃ρ:Val.b(ρ) if Cinsecure(a) = b
|fixg(x1:τ1, . . . , xn:τn).e| = fixg[%:State, 6= (%,bad)].(%,x:S(%), x1:|τ1|, . . . , xn:|τn|).|e|%,x

|f | = fix [%1:State, 6= (%1, bad)](%1, x0:S(%1), x1:|b1|, . . . , xn:|bn|, xn+1:|(b)→ 0|).
letρ1, x

′
1 = unpackx1 in

. . .
letρn, x′

n = unpackxn in
let%2, δf (%1, %2, ρ1, . . . , ρn), x%2

= δf [%1][ρ1] · · · [ρn][·](x0, x
′
1, . . . , x

′
n) in

ifx%2
(

bad→ halt
| → letx = f [%1][%2][ρ1] · · · [ρn][·][·](x′

1, . . . , x
′
n) in

xn+1[%2][·](x%2
, x))

if Cinsecure(f) = (b1, . . . , bn, (b)→ 0)→ 0

|v0(v1, . . . , vn)|P,v = |v0|[P ][·](v,|v1|, . . . , |vn|)
|halt |P,v = halt

Figure 8: Program Instrumentation

additional insight into the solution of the problem.
Despite the extra complexity, an allocation seman-
tics is common in low-level typed languages such as
Morrisett’s Typed Assembly Language [12] that must
reason about memory structure.

There are a number of possibilities for handling
mutable data structures. The main principle is that
if security-sensitive operations depend upon mutable
data then the state of that data must be encoded in
the state of the automaton. The assignment opera-
tor must be designated as a protected operation that
changes the state.

5 Program Instrumentation

It is straightforward to design a translation that in-
struments our insecure source language with security
checks (see Figure 8) now that we have set up the
appropriate type-theoretic machinery in the secure
target language.

The interesting portion of the type translation in-
volves the translation of function types. The static
semantics maintains the invariant that programs never
enter the bad state and we naturally express this fact
as a precondition to every function call. Hence the
type translation of the function type (τ1, . . . , τn)→ 0
is:

∀[%:State, 6= (%,bad)].(%,S(%), |τ1|, . . . , |τn|)→ 0

In general, we may not know the current state
statically so we quantify over all states %, provided
% 6= bad. In order to determine state transfers do not
go wrong, we will also have to thread a representation
of the state (S(%)) through the computation.

Most of the work in the value translation is ac-
complished during the translation of the protected
operations. We unpack the arguments so the indi-
vidual values can be tracked through the type system
and then use δf to determine the state transition that
will occur if we execute f on these arguments. Af-
ter checking to ensure we do not enter the bad state,

we execute f itself passing it a continuation that ex-
ecutes in state %2. In this translation, we use the
abbreviation:

let∆, x1, . . . , xn = v(v1, . . . , vn) in e ≡
v(v1, . . . , vn, fix [∆].(x1:τ1, . . . , xn:τn).e)

and we assume predicate and value variables bound
by let are fresh.

Instrumented programs type check and thus they
are secure in the sense made precise in the last sec-
tion:

Theorem 5 If `insecure e then A; q0 ` |e|q̂0,q0 .

This property can be proven using a straightfor-
ward induction on the typing derivation of the source
term.

5.1 Instrumenting The Taxation Applet

Figure 9 presents the results of instrumentating the
taxation applet from Section 2 with checks from the
security automaton of Section 3. We have simpli-
fied the output of the formal translation slightly to
make it more readable. In particular, we have inlined
the functions that the translation wraps around each
protected function symbol.

The translation does not assume that the taxa-
tion applet is invoked in the initial automaton state
and consequently the resulting function abstracts the
input state %1. Also, as specified by the translation,
objects of base type, like the file secret become ex-
istentials. The main point of interest in this exam-
ple is that before each of the protected operations
send and read, the corresponding automaton func-
tion determines the next state. Then the if con-
struct checks that these states are not bad. If the
dynamic check succeeds, the type checker introduces
information into the context that allows it to infer
that executing the read and send operations is safe.
When reading the code calling send or read, notice

11



fix [%1:State, 6= (%1, bad)]
(%1, x%1

:S(%1), secret:∃ρ:Val.file(ρ),
xcont:τcont).

let %2, δsend(%1, %2), x%2
= δsend[%1][·](x)in

ifx%2
(

bad→ halt
| →
let = send[%1][%2][·][·]()in
let ρ,secret′ = unpacksecret in
let %3, δread(%2, %3, ρ), x%3

=
δread[%2][·](x%2

, secret′) in
ifx%3

(
bad→ halt
| →
let salary = read[%2][%3][·][·](secret

′) in
let taxes = salary in
xcont[%3][·](x%3

, taxes)))

where τcont =
∀[%cont, 6= (%cont, bad)].

(%cont, S(%cont),∃ρ
′:Val.int(ρ′))→ 0

Figure 9: Instrumenting the Taxation Applet

that the instantiation of predicate variables indicates
the state transition that occurs. For example, exe-
cution of the expression send[%1][%2][·][·]() causes the
automaton to make a transition from %1 to %2.

5.2 Optimization

Many security automata exhibit special structure that
allows us to optimize secure programs by eliminating
checks that are inserted by the naive program instru-
mentation procedure [21]. One common case is an
operation f that always succeeds in a given state q
and transfers control to a new state q′ regardless of
its arguments. In this situation, we can make the
following axiom available to the type checker:

Φ ` δf (q, q
′,P1, . . . ,Pn)

(for all P1, . . . ,Pn)

If we know we are in state q, we can use the axiom
above and the fact that q 6= bad to satisfy the precon-
dition on f ; there is no need to perform a run-time
check.

The send operation in the security automaton in
Section 3 has this property. When invoked in the ini-
tial state, send always succeeds and execution con-
tinues in the initial state. Therefore, we can safely
add the axiom:

Φ ` δsend(start, start)

Now, if we know our taxation function is only invoked
in the start state, we can rewrite it, eliminating one
of the run-time checks:

% Optimization 1:
fix [ ](start, xstart:S(start), secret:∃ρ:Val.file(ρ),

xcont:τcont).
let = send[start][start][·][·]()in
· · ·

The type checker can prove send is executed in the
start state and that the predicates δsend(start, start)
and 6= (start, bad) are valid. Therefore, the opti-
mized applet continues to type-check.

A second important way to optimize λA programs
is to perform a control-flow analysis that propagates
provable predicates statically through the program
text. Using this technique, we can further optimize
the taxation applet. Assume the calling context can
prove the predicate δread(start, has read, ρ) (perhaps
a run-time check was performed at some earlier time)
where ρ is the value predicate corresponding to the
file secret. In this case, the caller can invoke a tax
applet with a stronger precondition that includes the
predicate δread(start, has read, ρ). Moreover, with
this additional information, an optimizer can elimi-
nate the redundant check surrounding the file read
operation:

% Optimization 2:
fix [ρ:Val, δread(start, has read, ρ)](start,

secret:file(ρ),
xcont:∀[ ].(has read, ∃ρ:Val.int(ρ))→ 0).

let = send[start][start][·][·]()in
let salary = read[start][has read][·][·](secret)in
let taxes = salary in
xcont(taxes)

In the code above, the optimizer rewrites the ap-
plet precondition with the necessary information. The
caller is now obligated to prove the additional precon-
dition before the applet can be invoked. The caller
also unpacks the secret file before making the call so
that the type checker can make the connection be-
tween the arguments to the δread predicate and this
particular file. Finally, because the automaton state
transitions are statically known throughout this pro-
gram, we do not need to thread the state representa-
tion through the program. We assumed an optimizer
was able to detect this unused argument and elim-
inate it. After performing all these optimizations,
the resulting code is operationally equivalent to the
original taxation applet from section 2, but provably
secure.

The flexibility in the type system is particularly
useful when a program repeatedly performs the same
restricted operations. A more sophisticated tax ap-
plet might need to make a series of reads from the
secret file (for charitable donations, number of de-
pendents, etc.). If we assume the recursive function
read a lot performs these additional reads, we need
no additional security checks:

fixread a lot
[%:State, ρ:Val, δread(%, has read, ρ), 6= (%, bad)]
(%, secret:file(ρ),
xcont:∀[ ](has read,∃ρ:Val.int(ρ))→ 0).

% In unknown state %
let info = read[%][has read][·][·]()in
% In known state has read
· · ·
% Must prove δ(has read, has read, ρ)
read a lot[has read][ρ][·][·](secret,xcont)

The read a lot function can be invoked in a good
state % (i .e. either start or has read) when we can

12



prove δread(%, has read, ρ). Using the δread predi-
cate in the function precondition, the type checker
infers that the read operation transfers control from
the % state to the has read state. Before the re-
cursive call, the type checker has the obligation to
prove δread(has read, has read, ρ) but it cannot do
so because it only knows that δread(%, has read, ρ)!
Fortunately, we can remedy this problem by adding
another policy-specific axiom to the type-checker:

Φ `6= (P , bad)
Φ ` δread(P , has read, Pf )

Φ ` δread(P
′, has read,Pf )

(for all P ,P ′,Pf )

This axiom states that if we can read a file Pf in
one state (P), then we can read it in any state (except
the bad one) and we always move to the has read
state. This condition is easily decidable.

In practice, Erlingsson and Schneider’s untyped
optimizer analyzes security automaton structure and
performs optimizations similar to the ones discussed
above [21]. Once the optimizer has obtained the in-
formation necessary for a particular transformation,
this information can also be used to automatically
generate the policy-specific axioms that we have dis-
cussed.

One significant optimization that is used in prac-
tice that we cannot encode in this typed framework
is inlining. The run-time security checks, δf , are ab-
stract constants in our framework because we have
made a decision to trust the implementor of the se-
curity policy. When the policy writer implements
the functions δf , he does not have to supply a for-
mal proof that the functions imply some semantic
property; the implementer merely asserts that some
abstract predicate δf (q1, q2, ρ1, . . . , ρn) has been sat-
isfied. If we inline δf into untrusted code, the corre-
sponding assertion will also be inlined into untrusted
code. In the current framework, there is no way to
verify that these assertions are placed correctly by
untrusted code. If performance is critical, the user
will have to rely on a trusted just-in-time compiler
to inline checks when they cannot be proven redun-
dant statically.

6 Related and Future Work

The design of λA was inspired, in part, by Xi and
Pfenning’s Dependent ML (DML) [25, 24]. As in
DML, we track the identity of values using depen-
dent refinement types and singleton types. However,
rather than applying the technology to array bounds
check elimination and dead-code elimination, we have
applied it to the problem of expressing security poli-
cies.

The secure language λA also bears resemblance to
monadic systems [7, 17]. Both paradigms can be used
to thread state through a computation. Normally,
monadic types do not express the details of the state
transformation. In contrast, the λA types describe
the effect of the translation precisely: A function pre-
condition specifies the input state and its continua-
tion specifies the output state.

Leroy and Rouaix [6] also consider security in
the context of strongly-typed languages. Their main

concern is proving that standard strongly-typed lan-
guages provide certain security properties. For ex-
ample, they show that a program written in a typed
lambda calculus augmented with references cannot
modify unreachable (in the sense of tracing garbage
collection) locations. They also show that they can
wrap dynamic checks around writes to sensitive loca-
tions and ensure “bad” values are not written to these
locations. They did not investigate mechanisms for
mechanically checking that their instrumented pro-
grams are safe, nor did they study the broader range
of security properties that can be enforced using se-
curity automata.

The inability to inline security checks suggests an
interesting direction for future research. The central
problem is that the inlined code is trusted and has
more priviledges than code written by an outsider.
In particular, the inlined code has the priviledge to
assert a state change in the security automaton. In
order to inline we need a way to distinguish trusted
and untrusted segments of code and to ensure that
the trusted segments have not been tampered with.
Recent work by Zdancewic et al. [26] describes how
to distinguish between code segments with varying
privileges. It may be possible to augment their sys-
tem with some syntactic rules for reasoning about
code equivalence. Using these techniques, inlining
and then further optimization such as constant fold-
ing may be possible.

In order to test the practical consequences of our
language design, we are interested in porting Erlings-
son and Schneider’s untyped SASI compiler [21] to
the type-preserving Popcorn compiler [8] and using
Typed Assembly Language as the secure target lan-
guage. The current TAL implementation contains
many of the typing constructs that we will need in-
cluding polymorphic function types, existentials, and
singleton types. We are also currently augmenting
the system with a first-order predicate logic that in-
terprets integer inequalities. We believe we will be
able extend this framework with the additional con-
structs necessary to generate a secure, yet flexible
and efficient Typed Assembly Language.

Acknowledgements

I greatly appreciate the time Úlfar Erlingsson and
Fred Schneider have spent explaining their security
automaton model and SASI system to me. Karl Crary,

Úlfar Erlingsson, Neal Glew, Dan Grossman, and
Steve Zdancewic have made extremely helpful sug-
gestions on previous drafts of this work. I thank my
advisor Greg Morrisett for the energy and enthusiasm
he has dedicated to my education.

References

[1] Bowen Alpern and Fred Schneider. Recogniz-
ing safety and liveness. Distributed Computing,
2:117–126, 1987.

[2] Karl Crary, Stephanie Weirich, and Greg Mor-
risett. Intensional polymorphism in type-erasure
semantics. In ACM SIGPLAN International
Conference on Functional Programming, pages
301–312, Baltimore, September 1998.

13



[3] Robert Harper and Greg Morrisett. Compiling
polymorphism using intensional type analysis.
In Twenty-Second ACM Symposium on Princi-
ples of Programming Languages, pages 130–141,
San Francisco, January 1995.

[4] John E. Hopcroft and Jeffrey D. Ullman. In-
troduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[5] Dexter Kozen. Efficient code certification. Tech-
nical Report TR98-1661, Cornell University,
January 1998.

[6] Xavier Leroy and Francois Rouaix. Security
properties of typed applets. In Twenty-Fifth
ACM Symposium on Principles of Programming
Languages, pages 391–403, San Diego, January
1998.

[7] Eugenio Moggi. Notions of computation and
monads. Information and Computation, 93:55–
92, 1991.

[8] Greg Morrisett, Karl Crary, Neal Glew, Dan
Grossman, Richard Samuels, Frederick Smith,
David Walker, Stephanie Weirich, and Steve
Zdancewic. TALx86: A realistic typed assem-
bly language. Submitted to the 1999 ACM SIG-
PLAN Workshop on Compiler Support for Sys-
tem Software, 1999.

[9] Greg Morrisett, Karl Crary, Neal Glew, and
David Walker. Stack-based typed assembly lan-
guage. In Second International Workshop on
Types in Compilation, pages 95–117, Kyoto,
March 1998. Published in Xavier Leroy and At-
sushi Ohori, editors, Lecture Notes in Computer
Science, volume 1473, pages 28-52. Springer-
Verlag, 1998.

[10] Greg Morrisett, Matthias Felleisen, and Robert
Harper. Abstract models of memory manage-
ment. In ACM Conference on Functional Pro-
gramming and Computer Architecture, pages 66–
77, La Jolla, June 1995.

[11] Greg Morrisett and Robert Harper. Semantics
of memory management for polymorphic lan-
guages. In A.D. Gordon and A.M. Pitts, editors,
Higher Order Operational Techniques in Seman-
tics, Publications of the Newton Institute. Cam-
bridge University Press, 1997.

[12] Greg Morrisett, David Walker, Karl Crary, and
Neal Glew. From System F to Typed Assembly
Language. In Twenty-Fifth ACM Symposium on
Principles of Programming Languages, pages 85–
97, San Diego, January 1998.

[13] George Necula. Proof-carrying code. In Twenty-
Fourth ACM Symposium on Principles of Pro-
gramming Languages, pages 106–119, Paris,
1997.

[14] George Necula and Peter Lee. Safe kernel ex-
tensions without run-time checking. In Proceed-
ings of Operating System Design and Implemen-
tation, pages 229–243, Seattle, October 1996.

[15] George Necula and Peter Lee. The design and
implementation of a certifying compiler. In
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 333
– 344, Montreal, June 1998.

[16] George C. Necula and Peter Lee. Safe, untrusted
agents using proof-carrying code. LNCS 1419:
Special Issue on Mobile Agent Security, October
1997.

[17] Simon L. Peyton Jones and Philip Wadler. Im-
perative functional programming. In Twentieth
ACM Symposium on Principles of Programming
Languages, Charleston, South Carolina, January
1993.

[18] John C. Reynolds. Definitional interpreters for
higher-order programming languages. In Con-
ference Record of the 25th National ACM Con-
ference, pages 717–740, Boston, August 1972.

[19] Fred Schneider. Enforceable security policies.
Technical Report TR98-1664, Cornell Univer-
sity, January 1998.

[20] Chris Small. MiSFIT: A tool for construct-
ing safe extensible C++ systems. In Pro-
ceedings of the Third USENIX Conference on
Object-Oriented Technologies, Portland, OR,
June 1997.

[21] Úlfar Erlingsson and Fred B. Schneider. SASI
security. Unpublished manuscript produced at
Cornell University, March 1998
See also http://sasi.cs.cornell.edu/javademo/.

[22] Robert Wahbe, Steven Lucco, Thomas Ander-
son, and Susan Graham. Efficient software-
based fault isolation. In Fourteenth ACM Sym-
posium on Operating Systems Principles, pages
203–216, Asheville, December 1993.

[23] Andrew K. Wright and Matthias Felleisen. A
syntactic approach to type soundness. Informa-
tion and Computation, 115(1):38–94, 1994.

[24] Hongwei Xi. Dependent Types in Practical Pro-
gramming. PhD thesis, Carnegie Mellon Univer-
sity, 1999.

[25] Hongwei Xi and Frank Pfenning. Dependent
types in practical programming. In Twenty-Sixth
ACM Symposium on Principles of Programming
Languages, pages 214–227, San Antonio, TX,
January 1999.

[26] Steve Zdancewic, Dan Grossman, and Greg Mor-
risett. Principals in programming languages.
Submitted to the Fourth ACM SIGPLAN In-
ternational Conference on Functional Program-
ming, 1999.

A Type Formation for λA

14



Dom(∆) = The set of variables ρ
such that ρ:κ appears
in ∆

Γ A finite map of value vars
to types

Γ, x:τ Update Γ so that Γ(x) = τ

Φ ::= ∆; Γ;P
(∆;Γ;P), ρ:κ = ∆, ρ:κ;Γ;P if ρ 6∈ ∆
(∆;Γ;P), x:τ = ∆; Γ, x:τ ;P if x 6∈ Γ
(∆;Γ;P),P ′ = ∆, P ′; Γ;P
(∆;Γ;P)← P ′ = ∆; Γ;P ′

Figure 10: Type Checking Contexts

Φ ` P : κ

∆;Γ;P ` ρ : κ
(∆(ρ) = κ)

(16)

∆;Γ;P ` ι : κ
(I(ι) = κ)

(17)

Φ ` ι : (κ1, . . . , κn)→ κ
Φ ` P1 : κ1 · · · Φ ` Pn : κn

Φ ` ι(P1, . . . ,Pn) : κ (18)

Φ ` ∆

Φ ` · (19)

∆;Γ;P ` ∆′

∆;Γ;P ` ∆′, ρ:κ
(ρ 6∈ Dom(∆) ∪Dom(∆′))

(20)

Φ ` ∆ Φ,∆ ` P : B

Φ ` ∆,P (21)

Φ ` τ

Φ ` P : Val
Φ ` b(P)

(b 6= S)
(22)

Φ ` P : State
Φ ` S(P) (23)

Φ ` ∆ Φ,∆ ` P : State
Φ,∆ ` τ1 · · · Φ,∆ ` τn

Φ ` ∀[∆].(P , τ1, . . . , τn)→ 0 (24)

Φ, ρ:κ ` τ

Φ ` ∃ρ:κ.τ (25)

Figure 11: Contexts, Types, and Predicates

15



B Proof of Soundness

The following proof is a standard application of the syntactic proof techniques popularized by Wright and
Felleisen [23]. The central lemmas are Subject Reduction and Progress, but before we can prove these results,
we require a number of supporting lemmas, which are generally proven by induction on the structure of terms
or on the typing derivations.

Inspection of the typing rules reveals that ∆ is the only relevant part of the context Φ in the judgements:

1. Φ ` P : κ

2. Φ ` P

3. Φ ` ∆

4. Φ ` τ

Furthermore, ∆ and Γ are not relevant in the judgement Φ ` P in state and P is not relevant in the judgement
Φ ` v : τ . When a portion of the context is not relevant, we will often write in its place.

It will be useful to define a couple of auxiliary judgements that state the well-formedness of contexts:

Definition 2 (∆ ` Γ) If ∆; ; ` τ for all x ∈ Dom(Γ) such that Γ(x) = τ then ∆ ` Γ.

Definition 3 (` Φ) If ` ∆ and ∆ ` Γ and ∆; ; ` P : State then ` ∆;Γ;P.

We will use the notation FV(X) to denote the free variables of an object X. In a predicate context ∆, ρ:κ,∆′,
the variable ρ is considered bound in ∆′.

Lemma 6 If ` Φ and Φ = ∆;Γ;P then

1. If Φ ` ∆′ then FV(∆′) ⊆ Dom(∆)

2. If ∆ ` Γ then FV(Γ) ⊆ Dom(∆)

3. If Φ ` P : κ then FV(P) ⊆ Dom(∆)

4. If Φ ` τ then FV(τ) ⊆ Dom(∆)

5. If Φ ` v : τ then FV(v) ⊆ Dom(∆) ∪Dom(Γ)

6. If Φ ` e then FV(e) ⊆ Dom(∆) ∪Dom(Γ)

Proof: By induction on the height of the respective typing derivations.
�

Clearly, extending the context will not reduce the number of things that we can type. Hence, we can prove the
following weakening lemma.

Lemma 7

1. If Φ ` ∆ then Φ,P ` ∆

2. If ∆ ` Γ then ∆, P ` Γ

3. If Φ ` P : κ then Φ,P ` P : κ

4. If Φ ` τ then Φ,P ` τ

5. If Φ ` P ′ then Φ,P ` P ′

6. If Φ ` P ′ in state then Φ,P ` P ′ in state

7. If Φ ` v : τ then Φ,P ` v : τ

8. If Φ ` e then Φ,P ` e

Proof: By induction on the height of the typing derivation.
�

Subject Reduction relies upon the fact that validity is preserved by the provability relation. In other words,
given a list of valid predicates, if you can prove another predicate using the syntactic proof rules, then it had
better be valid. Following this lemma are number of substitution lemmas that are also critical to Subject
Reduction.

Lemma 8 Given predicates P1, . . . ,Pn, if for 1 ≤ i ≤ n, A |= Pi and P1, . . . ,Pn; ; ` P then A ` P.

16



Proof: Trivial by inspection of the proof rules.
�

Lemma 9 (Type Substitution I) If ·; ; ` ∆, ρ:κ,∆′ and ∆, ρ:κ,∆′; ; ` P : κ then

1. If ∆, ρ:κ,∆′; ; ` τ then ∆, (∆′[P/ρ]); ; ` τ [P/ρ]

2. If ∆, ρ:κ,∆′; ; ` P ′′ then ∆, (∆′[P/ρ]); ; ` P ′′[P/ρ]

3. If ∆, ρ:κ,∆′; ; ` ∆ then ∆, (∆′[P/ρ]); ; ` τ [P/ρ]

4. If ∆, ρ:κ,∆′; ; ` P ′ then ∆, (∆′[P/ρ]); ; ` P ′[P/ρ]

5. If ∆, ρ:κ,∆′; ;P ′′ ` P ′ in state then ∆, (∆′[P/ρ]); ;P ′′[P/ρ] ` P ′[P/ρ] in state

Proof:

The proof proceeds by induction on the height of the typing derivation. Most cases follow straightforwardly
from the induction hypothesis. Rule (16) for predicate variables uses the assumption ∆, ρ:κ,∆′; ; ` P : κ.

�

Lemma 10 (Type Substitution II) Let Φ be ∆, ρ:κ,∆′; Γ; P and let Φ′ be ∆, (∆′[P ′/ρ]); Γ[P ′/ρ];P [P ′/ρ].
If Φ ` P ′ : κ then

1. if Φ ` v : τ then Φ′ ` v[P ′/ρ] : τ [P ′/ρ]

2. if Φ ` e then Φ′ ` e[P ′/ρ]

Proof:

The proof is by induction on the height of the typing derivation. Rule (5) follows because τ is closed. Rules
(6) through (12) follow by Type Substitution I and the induction hypothesis. Rules (14) and (15) follow by
the induction hypothesis. Rule (13) is slightly more interesting. The precondition for the rule includes the
judgement Φ ` v : S(ρ′). If ρ′ 6= ρ then the result follows by induction so assume that ρ′ = ρ. In this case, the
judgement has the form:

Φ ` v : S(ρ) Φ ` q : S(q̂)
Φ′ ` e1[q̂/ρ] Φ, 6= (ρ, q̂) ` e2

Φ ` ifv (q→ e1 | → e2)

There are three cases to consider:

1. P ′ = ρ′′ for some other predicate variable ρ′′. In this case, the result also follows by a straightforward
application of the induction hypothesis.

2. P ′ = q̂. In this case, we have Φ′ ` v[q̂/ρ] : S(q̂) and Φ′ ` q : S(q̂) by induction. Using this fact and the
judgement, Φ′ ` e1[q̂/ρ] from the typing judgement above, we can use rule (14) to conclude:

Φ ` ifv[q̂/ρ](q→ e1[q̂/ρ] | → e2[q̂/ρ])

and therefore that:
Φ ` if v(q→ e1 | → e2)[q̂/ρ]

3. P ′ 6= q̂ and P ′ 6= ρ′′ for any other predicate variable ρ′′. In this case, we have Φ′ ` v[P ′/ρ] : S(P ′) and
Φ′ ` q : S(q̂) and Φ′, 6= (ρ, q̂)[P ′/ρ] ` e2[q̂/ρ] by induction. Now, we can use rule (15) to conclude:

Φ ` if v[P ′/ρ](q→ e1[P
′/ρ] | → e2[P

′/ρ])

and therefore that:
Φ ` if v(q→ e1 | → e2)[P

′/ρ]

�

For the Value Substitution lemma below, we will use some additional notation. Let Γ\x be the restriction
of map Γ to domain Dom(Γ) − {x}.

Lemma 11 (Value Substitution) If Γ(x) = τ and ` ∆;Γ;P and ∆;Γ\x;P ` v : τ then

1. If ∆;Γ;P ` v′ : τ ′ then ∆;Γ\x;P ` v′[v/x] : τ ′

2. If ∆;Γ;P ` e then ∆;Γ\x;P ` e[v/x]

Proof:

17



The proof follows by induction on the height of the typing derivations for values and expressions.

�

Lemma 12 If Φ ` P : κ and ρ 6∈ Φ then

1. If Φ ` P ′[P/ρ] : κ′ then Φ, ρ:κ ` P ′ : κ′

2. If Φ ` ∆[P/ρ] then Φ, ρ:κ ` ∆[P/ρ]

3. If Φ ` τ [P/ρ] then Φ, ρ:κ ` τ [P/ρ]

Proof: By induction on the structure of P ′, ∆, and τ .
�

Before we can tackle the Progress and Subject Reduction lemmas, we need two additional lemmas. The first
lemma states that well-formed values are always given well-formed types. The second is the Canonical Forms
lemma. Intuitively, Canonical Forms captures the invariants that the type system ensures for all values of each
type τ . One of the most useful invariants is some indication of the shape of the value. For example, Canonical
Forms states that a value with existential type must have the form pack[P , v′] as ∃ρ:Val.τ ′.

Lemma 13 If ` Φ and Φ ` v : τ then Φ ` τ .

Proof:

The proof is by induction on the typing derivation for values. Rule (4) follows from the definition ` Φ and rule
(5) follows from the fact that the codomain of C only contains well-formed, closed types. Rule (6) is immediate.
Rule (7) follows from the induction hypothesis and Type Substitution I. Rule (8) follows by induction. Rule (9)
follows from the induction hypothesis and Lemma 12.

�

Lemma 14 (Canonical Forms) If ·; ·; ` v : τ then

1. If τ = b(â) then v = a

2. If τ = S(P) then P = q̂ and v = q for some state q

3. If τ = ∀[ ].(P , τ1, . . . , τn)→ 0 then either:

(a) v = v′φ1 · · ·φm where v′ = fix g[θ1, . . . , θm].(P ′, x1:τ
′
1, . . . , xn:τ ′

n).e0

Moreover, let S0 be the empty substitution and let SS′ denote the composition of substitutions S and
S′. Now, for 1 ≤ i ≤ m,
φi = [·] and θi = P ′

i and Φ ` P ′
i and Si = Si−1 or

φi = [P ′
i] and θi = ρi:κi and Φ ` Pi : κi and Si = Si−1[P

′
i/ρi]

Furthermore:

• P = Sm(P ′)

• τ1 = Sm(τ ′
1)

...

• τm = Sm(τ ′
m)

and finally, Φ ` v′ : ∀[θ1, . . . , θm].(P ′, τ ′
1, . . . , τ

′
n)→ 0

OR:

(b) for some q1, a2, . . . , an−1, v = δf [q̂1][â2] · · · [ ˆan−1][·], and

• P = q̂1

• τ1 = S(q̂1)

• τ2 = b2(â2)

...

• τn−1 = bn−1( ˆan−1)

• τn = ∀[%2:State, δf (q̂1, %2, a2, . . . , an−1)](q̂1, S(%2))→ 0

where for 2 ≤ i ≤ n − 1, bi = Cinsecure(ai)
and Cinsecure(f ) = (b1, . . . , bn, (b)→ 0)→ 0 for some base type b

OR:

18



(c) for some q1, q2, a1, . . . , an−1, v = f [q̂1][q̂2][â1] · · · [ân][·][·] and

• Φ `6= (q̂2, bad)

• Φ ` δf (q̂1, q̂2, â1, . . . , ân)

• τ1 = b1(â1)
...

• τn−1 = bn−1( ˆan−1)

• τn = ∀[ ].(q̂2,∃ρ:Val.b(ρ))→ 0

where for 1 ≤ i ≤ n − 1, bi = Cinsecure(ai)
and Cinsecure(f ) = (b1, . . . , bn, (b)→ 0)→ 0

4. If τ = ∃ρ:Val.τ ′ then v = pack[P , v′] as ∃ρ:Val.τ ′

Proof:

For parts 1 and 2, the proof follows by inspection of the typing rules and the value signature C. Part 3 (a)
follows by an induction on the derivation ·; ·; ` v : ∀[∆].(P , τ1, . . . , τn)→ 0 and inspection of static semantics
rules (7) and (8). Parts 3 (b) and 3 (c) follow by a similar induction and inspection of the signature C. Part 4
follows by inspection of the typing rules.

�

Lemma 15 (Progress) If A; q ` e then either:

1. e 7−→s e′ or

2. e = halt

Proof:

The assumption A; q ` e implies there exist valid predicates P1, . . . ,Pn such that Φ ` e where Φ is the context
P1, . . . ,Pn; ·; q̂. Let TD be the typing derivation for this judgement. The proof proceeds by cases on the syntax
of the expression e:

case: v0(v1, . . . , vn) The typing derivation TD has the form:

Φ ` v0 : ∀[ ].(P , τ1, . . . , τn)→ 0 Φ ` v1 : τ1 · · · Φ ` vn : τn Φ ` P in state

Φ ` v0(v1, . . . , vn)

By Canonical Forms, part 3, v0 has one of three forms:

1. v0 = v′φ1 · · · φm and v′ = fixg[θ1, . . . , θm].(P ′, x1:τ
′
1, . . . , xn:τ ′

n).e0. Canonical Forms 3 (a) satisfies
the requirements on the operational rule for fix immediately and consequently:
e 7−→· (Sm(e))[v′, v1, . . . , vn/g, x1, . . . , xn] where Sm is the substitution by the same name defined in
Canonical Forms 3 (a).

2. v = δf [q̂1][â2] · · · [ân−1][·] for some q1, a1, . . . , an−1

By Canonical Forms, part 3 (b),

– τ1 = S(q̂1) and

– τ2 = b2(â2) and

...

– τn−1 = bn−1(ân−1)

where for 1 ≤ i ≤ n, bi = Cinsecure(ai) = bi

and Cinsecure(f ) = (b1, . . . , bn, (b)→ 0)→ 0 for some base type b
By Canonical Forms, parts 1 and 2, v1 = q1 and for 2 ≤ i ≤ n − 1, vi = ai. Because δ is total, there
exists some q2 such that δ(q1)(a2, . . . , an−1) = q2. Thus, e 7−→· vn[q̂2][·](q2)

3. v = f [q̂1][q̂2][â1] · · · [ân][·][·] for some q1, q2, a1, . . . , an−1

By Canonical Forms, part 3 (c):

– τ1 = b1(â1)
...

– τn−1 = bn−1(ân−1)

– τn = ∀[ ].(q̂2,∃ρ:Val.b(ρ))→ 0

19



where for 1 ≤ i ≤ n − 1, bi = Cinsecure(ai)
and Cinsecure(f ) = (b1, . . . , bn, (b)→ 0)→ 0
By Canonical Forms, part 1, for 1 ≤ i ≤ n − 1, vi = ai

Thus, e 7−→f (a1,...,an) vn(pack[â, a] as ∃ρ:Val.b(ρ)) for some a such that Cinsecure(a) = b

case: halt Trivial.

case: unpack The expression e has the form letρ, x = unpackv ine′′. The typing derivation TD has the form:

Φ ` v : ∃ρ:Val.τ Φ, ρ:Val, x:τ ` e

Φ ` letρ, x = unpackv in e

By Canonical Forms, part 4, v has the form pack[P , v′] as ∃ρ:Val.τ . Consequently, e 7−→s e′′[P , v′/ρ, x].

case: if v The expression e has the form if v (q→e1 | →e2). There are three cases corresponding to static semantics
rules (13), (14), and (15). By Lemmas 13 and 6, the type of the value v cannot contain a free variable.
Thus, we can rule out the possibility of the last rule in the derivation TD being (13). The typing derivation
TD for the other two rules both contain a precondition of the form Φ ` v : S(P). By Canonical Forms,

part 2, P = q̂′ and v = q′ for some state q′. If q′ = q then e 7−→· e1 and otherwise e 7−→· e2.

�

Lemma 16 (Subject Reduction) If A; q ` e and e 7−→s e′ then

1. if s = · then A; q ` e′

2. and if s = f (a1, . . . , an) then A;q′ ` e′ where δ(f )(q, a1, . . . , an) = q′

Proof:

The assumption A; q ` e implies

1. q 6= bad

and there exists predicates P1, . . . ,Pk such that:

2. A |= Pi, for 1 ≤ i ≤ k

3. Φ ` e where Φ = P1, . . . ,Pk; ·; q̂

Let TD be the typing derivation proving item 3. We now proceed by cases on the operational semantics e 7−→s e′:

case: fix The expression e has the form v′φ1 · · ·φm(v1, . . . , vn)
where v′ = fixg[θ1, . . . , θm].(P , x1:τ1, . . . , xn:τn).e0

and for 1 ≤ i ≤m, when S0 is the empty substitution,
φi = [·] and θi = P ′

i and Si = Si−1 or
φi = [P ′

i ] and θi = ρi:κi and Si = Si−1[P
′
i/ρi]

The expression e′ has the form Sm(e0)[v
′, v1, . . . , vn/g, x1, . . . , xn]

and e 7−→· e′

The typing derivation TD for e is:

Φ ` v′φ1 · · ·φm : ∀[ ].(P ′, τ ′
1, . . . , τ

′
n)→ 0

Φ ` v1 : τ ′
1

...
Φ ` vn : τ ′

n

Φ ` P ′ in state

Φ ` v′φ1 · · ·φm(v1, . . . , vn)

By Canonical Forms, part 3 (a), Φ ` v′ : τg where τg = ∀[θ1, . . . , θm].(P , τ1, . . . , τn)→ 0.
Inspection of the typing rules, indicates that only the rule 6 could have applied. The precondition for this
rule states that: (Φ, θ1, . . . , θm, g:τg, x1:τ1, . . . , xn:τn)← P ` e0.
By Canonical Forms, part 3 (a), we also know that 1 ≤ i ≤ m, if φi = [P ′

i ] then Φ ` P ′
i : κi. Consequently,

we can use the Type Substitution II and Value Substitution lemmas, to show that:

(Φ, θ′

1, . . . , θ
′

m)← Sm(P) ` Sm(e0)[v
′, v1, . . . , vn/g, x1, . . . , xn]

where for 1 ≤ i ≤ m,

– if θi = ρ:κ then θi = · (i .e. does not appear in the list)

– if θi = P then θ′
i = Si(θi)

20



This fact establishes part 3 of the proof obligation A; q ` e′.
Now we must establish the validity of the predicates θ′

1, . . . , θ
′
m. By Canonical Forms, part 3 (a), Φ ` θi for

1 ≤ i ≤ m when θi is of the form P ′
i . By Type Substitution I, we can conclude that Φ ` θ′

i. By assumption,
for 1 ≤ j ≤ k, each predicate Pj in the initial context Φ is valid. Therefore, by Lemma 8, since Φ ` θ′

i, we
know that each θ′

i is valid. This fact establishes part 2 of the proof obligation.
Finally, Φ ` P ′ in state. By inspection of the judgement in state and the fact that Φ = P1, . . . ,Pn; ·; q
and q 6= bad, we have P ′ = q 6= bad. This fact establishes part 1. Therefore, A; q ` e′. Since s = ·, we are
done.

case: δf The expression e has the form δf [q̂1][â1] · · · [ân][·](q1, a1, . . . , an, vcont) and e′ has the form vcont[q̂2][·](q2).
By inspection of the operational semantics, we also know that δ(f )(q1, a1, . . . , an) = q2. Using the definition
of validity, we have:

4. A |= δf (q1, q2, a1, . . . , an)

The typing derivation TD is the following where the context Φ is P1, . . . ,Pn; ·; q̂:

Φ ` δf [q̂1][â1] · · · [ân][·] : ∀[ ].(P ′, τ0, τ1, . . . , τn, τn+1)→ 0

Φ ` q1 : τ0

Φ ` a1 : τ1

...
Φ ` an : τn

Φ ` vcont : τn+1

Φ ` P ′ in state

Φ ` δf [q̂1][â1] · · · [ân][·](q1, a1, . . . , an, vcont)

From Canonical Forms, we have:

5. τ0 = S(q̂1)

6. for 1 ≤ i ≤ n, τi = bi(âi)

7. τn+1 = ∀[%2:State, δf (q̂1, %2, â1, . . . , ân)](q̂1, S(%2))→ 0

8. P ′ = q̂1

By inspection of the rule for Φ ` P ′ in state, we also know that (9.) q̂ = P ′ = q̂1.

Now, we can show:

10. q̂ 6= bad (which we know by 1.)

11. Predicates P1, . . . ,Pn, δf (q1, q2, a1, . . . , an) are valid. (which we know by 2. and 4.)

12. Φ′ ` vcont[q̂2][·](q2) where Φ′ = P1, . . . ,Pn, δ(f )(q1, q2, a1, . . . , an); ·; q̂ using the following derivation:

(13a) (13b)

Φ′ ` vcont[q̂2][·] : ∀[ ].(q̂1, S(q̂2))→ 0
(13)

Φ′ ` q2 : S(q̂2)
(14)

Φ′ ` q̂1 in state
(15)

Φ′ ` vcont[q̂2][·](q2)

We can show judgement 14 using static semantics rule (5) and the definition of the signature C. We can
show judgement 15 using rule (3) because by 9, q̂1 = q̂. We can show 13 using the static semantics rule (8)
and the sub-derivations 13a:

Φ′ ` vcont : ∀[%2:State,Pδf
].(q̂1, S(q̂2))→ 0

(16)
Φ′ ` q̂2 : State

(17)

Φ′ ` vcont[q̂2] : ∀[Pδf
[q̂2/%2]].(q̂1, S(q̂2))→ 0

(18)

and 13b:

Φ′ ` Pδf
[q̂2/%2]

where Pδf
= δf (q1, %2, a1, . . . , an)

By Lemma 7 and TD, we can show Φ′ ` vcont : τn+1 and therefore, we have 16. Judgement 17 follows by
inspection of the signature I and static semantics rule (17). Consequently, 18 follows using static semantics
rule (7) and deduction 7 above. Therefore, we have 13a. 13b follows by rule (1) because δf (q1, q2, a1, . . . , an)
appears in Φ′.

case: f The expression e has the form v(a1, . . . , an, vcont) where v = f [q̂1][q̂2][â1] · · · [ân][·][·].
By inspection of the operational semantics, we have: e 7−→f (a1,...,an) e′

where e′ has the form vcont(pack[â, a] as ∃ρ:Val.b(ρ)) for some a such that Cinsecure(a) = b. Moreover:

– for 1 ≤ i ≤ n, Cinsecure(ai) = bi

– and Cinsecure(f ) = (b1, . . . , bn, (b)→ 0)→ 0

21



The typing derivation TD has the form:

Φ `: ∀[ ].(P , τ1, . . . , τn, τcont)→ 0

Φ ` a1 : τ1

...
Φ ` an : τn

Φ ` vcont : τcont Φ ` P in state

Φ ` v(a1, . . . , an, vcont)

By Canonical Forms, τcont = ∀[ ].(q̂2,∃ρ:Val.b(ρ))→ 0
We can now use static semantics rule (10) and the following derivation where Φ′ = Φ← q2 to deduce that
the epression e′ is well-formed:

Φ′ ` vcont : τcont

(4)
Φ′ ` a : S(â)

(7)

Φ′ ` pack[â, a] as ∃ρ:Val.b(ρ)
(5)

Φ′ ` q2 in state
(6)

Φ′ ` vcont(pack[â, a] as ∃ρ:Val.b(ρ))

Judgement 4 follows from Φ ` vcont : τcont and the fact that the state portion of the ctxt is irrelevant to
this judgement. Judgement 7 follows using rule (5) and the fact that C(a) = â. Judgement 5 follows from
7 using static semantic rule (9) for existentials. Judgement 6 follows by rule (3).
By TD and Canonical Forms, part 3 (c), we have Φ `6= (q2, bad) and Φ ` δf (q1, q2, a1, . . . , an). Since, by
assumption 2, P1, . . . ,Pk are valid, we know that 6= (q2, bad) and δf (q1, q2, a1, . . . , an) are also valid using
Lemma 8. By the definition of validity, q2 6= bad and therefore A; q2 ` e′. Moreover, δ(f )(q1, a1, . . . , an) =
q2. Therefore, we have our result.

case: unpack The expression e has the form letρ, x = unpack(pack[P ′, v′] as τ) ine′′ where τ has the form ∃ρ:Val.τ ′.
Also, e 7−→· e′ where e′ has the form e′′[P ′, v′/ρ, x] The typing derivation TD has the form:

Φ ` P ′ : Val Φ ` v′ : τ ′[P ′/ρ]

Φ ` pack[P ′, v′] as τ : τ Φ, ρ:Val, x:τ ′ ` e′′

Φ ` letρ, x = unpack(pack[P ′, v′] as τ) in e′′

Using Type Substitution II and Value Substitution, we have Φ ` e′′[P ′, v′/ρ, x]. By assumptions 1 and 2, the
predicates P1, . . . ,Pn in Φ are valid and the context state P is not bad. Consequently, A; q ` e′′[P ′, v′/ρ, x]
and we are done.

case: if The expression e has the form if v (q′→ e1 | → e2). There are two cases:

– Assume v = q′. In this case, e 7−→· e1. Also, C(q′) = q̂′. By inspection of the static semantics rules,
we can deduce that the typing derivation TD must end in the rule (14):

Φ ` v : S(q̂′) Φ ` q′ : S(q̂′) Φ ` e1

Φ ` if v (q′→ e1 | → e2)

By assumptions 1 and 2, the predicates P1, . . . ,Pn in the context Φ are valid and the current state q
is not bad. Consequently, A; q ` e1. Therefore, we have our result.

– Assume v 6= q′ but is equal to some other state q′′. In this case, e 7−→· e2. Also, C(q′) = q̂′. By
inspection of the static semantics rules, we can deduce that the typing derivation TD must end in the
rule (15):

Φ ` v : S(q̂′′) Φ ` q′ : S(q̂′) Φ, 6= (q̂′′, q̂′) ` e2

Φ ` ifv (q′→ e1 | → e2)

�
q′′ 6= ρ
q′′ 6= q′ �

By assumptions 1 and 2, the predicates P1, . . . ,Pn in the context Φ are valid and the current state q
is not bad. By the definition of validity, 6= (q′′, q′) is valid since q′′ 6= q′. Consequently, A; q ` e2 and
we have our result.

�

Now that we have Subject Reduction and Progress, we can proceed to show the main result, Soundness.
First, we need to define what it means for a program to be stuck:

Definition 4 (Stuck) An expression e is stuck if e is not halt and there does not exist an expression e′ such
that e 7−→s e′.

22



Theorem 17 (Soundness)
If A; q0 ` e1 then

1. (Type Soundness) For all evaluation sequences, e1 7−→s1 e2 7−→s2 · · · 7−→sn
en+1, the expression en+1 is

not stuck.

2. (Security) If e1 7−→s1 e2 7−→s2 · · · 7−→sn
en+1 then |s1, s2, . . . , sn| ∈ L(A)

Proof:

The proof of part 1 proceeds by induction on the length of the evaluation sequence:

n = 1 By Progress, e1 is not stuck.

n > 1 By Subject Reduction, A; q′ ` e2 for some q′. By induction en is not stuck.

The proof of part 2 also proceeds by induction on the length of the evaluation sequence. The induction hypothesis
is:

If A;q ` e1 and e1 7−→s1 e2 7−→s2 · · · 7−→sn
en+1 then Accept(q, |s1s2 · · · sn|)

n = 1 From A;q ` e1, we know q 6= bad. The sequence of symbols emitted by the operational semantics is empty.
Therefore, by the definition of Accept, we have Accept(q, ·).

n > 1 If s1 = · then by Subject Reduction, we have A; q ` e2. By induction we also have Accept(q, |s2 · · · sn|)
and since s1 = ·, Accept(q, |s1s2 · · · sn|). If s1 = f (a1, . . . , an) then by inspection of the operational se-
mantics, we know δ(f )(q, a1, . . . , an) = q′. By Subject Reduction, A; q′ ` e2. By induction, we have
Accept(q′, |s2 · · · sn|). By definition of Accept, we conclude Accept(q, |s1 · · · sn|).

Consequently, for any evaluation sequence e1 7−→s1 e2 7−→s2 · · · 7−→sn
en+1,

if A; q0 ` e1 then Accept(q0, |s1s2 · · · sn|). By definition, |s1s2 · · · sn| ∈ L(A).

�

23


