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Abstract

Name & Use

Representation ]

In the spirit of Landin, we present a calculus of dependent types to
serve as the semantic foundation for a family of languages called

Web server logs (CLF):
Measure web workloads

Fixed-column ASCII records

data description languageSuch languages, which inclugaps,
DATASCRIPT, and PACKETTYPES are designed to facilitate pro-

AT&T provisioning data:
Monitor service activation

Variable-width ASCII records

gramming withad hoc datai.e., data not in well-behaved relational

Call detail: Fraud detection

Fixed-width binary records

or xML formats. In the calculus, each type describes the physical
layout and semantic properties of a data source. In the semantics

AT&T billing data:
Monitor billing process

Various Cobol data formats

we interpret types simultaneously as the in-memory representation

of the data described and as parsers for the data source. The parsingMonitor network performance

Netflow:

Data-dependent number of
fixed-width binary records

functions are robust, automatically detecting and recording errors
in the data stream without halting parsing. We show the parsers are

Newick: Immune
system response simulation

Fixed-width ASCII records
in tree-shaped hierachy

type-correct, returning data whose type matches the simple-type
interpretation of the specification. We also prove the parsers are

Gene Ontology:
Gene-gene correlations

Variable-width ASCII records
in DAG-shaped hierarchy

“error-correct,” accurately reporting the number of physical and se-

CPT codes: Medical diagnose

5 Floating point numbers

mantic errors that occur in the returned data. We use the calculus tg

SnowMed: Medical clinic notes

keyword tags

describe the features of various data description languages, and wi
discuss how we have used the calculus to improves.

Figure 1. Selected ad hoc data sources.

1. The Challenge of Ad Hoc Data Formats

XML. HTML. CSV. JPEG. MPEG. These data formats represent th_e_shape of their data, so instea_d th_ey hijack the unused field, often
vast quantities of industrial, governmental, scientific, and private failing to update the documentation in the process. )
data. Because they have been standardized and are widely used, Second, such data frequently contain errors, for a variety of
many reliable, efficient, and convenient tools for processing data féasons: malfunctioning equipment, programming errors, non-
in these formats are readily available. For instance, your favorite Standard values to indicate “no data available,” human error in
programming language undoubtedly has libraries for parsing XML €ntering data, and unexpected data values caused by the lack of
and HTML as well as reading and transforming images in JPEG 900d documentation. Detecting errors is important, because oth-
or movies in MPEG. Query engines are available for querying €Wise they can corrupt “good” data. The appropriate response to
XML documents. Widely-used applications like Microsoft Word such errors depends on @he apphcgtlon. Some appllcat_lons require
and Excel automatically translate documents between HTML and the data to be error free: if an error is detected, processing needs to
other standard formats. In short, life is good when working with Stop immediately and a human must be alerted. Other applications
standard data formats. In an ideal world, all data would be in such €an repair the data, while still others can simply discard erroneous
formats. In reality, however, we are not nearly so fortunate. or unexpectec_i vaIue;. For some applications, errors in the data can
An ad hoc data formats any non-standard data format. Typ- be the most interesting part because they can signal where two
ically, such formats do not have parsing, querying, analysis, or Systems are failing to communicate.
transformation tools readily available. Every day, network adminis- _1oday, many programmers tackle the challenge of ad hoc data
trators, financial analysts, computer scientists, biologists, chemists,PY Writing scripts in a language like Perl. Unfortunately, this pro-
astronomers, and physicists deal with ad hoc data in a myriad of C€SS iS slow, tedious, and unreliable. Error checking and recovery in
complex formats. Figure 1 gives a partial sense of the range angthese scripts is often minimal or nonexistent because when present,

pervasiveness of such data. Since off-the-shelf tools for processingSuch €rror code swamps the main-line computation. The program
these ad hoc data formats do not exist or are not readily available, itself is often unreadable by anyone other than the original authors

talented scientists, data analysts, and programmers must waste thef@d usually not even them in a month or two) and consequently
time on low-level chores like parsing and format translation to ex- cannot stand as documentation for the format. Processing code of-

tract the valuable information they need from their data. ten ends up |nt_ertvv|ned with parsing code, making it d_n‘ﬂcult to
In addition to the inconvenience of having to build custom pro- T€Use the parsing code for different analyses. Hence, in general,
cessing tools from scratch, the nonstandard nature of ad hoc dateS0ftware produced in this way is not the high-quality, reliable, effi-
frequently leads to other difficulties for its users. First, documenta- ¢i€nt and maintainable code one should demand.
tion for the format may not exist, or it may be out of date. For exam-
ple, acommon phenomenon is for a field in a data source to fall into
disuse. After a while, a new piece of information becomes interest- To address these challenges, researchers have begun to develop
ing, but compatibility issues prevent data suppliers from modifying high-level languages for describing and processing ad hoc data. For

1.1 Promising Solutions



Second, basing the description language on type theory is es-
Data Description pecially helpful as ordinary programmers have built up strong in-

tuitions about types. The designers of data description languages
have been able to exploit these intuitions to make the syntax and
semantics of descriptions particularly easy to understand, even for
beginners. For instance, an array type is naturally used to describe
sequences of data objects. And, really, what else could an array type
| describe? Similarly, union types are used to describe alternatives.

(Type T)

Description
Compiler

Representation Third, programmers can write generic, typ_e-directeql programs
for g 1 that produce tools for purposes other than just parsing. For in-
570010100100, Generated (Ganeric) stance, McCann and Chandrg suggest USIGKETTYPESSpec-
Parser S !flcatlons to generate packet filters and n_etwork monitors automat-
De';irriSF;etor ically. Back usetATASCRIPTto generate mfra_str_ucture for visitor
e patterns over parsed dataDS generates a statistical data analyzer,

a pretty printer, asxMmL translator and an auxiliary library that en-
| ables XQueries using the Galax query engine[5]. It is the declara-
tive, domain-specific nature of these data description languages that
makes it possible to generate all these value-added tools for pro-
grammers. The suite of tools, all of which can be generated from

. . a single description, provides additional incentive for programmers
instance, McCann and Chandra introdueedKETTYPES[14], a to keep documentation up-to-date.

specification language designed to help systems programmers pro- Fourth, these data description languages facilitate insertion of

cesthhekb(ljnaryI datg associated X‘”th net\_N(t)_rklnlg protocols. thGOd' error handling code. The generated parsers check all possible error
mar Back develope®ATASCRIPT [1], a scripting language wi cases: system errors related to the input file, buffer, or socket; syn-

explicit suppr(])rt Lor speufgntng and plartSIr\;g b'nar]}(l dataJoErEwFatsb tax errors related to deviations in the physical format; and semantic
DATASCRIPTNhas been used o manipulate Java jar files an 0D~ errors in which the data violates user constraints. Because these

ject files. The developers of Erlang have also introduced Ianguagechecks al ; -
. o g ppear only in generated code, they do not clutter the high
extensions th%t they rell‘er to amaries [1A7 , Cll\a]UtoEald In _pa(r:]ket level declarative description of the data source. Moreover, since
processing and protocol programming. At » Egerisinthe pro- .15 are generated automatically by a compiler rather than writ-
cess of developing a language of Bit-Level Types [4] for SPeCifying oy 1)y, hand, they are far more likely to be robust and far less likely
file formats such as ELF, JPEG, and MIDI as well as packet lay- 14 pave dangerous vulnerabilities such as buffer overflows.
outs. Finally, we are part of a group developingps [6], another In summary, data description languages sucb/A\SCRIPT,
system for specifying ad hoc daADS focuses on robust error o e rrypes Erlang,BLT, andPADS meet the challenge of pro-
handling and tool generation. It is also unusual in that it supports cessing ad hoc data by providing a concise and precise form of

a variety of data encodings: ASCII formats used by financial ana- «jiinq»"gata documentation and producing reliable tools that han-
lysts, medical professionals and scientists, EBCDIC formats used dle egr,rors robustly. P g

in Cobol-based legacy business systems, binary data from network
applications, and mixed encodings as well. 1.2 The Next 700 Data Description Languages

While differing in many details, these languages derive their
power from a remarkable insight: Types can describe data in both
its external (on-disk) and internal (programmatic) forms. Figure 2
illustrates how systems such BsDS, DATASCRIPT, andPACKET-
TypPESexploit this dual interpretation of types. In the diagram, the
data consumer constructs a typdo describe the syntax and se-
mantic properties of the format in question. A compiler converts
this description into parsing code, which maps raw data into a
canonical in-memoryepresentationThis canonical representation
is guaranteed to be a data structure that itself hasTypeperhaps
T’ , the closest relative dF available in the host programming lan-
guage being used. In the caseraDs, the parser also generates a
parse descripto(PD), which describes the errors detected in the
data. A host language program can then analyze, transform or oth-
erwise process the data representation and PD.

This architecture helps programmers take on the challenges of

Figure 2. Architecture ofPADS system.

The languages people use to communicate with computers
differ in their intended aptitudes, towards either a particu-
lar application area, or a particular phase of computer use
(high level programming, program assembly, job schedul-
ing, etc). They also differ in physical appearance, and more
important, in logical structure. The question arises, do the
idiosyncrasies reflect basic logical properties of the situa-
tions that are being catered for? Or are they accidents of his-
tory and personal background that may be obscuring fruitful
developments? This question is clearly important if we are
trying to predict or influence language evolution.

To answer it we must think in terms, not of languages,
but of families of languages. That is to say we must system-
atize their design so that a new language is a point chosen
from a well-mapped space, rather than a laboriously devised

d hoc data i ftinl First. f t ificati in th construction.
ad hoc data in multiple ways. First, format specifications in these — J. P. LandinThe Next 700 Programming Lan-
languages serve as high-level documentation that is more easily guages 1965

read and maintained than the equivalent low-leverRPscript or
C parser. ImportantlypATASCRIPT, PACKETTYPES andPADS all Landin asserts that principled programming language design
allow programmers to describe both the physical layout of data as involves thinking in terms of “families of languages” and choosing
well as its deeper semantic properties such as equality and rangdrom a “well-mapped space.” However, so far, when it comes to the
constraints on values, sortedness, and other forms of dependencydomain of processing ad hoc data, there is no well-mapped space
The intent is to allow analysts to capture all they know about a and no systematic understanding of the family of languages one
data source in a data description. If a data source changes, as theynight be dealing with.

frequently do, by extending a record with an additional field or new The primary goal of this paper is to begin to understand the
variant, one often only needs to make a single local change to thefamily of ad hoc data processing languages. We do so, as Landin
declarative description to keep it up to date. did, by developing a semantic framework for defining, comparing,



and contrasting languages in our domain. This semantic framework e We have given semantics to features from several other data de-
revolves around the definition of a data description calcubos]. scription languages includirrCKETTYPESandDATASCRIPT.

This calculus uses types from a dependent type theory to describe  As Landin asserts, this process helps us understand the families
various forms of ad hoc data: base types to describe atomic pieces of languages in this domain and the totality of their features, so
of data and type constructors to describe richer structures. We show  that we may engage in principled language design as opposed to
how to give a denotational semanticsipc by interpreting types falling prey to “accidents of history and personal background.”
as parsing functions that map external representations (bits) to data e We uselPADS and bbc to experiment with a definition and
structures in a typed lambda calculus. More precisely, these parsers  implementation strategy for recursive data types, a feature not
produce both internal representations of the external data and parse  found in any existing ad hoc data description language that we
descriptors that pinpoint errors in the original source. are aware of. Recursive types are essential for representing tree-

For many domains, researchers have a solid understanding of  shaped hierarchical data [3, 15]. We have integrated recursion
what makes a “good” or “bad” language. For instance, agood typed into paDS, using our theory as a guide.

language is one in which values of a given type have a well-defined ] ) ] ) o
canonical form and “programs don’t go wrong.” On the other hand, ~ Section 2 gives a gentle introduction to data description lan-
when we began this research, it was not at all clear how to decide guages by introducingPADs. Sections 3, 4 and 5 explain the syn-
whether our data description language and its interpretation weretax, semantics and metatheorymsc. Section 6 discusses encod-
“good” or “bad.” A conventional sort of canonical forms property, iNgs Of IPADS, PACKETTYPESandDATASCRIPT in DDC and Sec-
for instance, is not relevant as the input data source is not undertion 7 explains how we have already made use of our semantics in
system control, and, as mentioned above, is frequently buggy. Con-practice. Sections 8 and 9 discuss related work and conclude.
sequently, we have had to define and formalize a new correctness
criterion for the language. In a nutshell, rather than requiring input 2. IPADS: An Idealized DDL
data be error-free, we require that all errors in the parsed data be ] ] ] ] ] o
accurately recorded in the parse descriptor. We adopted this crite-In this section, we defineeAps, an idealized data description lan-
rion because it ensures that data consumers can rely on the integrityglage.|PADS captures the essence 4Ds in a fashion similar to
of data marked as error-free. the way that MinML [11] captures the essence of ML or Feather-
To study and compareaDs, DATASCRIPT, and/or some other ~ Weight Java [12] captures the essence of Java. The main goal of
data description language, we advocate translating the languagehis section is to introduce the reader to the form and function of
into DDC. The translation decomposes the relatively complex, high- IPADS by giving its syntax and walking through a couple of ex-
level descriptions of the language in question into a series of lower- amples. Though the syntax differs, the structureans' relatives
level DDC descriptions, which have all been formally defined. We BLT, PACKETTYPES andDATASCRIPT are similar. Later sections
have done this decomposition fienps, an idealized version of the ~ Will show how to give a formal semantics teaps.
PADSlanguage that captures the essence of the actual implementa-_ . .
tion. We have also analyzed many of the featuressaf<ETTYPES Preliminary Concepts. Like PADS, PACKETTYPES DATASCRIPT,
and DATASCRIPT using our model. The process of giving seman- 2NdBLT, IPADS data descriptions are types. These types specify
tics to these languages highlighted features that were ambiguous oP°th the external data format (a sequence of bits or characters) and
ill-defined in the documentation we had available to us. amapping into a data structure in the host programming Ia_nguage.
To our delight, the process of givirgpDs a semantics in this | PADS, the host language is C; IRADs, the host language is an
framework has had additional benefits. In particular, since we de- €Xtension of the polymorphic lambda calculus. For the most part,
fined the semantics by reviewing the existing implementation, we NOWever, the specifics of the host language are unimportant.
found (and fixed!) a couple of subtle bugs. The semantics has also, A COMPIEteIPADS description is a sequence of type definitions
raised several design questions that we are continuing to study.t.erm'nated by a single type. This terminal type describes j[h.e. en-
It has also helped us explore important extensions. In particular, iréty of a data source, making use of the previous type definitions
driven by examples found in biological data [3, 15], we decided to to do so.1PADS type definitions can have one of two forms. The

add recursion t@ADS. We used our semantic framework to study form (O[Ti t) intro_céliuce_?_ the typebidentif(ijej_t andbbinds it taPADS Th
the ramifications of this addition. type t. The type identifier may be used in subsequent types. The

In summary, this paper makes the following theoretical and second formPrec « = t) introduces a recursive type definition.

practical contributions: In this caseq may appear 'm . .
ComplexipADSs descriptions are built by using type constructors

to glue together a collection of simpler types. In our examples, we
assumePADS contains a wide variety of base types including inte-
gers Puint32 is an ASCII representation of an unsigned 32-bit
integer), character$€har ), strings Pstring ), dates Pdate ),
IP addressesP(p ), and others. In general, these base types may
parameterized. For instance, we will assupstring  is parame-
terized by an argument that signals termination of the string. For ex-
. . . . ample,Pstring (" " ) describes any sequence of characters ter-
tional semantics t@DC by interpreting types both as parsers  inated by a space. (Note that we do not consider the space to be
and, mgre con_ventlonally, as cIaSS|f|er§ for parsed data. part of the parsed string; it will be part of the next object.) Simi-
* We define an important correctness criterion for our language, |arly, Puint16 _FW3) is an unsigned 16-hit integer described in
stating that all errors in the parsed data are reported in the parseexactly3 characters in the data source. In general, we vite)

¢ We define a semantic framework for understanding and compar-
ing data description languages suchrPa®s, PACKETTYPES
DATASCRIPT, andBLT. No one has previously given a formal
semantics to any of these languages.

¢ At the center of the framework iBDC, a calculus of data de-
scriptions based on dependent type theory. We give a denota-

descriptor. We proveDc parsers maintain this property. for a base type parameterized by a (host language) expression

¢ We definelPADS, an idealized version of theabs program- When interpreted as a parser, each of these base types reads the
ming language that captures its essential features, and showexternal data source and generates a pair of data structures in the
how to give it a semantics by translating it imbmc. The pro- host language. The first data structure isititernal representation

cess of defining the semantics led to the discovery of several and the second is thearse descriptgrwhich contains meta-data
bugs in the actual implemention. collected during parsing. For instané®int32 reads a series of



digits and generates an unsigned 32-bit integer as its internal rep- ~ authid_t =~ Punion {

resentationPstring  generates a host language strifglate unauthorized : "% .

might read dates in a multitude of different formats, but always 3 id ¢ Psting (" %);
generates a tuple with time, day, month, and year fields as its inter-

nal representation. Whenever @aDS parser encounters an unex- response_t =

pected character or bit-sequence, it sets the internal representation Pfun (x:int) =

tonone (i.e. null) and notes the error in the parse descriptor. Puintl6_FW (x) Pwhere y.100 <= y and y < 600;
An 1PADS Example. IPADS contains a rich collection of type entry t =  Pstruct {

constructors for creating sophisticated descriptions of ad hoc data. client Pip ; '

We present these constructors through a series of examples. The remoteid : authid_t; ;

first example, shown in Figure 3, describes the Common Web Log localid : authid_t; "L

Format [13], which web servers use to log the requests they receive. date : Pdate (T); "] \"
Figure 4 shows two sample records. Briefly, each line in a log file request @ Pstring (" \"); " \" "

represents one request; a complete log may contain any number response : response_t 3; !

of requests. A request begins with an IP address followed by two length = Puint32 ;
. - - . academic : Pcompute
optional ids. In the example, the ids are missing and dashes stand (getdomain client) == "edu” : bool:

in for them. Next is a date, surrounded by square brackets. A string
in quotation marks follows, describing the request. Finally, a pair
of integers denotes the response code and the number of bytes entry t Parray (Peor, Peof)
returned to the client.
ThelPADS description of web logs is most easily read from bot- Figure 3. IPADS Common Web Log Format Description
tom to top. The terminal type, which describes an entire web log,
is an array type. Arrays irPADS take three arguments: a descrip-
tion of the array elements (in this casstry _t ), a description of 207.136.97.49 - - [15/0ct/1997:18:46:51 -0700]
the separator that appears between elements (in this case, a newline "GET /tk/p.txt HTTP/1.0" 200 30
markerPeor ), and a description of the terminator (in this case, the ~ t62.a0l.com - - [16/0ct/1997:14:32:22 -0700]
end-of-file marker)PADS itself provides a much wider selection POST /scpticonfirm HTTP/1.0" 200 941
of separators and termination conditions, but these additional vari-
ations are of little semantic interest so we omit them freaps. Figure 4. Sample Common Web Log Data. Each record is broken
The host language representation for an array is a sequence of elewith a newline for formatting purposes.
ments. We do not represent separators or terminators internally.

We use aPstruct  to describe the contents of each line in a . . . )
web log. Like an array, Bstruct ~ describes a sequence of objects width integery that is read from the source lie between 100 and

in a data source. We represent the result of parsPstaict  as a 599. Any value outside this range will be considered a semantic
tuple in the host language. The elements &fstruct ~ are either ~ ©rror. In general, @where clause may be attached to any type
named fieldsé.g.client : Pip ) or anonymous fieldse(g." specification. The expression in tRevhere clause is an arbitrary

"). ThePstruct entry _t declares that the first thing on the line ~ hostlanguage expression with boolean type.

is an IP addressjp ) followed by a space charactér [ ). Next, A RecursivelPADS Example. Figure 5 presents a SecorghDs
the data should contain @uthid _t followed by another space,  gyample. In this examplepaps describes the Newick format, a
etc. he last field ofe . ite diff f he oth flat representation of tree-structured data. The leaves of the trees
The last field ofentry _t Is quite different from the others. It 56 hames that describe an “entity”. In our variant of Newick, leaf
has aPcompute type, meaning it does not match any characters in_p,jeg may be omitted. If the leaf name does appear, it is followed
the data source, but it does form a part of the internal representatlonby a colon and a number. The number describes the “distance” from
usgd by host programs. The argument cffcmmpute field is an the parent node. Microbiologists often use distances to describe the
arbitrary host Iangqage expression (andits type) th?‘tdEtefm'“eS th%umber of genetic mutations that have to occur to move from the
value of the associated field. In the example, the fslddemic arent to the child. An internal tree node may have any number of
computes a boolean that indicates whether the web request came.omma-separated) children within parentheses. Distances follow
from an academic site. Notice that the computation depends upony, closed-paren of the internal tree node.

a host language value constructed earlier — the value stored inthe 1o Newick format and other formats that describe tree-shaped
client field. Ingeneral, later fields infstruct  may referenceé  pjerarchies [3, 15] provide strong motivation for including recur-
fields appearing ea”'ef- . . . sion in1PADS. We have not been able to find any useable descrip-

Theef'”y £ des'crlptlon uses_the tymithid 4 to descrll_:)e tion of Newick data as simple sequences (structs and arrays) and
the two fieldsremoteid andlocalid . Theauthid t type is alternatives (unions); some kind of recursive description appears
a Punion with two branches. Unions are represented internally oqcential. The definition of the typeee _t introduces recursion.

as sum types. If the data source can be described by the firstyyg rest of the format description uses types we have seen before
branch (a dash), then the internal representation is the first injectiong -1, astruct Parray , andPunion .

into the sum. If the data source cannot be described by the first

branch, but can be described by the second branch then the internaFormal Syntax. Figure 6 summarizes the formal syntaxe4ps.

representation is the second injection. Otherwise, there is an error. Expressions and typess are taken from the host language, de-
Finally, theresponse _t type is aPfun , a user-defined pa-  scribed in Section 3.2. In the examples, we have abbreviated the

rameterized type. The parameterreSponse _t is a host lan- syntax in places. For instance, we omit the operaRiit“ ” and
guage integer. The body of tHefun is a Puintl6 _FWwhere formal labelz when specifying constant typeskstruct s, writ-
X, the fixed width, is the argument of the function. In addition, ing “c;” instead of %z : Plit  ¢;". In addition, all base type€¢’
the value of the fixed-width integer is constrained by Bvenere formally have a single parameter, but we have omitted parameters

clause. In this case, tHewhere clause demands that the fixed- for base types such &uint32



node_t = Popt Pstruct {

€l e@eleld
unit | bool | int | none
bits | offset | errcode
alalo—o|oxo|o+o
oseq | Voo | pao

8

Pstruct  { body : tree_t; ";"; }

Base Types «a

Types o

name : Pstring (""); " Bits B u= -|0B|1B
dist :  Puint32 : Constants ¢ u= ()|true|false|0|1]—-1]...
¥ | none|B|w]|ok|err|fail]...
Values v u= c|funfz=¢|(v,0)
Prec tree t = Punion { | dinlo|inrv| (7]
internal : Pstruct  { Operators  op == =]|<|mnot]...
", branches : tree_t Parray (","")"): Expressions e == c|z|ople)|funfz=el|ee
") dist PUINt32 | letx=ecine|if etheneelsee
¥ | (e,;e) | mie|inle|inre
leaf : node t | caseeof(inlz = e| inrz = e)
- |
|
|

(* Example: (B:3,(A:5,C:10,E:2):12,D:0):32; *)

Figure 5. 1PADS Newick Format Description Figure 8. Host Language

may refer to the value of the first. Sum types + 1o express

Types t ::|: gfﬁ |(m'3|.'tg) °, te flexibility in the data format, as they parse data matching either
| Pstruct .{_-Z_} | Punion {771} 71 OF T2. SuM-type parsers are deterministic, transforming the data
| ¢ Pwhere :fe | Popt ¢ | ¢ gérray (t,1) according tor; when possible and only attempting to uséf there
| Pcompute oo | | Prec a.t ’ is an error inry. Intersection types; & > describe data that match

Programs p = t|a=t p|Prec a=t p both 71 and .. They transform a single set of bits to produce a

pair of values, one from each type. Set tydesr | e} transform
: data according to the underlying typeand then check that the
Figure 6. IPAD n : .
igure 6 S Syntax constrainte holds whene is bound to the parsed value.
The typer seq(7s, e, 7¢) represents a sequence of values of type
g 7. The typers specifies the type of the separator found between
Kinds &

Tlo—k elements of the sequence. For sequences without separators, we
unit | bottom | C(e) | Az.7 | Te

S| t4+7|7&T | {2:7| €} | Tseq(T,€,7T)
a | po.T | compute(e:o) | absorb(T) | scan(T)

Types 7 useunit as the separator type. Expressiois a boolean-valued

function that examines the parsed sequence after each element is
read to determine if the sequence has completed. For example,
- a function that checks if the sequence hHa® elements would
Figure 7. DDC Syntax terminate a sequence when it reaches lerigih. The typer,
denotes the type of the terminator expected after the last sequence
element. For sequences without terminators, webas@om for 7.
Recursive typesua.m describe recursive data formats. The

3. A Data Description Calculus

At the heart of our work is a data description calculns¢), de- namea can be used imr to refer to the recursive type and causes a
signed to capture the core features of data description languagesrecursive call tar’s parser wherever it appears.
Consequently, the syntax obc is at a significantly lower level of DDC also has a number of “active” types. These types describe

abstraction than that oPADS. Like IPADS, howeverpDcC presents actions to be taken during parsing rather than strictly describing the
a type-based model. Eadpc type describes the external repre- data format. Typeompute(e:o) allows us to include an elementin
sentation of a piece of data and implicitly specifies how to trans- the parsed output that does not appear in the data stream (although
form that external representation into an internal one. The internal it is likely dependent on elements that do), based on the value of
representation includes both the transformed value graise de- expressiore. In contrast, typabsorb(7) parses data according to
scriptor that characterizes the errors that occurred during parsing. typer but does not return its result. This behavior is useful for data
Syntactically, the primitives of the calculus are similar to the types that is important for parsing, but uninteresting to users of the parsed
found in many dependent type systems, with a number of additions data, such as a separator. The last of the “active” typssds(r),
specific to the domain of data description. We base our calculus onwhich scans the input for data that can be successfully transformed
a dependent type theory because as we have seen, it is common iaccording tor. This type provides a form of error recovery as it
data description languages for expressions to appear within types. allows us to discard unrecognized data until the “recovery” type

is found.
3.1 DDC Syntax

Figure 7 shows the syntax ofDC. As with IPADS, expressiong
and typesr belong to the host language, defined in Section 3.2. The In Figure 8, we present the host languag®oft, an extension of
most basic types ateit andbottom, both of which consume no  the simple-typed polymorphic lambda calculus. We use this host
input and return unit as their representation. The difference betweenlanguage both to encode the parsing semanticeafand to write
them is that the former always succeeds, while the latter always the expressions that can appear withivc itself.

fails, a distinction recorded in the associated parse descriptors. The As the calculus is largely standard, we highlight only its unusual

3.2 Host Language

syntaxC'(e) denotes a base tyfge parameterized by expressien features. The constants include bitstridgjoffsetsw, representing
The syntaxx denotes a type variable introduced in a recursive type. locations in bitstrings; and error codes, err, andfail, indicat-
We provide abstractior\z.7 and applicationr e so that we ing success, success with errors and failure, respectively. We use

may parameterize types by expressions. Dependent product typeshe constantone to indicate a failed parse. Because of its specific
> z:1 .72 describe a sequence of values in which the second type meaning, we forbid its use in user-supplied expressions appearing



in DDC types. Our expressions include arbitrary length sequences
[€], sequence apperd@ €', and sequence indexirg:].

The typenone is the singleton type of the constatine. Types
errcode andoffset classify error codes and bit string offsets, re-
spectively. The remaining types have standard meanings: function
types, product types, sum types, sequence typss;; polymor-
phic typesva.o and type variables; and recursive typega.o.

We extend the formal syntax with some syntactic sugar for use
in the rest of the paper: anonymous functioase for fun f = = e,
with f &€ FV(e); function bindingsletfun fz = e in €
for let f = fun fx = e in ¢€’; span for offset x offset.

We often use pattern-matching syntax for pairs in place of explicit
projections, as il\(B,w).e andlet (w,r,p) = e in €'. Although

we have no formal records with named fields, we use a dot notation
for commonly occuring projections. For example, for a paof rep

and PD, we use.rep andx.pd for the left and right projections of

x, respectively. Also, sums and products are right-associative.

We use standard judgments for the static semariids ¢ : o)
and operational semantics {—~ ¢’) of the host language. Details
appear in Appendix A.

3.3 Example

As an example, we present an abbreviated description of the com-
mon log format as it might appear imbc. For brevity, this de-
scription does not fully capture the semantics ofithen s descrip-

tion from Section 2. Additionally, we use the standard abbreviation
7 % 7’ for non-dependent products and introduce a number of type
abbreviations in the formame = 7 before giving the type that
describes the data source.

S = Astr.{s:Pstring FW(1)|s = str}
authid_t = S(“— ") + Pstring(“”)
response_t = Ax.{y:Puint16_FW(x)| 100 < y and y < 600}
entry.t =
Y client:Pip. S(“”)
Y remoteid:authid._t.

S( “won )
Y response:response_t 3.
compute(getdomain client = “edu”:bool)

*
*

entry_t seq(S(“\n”), A\x.false, bottom)

In the example, we define type construckto encode literals
with a set-type. We also use the following informal translations:
Pwhere becomes a set-typdistruct a series of dependent
productsPunion a series of sums, arllarray a sequence. For
this example, we assume thReor is a newline, and therefore

specify the sequence separator as such. As the array terminates &

the end of the file, we usgx.false andbottom to indicate the
absence of termination condition and terminator, respectively.

4. DDC Semantics

The primitives ofbbc are deceptively simple. Each captures a sim-
ple concept, often familiar from type theory. However, in reality,
each primitive is multi-faceted. Each simultaneously describes a
collection of valid bit strings, two datatypes in the host language —

[[unit]]rep = unit
[bottom],,, = none

Hc(e)ﬂrep = B‘VPE(C) + none
[[AI'T]] rep = HT]] rep

[7e] rep = [r] rep

[[Z T:T1 'TQHrep = HTl]]rep * [[7-2]]rep
[[7'1 + TQ]]rep = [[Tl]]rep + HTQHrep
[n& 7—2]]rep = [[Tl]]rep * [[TQ]]rep
[z:7|e}iep = [rlept [7liep

|IT seq(TseD €, 7—U‘-‘fm)]]rep int * (HT]] rep Seq)

[[O‘]] rep = «a

[[,uoz.ﬂ]rep = ua.[[r]]rep
[compute(e:0)],e, = o
[absorb(T)],q, = unit + none

[scan(7)],, [7]iep + nome

Figure 10. Representation Types

produce a representation and parse descriptor. We define the set of
valid bit strings for each type to be those strings for which the PD
indicates no errors when parsed.

We begin with a kinding judgment that checks if a type is well
formed. We then formalize the three-fold semanticeDE types.

4.1 pbc Kinding

The kinding judgment defined in Figure 9 determines well-formed
DDC types, assigning kind to basic types and kind — « to type
abstractions. We use two contexts to express our kinding judgment:

r
M

w=-| T zio
u=- | M, a=pa.7

ContextI" is a finite partial map that binds expression variables
to their types. Context M is an ordered list of mappings between
type variables and recursive types. This context serves two pur-
poses: first, to ensure the well-formedness of types with free type
variables; and second, to provide mappings between recursive type
variables and their associated types. This second purpose leads us
to consider a context M to be a substitution from type variables to
ypes. Application of such a substitution has the forrriy

To ensure that recursive types are well-formed, we cannot al-
low types such aga.c. More generally, we need to ensure that
recursive type variables are separated from their binder by at least
one basic primitive, such as a product or sum, a condition called
contractivenessTo this end, we annotate every judgment with a
contractiveness indicator, one 9fn, or c. A y indicates the type
is contractive, am indicates it is not, and aindicates it may be
either. We consider < y.

As the rules are otherwise mostly straightforward, we highlight

one for the data representation itself and one for its parse descrip-just two of them. We use the functidskina to assign kinds to base

tor — and a transformation from bit strings, including invalid ones,
into data and corresponding meta-data. We give semantizsdo
types using three semantic functions, each of which precisely con-
veys a particular facet of a type’s meaning. The functi[pm%p and

[ - Ipp describe theepresentation semantics bbc, detailing the

types of the data’s in-memory representation and parse descriptor.

The function[ - ] describes th@arsing semanticef bbc, defin-
ing a host language function for each type that parses bit strings to

types. While their kind does not differentiate them from type ab-
stractions, base types are not well formed when not applied. Once
applied, all base types have kifid The product rule shows that the
name of the first component is bound to a pair of a representation
and corresponding PD. The semantic functions defined in the next
section determine the type of this pair. Note that we apply M to the
type of the first component before translation, thereby closing it, as
openDDC types do not translate into well-formed host types.



T ok Uni =T ok B 'kte:o (Bkind(c):UHT) c "
M;T Fy unit : T nit M;T F, bottom: T ottom M;TFy, C(e): T ons
M;T ziobeT: K M;'ke7:0—k IPke:o A Mk r:T M?va:[[M(T)]rep*[[M(T)HPD'_C’ T Prod
r
MT o oo —r 108 MiTFrore:r PP ML Fy Sarr T °
M;Ther:T M;Thy 7T oy Milber:T M;FFC/T/:TIt ; MiDke7:T T, 2:[M(7)]iep * [M(7)]pp F € : bool S
m
M;Tky 7+7":T u M;Thy 7&7': T niersection M;T by {x:T|e}: T et

M;Tke7r: T M;T ke, 760 T M;T ke, e 0 T

Fke: [[Tm]]rep* [rmlpp — bool (7m = M(7seq(7s, €, 7¢))) Se FT ok o€ dom(M) M,a=po.m;T'Fy 7: T
MiT by 7seq(rs, e, ) : T ST M e T Y M e T R
. M;Tke7: T M;T ke 7: T
he:o Compute = Absorh ———————— Scan
M;T F, compute(e:o) : T M; Tk, absorb(r) : T M;T by scan(r): T

Figure 9. pbc Kinding Rules

4.2 Representation Semantics

In Figure 10, we present the representation type of eachprim-

itive. While the primitives are dependent types, the mapping to the [unitpp = pdhdr xunit
host language erases the dependency because the host languagéottom]py = pd-hdr +unit
does not have dependent types. BDL types in which expressions C(e)lep = pdhdr xunit
appear, the translation drops the expressions to remove the depen- Az.T]pp = [7leo
dency. With these expressions gone, variables become useless, so 7 e]pp = [rleo

pd-hdr * [71]pp * [T2]pp

pd-hdr * ([71]pp + [72]pp)
pd-hdr * [71]pp * [T2]pp
[
(

we drop variable bindings as well, as in product and set types. Sim- Ex:71.T2]pp
ilarly, as type abstraction and application are only relevant for de- 171 + T2]pp

pendency, we translate them according to their underlying types. 1 & T2]pp =
In more detail, theoDC typeunit consumes no input and pro- {z:7 [ e}pp = pd-hdr * [7]pp
duces only themnit value. Correspondinglfottom consumes no 7 seq(Tsep €, Tem)[pp = pd-hdr * (arrpd [7]pp)
input, but uniformly fails, producing the valugone. The func- ep = a
tion Bype Maps each base type to a representation for successfully o] pp = pafrlep
parsed data. Note that this representation does not depend on the [compute(e:o)]pp = pd-hdr xunit

pd_-hdr * unit

argument expression. As base type parsers can fail, we sum this absorb(7)]pp
pd-hdr * ((int * [7]pp) + unit)

type withnone to produce the actual representation type. Intersec- scan(7)[pp
tion types produce a pair of values, one for each sub-type, because
the representations of the subtypes need not be identical nor even Figure 11. Parse Descriptor Types
compatible. Set types produce sums, where a left branch indicates

the data satisfies the constraint and the right indicates it does not.
In the latter case, the parser returns the offending data rather than__. ; )
none because the error is semantic rather than syntactic. Sequencengggi;s,gbcomponents nor special meta-data, w as the
produce a host language sequence paired with its length. Recursive ey . .
types generate recursive representations. Note that the host typt?n We discuss a few of the more complicated parse descriptors

uses the same variable name astbe tvpe. and so the tvpe cor- detail. The parse descriptor body for sequences contains the
. . - ype, yp parse descriptors of its elements, the number of element errors,
responding to the type variabte is exactlya. The output of a

compute is exactly the computed value. and therefore shares its and the sequence length. Note that the number of element errors is
i é’ The outout )(;fabsorb is?a sum indfcatin whether parsin distinct from the number of sequence errors, as sequences can have
YPE. utp . 9 ' PAISING  arrors that are not related to their elements (such as errors reading
the underlying type succeeded or failed. The type@fn is sim-

ilar, but also returns an element of the underlying type in case of separators). We introduce an abbreviation for array PD body types,
suc’cess ying typ arr_pd o = int * int * (0 seq). Theabsorb PD type isunit

In Figure 11, we give the parse descriptor type for eaok as with its representation. We assume that just as the user does not

type. Each PD type has a header and body. This common shapewam the represenation to be kept, so too the parse descriptor. The

allows us to define functions that polymorphically process PDs scan parse descriptor is eithani_t, in case no match was found,
based on their headers. Each header stores the number of errorgr recor_ds the number of bits sklpped before the_ type was matched
) - S long with the type’s corresponding parse descriptor.

encountered during parsing, an error code indicating the degree

of success of the parse — success, success with errors, or failure . .

— and the span of data described by the descriptor. Formally, the4-3 Parsing Semantics of thepc

type of the headerp@_hdr) is int * errcode * span. Each body The parsing semantics of a typeis a function that transforms

consists of subdescriptors corresponding to the subcomponents okome amount of input into a pair of a representation and a parse

the representation and any type-specific meta-data. For types withdescriptor, the types of which are determined ‘yFigure 12
specifies the host language types of the parsers generated from




[]

—e

[unit]] = A(Bv W)-(wv Runit ()7 Punit (UJ)) |I{)\$:T ‘ 6}]] =
[bottom] = A(B,w).(w, Rbottom(), Prottom(w)) (ﬁéf)(‘w’,r,p) - [7] (B,w) in [a] = fa
[C(e)] = A(B,) Bimp(C) (e) (B,) let x= (r,p) in e = .=
[[)‘m~7—]]_: Az.[7] %‘zz Es;te(cl,lilr),Pset(QP)) let (Iw’7r p) = [7] (B,w) in
[T 6]] - |IT]] € IIT Seq(T- e Tt)]] — (U.) 7r7p)
[Ezrr] = /\(B,w)ﬁ ’ [compute(e:o)] =
A(B,w). letfun isDone (w,r,p) = A(B, w)-(w, Rc"mpute( )’PC"“‘Pute(w))
let (w’,r,p) = [7] (B,w) in EoF(B,w) or e (r,p) or [absorb(7)] =
let x = (r,p) in let (w/,1/,p’') = [1¢](B,w) in A(B,w).
let (w”,r',p') = [7'] (B,w’) in is0k(p’) let (w',r,p) = [7] (B,w) in
(", Re(x, '), Px(p, P')) in («’; Rabsors (P), Pabsors (P))
[r+7]= letfun continue (w,w’,r,p) = [scan(r)] =
A(B,w). if w = w’ or isDone (w r,p) then (w',r,p) A(B,w).
(B,

let («’,r,p) = [7] (B,w) in
if is0k(p) then (w’,Rt1e£t(T), P11est(P))
else let (W, r,p) = [7'] (B,w) in

(W', Ryrignt (r), Pirignt(p)) in

else let (ws,Ts,ps) = [[Ts]]
let (we,re,Pe) = [[T]] (B7w5) in
continue (w,We,Rseq(T, Te),Pseq(P, Ps, Pe))

letfun tryi=
let (w/’ I,P) = IIT]] (B,w + l) in
if isOk(p) then
(wlv Rscan(r)7 Psca_n(i7 P)) else

w') in

[r&+'] = let T = Reeq inis() in if i = scanMax then
A(Bv w)- let p = Pseq.init (w) in ("% Rscan,err()v Pscan,err(w)) else
let (w',r,p) = [7] (B w) in if isDone (w,r,p) then (w,r,p) try (i +1)
let (w”,r’,p") = [7] (B,w) in else let (we,Te,pe) = [7] (B,w) in in try 0
(max(w’,w"),Rg (r,r’),Pg (P, P’)) continue (w,wWe,Rseq(T, Te), Pseq(Ps Punit (w), Pe))

Figure 13. bbc Semantics

[7:T]pr = bits * offset — offset x [[T]]rep* [71eo

[r:0 = Klpr = 0 = [T:K]pt

Figure 12. Host Language Types for Parsing Functions

fun Runit ()
fun Pynit w =
fun Rpottom ()
fun Ppottom w =

0
((0, ok, (w,

((1, fail, (w,w)), ()

@)), ()

fun Ry (1‘17 1‘2) = (rl,rg)
fun Hy (1’117 h2) =
let nerr = pos(hj.nerr) + pos(ho.nerr) in
let ec = if hy.ec = fail then fail
else max_ec hi.ec hy.ec in
let sp = (hi.sp.begin, hy.sp.end) in
(nerr, ec, sp)

fun Py (p1,p2) = (Hz(p1-h,p2.h), (p1,p2))

Figure 14. Selected Constructor Functions. The type of PD head-
ers isint * errcode * span. We refer to the projections using dot
notation asmerr, ec andsp, respectively. A span is a pair of off-
sets, referred to asgin andend, respectively. The full collection

of such constructor functions appears in Appendix B.

well-kindedDDc types. Note that parameterizedcC types require
their arguments before they can parse any input.

Figure 13 shows the parsing semantics function. For each type
the input to the corresponding parser is a bit string and an off-
set which indicates the point in the bit string at which parsing

never modified, it is not returned as an output. In addition to spec-
ifying how to handle correct data, each function describes how to
transform corrupted bit strings, marking detected errors in a parse
descriptor. The semantics function is partial, applying only to well-
formedDDC types.

For any type, there are three steps to parsing: parse the subcom-
ponents of the type (if any), assemble the resultant representation,
and tabulate meta-data based on subcomponent meta-data (if any).
For the sake of clarity, we have factored the latter two steps into
separate representation and PD constructor functions which we de-
fine for each type. For some types, we additionally factor the PD
header construction into a separate function. For example, the rep-
resentation and PD constructors farit areRunir andPuis, re-
spectively, and the header constructor for products isSelected
constructors are shown in Figure 14. We have also factored out
some commonly occuring code into “built-in” functions, explained
as needed and defined formally in Appendix B.

The PD constructors determine the error code and calculate the
error count. There are three possible error cod&s:err, and
fail, corresponding to the three possible results of a parse: it
can succeed, parsing the data without errors; it can succeed, but
discover errors in the process; or, it can find an unrecoverable error
and fail. The error count is determined by subcomponent error
counts and any errors associated directly with the type itself.

With this background, we can now discuss selected portions of
the semantics. The semanticswfit andbottom show that they
do not consume any inpuite., they do not change the offset. A
look at their constructors shows that the parse descriptardfot
always indicates no errors and a correspondingode, while that
of bottom always indicates failure with an error count of one and
thefail error code. The semantics of base types applies the imple-
mentation of the base type’s parser, provided by the fundfiap
to the appropriate arguments. Abstraction and application are de-
'fined directly in terms of host language abstraction and application.
Dependent pairs read the first elemenband then the second at
w', the offset returned from parsing the first element. Notice that

should commence. The output is a new offset, a representation of e ping the pair of the returned representation and parse descrip-
the parsed data, and a parse descriptor. As the bit string input is



tor to the variablex before parsing the second element, implicitly

. . . . Normalized v
mapping theobc variablex to the host language variahtein the

unit | bottom | C(e) | Az.7 | Za:7.T

| ’ : Types | T4+ 7| 7&T | {z:T |} | TSEq(T,€E,T)
process. Finally, we combine the results using the constructor func- |  compute(e:o) | absorb(r) | scan(r)
tions, returningo” as the final offset of the parse. Types T u= vi]Te|a|por
Sequences have the most complicated semantics because the , ,
number of subcomponents depends upon a combination of the data, .~ — T e—e

the termination predicate, and the terminator type. Consequently, 7¢ — 7'e ve—wve' (Az.r)v < rlv/z] por < rlpa.t/a]
the sequence parser uses mutually recursive functiegbene
and continue to implement this open-ended semantics. Func-
tion isDone determines if the parser should terminate by checking
whether the end of the source has been reached, the termination L )
conditione has been satisfied, or the terminator type can be read = We start our formalization of the error-correlation property by
from the stream without errors at Functioncontinue takes four de_flnlng representation and PD correlation. Informally, a represen-
arguments: two offsets, a sequence representation, and a sequené@t'on and.a PD are correlated when the number of errors recorded
PD. The two offsets are the starting and ending offset of the previ- In the PD is at least as many as the number of errors in the repre-
ous round of parsing. They are compared to determine whether theS€ntation and semantic errors,, constraint violations, are prop-
parser is progressing in the source, a check that is critical to ensur-€fy reported. Formally, we define correlation with the relation
ing that the parser terminates. Next, the parser checks whether thé-orr+(r, p). As the encoding of errors in the representation and
sequence s finished, and if so, terminates. Otherwise, it attempts toth® meaning of error counts in the PD are dependent om e
read a separator followed by an element and then continues parsingYPe that produced them, correlation is type directed. However,
the sequence with a call tontinue. some types, such as type application, are not _|mmed|at_ely useful
We translate recursive types into recursive functions with a in determining correlation, and must be normalized. In Figure 15,
special function name corresponding to the name of the bound typeWe define the set of normalized typesand give normalization

variable. Recursive type variables translate to these special names "ules. For clarity, we defin€orr”, (r, p) as a “helper” relation that
normalizes types before checking for correlation. The relation

Corr,(r, p), then, is defined only for normalized types of kimd
5. Meta-theory Type abstractions are excluded as they cannot directly produce rep-

One of the most difficult, and perhaps most interesting, challenges résentations and PDs.

of our work onbDDC was determining what properties we wanted

to hold. What are the “correct” invariants of data description lan- Definition 3

guages? While there are many well-known desirable invariants for Corr*,(r, p) iff if T —”* v then Corr, (r, p).

programming languages, the meta-theory of data description lan-

guages has been uncharted. We present the following two proper- In the following definition, we abbreviate h.nerr asp.nerr.

ties as critical invariants of our theory. We feel that they should and usepos to denote the function which returns zero when passed
hold, in some form, for any data description language. zero and one otherwise.

Figure 15. bbc Normalized Syntax and Normalization Rules

e Parser Type CorrectnessFor abDC typer, the representation
and PD output by the parsing functionofwill have the types
specified by[] ., and[7]pp, respectively.

e Parser Error Correlation : For any representation and PD out- e 7 =unit andr = () and p.nerr = 0.
put by a parsing function, the errors reported in the PD willbe e 7 = bottom and r = none and p.nerr = 1.
correlated with the errors present in the representation. .

Definition 4 (Representation and PD Correlation Relation)
Corr, (r, p) iff exactly one of the following is true:

7= C(e) andr = inl c and p.nerr = 0.

In formalizing these properties, we assume that base types, e 7 = (C(e) and r = inr none and p.nerr = 1.

their kinds, representation and parse descriptor types, and parserse + = S a:r.79 and r = (r1,72) and p = (h, (p1,p2)) and
satisfy the properties we desire to hold of the rest of the calculus. h.nerr = pos(p1.nerr) + pos(pz.nerr), Corr*,, (r1,p1)
Appendix C contains a formal statement of these assumptions. and Corr™ v, [y p) /2] (T2, P2).-

To prove our type correctness theorem by induction, we must
account for the fact that any free recursive type variablesob@a
typer will become free function variables {r]. To that end, we
define the functiofM],;, which maps recursive variable contexts

o7 =7 +mandr = inl 7’ and p = (h,inl p') and
h.nerr = pos(p’.nerr) and Corr* -, (r
(r

~—

/
o7 =7 +mandr = inr v’ and p = (h,inr p') and
!

M to typing contexts": h.nerr = pos(p’.nerr) and Corr* ., (r', p’).
[Ior=- o7 = n&m, v = (ri,r2) and p = (h,(p1,p2)), and
PT h.nerr = pos(pi.nerr) + pos(pz.nerr), Corr*r, (r1,p1)
M, a=pa.t]pr = [M]pr, fa:[M(pa.7):T]pr and Corr™ -, (r2,p2).
We also apply M tor to close any open references to recursive e + = {2:7'|e}, r = inl ' and p = (h,p’), and h.nerr =
types before determining the corresponding parser type. pos(p'.nerr), Corr* ./ (r',p') and e[(+', p') /z] —* true.
o 7 ={x:7'|e},r = inr r’ andp = (h,p’), and h.nerr = 1+
Theorem 1 (Type Correctness) pos(p’.nerr), Cort™ (r',p') and e[(r', p") /2] —~ false.
IfT - Mokand M;T' k. 7 : k then T, [M] oy F [7] : [M(7):K] py- o 7 =T.seq(Ts, e, 71, ), 7 = (len, [17]), p = (h, (neerr,len’, [pi])),
len = len', neerr = >," pos(pi.nerr), Corr* . (74, ps),
PrROOF By induction on the height of the second derivatian. (fori =1...len), and h.nerr > pos(neerr).
e 7 = compute(e:o) and p.nerr = 0.
Corollary 2 (Type Correctness of Closed Types) e 7 = absorb(r’), r = inl (), and p.nerr = 0.

Ifty 7 kthent [7] : [7:K] py- e 7 = absorb(7’), r = inr none, and p.nerr > 0.



e 7 = scan(7’),r = inl 7/, p = (h,inl (i,p’)), h.nerr =

pos(i) + pos(p’.nerr), and Corr* ./ (r', p’).
e 7 = scan(7’), r = inr none, p = (h, inr ()), and h.nerr = tyr p[t/o] I T prog p[Prec a.t/a] | 7 prog
1. t | T prog a=t; pl T prog Prec a=t; p{ 7 prog

Definition 5 specifies the exact property we require of parsing m
functions. At base kind, we require that any representation and

PD returned by the parser must be correlated. At higher kind, we ti 4 i

require that the function preserve the property of error correlation. Punion {z1:t1...xnitn} 4 71+ + 7o + bottom
Hence, the definition is a simple form of logical relation. Lemma 6

states that any well-formed type of base kind is error-correlated. tr

t Pwhere z.e || {z:7|if isOk(z.pd) then e else true}
Definition 5 (Error Correlation Relation)

EC(7 : k) iff exactly one of the following is true: tU7 tsep I 75 trerm 4T (f = Ax.false)
e k= Tandif[r] (B,w) —* (w',r,p) then Corr™ . (r, ) tParray (tsep,tterm) I 7 seq(scan(rs), f, 7t)
e k=0 —r andif-v: o then EC(T v : K')
tir Ty(e) =7
Lemma 6 (Error Correlation at Base Kind) Popt t | 7 +unit  Plit c| scan(absorb({z:7 |z = c}))
Ifty 7 : T and [7] (B,w) <* (', 7, p) then Corr* . (r, p).
PROOE By induction on the he|ght of the second derivati@. Figure 16. Selected Rules for Er‘lCOdiﬂgADS in bbc. The full

collection of rules appears in Appendix D.

Theorem 7 (Error Correlation)

Ift- : kK then EC(7 : k). . . . .
w7 then BC(r: ) takes an expression that determines which branch to use. Typi-

PROOF. By induction on the size of the kinel Forx = T, we use cally, this expression depends upon data read earlier in the parse.

Lemma 6.0 Each branch is preceded by a tag, and the first branch whose tag
matches the expression is selected. If none match then the de-

Corollary 8 fault branchtger is chosen. The syntax of a switched union is

If Corr™ (7, p) and p.h.nerr = 0 then there are no syntactic or Pswitch e {e = x:t tgef}.

semantic errors in the representation data structure r. To aid in our translation ofPswitch , we define a type

if e then t; else to that allows us to choose between two
types conditionally :

t1y7m tad 2 (c=compute(if e then 1 else 2 :Pint))

if e then t] else tg |
c* ({x:unit |not e} + 71) & ({z:unit | e} + 72)

6. EncodingbDLSs inDDC

We can better understand the data description languages mentioned
earlier by translating their constructs into the typesb€. We start
with the translation ofPADS, which captures many of the common

features obDLs. We then discuss featuresriDS, DATASCRIPT, The computed value records which branch of the conditional is
andPACKETTYPESthat are not found inPADS. selected. If the condition is true,c will be 1, the left-hand side

. of the intesection will parse; and the right will parse nothing.
6.1 IPADS Translation Otherwisec will be 2, the left-hand side will parse nothing and the
We formalize the translation fronPaDs to bbc, described infor- right .

Now, we can encodPswitch as syntactic sugar for a series

mally in Section 3.3, with two judgmentg:|} 7 prog indicates that of cascading conditional types.

the IPADS programp is encoded asDcC type r, whilet |} = does

the same forPADS typest. Pswitch e { if e = e; then {; else
As much of the translation is straightforward, we present only er = Tt
selected rules in Figure 16. Notice we addttom as the last SRR if e = e, then t; else
branch of thebbc sum when translatindPunion so that the :"} Tnitn Ldef
parse will fail if none of the branches match rather than returning def . )
the result of the last branch. In the translationRafhere , we Note that we can safely replicateas the host language is pure.

only check the constraint if the underlying value parsed with no ~ Next, we consider theverlay construct found inPACKET
errors. ForParray s, we add simple error recovery by scanning TYPES An overlay allows us “to merge two type specifications
for the separator type. This behaviour allows us to easily skip by embedding one within the other, as is done when one protocol is
erroneous elements. We use thean type in the same way for encapsulateavithin anoth(.er..ngrIay[s] introduce additional §ub-
Plit , as literals often appear as field separator®struct s. structure to an already existing field.” [14]. For example, consider a
We also absorb the literal as its value is known statically. We use Network packet from a fictional protocol FP, where the packet body
the functionTy(c) to determine the correct type for the particular IS represented as a simple byte-array.

literal. For example, a string literal would requir®string  type. FPPacket = Pstruct {

header : FPHeader;
6.2 BeyondIPADS body : Pbyte Parray (Pnosep, Peof);
We now give semantics to three features not foun@éios: PADS }

switched unionsPACKETTYPESoverlays, anATASCRIPTarrays.
A switched union, like &union , indicates variability in the

data format with a set of alternative formats (branches). How- Type Pnosep indicates that there are no separators between ele-

ever, instead of trying each branch in turn, the switched union ments of the byte array. It can be encodeBasmpute (():unit) ,

IPinNFP = Poverlay FPPacket.body with IPPacket



as this type consumes no data and produces a unit value withoutwas inconsistent, particularly in the case of arrays. When we real-

errors. The overlay creates a new tylggnFP where the body ized the problem, we were able to formulate a clear rule to apply
field is anlPPacket rather than a simple byte array. universally: each subcomponent adds 1 to the error count of its par-
We have developed a translation of the overlay syntaxbimo ent if and only if it has errors. If we had not tried to formalize our

(not shown due to space constraints). Although overlays are con-semantics, it is unlikely we would have made the error accounting
ceptually intuitive, we discovered a critical subtlety, not mentioned rule precise, leaving our implementation buggy and inconsistent.
by the authors, when formalizing their semantics. Any expressions  The semantics also helped us avoid potential non-termination
in the original type that refer to the overlayed field may no longer of array parsers. In the original implementationreDs arrays, it
be well typed after applying the overlay. It is therefore necessary was possible to write non-terminating arrays, a bug that was only
for the translation to check the new type for well formedness after uncovered when it hung a real program. We have fixed the bug and
the overlay process, which is an easy task inobe framework. used the semantics to verify our fix.

Finally, we introducepATASCRIPT-style arrays for binary data, o . . .
t [length). They are parameterized by an optional length field, in- 7-2 Principled Implementation Extension: Recursion
stead of a separator and terminator. If the user supplies the lengthuUnlike the rest ofPADS, the semantics of recursive types preceded
of the sequence, the array parser reads exactly that number of elethe implementation. We used the semantics to guide our design
ments. Otherwise, the parser continues until an element constraintdecisions in the implementation, particularly in preventing the user
is violated or the input is completely consumed. from writing down non-contractive types and in implementing the

Fixed-length arrays can be encoded in a straightforward mannerparsers with recursive functions.
with DDC sequences:

tU7 (f = A((len, elts),p).len = length) 7.3 Distinguishing the Essential from the Accidental

t [length] | T seq(unit, f,bottom) In his 1965 paper, P.J. Landin asks “Do the idiosyncracies [of a

anguage] reflect basic logical properties of the situations that are

As these arrays have neither separators nor terminators, we us% . X .
. h : : eing catered for? Or are they accidents of history and personal
unit (always succeeds, parsing nothing) aedton (always fails, background that may be obscuring fruitful developments?”

parsing nothing), respectively, for separator and terminator. The . : - .

function f takes a pair of array representation and PD and compares Por-;?te Zﬁ?;ggﬁnggﬂﬁﬁigp:miggs gﬁg?gg&vﬂfgg%ﬁgit_o the

the sequence length recorded in th_e representatiomoh. fiers were only intended to be used on fields witRstruct s. By
Unbounded arrays are more difficult to encode as they must an accident of the implementation, they appeareBnion s as

check the next element for parse errors without consuming it from well, but spread no further. However, when desigrimg, we fol-

the data stream. A termination predicate cannot encode this c:heckIOWed theprinciple of orthogonalitywhich suggests that every lin-

as they cannot perform lookahead. Therefore, we must use the . ' 4 .
terminz\tor type t(?look ahead for an element parse error. For this guistic concept be deflneq |_ndependently of every o_ther. In particu-
' lar, we observed that “omitting” data from, or including (“comput-

purpose, we construct a type (abbreviated (7)) which succeeds ing”) data in, the internal representation is not dependent upon the

wherer fails and fails where- succeeds: idea of structures or unions. Furthermore, we found that develop-
{z:7 +unit | case x.rep of (inl _ = false| inr_= true)} ing these concepts as first-class construcibesrb andcompute

Unbounded arrays with element typecan now be encoded as in bbc allowed us to encode the semantics of othwebs features

sequences with terminatast (). (e.g, literals) elegantly.

While there are many more features that we can encode, space Another accident in theabsimplementation is that there is no
prevents us from detailing them here. To give a sense of vx‘/hat is guarantee that certain features are “safe.” This is due on occasion

possible, we briefly list those features MATASCRIPT and PACK- to the fac@ that th@ADShOst Ianguage_is C and on occasion to the
ETTYPES‘fOI’ which we have found encodings rpc: desire to implement certain optimizations. As an example, when a

semantic error in @where clause is detected, the parser sets a

® PACKETTYPES arrays, where clauses, structures, overlays, and flag. However, the C programmer is not forced to check this flag
alternation. before using the value in question and therefore can unknowingly

e DATASCRIPT: set types (enumerations and bitmask sets), arrays, Process invalid data. The semanticoofc deviates from the C im-
constraints, value-parameterized types (which they refer to as plementation here as it suggests constrained types be implemented

“type parameters”), and (monotonically increasing) labels. as values with a sum type. A typed lambda calculus programmer
is required to perform a case on the sum and hence will always be

informed of an error. In such cases, the C implementation does not
serve as a proper guide for the integrationPabs ideas with a
safe language like ML. For this purpose, thec is a much more

We know of a couple of features from data description lan-
guages that we cannot implementdpc as it stands. An example
is a label construct that permits the user to rewind the input. How-
ever, we do not view such limitations as particularly troublesome. appropriate starting point.
Like the lambda calculus or pi calculushc is intended to capture We conclude with an example of another feature to which
many common language features, while providing a convenientand| 4ndin's question applies, but for which we do not yet know the an-
effective basis for extension with new features. swer. ThePunion construct chooses between branches by search-

ing for the first one without errors. However, this semantics ignores

7. Applications of the Semantics situations in which the correct branch in fact has errors. Often, this
The development obpc and defining a semantics fapADS has behavior WI|| lead to parsing nothing and flagglng_g panic, rather
had a substantial impact on the reabs implementation. than parsing the correct branch to the best of its ability. The process

of developing a semantics brought this fact to our attention and it

7.1 Bug Hunting i
- . . . The typenothing array(nothing,eof) where typenothing
We developed our semantics in part by going line-by-line through consumes no input, would not terminate in the orignal system. A careful

key parts of theeADsimplementation to uncover implicitinvariants  read of thepbc semantics of arrays, which has now been implemented in
in the code. In the process of trying to understand and formalize paps, shows that array parsing terminates after an iteration in which the
these invariants we realized that our error accounting methodology array parser reads nothing.



now seems clear we would like a more robBshion , but we are mation is meaningful, allowing analysts to rely on the error sum-
not currently sure how to design one. maries rather than having to re-vet the data by-hand.
We have already used the semantics to identify bugs in the im-
plementation oPADS and to highlight areas wheraDs sacrifices

8. Related Work safety for speed. In addition, when various biological data sources
To our knowledge, we are the first to attempt to specify a seman- Motivated adding recursion ®ADs, we usedDC for design guid-

tics for data description languages based on types SURAGET- ance. After adding recursioraDS can now describe the biological
TYPES, DATASCRIPT O PADS. data sources. Finallppc has provided insight into how to design

Of course, there are other formalisms for defining parsers, most & safe overlay concept.
famously, regular expressions and contex-free grammars. In terms
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A.2 Typing Rules DL P eiTRT  stantiate
Constants are assigned types with the interfdggand operators ATk e:ofo’/a]

with Bopty. Some example constants and their types are show below.
Bey(true) = bool Bgy(false) = bool
= B) =bit
Bey(none) = none  Bey(B) its let o= F in e

_ |
Bay(w) = offset | if I then e else es
We use contexta to record the names of open type variables |  (E,e)| (v,E)|mE
|
|
|

A.3 Evaluation Rules

Evaluation F
Contexts

(| op(E) [EelvE

and contextd” to record the types of expression variables. The inl F | inr E
syntax ofA andT is as follows: case F of (inlx = e| inrz =€)
A [TEE|EFQe|v@QFE

R Y
r e[E] | v[E]

T z0

We specify the implementation of an operator wift{op, v).
Most of the rules are standard, although the sequence rules are new.
Append appends the contents of the second array to that of the first
array, while Sub extracts the element at index i, if i is within the

The typing judgment has the forth; T" - e : 0. When the type-
variable context\ is empty, we writd” - e : o as an abbreviation.

AFT ok AFTok I'(z)=0 bounds of the array. If not, the expression fails.
~—= . - Const Var
AT F e Bay(e) ATbkz:o
O(op,v) =’ v=fun fr=e
Bopy(op) =0’ — 0 A;Tke:o (op, v) ; (/ un / /) App
o @) =7 F v = e/ A/
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let z = v in e < e[v/x]
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A;T'Fer:o1 A;THea:oo air A;T'Fe:or*x02 Proj
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- - Subin - - SubOut
[vo...vn—1][{] — inl v; [vo...vn—1][i] = inr ()
’
€ C __ Step
Ele] — E[€]]

B. Helper Functions

In defining the parsing functions, we use the following helper
functions:

Eof : bits * offset — bool

scanMax : int

fun max (m,n) =if m > n thenmelsen
funposn=if n =0thenOelsel
fun is0k p = pos(p.h.nerr) =0

fun isErr p = pos(p.h.nerr) =1

fun max_ec (ecy, ecy) =
if ec; = fail or ecy, = fail then fail
else if ec; = err or ecy, = err then err
else ok

We define for eaclbDc type a pair of constructor functions,

one to build a representation and another to build a parse descriptor.

The type of PD headers isit * errcode * span. We refer to the
projections using dot notation agrr, ec andsp, respectively. A
span is a pair of offsets, referred totagin andend, respectively.
Array bodies have typent«int* (o seq) (for element typer). We
refer to the projections aserr, length andelts, respectively.

fun Runit () = ()
fun Punit w = ((O: ok, (‘-’Jv w))v ())

fun Rpottom () = none
fun Protton w = ((1, fail, (w,w)), ()

fun Ry (1‘17 1'2) = (rl,rg)
fun Hy (h17 h2) =
let nerr = pos(hj.nerr) + pos(hz.nerr) in
let ec = if hy.ec = fail then fail
else max_ec hi.ec hy.ec in
let sp = (hi.sp.begin, hy.sp.end) in
(nerr, ec, sp)

fun Py (p1,p2) = (Hz(p1-h, p2-h), (P1,P2))

funRijest r=inlr

fun Ryright r = inrr

fun Hy h = (pos(h.nerr), h.ec, h.sp)
fun Piie¢r p = (H4 p.h,inl p)

fun Pirighe p = (Hy p.h,inr p)

funRg, (r,1’) = (r,1’)
fun Hg (h1,ho) =
let nerr = pos(hj.nerr) + pos(hz.nerr) in
let ec = if hyj.ec = fail and hy.ec = fail then fail
else max_ec hi.ec hy.ec in

fun Pget (c,p) =
if ¢ then ((pos(p.h.nerr),p.h.ec,p.h.sp),p)
else ((1 + pos(p.h.nerr),max_ec err p.h.ec,p.h.sp),p)

fun Rseq.init () = (0, [])
fun Pseq,init w= ((07 °k7 (OJ, L’J))7 (07 07 []))
fun Reeq (r,Te) = (r.len+ 1,r.elts @ [re))
fun Hgeq (h,hs,he) =
let eerr = if h.neerr = 0 and he.nerr > 0
then 1 else 0 in
let nerr = h.nerr + pos(hg.nerr) + eerr in
let ec = if he.ec = fail then fail
else max_ec h.ec he.ec in
let sp = (h.sp.begin, he.sp.end) in
(nerr, ec, sp)
fun Pgeq (P, Ps,Pe) =

(Hseq (P'h7 PS'h7 Pe'h)v
(p-neerr + pos(pe.h.nerr),p.len + 1,p.elts @ [pe]))

fun Rcompm:e r=r
fun Pcompute w = ((07 ok, (w7 UJ)), ())

fun Rapsorb p = if is0k(p) then inl () else inr none
fun Pabsors P = (p-h, ()

fun Rscan r = inl r
fun Pgcan (i,p) =
let nerr = pos(i) + pos(p’.h.nerr) in
let ec = if nerr = O then ok else err in
let hdr = (nerr, ec, (p.sp.begin — i,p.sp.end)) in
(hdr, in1 (1, p))
fun Rscan_err () = inr none
fun Pscanerr w = let hdr = (1, fail, (w,w)) in
(hdr, inr ())

C. Conditions on Base Types
Condition 9 (Conditions on Base-type Interfaces)

1. dOm(Bkmd) = dom(B,-mp).

2. If Bging(C) = 0 — T then Bopy(C) = 0 — [C(e):T]py (for any e
of type o).

3. F Bimp(C) : Bopty(C).

4. IfF v : 0, Bing(C) = 0 — T and Bimp(C) v (B,w) —* (W', 7,p)
then Corrc(y) (7, p)-

Note that by condition 3, base type parsers must be closed.

D. CompleteiPADS Encoding in DDC

let sp = (hi.sp.begin, max(h;i.sp.end, hy.sp.end)) in
(nerr, ec, sp)

fun Pg (p1,p2) = (He (p1-h,p2.h), (p1,p2))

fun Reet (¢,r) = if c then inl r else inrr

tdT plt/a] I T prog p[Prec a.t/a] | T prog
t | T prog a=t; pl 7 prog Prec a=t; pl 7 prog
tyr tyr
C(e)J Cle) Pfun (z :0) =t | Az.7 telre
ti b7 ti 7
Pstruct {z1:t1...znitn} Punion {z1:t1...xntn}
Y X1 N Tp—1:Tn—1-Tn 71+ -+ Th + bottom
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{x:7|if isOk(z.pd) then e else true}
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t Parray (tsep7 tterm) U7 Seq(scan(rs), f,7t)
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