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Introduction

This paper defines PolyiL, a typed functional, aspect-oriented Aspect-oriented programming languages allow programmers to
programming language. The main contribution of Poly is specifywhatcomputations to perform as well asento perform
the seamless integration of polymorphism, run-time type analysis them. For example, AspeciJ [21] makes it easy to implement a pro-
and aspect-oriented programming language features. In particular filer that records statistics concerning the number of calls to each
PolyamL allows programmers to define type-safe polymorphic ad- method. Thevhatin this example is the computation that does the
vice using pointcuts constructed from a collection of polymorphic recording and thevhenis the instant of time just prior to execution
join points. PolypML also comes equipped with a type inference of each method body. In aspect-oriented terminology, the specifica-
algorithm that conservatively extends Hindley-Milner type infer- tion of what to do is calle@dviceand the specification of when to
ence. To support first-class polymorphic point-cut designators, a do itis called gpointcut designatarA collection of pointcut desig-
crucial feature for developing aspect-oriented profiling or logging nators and advice organized to perform a coherent task is called an
libraries, the algorithm blends the conventional Hindley-Milner aspect
type inference algorithm with a simple form of local type infer- The profiler described above could be implemented without as-
ence. pects by placing the profiling code directly into the body of each
We give our language operational meaning via a type-directed method. However, at least four problems arise when the program-
translation into an expressive type-safe intermediate language.mer does the insertion manually.
Many complexities of the source language are eliminated in this
translation, leading to a modular specification of its semantics. One
of the novelties of the intermediate language is the definition of
polymorphic labels for marking control-flow points. These labels
are organized in a tree structure such that a parent in the tree serves
as a representative for all of its children. Type safety requires that
the type of each child is less polymorphic than its parent type. Sim-
ilarly, when a set of labels is assembled as a pointcut, the type of
each label is an instance of the type of the pointcut.

e First, it is no longer easy to adjust when the advice should
execute, as the programmer must explicitly extract and relo-
cate calls to profiling functions. Therefore, for applications
where the “when” is in rapid flux, aspect-oriented languages
are clearly superior to conventional languages.

e Second, there may be a specific convention concerning how to
call the profiling functions. When calls to these functions are
spread throughout the code base, it may be difficult to main-
tain these conventions correctly. For exampéay [7] experi-
mented with aspects in their middleware product line, finding
that aspects aided in the consistent application of cross-cutting
features such as profiling and improved the overall reliability of
the system. Aspect-oriented features added structure and disci-
pline toi1BM’s applications where there previously was none.

Third, when code is injected directly into the body of each
method, the code becomes “scattered,” in many cases making
it difficult to understand. This problem is particularly relevant
to the implementation of security policies for programs. Many
security experts have argued convincingly that security policies
for programs should be centralized using aspects. Otherwise se-
curity policy implementations are spread amongst many mod-
ules and it is impossible for a security expert to audit them ef-
fectively. Several researchers have implemented security sys-
tems based on this principle (though many of the experts did
not use the term “aspect-oriented”) and presented their ideas at
prestigious conferences includimg@PL, PLDI and IEEE Secu-

rity and Privacy([16, 22, 23,6, 14, 15, 3].

Fourth, in some situations, the source code is unavailable or
does not have the right to modify it and consequently man-
ual insertion of function calls is out of the question. In these
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cases, aspects can be used as a robust form of external softwarenraveling complex source-language objects into simple, orthog-
patch [18]. onal intermediate language objects. Indeed, ag/in, we have

h h b h . . . worked very hard to give a clean semantics to each feature in this
.TO daFe there have been much success Integrating aspects 'nt?anguage, and to separate unrelated concerns. We believe this will
object-oriented languages, but much less research on the interac

. - facilitate further exploration and extension of the language.
tions between aspects and typed functional languages. One of the Our core language, though it builds directlywaL , is itself an

central challenges of developing such a language comes in CoNsjp 4 4ant contribution of our work. One of the novelties of the core
structing a typing discipline that is safe, yet sufflcn_antly_flexmle to language is its first-class, polymorphic labels, which can be used to
ﬁt asp_ect-oriented programming idioms. In some situations, typing ;5 any control-flow pdint in a program. Unlike inzL, where

is straightforward. For instance, when defining a piece of advice for labels are monomorphic, polymorphism allows us to structure the

asingle monomorphic function, the type of the argument to, and re- | o)< jn 5 tree-shaped hierarchy. Intuitively, each internal node in
sul_t of, th? advice is directly connected to the type of the f_unctlon the tree represents a group of control-flow points whereas the leaves
being advised. However, many aspect-oriented programming tasks, oy resent single control-flow points. Depending upon how these
|ncl_ud|ng _the proflllng task mentioned above, are best handle_d by labels are used, there could be groups for all points just before
a single piece of advice that executes before (or after) many differ- o, o0 ition of the function or just after: groups for all labels in a
ent function qalls. In this case,_the type O_f the adV|c_e is not directly module; groups for getting or setting references; groups for raising
connected with the type of a single function, but with a whole col- - 4tching exceptions, etc. Polymorphism is crucial for defining
lection of functions. To type check advice in such situations, one these groups since the type of a parent label, which represents a

must first determine the type for the collection and then link the roup. must be a polvmorohi At
. ; , phic generalization of the type of each
type of the collection to the type of the advice. Normally, the type %em%er of the groﬂp’.)(:,-., child of an internal tree node).

of the collection (the po_lntcut) will be highly _polymorphlc and _the, The main contributions of this paper are as follows.
type of each element will be less polymorphic than the collection’s
type. e We formally define a surface language that includes three
In addition to finding polymorphic types for pointcuts and ad- novel features essential for aspect-oriented programming in
vice, it is important for advice to be able to change its behavior ~ a strongly-typed functional language: polymorphic pointcuts,
depending upon the type of the advised function. For instance, the ~ polymorphic advice and polymorphic analysis of metadata on
otherwise generic profiling advice might be specialized so that on  the current call stack. In addition, we add run-time type anal-

any call to a function with an integer argument, it tracks the dis-  ysis, which, though not a new feature, is seamlessly integrated
tribution of calls with particular arguments. This and other sim- into the rest of the language.
ilar examples require that the advice can determine the type of e We define a conservative extension of the Hindley-Milner type
the function argument. In AspectJ, and other object-oriented lan-  inference algorithm for our language. In the absence of aspect-
guages, where subtype polymorphism is predominant, downcasts  oriented features and run-time type analysis, type inference
are used to determine types. Howevenin, and other functional works as usual; inference for aspects and run-time type analysis
languages, parametric polymorphism is predominant and therefore  is integrated into the system smoothly through a novel form
run-time type analysis is the appropriate mechanism. of local type inference. Additionally, we believe the general
Another central consideration when designing a typed func-  principles behind our type inference techniques can be used in

tional programming language is support for type inference. Here, other settings.

both polymorphic pointcuts and run-time type analysis pose seri- o \we define semantics of PalyiL by a translation into a typed
ous challenges to language deS|gner§: Polymorphic pointcuts prove  ¢gre languageF . This core language defines primitive new
difficult because they include quantified types. To use pointcuts notions of polymorphic labeled control flow points and poly-
as first-class objects, an important feature for building effective morphic advice. We prove the core language is type safe, that

aspect-oriented libraries, it is necessary to weaken beyerglre- the translation is type-preserving and therefore that the surface
striction on prenex polymorphism. Likewise, run-time type analy- language is also safe.

sis is challenging because it refines types in the typing context and
because each branch of a typecase statement may have a different
type. Nevertheless, any extension ofiartlike like language with

these features should loenservativeln other words, type infer-

ence should work as usual for ordinaw programs; only when
aspect-oriented features are involved should programmers be re-
quired to add typing annotations.

In this paper, we develop a typed functional programming lan- One of the limitations of this paper is that we do not consider
guage with polymorphic pointcuts, run-time type analysis and a aroundadvice, one of the staples of AspectJ. We have two reasons
conservative extension ofL’s Hindley-Milner type inference al- for omitting around advice at this time. First, in a companion pa-
gorithm. The language we define contains before and after adviceper [10], we have defined an extended type system that prevents ad-
and isoblivious[17]. In other words, programmers can add func- vice from interfering with the functional behavior of mainline code
tionality to a program “after-the-fact” in the typical aspect-oriented and thereby facilitates reasoning about aspect-oriented programs.
style. To provide support for stack-inspection-like security infras- This system ofarmless advicés incompatible with around ad-
tructure, and to emulate AspectJ's CFlow, our language also in- vice and we plan to merge it with the polymorphic programming
cludes a general mechanism for analyzing metadata associated witltonstructs defined here. Second, around advice does not seem im-
functions on the current call stack. portant for the security applications that we are most interested in.

To specify the dynamic semantics of our language, we give a For now, around advice is beyond the scope of our work.
type-directed translation from the source into a type-safe intermedi-  In the remaining sections of this paper, we define and analyze
ate language with its own operational semantics. This strategy fol- our new polymorphic, functional and aspect-oriented programming
lows previous work by Walker, Zdancewic and LigatiZL) [39], language PolymL . Sectior] 2 introduces the PelyiL syntax and
who define the semantics of a monomorphic language in this way.

This translation helps to modularize the semantics for the source by Available athttp://www.cis.upenn.edu/proj/plclub/polyaml/

e We have a complete prototype implementation that uses our
type inference algorithm to infer types, translates to our inter-
mediate language, and implements its operational semantics as
an interpreter. This prototype is implemented in Standard ML
of New Jersey and currently stands at approximagebp lines
of coddl]
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Anonymous functions are nameless so it would be impossible to

(polytypes sz=all a.t write explict advice for them. It would be reasonable to makg
(pointcut type pt == (s1, S2) advice apply to anonymous functions. However, it might also be
(monotypes t ==aunit |string |stack | useful to write advice that applies just to anonymous functions us-
| t1->1t2]pcpt ing a distinguished pointcut. Finally, it could be argued that advice
(trigger timg)  tm ::= before | after simplely should not apply to anonymous functions. Because these
(terms ex=Xx|() |clejez|let din e design choices do not present any technical difficulities for our
| stkcase e; (p=>€|_=> ey) framework, we have chosen to not address anonymous functions
| typecase[ t] a(t=>e|_=> e) until we have more experience with programming in Roly .
| {f} pt |any |e:t In a larger language we would add a greater variety of pointcuts,
(stack patterns p:z=x|nil |f: p including ones that corresponded to different actions in a module
(frame patterny f == _|e(x,y) |e(x:t,y) such as reading or writing reference cells and raising or catching
(declarations d:=rec fx =e exceptions, or different domains of interest, such as all function
| rec f(x:tq):tz2=e points in a particular module. We would also add a small language
| advice tme; (x,y,z)= ez for specifying sets of function names, exceptions, etc., perhaps built
| advice tme; (x:t,y,z)= e on regular expressions.
| case-advice tme;(x:t,y,z)= ez Informally, the pointcut type( s, s2) , describes the/o be-
haviour of a pointcut. In PolML, pointcuts are used to describe
Figure 1. Syntax of PolaML sets of functions, and as sush ands are conservative estimates

of what the domains and ranges of those functions have in common.

informally describes the semantics through a series of examples.For example, if there are functiohsandg with typesstring ->

Sectior] B describes the formal semantics of the Realytype sys- string  andstring -> unit respectively, we could give the

tem and type inference algorithm. Sectjdn 4 introduces the seman-pointcut{f,g}  the pointcut typgstring,all a.a) . This is

tics of our polymorphic core calculu§,a. Sectio{ b shows have ~ because their domains are equal, so the least general polytype that
to give a semantics to PolyL in terms ofF .. Finally, Section§6 describes them both is justring . However, they have different

and7 describe related work and conclusions. ranges, so the least general polytype that can be used to describe
them both isalla.a . As we mentioned, pointcut types are con-

servative, so it would have also been fine to annotate the pointcut
2. Programming with aspects {f,g}  with the pointcut typgall a.a,all a.a) . In the ex-
amples that follow, because the polytyakka.a is commonly

PolyamL is a polymorphic functional, aspect-oriented language ;se \ve abbreviate it fb The semantics of pointcut types is given
based on theiL family of languages. Figuig 1 presents its syntax. precisely in Sectiofi]3.

Here and elsewhere, we use over-bars to denote lists of syntactic The pointcut designatdrefore {f}: pt represents the point
objects refers to asequeno] ... xn, andxi stan_ds for an "’.‘rb'.' in time immediately before executing a call to the functiorike-
trary member of this sequence. Bold-faced text is used to indicate iseafter {g,h}: pt represents the point in time immediately
actual syntaxf, as opptc))lseg_ t(()j_metar-‘;;anablesl. we a?sume thedusu fter executing eitheg or h. In both cases, the set is annotated
conventions for variable binding ane-equivalence of types and it tyne informationpt to aid type checking. First-class point-

terms. cuts, such afg,h} , require that both their domain and range types

As in ML, the type structure of PolwiL is divided intopoly- be annotated. To make this easier when they appear in a pointcut
typesandmonotypesThe polytypes are normally writteail 2. t designator, we introduce the syntactic sugams andrng s for

wheret is a monotype. However, when the list of binding type vari- the pointcut type¢s,T) and(T, s) respectively

ablesa is empty, we may abbreviatdl . t asjustt. . The most basic kind of advice has the form
Here, and unlike immL, the word “monotype” is a slight mis-

nomer for the syntactic category In addition to type variables,
simple base types likanit , string andstack , and function
typest 1 -> t 2, the monotypes includec pt , the type of a point-
cut, which in turn includes a pair of polytypes. We explain pointcut advice tme; (x,y,z)= e
types in more detail later.
PolyamL expressions include variables, constants like unit,
() , and stringsg, function application and let declarations. New
functions may be declared in a let declaration. These functions may
be polymorphic and they may or may not be annotated with their Here,tm e is the pointcut designator. When the pointcut designa-
argument and result types. When annotations are omittedaRoly tor dictates it is time to execute the advice, the variabig bound
will infer these types. We assume it is easy to extend the languageeither to the argument (in the casebaffore advice) or the result
with other simple features such as integers, arithmetic iand of function execution (in the case after advice). The variablg
and we will make use of such things in our examples. Note that may optionally be annotated with its type. The variaplis bound
PolyamL does not include anonymous functions, a point we will to the current call stack. We explain stack analysis in Segfidn 2.2.
address later. The variablez is bound to metadata describing the function that
The most interesting features of our language are pointcuts andhas been called. For our purposes, we will assume the metadata is a
advice. Advice in PolgmL is second-class and includes two parts: string corresponding to the function name as written in the source
the body, which specifies what to do, and gr@ntcut designatqr text. In other situations, it might include security information, such
which specifies when to do it. In PaiyL, a pointcut designator ~ as the name of the code signer. Since our advice exchanges data

has two parts, drigger time which may either beébefore or with the designated control flow point, it must return a value with
after , and apointcutproper, which is a set of function names. the same type as the first argumznt
The set of function names may be written out verbatirifak, or, A contrived example of using advice is the following code

to indicate all functions, a programmer may use theaggt. fragment for an implementation of factorial.



(* code *)
let rec fact x

if (x = 1) then 1

else x * fact (x-1) in

(* advice *)
let advice before {fact} : dom int
(arg, stk, name) =
if (arg = 0) then 1 else arg

Here advice is used to correct the implementation of factorial,
which did not correctly handle the case fr £ 1. We do not
expect that advice would be used like this in practice except when

more significant patching is necessary or the source code is unavail-

able.

A common use of aspect-oriented programming is to add tracing
information to functions. These statements print out information
when certain functions are called or return. For example, we can
advise the program below to display messages before any function
is called and after the functiorfs andg return. The trace of the
program is shown on the right. The type annotatiog int  on
the set{f,g} means that as an argument tbefore pointcut

is a boolean. (All advice that is applicable to a program point is
triggered in the order in which the advice was declared.)

let advice before any (arg, stk, name) =
print "entering "; printin name;
arg

case-advice
before any (arg:int, stk, name) =
print " with arg "; printin (itos arg);

in let

arg
in let case-advice
before any (arg:bool, stk, name) =
print " with arg ";
printin (if arg then "true"
else "false");
arg

in ...

This ability to conditionally trigger advice based on the type

designator it must be able to accept any type of data and as angf the argument means that polymorphism is not parametric in

argument to amfter pointcut designator it may only accept data

of typeint .
(* code *) (* trace *)
let f x = x + 1in entering ¢
let g x = if x then f 1 entering f

else f 0 in leaving f => 2
let h x = false in leaving g => 2

entering h

(* advice *)

let advice before any (arg, stk, name) =
print "entering "; printin name; arg in

let advice after {f,g}: rng int

(arg, stk, name) =

print ("leaving " ~ name " " =>");
printint arg; printin "; arg

in

h (g true)

PolyaML—programmers can analyze the types of values at run-
time. However, without this ability we cannot implement this
tracing aspect and other similar examples. For further flexibility,
PolyamL also includes a typecase construct to analyze type vari-
ables directly. Below, to aid type checkirjgnit]  annotates the
return type of the typecase expression.

let advice before any (arg:a, stk, name) =

print "entering"; print name;
print " with arg ";
(typecase[unit] a of

int => printin (itos arg)
| bool => printin (if arg then "true"

else "false")

| _ <unprintable>");
arg

in ...

=> printin

2.2 Reifying the context

Even though some of the functions in this example are monomor- When advice is triggered, often not only is the argument to the
phic, polymorphism is essential. Because the advice can be trig-function important, but also the context in which it was called.
gered by any of these functions and they have different types, the Therefore, this context information is provided to all advice and
advice must be polymorphic. Moreover, since the argument types PolyamL includes constructs for analyzing it. For example, below

of functionsf andg have no type structure in common, the argu-
mentarg of the before advice must be completely abstract. On the
other hand, the result types bfandg are identical, so we can fix
the type ofarg to beint inthe after advice. In general, the type of
theafter advice argument may be the most specific typich

that the result types of all functions referenced in the pointcut are
instances of . Inferringt is not a simple unification problem; quite
the opposite, it is amnti-unificationproblem. Our type inference
algorithm does not currently does not solve anti-unification prob-
lems, so we must require a typing annotation on pointcuts formed
from sets of functions.

2.1 Run-time type analysis

we augment the tracing aspect so that it displays debugging infor-
mation for the functiorf when it is called directly fronyg andg’s
argument is the booledrue .

let
advice before {f}: dom T (farg,fstk,fname) =
(stkcase fstk of
_({g}: dom bool (garg, gname)):rrest =>
if garg then
print "entering f from g(true)"
else ()
| other => ()); farg
in ...

We might also want the tracing routine to print not only the name A stack is a list of frames describing the execution context. The
of the function that is called, but also its argument. To do this, we head of the stack contains information about the function that
need to analyze the type of the argument to the function.ARaly triggered the advice (e.§. in the example above). Each frame on
makes this easy with an alternate form of advice declaration, called the stack describes a function in the context and can be matched
case-advice |, that is triggered both by the pointcut designator by a frame pattern: either a wild-cardor the patterre( x, y) .

and the specific type of the argument. In the code below, the first The expressioe in a frame pattern must evaluate to a pointcut—
piece of advice is always triggered, the second piece of advice isthe pattern matches if any function in the pointcut matches the
only triggered when the function argument is an integer, and the function that frame describes. The variablds the argument of
third piece of advice is only triggered when the function argument that function, and is a string containing the name of the function.



A more sophisticated example of context analysis is to use ignator for specifying it. In PolyML, assuming tuples for the mo-

an aspect to implement a stack-inspection-like security moni- ment, we can implement theithin

tor for the program. If the program tries to call an operation

combinator using a function
that takes two pointcuts—the first for the callee and the second for

that has not been enabled by the current context, the securitythe caller—as arguments. Whenever we wish to useniti@n
monitor terminates the program. Below, assume the function combinator, we supply two pointcuts of our choice as shown be-

enables:string -> string -> bool determines whether
the first argument (a function name) provides the capability for

the second argument (another function name) to execute. We als

assumeabort() terminates the program.

let advice before any (argl, stk, namel) =
let rec walk y =
stkcase y of
nil => abort()
| any (arg2, name2) : rest =>
if enables name2 namel then ()
else walk rest
in walk stk; argl

However, a subtle point that we caught only we tested this example

with our implementation, is that theny pointcut is very difficult to

use. In particular, the above program will always diverge, because

the function calls in the body of the advice will trigger the advice
itself.

This problem could be solved in a number of ways. One pos-
sibility would be to introduce a primitivedisable e, that will
disable all advice while is evaluated. The advice could then be
rewritten as

let advice before any (argl, stk, namel) =
let rec walk y =
stkcase y of
nil => abort()
| any (arg2, name2) : rest =>
if enables name2 namel then ()
else walk rest
in disable (walk stk); argl

Another option would be to introduce subtractive pointcuts,
such ase; except e, that behave here like set difference on
names of functions. We could use this to rewrite the advice as

let rec walk namel y =
stkcase y of
nil => abort()
| any (arg2, name2) : rest =>
if enables name2 namel then ()
else walk rest in
let advice before
(any except {walk,enables} : dom T)
(argl, stk, namel) =
in walk namel stk; argl

low.

det rec within

((fpc,gpc,body) : pc (T, T) *
dom bool *
(bool -> a)) =
let advice before fpc (farg,fstk,fname) =
(stkcase fstk of
_ = gpc (garg, gname) ::
body garg

| _ => (), farg

rest =>

in ()

in let rec entering x =
if x then (printin "entering f from g"; x)
else x

within ({f}:(T,T), {g}: dom bool, entering)

Notice that we placed a typing annotation on the formal param-
eter ofwithin . When pointcuts are used as first-class objects,
it is not always possible to infer types of function arguments and
results. The reason is that pointcut types include polytypes; poly-
types cannot be determined via unification. In the next section, we
formally describe how to reconcile the Hindley-Milner type system

with first-class pointcuts using type annotations.

3. Type inference

The type system of PolwL is carefully designed to permit effi-
cient type inference with an algorithm that is an extension of Damas
and Milner’s AlgorithmW [8]. Because the algorithm behaves ex-
actly the same asiL for ML terms, all terms that do not include
aspects or type analysis will type check without annotation, as they
doinmL.

Type inference for PolymL is specified by the judgments and
rules that appear in Figufg 4. The difficult part in the design of
PolyamL’s type system is reconciling type inference with first-
class pointcuts, polymorphic pointcuts, and run-time type analysis.
In general, we have tried to balance simplicity and the number
of required user annotations. It should be easy for the user to
predict whether an annotation will be necessary. As we gain more
experience with our implementation, we will be able to better gauge
how much of a burden the annotations are. In Sedfioh 3.4, we
discuss extensions of the type system that could reduce the number
of required annotations.

This extension has the disadvantage that it the author of the advice3.1 First-class polymorphic pointcuts

must know the entire potential call tree faralk to properly
specify the exception list.

First-class polymorphic pointcuts are problematic for type infer-
ence because they inject polytypes in the syntax of monotypes, with

Both of these extensions are straightforward to integrate into our e typenc ( s1, s2) . Higher-order unification, which is known to
type system, but the extensions would require some modifications g undecidable, would be necessary to guess the appropriate poly-

to the core operational semantics we describe in Selction 4.

2.3 First-class pointcuts

The last interesting feature of our language is the ability to use
pointcuts as first-class objects. This facility is extremely useful for
constructing generic libraries of profiling, tracing or access control

types. Instead, whenever two pointcut types are compared by the
unification algorithm, it requires that the polytypes abstract exactly

the same type variables (updeconversion)[25].

Figure[2 describes our unification algorithm and Fig[fe 3
presents some useful auxiliary definitions. Unification variables
are notated by, Y, Z, ... and are only introduced by the type in-

advice that can be instantiated with whatever pointcuts are usefulference algorithm. Unification variables are distinct from (rigid)

for the application. To give one simple example, consider the “
within g” pattern presented in one of the previous examples. This

is a very common idiom; in fact, AspectJ has a special pointcut des-

programmer-supplied type variablas Our term annotation rule
behaves like that of Standard ML _[28] rather than Objective
Caml [29]: Type-variables occurring in annotations are assumed
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n= VX o VX

r
® = -|D,x Oo; & d;THC{F}( s1,52) = pc(s1,52);On
A == -lAa Global rules®; A; ®;THe = t; 0’

n(before ,(s1,s2)) S1

A —
N A DTIe = t;0 Nx)=all a.t  Xfresh
mstk,(81,82)) = s OADIFe=t;0 O ADTFxX =t X/a,0
n(after ,(s1,S2)) & s2 A D ; AMIOX ;
_ _ , O A0 THe; =1t1:0; O, A, DO;THey; =1,;,0;3
Xfresh OFt,X/a=t;= © Xfresh @3 Ft; =t,-> X= 6
OFall a.t; <all b.Tzi}@/ O A O THeje; = X 6,
gen(lt) £ all 5-}[5/7] O, A, ;T e = stack ;0 B A D;THe = 1,6
whereX = FTV(t ) — FTV(I") Vi O 1;A®;THP; = O;A; R
anda fresh O AA; O T Fey = t4;0] QlFt;=t= 0/

©; A, @; T stkcase e (p=>€e|_=> e’) = ;0]

Figure 3. Auxiliary definitions
aeA
Akt OADTFe=1;0 Vi A =FTV(ty)—A
agFTV(ty) Oi_1;A,A; DTt /a) Feilti/al=>t];©]
O/ Ft{=tlti/al= 6

to be bound by their enclosing scope, rather than acting like unifi-
cation variables. This design choice is investigated in more detail
by Shields and Peyton-Jonés|33].

We useO to refer to an idempotent, ever-growing substitution ©; A @;T'-typecase[ t] a(t=>e|_=> e) = t;On
of monotypes for unification-variables. Our unification judgment L, , , , N
OFt; =t, = 0isread as A O;THd= @, 0T O A DO TTMFe=>1;0

O, A O;THlet din e=t;0"

“With input substitution®, typest ; andt » unify produc- . - .
ing the extended substitutid®’” Figure 4. Type inference for expressions

“Given the input substitutio® and the contexta,®, and
I', the terme has typet , as specified by the programmer,
and produces substituti@’.”

That s, the substitutio® is extended to produce a new substitution
O’ sothat®’(t 1) = ©’(t 2). Furthermore@®’ is the most general
unifier for these monotypes. In this and in other judgments, we use

g;e:;:(;r;/\ﬁggﬁn that the outputs of the algorithm appear to the right This judgment holds when either the typeefnvas annotated in

To provide flexibility with user annotations, there are two dif- ’Eheds;)urcg text OL whee is -a& exp;essmn whose tyhpe 'f easy
ferent forms of typing judgment for expressions (see Figire 4). '© detérmine, such as a variable whose (monomorphic) type was
In these judgements is an input substitutionl’ the term vari- anr_lotated or certain constants. To propagate the type annotation on
able contextA the type variable context, anl the set of function variables, the contexf,contains two different assertions depending

ty i “The first f is the st ; t on whether types are inferred via unification { s) or known
ga}rxggc#riieg il?.sg;(/)p;nd iserelgsd ac;rm Is the standard judgmen "(x = s). We use the notatiofi(x) = s to refer to eithex : s € T

orx:sel.

The typing rule for advice declarations (in FigUrg 5) states
that the type of a pointcut must be determinable using the local
type judgment. That way, the inference algorithm need not use
unification to determine the tygee pt . Note that when the body of
the advice is checked, the parameters are added to the context with
The second judgment is a simple form of local type inference, known types, even though they need not be annotated by the user.
O:;A; 0T e = t:0' andis read as Below we use the notation(tm, pt ) to indicate projecting the

“Given the input substitutio® and the contexta,®, and
I, the terme has typet and produces substitutio®’,
possibly requiring unification to determine’



in scope. When a pointcut is formed from a set of functions, each

Declaration®;A; @;THd = @', @';T’ of those functions must be a memberdf
a=(FTV(t;)UFTV(t,)) — A Now consider the rule for pointcuts constructed from sets of
O AT DN st;>taxzt1 e >ts0 functions in Figur¢ §. The domain type of each function in the set
O Fty=t3=0" s=al at; ot must be at most as polymorphic as the first polytype in the pointcut

type. Similarly, the range type of each function in the set must be
at most as polymorphic as the second polytype in the pointcut type.
The relation® - s1 < s, = O (defined in FigurE]S) and is read

O, A D;THrec f (x:ity) ty=e;=0";. ;. fzus

X,Yfresh O, A O, f;f:X>Y,x:XFe; =1t;0

OFY=t =>0" s=gen(®(,0"(X->Y)) as
B, A, ®;THrec fx =e; = @ f;-f :s “Given input substitutiol®, polytypes; can be shown to be
more general than polytype,, by producing an extended
O, A DT e; = pcpt:®  mtm,pt)=all a.t, substitution®’.”
@;Aa, ®;T)x =tq,y zstack ,z zstring Fe, =1t,;0"
O'Ft; =t, = 0" By more general, we mean that there exists an instantiation for
©,A;, @ T+ advice tme; (x,y,2)= e, = 07 some of the quantified variables@ (s 1 ) that will make it equal to
©’(s2). This is the same definition asiir. To simplify inference,
@A DT e, = pcpt: 0 the polytypeg s, s2) must be annotated on the set by the user.
mtm,pt ) —all @ts a=FTV(t3)—A Because of this annotation, the expression always has a local type.
O';A,a, D;T)x =t3,y zstack ,z zstring Fey,=1t,;0"
@"Ft; =t 50" 3.3 Run-time type analysis

. . . H . _ n. .
O A @I advice tme; (x:t3,y,2)= €= O There are two difficulties with combining type inference with run-

time type analysis. First, the return type dffpecase expression
.. . ) . is difficult to determine from the types of the branches. We solve
@A A D;T)x = t(l),”y'_:: stack ,z : sérmg Fe;=150 this first problem by simply requiring an annotation for the result
) Fti=te = _ type. As the rule in FigurE]4 shows, if the expression should be
©;A; @;I'- case-advice  tme; (x:ty,y,2)= €= O7 of typet then a branch for type; may be of type [t ; /a]. This
substitution is sound because if the branch is executed, then the

Pattern®; A; @' p = ©" AT typea is the same as the type. When type checking each branch,
types in the context may also change. Above, the notdt{bn/a)
means that type ; is substituted for the variabla only in local
assumptiong :: s. Other types remain the same.

Note that we must not allow refinement in inferred parts of the
context (assumptions of the foren : s) because, even with the

A =FTV({t1)—A ©;A O, THe; = pc pt; 0

A O THnNl = 6;-;-

O A @' x = @+, x = stack return type annotation otypecase , there are some expressions
with no principal type. For example, in the following code frag-
G, A D THFp= ;AT ment

O, A O TH = p=0,;AT
let rec h (x:a) =

O, A ;T HC e = pc pt ; © let rec g (y) = typecase[int] a of
n(stk ,pt)=al a.t ©;A O, TFp= ;AT int =>y + 1
O, A DO;THe(x,z): p= 0" A & xit,,z:string n g | =>2
O, A, ®;TCe = pcpt;®  m(stk ,pt)=all at n..
a=FV{t)-A O A®THp= 0"ALT we can assign the typedl a. a -> a -> int orall a.a
O, A O THe(x:t,2): p=0";A" 7T’ xt,z:string > int -> int to h, and neither is more general than the other.
The problem is that it is equally valid for to have typent or
Figure 5. Type inference for declarations and patterns to have a type that refines ot . By requiring the user to spec-
ify the type ofy for refinement to apply, we eliminate this confu-
appropriate polytype from the pointcut typettf is before the sion. This issue has appeared before in type inference systems for

first component will be projected, if it after  the second will be Generalized Algebraic Datatypes (also called Guarded Recursive
projected. There is also special trigger tiratk , used only by the Datatypes)[31, 34. 35].

type inference algorithm that is essentially equivaleritetore
This notation is defined in Figufé 3.

3.4 Extensions to PolgmL
The typing rule forcase-advice is similar to that for advice. #

Note thatcase-advice  requires a typing annotation on the One property of our type system is simplicity. It is easy for the
first parameter to the advice. The user employs the annotation toUser to understand where annotations are required. However, prac-
drive the underlying run-time type analysis. tice may show that this simplicity comes at a price: those annota-

tions may be burdensome to users. Therefore, we plan to use our
implementation to explore a number of potential extensions and
modifications of our type system. However, none of the following
Another tricky part of the type system is the formation of pointcuts extensions are currently part of our implementation.

from sets of function names. Only let-bound function names may  First, a few specialized rules may eliminate a number of user
be part of a pointcut. To ensure this constraint,dheomponent of annotations. For example, if all of the functions in a pointcut have
the typing judgments is a set of function names that are currently the same type, no annotation would be necessary.

3.2 Polymorphic pointcuts



and might be used at many types. Our type inference algorithm

vi fie® rfy)=al at;->t, concurs. We conjecture that if the specification were required to

A D = - = . hoose the most general type for let-bound variables, it would
A ;T foC (F I atjal a ¢ ; \ ’ \

oA {fy = pe@l atial at):® correspond exactly with our algorithm, but we have not proved this

Also, we could always try the typec (all a.a,all a.a)  if fact. Happily, even though we are changing the specification for
no type has been supplied by the user. puremL terms, this change would not invalidate any programs.
It merely cuts down the number of alternate typing derivations for
Vi fied terms that use let. The derivation that uses the most general type is
O; A, ©; T {F} = pc(alla.a,all a.a) He) still available.

Looking at advice declarations, if local inference fails, we could al-
low unification for the determination of pointcut types by requiring 4. Polymorphic core calculus
them to be monomorphic. '

In the previous section, we defined the syntax and static semantics

O A DTHe; =ty 6 for Pc_)IyAML .One rr_]ight choose to define the operatior_lz_al seman_tics
O Fto=pc(ti,tz) =0, ntm, (t,t2)) =t for this language directly as a step-by-step term rewriting relation,
Oy, A, D;T)x =ty =stack ,z z=string Fe, =1;03 as is often done foh-calculi. However, the semantics of certain
@o; A DT+ advice tme; (X,y,2)= €1 = Oz constructs is very complex. For example, function call, which is

] ) normally the simplest of constructs in thecalculus, combines the
_ Besides these minor tweaks, we also plan to explore more ordinary semantics of functions with execution of advice, the pos-
significant modifications. First, we may get more mileage out of sijply of run-time type analysis and extraction of metadata from the
our annotations by using a more sophisticated form of local type call stack. Rather than attempt to specify all of these features di-
inference, such abidirectional type inferencg32, [30] or boxy rectly, creating a horrendous mess, we specify the operational se-
types[38]. ] ) o mantics in stages. First, we show how to compile the high-level
More ambitiously, if we can reconcile anti-unification con-  constructs into a core language, calleg. The translation breaks
straints with unification, a number of annotations may be elimi- gown complex high-level objects into substantially simpler, orthog-
na_ted. Not only could we drpp the annotation on the formation of gna| core-level objects. This core language is also typed and the
pointcuts from sets of function names, but might also be able to ransiation is type-preserving. Second, we define an operational se-
drop the annotation on the return typetgpecase . As long as mantics for the core language. Since we have proven thaf the
there are multiple branches, we could use anti-unification to deter- type system is sound and the translation from the source is type-
mine the return type dfypecase unambiguously. For example, preserving, the PolmL is safe.

in the following code fragment Our core language differs from the PalyL in that it is not
let rec f (x : a) = typecase a of int => 3 oblivious—control-flow points that trigger advice must be explic-
o i ] itly annotated. Furthermore, it is explicitly typed—type abstraction
Itis impossible to determine whetheshould be typell a.a -> and applications must also be explicitly marked in the program,
int oralla.a->a .However, for the following code fragment a5 well as argument types for all functions. Also, we have care-
let rec g (x : a) = typecase a of int => 3 fully considered the orthogonality of the core language—for exam-
| =>4 ple, not including the combination of advice and type analysis that
) ) - is found in thecase-advice  construct. For these reasons, one
We can unambiguously givgthe typeall a.a -> int : would not want to program in the core language. However, in ex-
3.5 Future work: A declarative specification ::;nznugaedéhe core language is much more expressive than the source
Some users ofiL rely on thedeclarativenature of thedm type Becausé » is so expressive, we can easily experiment with the

system, which elides the uses of unificatibnl[27]. We are working source language, adding new features to scale the language up or
to develop a similar declarative specification for our type system. removing features to improve reasoning power. For instance, by re-
Unfortunately, the rule for pointcuts has undesirable interac- moving the single type analysis construct, we recover a language
tions with the declarative specification Bf1-style type inference. with parametric polymorphism. In fact, during the process of de-
This rule uses the functioh; without instantiation, breaking the  veloping our PolgmML, we have made numerous changes. Fortu-
following property: if A;®;T + e : t andl"’ is a more general  nately, for the most part, we have not had to make corresponding
context tharl", thenA; @; T’ + e : t . This property does not hold  few changes iff 4. Consequently, we have not needed to reprove
because a more general type for a funcfigrmay require a more  soundness of the target language, only recheck that the translation
general pointcut type annotation when that function appears in ais type-preserving, a much simpler task. Finally, in our implemen-
pointcut set. Because this property fails, our algorithm is not com- tation, the type checker for tHgx has caught many errors in the
plete with respect to the standard specificatiommtstyle infer- translation and helped the debugging process tremendously.
ence extended with our new terms. The reason is that the algorithm  The core languag&, is an extension of the core language
always uses the most general type for let-bound variables, whereasrom wzL with polymorphic labels, polymorphic advice, and run-
the declarative system is free to use a less general type. time type analysis. It also improves upon the semantics of context
For example, the following term type checks according to the analysis. In this section, we sketch the semanticB of but due
rules of such a specification, bobt according to our algorithm.  to lack of space, the complete semantics appears in the companion

The declarative rules may assifjrihe typestring -> string , technical reportl[11]. In Sectid 5, we sketch the translation from
but our algorithm will always choose the most general type, PolyAML toFA.

allaa->a

let rec f x = x in {f}:(string,string) 4.1 The semantics of explicit join points

We believe this term should not type check, as, given the definition For expository purposes, we begin with a simplified versioR of
of f, the user should expect that it has tyak a.a -> a and extend it in the following subsections. The initial syntax is



summarized below.
Tu=1]string|T1 = T2 |T1 X ... X Tn | &|Vo.1]| (&.7) label
| (.7) pc| advice
ex=()|c|x|AT.e|erex | Ax.e|elT]|fix xiT.e
| (€)|let(Xx)=erine; |newwt<ell
| {e}lerUea|er[Tlez2] [{er.o0x:iT = e2}| fre
| typecaselo.T1] T2 (T3 = e1,x = e2)

The basis ofF 4 is the A-calculus with unit, strings and-
tuples. Ife is a sequence of expressions. . . e, forn > 2, then
(e) creates a tuple. The expressibat (x) e in e, binds
the contents of a tuple to a vector of variables the scope of
e2. Unlike wzL, we add impredicative polymorphism to the core
language, including type abstraction«.e) and type application
(elt]). We write () for the unit value and for string constants.

Abstract labels{, play an essential role in the calculus. Labels
are used to mark control-flow points where advice may be trig-
gered, with the synta&(T][e]. We call such points in the core lan-
guagejoin points For example, in the addition expression +
{[T][e>], aftere, has been evaluated to a valug, evaluation of
the resulting subterrfiT][v.] causes any advice associated with
to be triggered.

Here, unlike inwzL, the labels form a tree-shaped hierarchy.
The top label in the hierarchy 1$. All other labels! sit somewhere
belowU. If £; < £, then{; sits belowl; in the hierarchy. The
expressiomew «.T < e evaluates, obtaining a label,, and
generates a new labé] such thatt; < {,. This label structure
closely resembles the label hierarchy defined by Bruns et al. for
their (untyped ABC calculus([4].

Our first class labels can then be grouped into collections us-
ing the label-set expressiofg}. Label-sets can then be combined
using the union operatior, U e;. Label-sets form the basis for
specifying when a piece of advice applies.

Advice is a computation that exchanges data with a particular
join point, making it similar to a function. Note that advice in
Fa (written {e;.xx:T — ey}) is first-class. The type variables
and term variablex are bound in the body of the advieg, and
the expressior; is a label-set that describes when the advice is
triggered. For example, the advi¢d}.x:int — e} is triggered
when control-flow reaches a join point marked with provided
¢y is a descendent of a label in the $8t If this advice has been
installed in the program’s dynamic environmeni, + £;[][vz]
evaluates to; + e[vz/x].

When labels are polymorphic, both types and values are ex-
changed between labeled control-flow points and advice. For in-
stance, if¢; is a polymorphic label capable of marking a control-
flow point with any type, we might write; + £; [int][v2]. In this
case, if the advicg{; }.ax:x — e} has been installed, then the pre-
vious expression evaluateswg + efint/x][v2 /x]. Sincell sits at
the top of the label hierarchy, once installed, advice with the form
{U}.ax:x — e} is executed at every labeled control-flow point.

Advice is installed into the run-time environment with the ex-
pression{ e. Multiple pieces of advice may apply to the same
control-flow point, so the order advice is installed in the run-time
environment is importanwzL included mechanisms for installing
advice both before or after currently installed advice, for simplicity
Fa only allows advice to be installed after.

Operational semantics The operational semantics must keep

evaluation contextg:
vi= ()| Mte| (V)| Axe |l {vxiT — e}
E:=[]|Ee|vE|E[T]]|(E,...,e)|{v,...,E)
| let(x)=Eine|E[R][el |v[TI[E]| I E|{E.oxxiT — e}
| newxt<E

Evaluation contexts give the core aspect calculus a call-by-value,
left-to-right evaluation order, but that choice is orthogonal to the
design of the language. Auxiliary rules with the folimA; e —g
Y';A’;e’ give the primitive 3-reductions for expressions in the
language. The main points of interest have been described infor-
mally through examples in the previous section and are included in
the excerpted rules in Figuré 6.

A third judgment formX; A; {; T = v describes, given a partic-
ular labelf marking a control-flow point, and typefor the object
at that point, how to pick out and compose the advice in context
A that should execute at the control-flow point. The result of this
advice composition process is a functthat may be applied to a
value with typer. This judgment (advice composition) is described
by three rules shown in Figuré 6. The first composition rule returns
the identity function when no advice is available. The other rules
examine the advice at the head of the advice heap. If the {abel
descended from one of the labels in the label set, then that advice is
triggered. The head advice is composed with the function produced
from examining the rest of the advice in the list. Not only does ad-
vice composition determine ffis lower in the hierarchy than some
label in the label set, but it also determines the substitution for the
abstract type® in the body of the advice. The typing rules ensure
that if the advice is triggered, this substitution will always exist, so
the execution of this rule does not require run-time type informa-
tion.

Type system The primary judgment of thé ', type system,
A;T F e : T, indicates that the terma can be given the type,
where free type variables appearAdnand the types of term vari-
ables and labels appear ih The typing rules for this judgment
appear in Figurg]7.

The novel aspect of thBa type system is how it maintains the
proper typing relationship between labels, label sets and advice.
Because data is exchanged between labeled control-flow points and
advice, these two entities must agree about the type of data that will
be exchanged. To guarantee agreement, we must be careful with
the types of labels, which have the foomr label. Such labels may
mark control-flow points containing values of any typewhere
free variablesx are replaced by other typ&sFor example, a label
{ with the typex.« label may mark any control flow point as may
be instantiated with any type (See Fig{ife 7 for the formal typing
rule.). Here is a well-typed triple in whichmarks three different
control flow points, each with different types:

(ABAx:B.LIBIIXT, Llint][31, [booll [true])

Notice that marking control flow points that occur inside poly-
morphic functions is no different from marking other control flow
points even though's abstract type variable may be instantiated
in a different way each time the polymorphic function is called.
Labeling control-flow points correctly is one side of the equa-
tion. Constructing sets of labels and using them in advice safely is
the other. Typing label set construction in the core calculus is quite
similar to typing point cuts in the source. Each label in the set must

track of both the labels that have been generated and the advice?® @ generic instance of the type of the set. For example, given la-
that has been installed. An allocation-style semantics keeps trackPelst: of type(1 x 1) label and(; of type(1 x bool) label, a label

of the setX of labels allocated so far (and their associated types)
and A, an ordered list of installed advice. The main operational
judgment has the formx; A;e — Z’;A’;e’. To describe the op-
erational semantics, we use the following syntax for valesd

set containing them can be given the typel x «) pc because
«.1 X « can be instantiated to eithérx 1 or 1 x bool. The rules
for label sets and label set union ensure these invariants.

When typing advice in the core calculus, the advice body must
not make unwarranted assumptions about the types and values it is
passed from labeled control flow points. Consequently, if the label



B-reductionZ; A;e—p Z'; A’ e’ Well-formed termsA; T He: T

LaxTteTl
IAGIU{G - DA {GG] A TH € (%) label

!/ —
U’ ¢ dom(x) ATE e : (®.ti)label  AFBT<®.T

A — I — A/ —
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TA S A A TH e @ () pe AF BT ®T
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Tvee 2y Y ATHe Uey : (B.7T)pc

J10.0 = MGU(T12,T3)
I A typecase[ati] T2 (T3 = e, = e2) —p I A; O(er)

ATEe: (B.12) label AF BT <&T
A THnew (1) < e: (&1 ) label

—30.0 = MGU(T2,T3)
I A typecasela.ti] T2 (T3 = e, = ) —p LA e2[12/l

A TH ep: (xT) label AT A TE e Tt/
AT e [Tllez] : Tt/

taxr<l' e S ALTR/=>V
LALAIM —p S AV Y

A; T F e:advice
ATHe: 1

Advice compositiorZ; A; ;T = e

A TE e : (1) pc A xthHey T

A TF{e;.ox.T — ey }:advice
Yool T= AXTX
A,O(I—T] A)—Tz A,:FTV(Tg)—A
LA LT = v Y £ < ¢; for somei Tt =1 [T/« (©® =MGU(T2,T3) impliesA, A’; O(T) F O(er ) : (1 [t3 /)
A et — el 4 = At v (e[t/a]) A A+ cod©) AxThe:m
A TH typecaselx.t1] T2 (T3 = e1,ax= e2) : 171 [12 /]

LALT = Vv THLL G
A {OaxT et = v Figure 7. Typing rules excerpt foF o

Figure 6. Operational semantics excerpt fx ~ The typing rules for the other constructs in the language includ-
ing strings, unit, functions and tuples are fairly standard.

sete; has typex.T label then advicee; . ax:t’ — e} type checks .
only whenycp’) is T. The typet’ cannot be more spggific than 4.2 Stacks and stack analysis
If advice needs to refine the type ofit must do so explicitly with Languages such as Aspect] include pointcut operators such as
type analysis. In this respect the core calculus obeys the principle of CFlow to enable advice to be triggered in a context-sensitive fash-
orthogonality advice is completely independent of type analysis.  ion. In Fa, we not only provide the ability to reify and pattern

The label hierarchy is extended withew .t < e. The match against stacks, as in PaiyL, but also allow manual con-
argumente becomes the parent of the new label. For soundness, struction of stack frames. In fact, managing the structure of the
there must be a connection between the types of the child andstack is entirely up to the program itself. Stacks are just one possi-
parent labels: the child label must have a more specific type than ble extension enabled [ 's orthogonality.
its parent (writtetA = 1; < T2 if T2 is more specific than). WzL’s monomorphic core language also contained the ability
To see how label creation, labeled control flow points and advice to query the stack, but the stack was not first-class and queries had
are all used together in the core calculus, consider the following to be formulated as regular expressions. Our pattern matching fa-
example. It creates a new label, installs advice for this label (that is cilities are simpler and more general. Moreover, they fit perfectly
an identity function) and then uses this label to mark a join point within the functional programming idiom. Aside from the poly-

inside a polymorphic function. morphic patterns, they are quite similar to the stack patterns used
by Dantas and Walker [10].
letl =new ax.ax <Uin Below are the necessary new additions to the syntdxaofor
let . =7 {l.axix — x}in storing type and value information on the stack, capturing and rep-
ABAB.LPIIX] resenting the current stack as a data structure, and analyzing a rei-

fied stack. The operational rules for execution of stack commands

The typecase expression is slightly more general in the core May be found in Figurg[8 and the typing rules in Figre 9.
language than in the source language. To support the preservation .= . . |stack
theorem, we must allow arbitrary types, not just type variables, to ¢ .= ... |stack| e | L[T][vi]:iv2 | store e;[Tl[e2] in e3
be the object of scrutiny. In each branchtefpecase, we know | stkcaseer (p= ez, x = e3)
that the scrutinee is the same as the pattern. In the source language, E .= ... | store v[@I[E] in e | store v;[T][v2] in E
we substituted the pattern for the scrutinized type variable when | stkcaseE (p= e, x = e2)
typechecking the branches. In the core language, however, we must | stkcasev (P = e;,x = e2)
compute the appropriate substitution, using the most general unifier s=e|e[aulitip | x| 2ip
(MGU). If no unifier exists, the branch can never be executed. Inthat ¢ = o | v[&l[yl:e | x | 2@

case, the branch need not be checked. P :=E[xl[yl:e | e[al[yl::P | =P



data([]) = e
data(store ¢[T][vl] in E) = data(E)++L[T][V]
data(E[E’]) = data(E’) otherwise

B-reductionZ; A;e—p Z'; A’ e’

A store T[] invy =g AV

v~ >0
T A;stkcasev (@ = e, x= e) —p I A; O(er)

IEv£oe>0O
I A;stkcasev (9= e, x= e2) —p LA ex[v/x]

’ ReductionZ; A;e — L; A’ e’

data(E) =v
X, A; E[stack] — I; A; E[V]

’ Stack-matching v~ ¢ >0 ‘

She~e>-

TFw~eb® Epm<UeX
ZHe< g forsomei  Fo.m[F/Bl =71 [6/a

I AV Ivy ~ (B [& ]ty 2 > ©, 6/, vy /x

TFV x>0
AV ~ o> ©

v x>, v/x

Figure 8. Stack operational semantics

The operatiorstore e;[t][ez] in e3 allows the programmer to
store data, marked by the labed; in the evaluation context of the
expressiores. Because this label may be polymorphic, it must be
instantiated with type arguments The termstack captures the
data stored in its execution contéxes a first-class data structure.
This context is converted into a data structure, using the auxiliary
functiondata(E). We represent a stack using the list with terens
for the empty list and cons :: to prefix an element onto the front of
the list. A list of stored stack information may be analyzed with the
pattern matching termtkcase e; (p = ez, x = ez). This term
attempts to match the pattepnagainste;, a reified stack. Note
that stack patterng, include first-class point cuts so they must be
evaluated to pattern values, to resolve these point cuts before
matching.

If, after evaluation, the pattern value successfully matches the
stack, then the expressien evaluates, with its pattern variables
replaced with the corresponding part of the stack. Otherwise exe-
cution continues witre;. These rules rely on the stack matching
relationX - v ~ ¢ > © that compares a stack pattern valpe
with a reified stack to produce a substitutio®.

4.3 Type Safety

We have shown thdf x is type sound through the usual Progress
and Preservation theorems. We use the judgméit A; e) ok to

Well-formed termsA; T e : T

A TH ey : (x.1) label
ATFE e : Tt/ ATHes: T
A TF store e [Tl[ex] ine; : 1/

A"Ti

A; T+ stack : stack A; T e :stack

Ltxtel AF T A TEv 1T/«

A, T LT [vy ]:v; :stack

A; T F vy :stack

A; T F eq :stack
ATHpAAT AANTT Fe T A; T, xistack-e3 : T

A TH stkcasee; (p= ex,x= e3): T

Well-formed patternd\; T = p 4 A’; T’

ATHe A AT ExH -+ xistack

ATEHpAAT
ATE_pdAT!
ATFe:(®t)pc ATFpAA:T
ATEedx]mp4A T ) x: T

Figure 9. Stack typing

type Translation of source types

T/

ARt ; into target types
pat B Translation of stack patterns,
A;O;TEPp=— p4A%TSZ  producing a mapping between
source and target variables
AT Hoc gt LM o Translation of locally-typed

terms

ADO;THe:t % e’ Translation of other terms
ADOTHd et 25 ¢/ Translation of declarations

e:t Translation of programs

Figure 10. Translation judgments

THEOREM4.1 (Progress)if + (X; A;e) ok then either the con-
figuration is finished, or there exists another configurafidnA’; e’
suchthat;A;e — XZ/;A’;e’.

THEOREM4.2 (Preservation)lf - (£;A;e) okandXZ;A;e —
LA’ e/, thenz’ andA’ extend: andA suchthat-(Z'; A’;e’) ok.

5. Interpreting PolyAML in F A

We give an operational semantics to well-typed Roly programs

by defining a type-directed translation into thg language. This
translation is defined by the following mutually recursive judg-
ments for over terms, types, patterns, declarations and point cut
designators. The translation was significantly inspired by those in
found inwzL [39] and Dantas and Walker [10]. Much of the trans-
lation is straightforward so we only sketch it here. The complete
translation appears in the companion technical repoft [11].

denote a well-formed abstract machine state. Details may be found The basic idea of the translation is that join points must be made

in the companion technical repart [11].

explicit in F 5. Therefore, we translate functions so that that they



term

A; @; T foe any :pc(all a.aal a.a) —

<{ubefore 5 {Ustk }, {Uafter }>
Vi fied r'fi)=all at; >ty
At sy <all aty, Ak s, <all ata;

A DT (T sy, s5) :pc( sy, sy) =
<{fbef0re },{fstk },{fafter }}>

(fs
i

a=(FTV(t;)UFTV(t,)) —A
A,ékt1->t2£>”r{ﬁ’rﬁ
Aa, O, f;If =ty ->ty,xuty Fey
A O f;Lf zal aty>trkey:it —
decs

A DO;THrec f(xity) ty=e;e:t —
let foefore : (.T] X stack x string) label =
new (&.T{ X stack x string) < Upefore in
let fafter : (®.T) X stack x string) label =
new (&.7) x stack x string) < Uafter in
let fsik : (7] X string) label =
new (&.1] X string) < Usi in

term ’

;tz e e;
term ’

€

letf:Vot] — 1) =fix f: V1] - 5.
AaAxt) . store oy [ [(x,“F" )] in
let (x,_,_) = foefore [&I[{x,stack,“f")]in
let (x,_,-) = faer [[(e],stack,“f" )] inx

inej
A;@;F#’Ceppcpt %e]’ ﬂ(tm,pt):all at
n(tm,el)=e/ @A=FTV(t;)—A Aart, 2 ¢
Aa; @;TX:t,ystack ,z:string e it s e
A D THes it =0 ¢f

decs

A, @;T't advice tme; (x:tq,y,2)=ez;e3:t); —
let_: 1 =1 {ef ax:(T] x stack x string) —
let (x,y,z) =xin(e;,y,z)}in e}

Figure 11. Translation of pointcuts, functions, and advice

include explicitly labeled join points at their entry and exit and

thetm is used to determine which component is used. The transla-
tion also splits the input of the advice into the three arguments that
PolyamL expects and immediately installs the advice.

It is straightforward to show that programs that are well-typed
with respect to our algorithm will produce a translation.

THEOREM5.1 (Translation defined on well-typed programis).

ekt = 0;thenO(e) : Ot ) 222 ¢’

We have proved that the translation always produces well-formed
Fa programs.

prog /

THEOREM5.2 (Translation type soundnesf)e : t —= e

then-:- e’ : 1/ where- -t 222 ¢/

Furthermore, because we know it is a type safe language,
PolyamL inherits safety as a consequence.

THEOREM5.3 (PolyML safety). Supposee : t =2 ¢’ then
eithere’ fails to terminate or there exists a sequence of reductions
e’ =% I A e” to afinished configuration.

Details for the above proofs may be found in the companion tech-
nical report/[11].

6. Related work

Over the last several years, researchers have begun to build seman-
tic foundations for aspect-oriented programming paradigms [40,
12,[5)19[20, 25, 39. 13] 4]. As mentioned earlier, our work builds
upon the framework proposed by Walker, Zdancewic, and Lig-
atti [39], but extends it with polymorphic versions of functions,
labels, label sets, stacks, pattern matching, advice and the auxil-
iary mechanisms to define the meaning of each of these constructs.
We also define a novel type inference algorithm that is conservative
over Hindley-Milner inference, one thing that was missing from
wzL’s work.

Our core calculus also has interesting connections to Bruns
et al.'s pABC calculus in that the structure of labels in the two
systems are similar. However, the connection is not so deep, as
LABC is untyped. It would be interesting to explore whether the
type structure of our calculus can be used to define a type system
for tABC.

Concurrently with our researfhTatsuzawa, Masuhara and

so that they store information on the stack as they execute. More Yonezawa [[36] have implemented an aspect-oriented version of

specifically, for each function we create three labfglgre , fater
andfgy for these join points. So that source language programs
can refer to the entry point of any function, all labélsiore are
derived from a distinguished lablyefore . Likewise, Uarer and

Usw are the parents dbser andfsu .

The most interesting part of the encoding is the translation of
pointcuts, functions and advice declarations, shown in Figufe 11.
Pointcuts are translated into triplesBf pointcuts. The pointcut
any becomes a triples of pointcuts containing the parents of all
before , after , andstk labels respectively. Sets of functions
are translated into triples of pointcuts containing their associated
before , after ,andstk labels.

The translation of functions begins by creating the labels,
foefore , fatter , @ndfsy for the functions join points. Inside the
body of the translated function saore statement marks the func-
tion’s stack frame. Labeled join points are wrapped around the
function’s input and body respectively to implement bmfore
andafter advice. Because PolyiL advice expects the current
stack and a string of the function name, we also instaicks and
string constants into the join points.

The most significant difference between advice in Rely and
F A is thatF o has no notion of a trigger time. Because the pointcut
argument of the advice will translate into a triplel®f pointcuts,

core O’'Caml they call Aspectual Caml. Their implementation ef-
fort is impressive and deals with several features we have not con-
sidered here including curried functions and datatypes. Although
there are similarities between PalyL and Aspectual O’'Caml,
there are also many differences:

¢ Point cut designators in PalyL can only reference names
that are in scope. PolyiL names are indivisible ang-vary as
usual. In Aspectual Caml, programmers use regular expressions
to refer to all names that match the regular expression in any
scope. For instanceget* references all objects with a name
beginning withget in all scopes.

Aspectual Caml does not check point cut designators for well-
formedness. When a programmer writes the pointcut designator
call f (x:int) , the variabld is assumed to be a function
and the argumert is assumed to have typat . There is
some run-time checking to ensure safety, but it is not clear what
happens in the presence of polymorphism or type definitions.
Aspectual Caml does not appear to have run-time type analysis.

2We made a preliminary report describing our type system available on the
Web in Octoberooy, and a technical report with more details in December
2004. As far as we are aware, Tatsuzawa et al.’s work first appeared in
Marchz2o05.



e Aspectual Caml point cuts are second-class citizens. It is not appear in code with different types. In addition, run-time type anal-
possible to write down the type of a point cut in Aspectual ysis allows programmers to define polymorphic advice that behaves
Caml, or pass a point cut to a function, store it in a tuple, etc.  differently depending upon the type of its argument.

e The previous two limitations have made it possible to developa ~ From a technical standpoint, we have defined a type infer-
two-phase type inference algorithm for Aspectual Caml (ordi- €nce algorithm for PolymL that handles first-class polymorphic
nary O’Caml type inference occurs first and inference for point Pointcuts in a simple but effective way, allowing programmers to
cuts and advice occurs second), which bears little resemblanceWrite convenient security, profiling or debugging libraries. We give
to the type inference algorithm described in this paper. PolyamL a semantics by compiling it into a typed intermediate cal-

e There is no formal description of the Aspectual Caml type Culus- We have proven the intermediate calculus is type-safe. The
system, type inference algorithm or operational semantics. We "€as0n for giving PolyML a semantics this way is to first decom-
have a formal description of both the static semantics and the POS€ cOmplex source-level syntax into a series of simple and or-
dynamic semantics of PolwiL. PolyamL’s type system has thogonal constructs. Giving a semantics to the simple constructs

been proven sound with respect to its operational semantics of the intermediate calculus and proving the intermediate calculus
" sound is quite straightforward.

To our knowledge, the only other previous study of the inter- The definition of the intermediate calculus is also an important
action between polymorphism and aspect-oriented programming contribution of this work. The most interesting part is the definition
features has occurred in the context of Lieberherr, Lorenz and of our label hierarchy, which allows us to form groups of related
Ovlinger's Aspectual Collaborations [24]. They extend a variant of control flow points. Here, polymorphism is again essential: it is not
AspectJ with a form of module that allows programmers to choose possible to define these groups in a monomorphic language. The
the join points (i.e., control-flow points) that are exposed to ex- second interesting element of our calculus is our support for reifi-
ternal aspects. Aspectual Collaborations has parameterized aspectsation of the current call stack. In addition to being polymorphic,
that resemble the parameterized classes of Generic Java. When aur treatment of static analysis is more flexible, simpler semanti-
parameterized aspect is linked into a module, concrete class namesally and easier for programmers to use than the initial proposition
replace the parameters. Since types are merely names, the sort dfy wzL. Moreover, it is a perfect fit with standard data-driven func-
polymorphism necessary is much simpler (at least in certain ways) tional programming idioms.
than required by a functional programming language. For instance,
thgre is no need to develop a generalizatipn rele}tion and type anal'ACknowledgmentS
ysis may be replaced by conventional object-oriented down-casts.

Overall, the differences between functional and object-oriented lan- This research was supported in part by Grant no. NBCHC030106,
guage structure have caused our two groups to find quite different National Science Foundation grants CCR-0238328, CCR-0208601,
solutions to the problem of constructing generic advice. and 0347289 and an Alfred P. Sloan Fellowship. This work does

Closely related to Aspectual Collaborations is Aldrich’s no- not necessarily reflect the opinions or policy of the federal gov-
tion of Open Modules'[2]. The central novelty of this proposal is €rnment or Sloan foundation and no official endorsement should
a special module sealing operator that hides internal control-flow be inferred. We also appreciate the insightful comments by anony-
points from external advice. Aldrich used logical relations to show Mmous reviewers on earlier revisions of this work.
that sealed modules have a powerful implementation-independence
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