
Run-time Enforcement of Nonsafety Policies

JAY LIGATTI

University of South Florida

LUJO BAUER

Carnegie Mellon University

and

DAVID WALKER

Princeton University

A common mechanism for ensuring that software behaves securely is to monitor programs at

run time and check that they dynamically adhere to constraints specified by a security policy.

Whenever a program monitor detects that untrusted software is attempting to execute a dangerous
action, it takes remedial steps to ensure that only safe code actually gets executed.

This article improves our understanding of the space of policies enforceable by monitoring the

run-time behaviors of programs. We begin by building a formal framework for analyzing policy
enforcement: we precisely define policies, monitors, and enforcement. This framework allows

us to prove that monitors enforce an interesting set of policies that we call the infinite renewal

properties. We show how, when given any reasonable infinite renewal property, to construct
a program monitor that provably enforces that policy. We also show that the set of infinite

renewal properties includes some nonsafety policies, i.e., that monitors can enforce some nonsafety
(including some purely liveness) policies. Finally, we demonstrate concrete examples of nonsafety

policies enforceable by practical run-time monitors.

Categories and Subject Descriptors: D.2.0 [Software Engineering]: General—protection mech-
anisms; F.1.2 [Computation by Abstract Devices]: Modes of Computation—interactive and

reactive computation; D.2.5 [Software Engineering]: Testing and Debugging—monitors; D.2.4

[Software Engineering]: Software/Program Verification—validation; formal methods

General Terms: Security, Theory, Experimentation

Additional Key Words and Phrases: Security policies, safety, liveness, monitoring, security au-

tomata, policy enforcement

1. INTRODUCTION

A ubiquitous technique for enforcing software security is to dynamically monitor
the behavior of programs and take remedial action when the programs behave in
ways that violate a security policy. Firewalls, virtual machines, anti-virus and
anti-spyware programs, intrusion-detection tools, and operating systems all act as
program monitors to enforce security policies in this way. We can also think of any
application containing security code that dynamically checks input values, queries

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 0000-0000/2007/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, January 2007, Pages 1–0??.

2 · Jay Ligatti et al.

network configurations, raises exceptions, warns the user of potential consequences
of opening a file, etc., as containing a program monitor inlined into the application.
Even “static” mechanisms, such as type-safe-language compilers and verifiers, often
ensure that programs contain appropriate dynamic checks by inlining them into the
code. This article examines the space of policies enforceable by program monitors.

Because program monitors, which react to the potential security violations of
target programs, enjoy such ubiquity, it is important to understand their capabil-
ities as policy enforcers. Such an understanding is essential for developing sound
systems that support program monitoring and languages for specifying the secu-
rity policies that these systems can enforce. In addition, well-defined boundaries
on the enforcement powers of security mechanisms allow security architects to de-
termine exactly when certain mechanisms are needed and save the architects from
attempting to enforce policies with insufficiently strong mechanisms.

Schneider defined the first formal models of program monitors and discovered
one particularly useful boundary on their power [Schneider 2000]. He defined a
class of monitors that respond to potential security violations by halting the target
application, and he showed that these monitors can only enforce safety properties—
security policies that specify that “nothing bad ever happens” in a valid run of the
target [Lamport 1977]. When a monitor in this class detects a potential security
violation (i.e., “something bad”), it must halt the target.

Aside from our work, other research has likewise only focused on the ability
of program monitors to enforce safety properties. In this article, we advance our
theoretical understanding of practical program monitors by proving that certain
types of monitors can enforce nonsafety properties. These monitors are modeled
by edit automata, which have the power to insert actions on behalf of, and suppress
actions attempted by, the target application. We prove an interesting lower bound
on the properties enforceable by such monitors—a lower bound that encompasses
strictly more than safety properties. We also detail several nonsafety policies that
we have enforced in practice using an implemented monitoring enforcement system
called Polymer [Bauer et al. 2005a; Ligatti 2006].

1.1 Related Work

Only a handful of efforts have been made to understand the space of policies en-
forceable by monitoring software at run time. In contrast, a rich variety of mon-
itoring enforcement systems has been implemented [Liao and Cohen 1992; Jeffery
et al. 1998; Edjlali et al. 1998; Damianou et al. 2001; Erlingsson and Schneider 2000;
1999; Evans and Twyman 1999; Evans 2000; Robinson 2002; Kim et al. 1999; Bauer
et al. 2003; Erlingsson 2003; Sen et al. 2004; Havelund and Roşu 2004]. This lack
of theoretical work makes it difficult to understand exactly which sorts of security
policies the implemented systems can enforce. In this section we examine closely
related efforts and discuss high-level similarities and differences between them and
our work. In the remainder of this article, we point out additional, more specific
relationships between our results and those of related work.

Monitors as Invalid Execution Recognizers. Schneider began the effort to under-
stand the space of policies that monitors can enforce [Schneider 2000]. Building on
earlier work with Alpern, which provided logic-based and automata-theoretic defini-
ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 3

tions of safety and liveness [Alpern and Schneider 1985; 1987], Schneider modeled
program monitors as infinite-state automata using a particular variety of Büchi
automata [Büchi 1962] (which are like regular deterministic finite automata ex-
cept that they can have an infinite number of states, operate on infinite-length
input strings, and accept inputs that cause the automaton to enter accepting states
infinitely often). Schneider’s monitors1 observe executions of untrusted target ap-
plications and dynamically recognize invalid behaviors. When a monitor recognizes
an invalid execution, it halts the target just before the execution becomes invalid,
thereby guaranteeing the validity of all monitored executions. Schneider formally
defined policies and properties and observed that his automata-based execution
recognizers can only enforce safety properties (a monitor can only halt the target
upon observing an irremediably “bad” action).

This article builds on Schneider’s definitions and models but views program mon-
itors as execution transformers rather than execution recognizers. This fundamental
shift permits modeling the realistic possibility that a monitor might insert actions
on behalf of, and suppress actions of, untrusted target applications. In our model,
Schneider’s monitors are truncation automata, which can only accept the actions
of untrusted targets and halt the target altogether upon recognizing a safety viola-
tion. We define more general monitors modeled by edit automata that can insert
and suppress actions (and are therefore operationally similar to deterministic I/O
automata [Lynch and Tuttle 1987]), and we prove that edit automata are strictly
more powerful than truncation automata (Section 3.2.2). We demonstrate concrete
monitors that enforce nonsafety properties, and even pure liveness properties, in
Section 5.

Computability Constraints on Execution Recognizers. After Schneider showed
that the safety properties constitute an upper bound on the set of policies en-
forceable by simple monitors, Viswanathan, Kim, and others tightened this bound
by placing explicit computability constraints on the safety properties being en-
forced [Viswanathan 2000; Kim et al. 2002]. Their key insight was that because
execution recognizers inherently have to decide whether target executions are in-
valid, these monitors can only enforce decidable safety properties. Introducing
computability constraints allowed them to show that monitors based on recogniz-
ing invalid executions (i.e., our truncation automata) enforce exactly the set of
computable safety properties. Moreover, Viswanathan proved that the set of lan-
guages containing strings that satisfy a computable safety property equals the set
of coRE languages [Viswanathan 2000].

Shallow-history Execution Recognizers. Continuing the analysis of monitors act-
ing as execution recognizers, Fong defines shallow history automata (SHA) as a
specific type of memory-bounded monitor [Fong 2004]. SHA decide whether to ac-
cept an action by examining a finite and unordered history of previously accepted
actions. Although SHA are very limited models of finite-state truncation automata,
Fong shows that they can nonetheless enforce a wide range of useful access-control

1Schneider refers to his models as security automata. In this article, we call them truncation
automata and use the term security automata to refer more generally to any dynamic execution

transformer. Section 2.3 presents our precise definition of security automata.

ACM Journal Name, Vol. V, No. N, January 2007.

4 · Jay Ligatti et al.

properties, including Chinese Wall policies (where subjects may access at most one
element from every set of conflicting data [Brewer and Nash 1989]), low-water-
mark policies (where a lattice of trustworthiness determines whether accesses are
valid [Biba 1975]), and one-out-of-k authorization policies (where every program
has a predetermined, finite set of access permissions [Edjlali et al. 1998]). In ad-
dition, Fong generalizes SHA by defining sets of properties accepted by arbitrarily
memory-bounded monitors and proves that classes of monitors with strictly more
memory can enforce strictly more properties.

Fong simplifies his analyses by assuming that monitors observe only finite execu-
tions (i.e., all untrusted targets must eventually halt) and ignoring computability
constraints on monitors. Although we do not make those simplifying assumptions
in this article, we did when first exploring the capabilities of edit automata [Bauer
et al. 2002; Ligatti et al. 2005a].

Comparison of Enforcement Mechanisms’ Capabilities. Hamlen, Morrisett, and
Schneider observe that, in practice, program monitors are often implemented by
rewriting untrusted target code [Hamlen et al. 2006]. A rewriter inlines a monitor’s
code directly into the target at compile or load time. Many of the implemented
monitoring systems cited at the beginning of this subsection can be viewed as
program rewriters.

Hamlen et al. define the set of RW-enforceable policies as the policies enforceable
by rewriting untrusted target applications, and they compare this set with the sets
of policies enforceable by static analysis and monitoring mechanisms. Their model
of program monitors differs from ours in that their monitors have access to the
full text (e.g., source code or binaries) of monitored target programs. Practical
monitors often adhere to this assumption: operating systems and virtual machines
can usually access the full code of target programs. However, practical monitors
also often violate this assumption: firewalls, network scanners, and monitors that
can only hook their code into security-relevant methods of an operating system API
(such as the “cloaking” monitors installed by some DRM mechanisms [Russinovich
2005]) lack access to target programs’ code.

Hamlen et al. model programs as program machines (PMs), which are three-
tape deterministic Turing Machines (one tape contains input actions, one is a work
tape, and one tape contains output actions). They show that the set of statically
enforceable properties on PMs equals the set of decidable properties of programs
(which contains only very limited properties such as “the program halts within
one hundred computational steps when the input is 1010”). Because Hamlen et
al.’s monitors have access to the code of target programs, they can also perform
static analysis on PMs and hence enforce strictly more policies than can be enforced
through static analysis alone. For example, one can monitor a program to ensure
that it never executes a particular action, but this same property cannot be enforced
by static analysis on general PMs. Hamlen et al. also show that the RW-enforceable
policies are a superset of the monitor-enforceable policies and, interestingly, prove
that the RW-enforceable policies do not correspond to any complexity class in the
arithmetic hierarchy.
ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 5

1.2 Contributions

We extend previous work in four primary ways.

(1) Beginning with standard definitions of policies and properties, we introduce
formal models of program monitors and define precisely how these monitors
enforce policies by transforming possibly nonterminating target executions (Sec-
tion 2). We consider this formal framework a central contribution of our work
because it not only communicates our basic assumptions about what consti-
tutes a policy, a monitor, and enforcement of a policy by a monitor, but also
enables rigorous analyses of monitors’ enforcement capabilities.

(2) We use our formal framework to delineate the space of policies enforceable by
two varieties of run-time program monitors: simple truncation automata and
more sophisticated edit automata (Section 3). We also define an interesting set
of security policies called the infinite renewal properties, and show how, when
given any reasonable infinite renewal property, to construct a program monitor
that provably enforces that policy.

(3) We analyze the set of infinite renewal properties to determine its relationships
with the standard sets of safety and liveness policies (Section 4). We prove that
the set of infinite renewal properties includes some nonsafety properties and,
hence, that program monitors are in theory capable of enforcing some nonsafety
properties.

(4) We describe concrete examples of monitors that we have implemented to en-
force nonsafety properties (Section 5). The existence of these concrete exam-
ples validates our theory and demonstrates some strategies for implementing
nonsafety-property enforcers.

Large portions of this article describing theoretical definitions of policies, moni-
tors, and enforcement, as well as the properties enforceable by program monitors,
come from a recent paper presented at the Tenth European Symposium on Research
in Computer Security (ESORICS) in September 2005 and entitled “Enforcing Non-
safety Security Policies with Program Monitors” [Ligatti et al. 2005b]. This article
extends that paper in the following ways.

—We have given related work a much more complete treatment in Section 1.1.

—We include proofs for the theorems in Section 3. These theorems delineate upper
and lower bounds for the properties enforceable by various monitoring mech-
anisms. Most importantly, the proof of Theorem 3.4 shows how, when given
any reasonable infinite renewal property, to construct a program monitor that
provably enforces that property.

—We include, in the all-new Section 5, examples of nonsafety policies demonstrably
enforceable in practice. We have enforced these nonsafety policies in an imple-
mented system called Polymer [Bauer et al. 2005a; Ligatti 2006], the source code
for which is publicly available [Bauer et al. 2005b].

—Finally, we make numerous minor corrections and additions to the original mate-
rial. For instance, Section 2.1 includes a correction in our notation for sequence
concatenation (the original notation only applied when concatenating two finite

ACM Journal Name, Vol. V, No. N, January 2007.

6 · Jay Ligatti et al.

sequences, but we often need this notation to denote a concatenation comprised
of a finite sequence followed by an infinite sequence).

2. MODELING MONITORS AS SECURITY AUTOMATA

This section sets up a formal framework for analyzing policies, monitors, and en-
forcement. Section 3 uses this framework in its formal analysis of the policies that
can be enforced by monitoring software.

We begin in Section 2.1 by describing some basic notation for specifying program
executions. Then, Section 2.2 defines policies and properties, and Section 2.3 defines
program monitors as security automata. Finally, Section 2.4 links together the
previous definitions in order to define precisely what it means for a monitor to
enforce a policy.

2.1 Notation

We specify a system at a high level of abstraction as a nonempty, possibly countably
infinite set of program actions A (also referred to as program events). An execution
is simply a finite or infinite sequence of actions. The set of all finite executions on a
system with action set A is notated as A?. Similarly, the set of infinite executions is
Aω, and the set of all executions (finite and infinite) is A∞. We let the metavariable
a range over actions, σ and τ over executions, and Σ over sets of executions (i.e.,
subsets of A∞).

The symbol · denotes the empty sequence, that is, an execution with no actions.
We use the notation τ ;σ to denote the concatenation of two sequences, the first
of which must have finite length. When τ is a (finite) prefix of (possibly infinite)
σ, we write τ�σ or, equivalently, σ�τ . Given some σ, we often use ∀τ�σ as
an abbreviation for ∀τ ∈ A? : τ�σ; similarly, when given some τ , we abbreviate
∀σ ∈ A∞ : σ�τ simply as ∀σ�τ .

2.2 Policies and Properties

A security policy is a predicate P on sets of executions; a set of executions Σ ⊆ A∞

satisfies a policy P if and only if P (Σ). For example, a set of executions satisfies a
nontermination policy if and only if every execution in the set is an infinite sequence
of actions. A cryptographic key-uniformity policy might be satisfied only by sets of
executions such that the keys used in all the executions form a uniform distribution
over the universe of key values.

Following Schneider [Schneider 2000], we distinguish between properties and more
general policies as follows. A security policy P is a property if and only if there
exists a characteristic predicate P̂ over A∞ such that for all Σ ⊆ A∞, the following
is true.

P (Σ) ⇐⇒ ∀σ ∈ Σ : P̂ (σ) (Property)

Hence, a property is defined exclusively in terms of individual executions and may
not specify a relationship between different executions of the program. The nonter-
mination policy mentioned above is therefore a property, while the key-uniformity
policy is not. The distinction between properties and policies is an important one
to make when reasoning about program monitors in our current framework because
ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 7

a monitor only sees individual executions and can therefore enforce only security
properties rather than more general policies.

There is a one-to-one correspondence between a property P and its characteristic
predicate P̂ , so we use the notation P̂ unambiguously to refer both to a character-
istic predicate and the property it induces. When P̂ (σ), we say that σ satisfies or
obeys the property, or that σ is valid or legal. Likewise, when ¬P̂ (τ), we say that
τ violates or disobeys the property, or that τ is invalid or illegal.

Properties that specify that “nothing bad ever happens” are called safety prop-
erties [Lamport 1977; Alpern and Schneider 1985]. No prefix of a valid execution
can violate a safety property; equivalently, once some finite execution violates the
property, all extensions of that execution violate the property. Technically, safety
means that every invalid execution has some invalid prefix after which all extensions
are likewise invalid. Formally, P̂ is a safety property on a system with action set A
if and only if the following is true.2

∀σ ∈ A∞ : (¬P̂ (σ) =⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ)) (Safety)

Many interesting security policies, such as access-control policies, are safety proper-
ties, since security violations cannot be undone by extending a violating execution.

Dually to safety properties, liveness properties [Alpern and Schneider 1985] state
that nothing irremediably bad happens in any finite amount of time. Any finite se-
quence of actions can always be extended so that it satisfies the property. Formally,
P̂ is a liveness property on a system with action set A if and only if the following
is true.

∀σ ∈ A? : ∃τ�σ : P̂ (τ) (Liveness)

The nontermination policy is a liveness property because any finite execution can
be made to satisfy the policy simply by extending it to an infinite execution.

General properties may allow executions to alternate freely between satisfying
and violating the property. Such properties are neither safety nor liveness but
instead a combination of a single safety and a single liveness property [Alpern and
Schneider 1987]. We show in Sections 3 and 4 that edit automata effectively enforce
an interesting new sort of property that is neither safety nor liveness.

2.3 Security Automata

Program monitors operate by transforming execution sequences of an untrusted
target application at run time to ensure that all observable executions satisfy some
property. We model a program monitor formally by a security automaton S, which
is a deterministic finite or countably infinite state machine (Q, q0, δ) that is defined
with respect to some system with action set A. The set Q specifies the possible
automaton states, and q0 is the initial state. Different automata have slightly
different sorts of transition functions (δ), which accounts for the variations in their
expressive power. The exact specification of a transition function δ is part of the

2Alpern and Schneider [Alpern and Schneider 1985] model executions as infinite-length sequences

of states in which terminating executions contain a final state, infinitely repeated. We can map

an execution in their model to one in ours simply by sequencing the events that induce the state
transitions (no event induces a repeated final state). With this mapping, it is easy to verify that

our definitions of safety and liveness are equivalent to those of Alpern and Schneider.

ACM Journal Name, Vol. V, No. N, January 2007.

8 · Jay Ligatti et al.

definition of each kind of security automaton; we only require that δ be complete,
deterministic, and Turing Machine computable. We limit our analysis in this work
to automata whose transition functions take the current state and input action (the
next action the target wants to execute) and return a new state and at most one
action to output (make observable). The current input action may or may not be
consumed while making a transition.

We specify the execution of each different kind of security automaton S us-
ing a labeled operational semantics. The basic single-step judgment has the form
(q, σ) τ−→S (q′, σ′) where q denotes the current state of the automaton, σ denotes
the sequence of actions that the target program wants to execute, q′ and σ′ de-
note the state and action sequence after the automaton takes a single step, and τ
denotes the sequence of at most one action output by the automaton in this step.
The input sequence, σ, is not observable to the outside world whereas the output,
τ , is observable.

We generalize the single-step judgment to a multi-step judgment using standard
rules of reflexivity and transitivity.

Definition 2.1 Multi-step. The multi-step relation (σ, q) τ=⇒S (σ′, q′) is induc-
tively defined as follows (where all metavariables are universally quantified).

(1) (q, σ) ·=⇒S (q, σ)

(2) If (q, σ) τ1−→S (q′′, σ′′) and (q′′, σ′′) τ2=⇒S (q′, σ′) then (q, σ)
τ1;τ2=⇒S (q′, σ′)

Next, we define what it means for a program monitor to transform a possi-
bly infinite-length input execution into a possibly infinite-length output execution.
This definition is essential for understanding the behavior of monitors operating on
potentially nonterminating targets.

Definition 2.2 Transforms. A security automaton S = (Q, q0, δ) on a system
with action set A transforms the input sequence σ ∈ A∞ into the output sequence
τ ∈ A∞, notated as (q0, σ) ⇓S τ , if and only if the following two constraints are
met.

(1) ∀q′ ∈ Q : ∀σ′ ∈ A∞ : ∀τ ′ ∈ A? : ((q0, σ) τ ′

=⇒S (q′, σ′)) =⇒ τ ′�τ

(2) ∀τ ′�τ : ∃q′ ∈ Q : ∃σ′ ∈ A∞ : (q0, σ) τ ′

=⇒S (q′, σ′)

When (q0, σ) ⇓S τ , the first constraint ensures that automaton S on input σ outputs
only prefixes of τ , while the second ensures that S outputs every prefix of τ .

2.4 Property Enforcement

We and several other authors have concurrently noted the importance of monitors
obeying two abstract principles, which we call soundness and transparency [Ligatti
et al. 2003; Hamlen et al. 2006; Erlingsson 2003]. A mechanism that purports to
enforce a property P̂ is sound when it ensures that observable outputs always obey
P̂ ; it is transparent when it preserves the semantics of executions that already obey
P̂ . We call a sound and transparent mechanism an effective enforcer. Because
effective enforcers are transparent, they may transform valid input sequences only
into semantically equivalent output sequences, for some system-specific definition of
ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 9

semantic equivalence. When two executions σ, τ ∈ A∞ are semantically equivalent,
we write σ ≈ τ . We place no restrictions on a relation of semantic equivalence except
that it actually be an equivalence relation (i.e., reflexive, symmetric, and transitive),
and that properties of interest P̂ do not distinguish between semantically equivalent
executions.

∀σ, τ ∈ A∞ : σ ≈ τ =⇒ (P̂ (σ) ⇐⇒ P̂ (τ)) (Indistinguishability)

When acting on a system with semantic equivalence relation ≈, we will call
an effective enforcer an effective≈ enforcer. The formal definition of effective≈ en-
forcement is given below. Together, the first and second constraints in the following
definition imply soundness; the first and third constraints imply transparency.

Definition 2.3 Effective≈ Enforcement. An automaton S with starting state q0

effectively≈ enforces a property P̂ on a system with action set A and semantic
equivalence relation ≈ if and only if ∀σ ∈ A∞ : ∃τ ∈ A∞ :

(1) (q0, σ) ⇓S τ ,

(2) P̂ (τ), and

(3) P̂ (σ) =⇒ σ ≈ τ

In some situations, the system-specific equivalence relation ≈ complicates our
theorems and proofs with little benefit. We have found that we can sometimes
gain more insight into the enforcement powers of program monitors by limiting our
analysis to systems in which the equivalence relation (≈) is just syntactic equality
(=). We call effective≈ enforcers operating on such systems effective= enforcers.
To obtain a formal notion of effective= enforcement, we first need to define the
syntactic equality of executions. Intuitively, σ=τ for any finite or infinite sequences
σ and τ when every prefix of σ is a prefix of τ , and vice versa.

∀σ, τ ∈ A∞ : σ=τ ⇐⇒ (∀σ′�σ : σ′�τ ∧ ∀τ ′�τ : τ ′�σ) (Equality)

An effective= enforcer is simply an effective≈ enforcer where the system-specific
equivalence relation (≈) is the system-unspecific equality relation (=).

Definition 2.4 Effective= Enforcement. An automaton S with starting state q0

effectively= enforces a property P̂ on a system with action set A if and only if
∀σ ∈ A∞ : ∃τ ∈ A∞ :

(1) (q0, σ) ⇓S τ ,

(2) P̂ (τ), and

(3) P̂ (σ) =⇒ σ=τ

Because any two executions that are syntactically equal must be semantically
equivalent, any property effectively= enforceable by some security automaton is
also effectively≈ enforceable by that same automaton. Hence, an analysis of the set
of properties effectively= enforceable by a particular kind of automaton is conserva-
tive; the set of properties effectively≈ enforceable by that same sort of automaton
must be a superset of the effectively= enforceable properties.

ACM Journal Name, Vol. V, No. N, January 2007.

10 · Jay Ligatti et al.

3. POLICIES ENFORCEABLE BY MONITORS

Now that we have set up a framework for formally reasoning about policies, prop-
erties, monitors (security automata), and enforcement, we can consider the space
of properties enforceable by program monitors. In this section, we examine the
enforcement powers of two types of monitors: a very simple but widely studied
variety that we model with truncation automata (Section 3.1) and a more sophis-
ticated variety that we model with edit automata (Section 3.2). In Section 4, we
compare the properties enforceable by these two types of monitors and show that
although the simple monitors can enforce only safety properties, it is possible to
enforce some nonsafety properties using more sophisticated monitors.

3.1 Truncation Automata

We begin by demonstrating why it is often believed that program monitors enforce
only safety properties: this belief is provably correct when considering a common
but very limited type of monitor that we model by truncation automata. A trunca-
tion automaton has only two options when it intercepts an action from the target
program: it may accept the action and make it observable, or it may halt (i.e., trun-
cate the action sequence of) the target program altogether. Schneider first defined
this model of program monitors [Schneider 2000], and other authors have similarly
focused on this simple, though limited, model when considering the properties en-
forceable by security automata [Viswanathan 2000; Kim et al. 2002; Fong 2004].
Truncation-based monitors have been used successfully to enforce a rich set of in-
teresting safety policies including access control [Evans and Twyman 1999], stack
inspection [Erlingsson and Schneider 1999; Abadi and Fournet 2003], software fault
isolation [Wahbe et al. 1993; Erlingsson and Schneider 2000], Chinese Wall [Brewer
and Nash 1989; Erlingsson 2003; Fong 2004], and one-out-of-k authorization [Fong
2004] policies.3

Although previous models of program monitors considered security automata to
be invalid-sequence recognizers (a monitor simply halts the target when it recog-
nizes a policy violation), we model program monitors more generally as sequence
transformers. This shift enables us to define more sophisticated monitors such as
edit automata (Section 3.2) but also makes it important for us to recast the pre-
vious work on truncation automata to fit our model. Moving the analysis into our
formal model allows us to refine previous work by uncovering the single computable
safety property unenforceable by any truncation (or edit) automaton. Considering
truncation automata directly in our model also enables us to precisely compare the
enforcement powers of truncation and edit automata.

3.1.1 Definition. A truncation automaton T is a finite or countably infinite
state machine (Q, q0, δ) that is defined with respect to some system with action set
A. As usual, Q specifies the possible automaton states, and q0 is the initial state.
The complete function δ : Q×A→Q ∪ {halt} specifies the transition function for
the automaton and indicates either that the automaton should accept the current

3Although some of the cited work considers monitors with powers beyond truncation, it also
specifically studies many policies that can be enforced by monitors that only have the power to

truncate.

ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 11

input action and move to a new state (when the return value is a new state), or
that the automaton should halt the target program (when the return value is halt).
For the sake of determinacy, we require that halt 6∈ Q. The operational semantics
of truncation automata are formally specified by the following rules.

(q, σ) τ−→T (q′, σ′)

(q, σ) a−→T (q′, σ′) (T-Step)

if σ = a;σ′

and δ(q, a) = q′

(q, σ) ·−→T (q, ·) (T-Stop)

if σ = a;σ′

and δ(q, a) = halt

As described in Section 2.3, we extend the single-step relation to a multi-step
relation using standard reflexivity and transitivity rules.

3.1.2 Enforceable Properties. Let us consider a lower bound on the effective≈
enforcement powers of truncation automata. Any property that is effectively=

enforceable by a truncation automaton is also effectively≈ enforceable by that same
automaton, so we can develop a lower bound on properties effectively≈ enforceable
by examining which properties are effectively= enforceable.

When given as input some σ ∈ A∞ such that P̂ (σ), a truncation automaton that
effectively= enforces P̂ must output σ. However, the automaton must also truncate
every invalid input sequence into a valid output. Any truncation of an invalid input
prevents the automaton from accepting all the actions in a valid extension of that
input. Therefore, truncation automata cannot effectively= enforce any property in
which an invalid execution can be a prefix of a valid execution. This is exactly the
definition of safety properties, so it is clear that truncation automata effectively=

enforce only safety properties.
Past research claimed to equate the enforcement power of truncation automata

with the set of computable safety properties [Viswanathan 2000; Kim et al. 2002].
We improve previous work by showing that there is exactly one computable safety
property unenforceable by any sound security automaton: the unsatisfiable safety
property that considers all executions invalid. A monitor in our framework cannot
enforce such a property because there is no valid output sequence that could be
produced in response to an invalid input sequence. To prevent this case and to
ensure that truncation automata can behave correctly on targets that generate no
actions, we require that the empty sequence satisfies any property we are interested
in enforcing. We often use the term reasonable to describe computable properties
P̂ such that P̂ (·).

Definition 3.1 Reasonable Property. A property P̂ on a system with action set
A is reasonable if and only the following conditions hold.

(1) P̂ (·)
ACM Journal Name, Vol. V, No. N, January 2007.

12 · Jay Ligatti et al.

(2) ∀σ ∈ A? : P̂ (σ) is decidable

The following theorem states that truncation automata effectively= enforce ex-
actly the set of reasonable safety properties.

Theorem 3.2 Effective= T∞-Enforcement. A property P̂ on a system with
action set A can be effectively= enforced by some truncation automaton T if and
only if the following constraints are met.

(1) ∀σ ∈ A∞ : ¬P̂ (σ) =⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ) (Safety)

(2) P̂ (·)
(3) ∀σ ∈ A? : P̂ (σ) is decidable

Proof. (If Direction) We construct a truncation automaton T that effectively=

enforces any such P̂ as follows.

—States: Q = A? (the sequence of actions seen so far)
—Start state: q0 = · (the empty sequence)

—Transition function: δ(σ, a) =
{

σ; a if P̂ (σ; a)
halt otherwise

This transition function is computable because P̂ is decidable over all finite-length
executions.

T maintains the invariant IP̂ (q) on states q = σ that exactly σ has been output
from T , (q0, σ) ⇓T σ, and ∀σ′�σ : P̂ (σ′). The automaton can initially establish
IP̂ (q0) because q0 = ·, (q0, ·) ⇓T ·, and P̂ (·). A simple inductive argument on the
length of σ suffices to show that the invariant is maintained for all (finite-length)
prefixes of all inputs.

Let σ ∈ A∞ be the input to T . If ¬P̂ (σ) then by the safety condition in the
theorem statement, ∃σ′�σ.¬P̂ (σ′). By IP̂ (σ′), T can never enter the state for this
σ′ and must therefore halt on input σ. Let τ be the final state reached on input
σ. By IP̂ (τ) and the fact that T halts (ceases to make transitions) after reaching
state τ , we have P̂ (τ) and (q0, σ) ⇓T τ .

If, on the other hand, P̂ (σ) then suppose for the sake of obtaining a contradiction
that T on input σ does not accept and output every action of σ. By the definition of
its transition function, T must halt in some state σ′ when examining some action a
(where σ′; a�σ) because ¬P̂ (σ′; a). Combining this with the safety condition given
in the theorem statement implies that ¬P̂ (σ), which is a contradiction. Hence, T
accepts and outputs every action of σ when P̂ (σ), so (q0, σ) ⇓T σ. In all cases, T
effectively= enforces P̂ .

(Only-If Direction). Consider any σ ∈ A∞ such that ¬P̂ (σ) and suppose for the
sake of obtaining a contradiction that ∀σ′�σ : ∃τ�σ′ : P̂ (τ). Then for all prefixes
σ′ of σ, T must accept and output every action of σ′ because σ′ may be extended to
the valid input τ , which must be emitted verbatim. This implies by the definition
of ⇓T that (q0, σ) ⇓T σ (where q0 is the initial state of T), which is a contradiction
because T cannot effectively= enforce P̂ on σ when ¬P̂ (σ) and (q0, σ) ⇓T σ. Hence,
our assumption was incorrect and the first constraint given in the theorem must
hold.
ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 13

Also, if ¬P̂ (·) then T cannot effectively= enforce P̂ on an empty execution be-
cause (q0, ·) ⇓T · for all T . Therefore, P̂ (·).

Finally, given σ ∈ A?, we can decide P̂ (σ) by checking whether T outputs exactly
σ on input σ. Because T effectively= enforces P̂ , P̂ (σ) ⇐⇒ (q0, σ) ⇓T σ. This
is a decidable procedure because T ’s transition function is computable and σ has
finite length.

We next delineate the properties effectively≈ enforceable by truncation automata.
As mentioned above, the set of properties truncation automata effectively= enforce
provides a lower bound for the set of effectively≈ enforceable properties; a candidate
upper bound is the set of properties P̂ that satisfy the following extended safety
constraint.

∀σ ∈ A∞ : ¬P̂ (σ) =⇒ ∃σ′�σ : ∀τ�σ′ : (¬P̂ (τ) ∨ τ ≈ σ′) (T-Safety)

This is an upper bound because a truncation automaton T that effectively≈ enforces
P̂ must halt at some finite point (having output σ′) when its input (σ) violates P̂ ;
otherwise, T accepts every action of the invalid input. When T halts, all extensions
(τ) of its output must either violate P̂ or be equivalent to its output; otherwise,
there is a valid input for which T fails to output an equivalent sequence.

Actually, as the following theorem shows, this upper bound is almost tight. We
simply have to add computability restrictions on the property to ensure that a
truncation automaton can decide when to halt the target.

Theorem 3.3 Effective≈ T∞-Enforcement. A property P̂ on a system with
action set A can be effectively≈ enforced by some truncation automaton T if and
only if there exists a decidable predicate D over A? such that the following con-
straints are met.

(1) ∀σ ∈ A∞ : ¬P̂ (σ) =⇒ ∃σ′�σ : D(σ′)
(2) ∀(σ′; a) ∈ A? : D(σ′; a) =⇒ (P̂ (σ′) ∧ ∀τ�(σ′; a) : P̂ (τ) =⇒ τ ≈ σ′)
(3) ¬D(·)

Proof. (If Direction) We first note that the first and third constraints imply
that P̂ (·), as there can be no prefix σ′ of the empty sequence such that D(σ′). We
next construct a truncation automaton T that, given decidable predicate D and
property P̂ , effectively≈ enforces P̂ when the constraints in the theorem statement
are met.

—States: Q = A? (the sequence of actions seen so far)
—Start state: q0 = · (the empty sequence)

—Transition function: δ(σ, a) =
{

σ; a if ¬D(σ; a)
halt otherwise

This transition function is computable because D is decidable.

T maintains the invariant IP̂ (q) on states q = σ that exactly σ has been output
from T , (q0, σ) ⇓T σ, and ∀σ′�σ : ¬D(σ′). The automaton can initially establish
IP̂ (q0) because q0 = ·, (q0, ·) ⇓T ·, and ¬D(·). A simple inductive argument on the

ACM Journal Name, Vol. V, No. N, January 2007.

14 · Jay Ligatti et al.

length of σ suffices to show that the invariant is maintained for all (finite-length)
prefixes of all inputs.

Let σ ∈ A∞ be the input to T . We first consider the case where ¬P̂ (σ) and show
that T effectively≈ enforces P̂ on σ. By constraint 1 in the theorem statement,
∃σ′�σ : D(σ′), so IP̂ ensures that T must halt when σ is input (before entering state
σ′). Let τ be the final state T reaches on input σ before halting when considering
action a. By IP̂ (τ), we have (q0, σ) ⇓T τ . Also, since D(τ ; a) forced T to halt,
constraint 2 in the theorem statement ensures that P̂ (τ).

We split the case where P̂ (σ) into two subcases. If T never truncates input
σ then T outputs every prefix of σ and only prefixes of σ, so by the definition
of ⇓T , (q0, σ) ⇓T σ. Because P̂ (σ) and σ ≈ σ, T effectively≈ enforces P̂ in this
subcase. On the other hand, if T truncates input σ, it does so in some state σ′ while
making a transition on action a (hence, σ′; a�σ) because D(σ′; a). In this subcase,
IP̂ (σ′) implies (q0, σ) ⇓T σ′. Also, since D(σ′; a) forced T to halt, constraint 2
in the theorem statement ensures that P̂ (σ′) and σ′ ≈ σ. Therefore, T correctly
effectively≈ enforces P̂ in all cases.

(Only-If Direction). Given some truncation automaton T , we define D over A?.
Let D(·) be false, and for all (σ; a) ∈ A? let D(σ; a) be true if and only if T outputs
exactly σ on input σ; a (when run to completion). Because the transition function
of T is computable and D is only defined over finite sequences, D is a decidable
predicate. Moreover, because T effectively≈ enforces P̂ , if it outputs exactly σ on
input σ; a then the fact that T halts rather than accepting a, combined with the
definition of effective≈ enforcement, implies that P̂ (σ)∧∀τ�σ; a : P̂ (τ) =⇒ τ ≈ σ.
Our definition of D thus satisfies the second constraint enumerated in the theorem.

Finally, consider any σ ∈ A∞ such that ¬P̂ (σ) and suppose for the sake of
obtaining a contradiction that ∀σ′�σ : ¬D(σ′). Then by our definition of D, T
cannot halt on any prefix of σ, so it must accept every action in every prefix. This
implies by the definition of ⇓T that (q0, σ) ⇓T σ (where q0 is the initial state of T),
which is a contradiction because T cannot effectively≈ enforce P̂ on σ when ¬P̂ (σ)
and (q0, σ) ⇓T σ. Hence, our assumption was incorrect and the first constraint
given in the theorem must also hold.

On practical systems, it is likely uncommon that the property requiring enforce-
ment and the system’s relation of semantic equivalence are so broadly defined that
some invalid execution has a prefix that not only can be extended to a valid execu-
tion, but that is also equivalent to all valid extensions of the prefix. We therefore
consider the set of properties detailed in the theorem of Effective= T∞-Enforcement
(i.e., reasonable safety properties) more indicative of the true enforcement power
of truncation automata.

3.2 Edit Automata

We now consider the enforcement capabilities of a stronger sort of security automa-
ton called the edit automaton. We analyze the enforcement powers of edit automata
and find that they can effectively= enforce an interesting, new class of properties
that we call infinite renewal properties.
ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 15

3.2.1 Definition. An edit automaton E is a triple (Q, q0, δ) defined with respect
to some system with action set A. As with truncation automata, Q is the possibly
countably infinite set of states, and q0 is the initial state. In contrast to truncation
automata, the complete transition function δ of an edit automaton has the form
δ : Q×A→Q× (A ∪ {·}). The transition function specifies, when given a current
state and input action, a new state to enter and either an action to insert into
the output stream (without consuming the input action) or the empty sequence to
indicate that the input action should be suppressed (i.e., consumed from the input
without being made observable). In other work, we have defined edit automata
that can additionally perform the following transformations in a single step: insert a
finite sequence of actions, accept the current input action, or halt the target [Ligatti
et al. 2005a]. However, all of these transformations can be expressed in terms
of suppressing and inserting single actions. For example, an edit automaton can
halt a target by suppressing all future actions of the target; an edit automaton
accepts an action by inserting and then suppressing that action (first making the
action observable and then consuming it from the input). Although in practice
these transformations would each be performed in a single step, we have found
the minimal operational semantics containing only the two rules shown below more
amenable to formal reasoning. Explicitly including the additional rules in the model
would not invalidate any of our results.

(q, σ) τ−→E (q′, σ′)

(q, σ) a′

−→E (q′, σ) (E-Ins)
if σ = a;σ′

and δ(q, a) = (q′, a′)

(q, σ) ·−→E (q′, σ′) (E-Sup)
if σ = a;σ′

and δ(q, a) = (q′, ·)

As with truncation automata, we extend the single-step semantics of edit au-
tomata to a multi-step semantics with the rules for reflexivity and transitivity.

3.2.2 Enforceable Properties. Edit automata are powerful property enforcers be-
cause they can suppress a sequence of potentially illegal actions and later, if the
sequence is determined to be legal, just re-insert it. Essentially, the monitor feigns
to the target that its requests are being accepted, although none actually are, un-
til the monitor can confirm that the sequence of feigned actions is valid. At that
point, the monitor inserts all of the actions it previously feigned accepting. This
is the same idea implemented by intentions files in database transactions [Paxton
1979]. Monitoring systems like virtual machines can also be used in this way, feign-
ing execution of a sequence of the target’s actions and only making the sequence
observable when it is known to be valid.

As we did for truncation automata, we develop a lower bound on the set of prop-
erties that edit automata effectively≈ enforce by considering the properties they

ACM Journal Name, Vol. V, No. N, January 2007.

16 · Jay Ligatti et al.

effectively= enforce. Using the above-described technique of suppressing invalid
inputs until the monitor determines that the suppressed input obeys a property,
edit automata can effectively= enforce any reasonable infinite renewal (or simply
renewal) property. A renewal property is one in which every valid infinite-length
sequence has infinitely many valid prefixes, and conversely, every invalid infinite-
length sequence has only finitely many valid prefixes. For example, a property P̂
may be satisfied only by executions that contain the action a. This is a renewal
property because valid infinite-length executions contain an infinite number of valid
prefixes (in which a appears) while invalid infinite-length executions contain only a
finite number of valid prefixes (in fact, zero). This P̂ is also a liveness property be-
cause any invalid finite execution can be made valid simply by appending the action
a. Although edit automata cannot enforce this P̂ because ¬P̂ (·), in Section 4.2 we
will recast this example as a reasonable “eventually audits” policy and show several
more detailed examples of renewal properties enforceable by edit automata.

A property P̂ is an infinite renewal property on a system with action set A if
and only if the following is true.

∀σ ∈ Aω : P̂ (σ) ⇐⇒ {σ′�σ | P̂ (σ′)} is an infinite set (Renewal1)

It will often be easier to reason about renewal properties without relying on
infinite set cardinality. We make use of the following equivalent definition in formal
analyses.

∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)

If we are given a reasonable renewal property P̂ , we can construct an edit au-
tomaton that effectively= enforces P̂ using the technique of feigning acceptance
(i.e., suppressing actions) until the automaton has seen some legal prefix of the in-
put (at which point the suppressed actions can be made observable). This technique
ensures that the automaton eventually outputs every valid prefix, and only valid
prefixes, of any input execution. Because P̂ is a renewal property, the automaton
therefore outputs all prefixes, and only prefixes, of a valid input while outputting
only the longest valid prefix of an invalid input. Hence, the automaton correctly
effectively= enforces P̂ . The following theorem formally states this result.

Theorem 3.4 Lower Bound Effective= E∞-Enforcement. A property P̂
on a system with action set A can be effectively= enforced by some edit automaton
E if the following constraints are met.

(1) ∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)

(2) P̂ (·)
(3) ∀σ ∈ A? : P̂ (σ) is decidable

Proof. We construct an edit automaton E that effectively= enforces any such
P̂ as follows.

—States: Q = A?×A?×{0, 1} (the sequence of actions output so far, the sequence
of actions currently suppressed, and a flag indicating whether the suppressed
actions need to be inserted)

ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 17

—Start state: q0 = (·, ·, 0) (nothing has been output or suppressed)

—Transition function:

δ((τ, σ, f), a) =

((τ, σ; a, 0), ·) if f = 0 ∧ ¬P̂ (τ ;σ; a)
((τ ; a′, σ′, 1), a′) if f = 0 ∧ P̂ (τ ;σ; a) ∧ σ; a=a′;σ′

((τ ; a′, σ′, 1), a′) if f = 1 ∧ σ=a′;σ′

((τ, ·, 0), ·) if f = 1 ∧ σ=·
This transition function is computable because P̂ is decidable over all finite-length
executions.

E maintains the invariant IP̂ (q) on states q = (τ, σ, 0) that exactly τ has been
output, τ ;σ is the input that has been processed, (q0, τ ;σ) ⇓E τ , and τ is the longest
prefix of τ ;σ such that P̂ (τ). Similarly, E maintains IP̂ (q) on states q = (τ, σ, 1)
that exactly τ has been output, all of τ ;σ except the action on which E is currently
making a transition is the input that has been processed, P̂ (τ ;σ), and E will finish
processing the current action when all of τ ;σ has been output, the current action
has been suppressed, and E is in state (τ ;σ, ·, 0). The automaton can initially
establish IP̂ (q0) because q0 = (·, ·, 0), (q0, ·) ⇓E ·, and P̂ (·). A simple inductive
argument on the transition relation suffices to show that E maintains the invariant
in every state it reaches.

Let σ ∈ A∞ be the input to the automaton E. If ¬P̂ (σ) and σ ∈ A? then by the
automaton invariant, E consumes all of input σ and halts in some state (τ, σ′, 0)
such that (q0, σ) ⇓E τ and P̂ (τ). Hence, E effectively= enforces P̂ in this case. If
¬P̂ (σ) and σ ∈ Aω then by the renewal condition in the theorem statement, there
must be some prefix σ′ of σ such that for all longer prefixes τ of σ, ¬P̂ (τ). Thus,
by the transition function of E, the invariant of E, and the definition of ⇓E , E
on input σ outputs only some finite τ ′ such that P̂ (τ ′) and (q0, σ) ⇓E τ ′ (and E
suppresses all actions in σ after outputting τ ′).

Next consider the case where P̂ (σ). If σ ∈ A? then by the automaton invariant,
E on input σ must halt in state (σ, ·, 0), where (q0, σ) ⇓E σ. E thus effectively=

enforces P̂ in this case. If P̂ (σ) and σ ∈ Aω then the renewal constraint and the
automaton invariant ensure that E on input σ outputs every prefix of σ and only
prefixes of σ. Hence, (q0, σ) ⇓E σ. In all cases, E correctly effectively= enforces
P̂ .

It would be reasonable to expect that the set of renewal properties also represents
an upper bound on the properties effectively= enforceable by edit automata. After
all, an effective= automaton cannot output an infinite number of valid prefixes of
an invalid infinite-length input σ without outputting σ itself. In addition, on a
valid infinite-length input τ , an effective= automaton must output infinitely many
prefixes of τ , and whenever it finishes processing an input action, its output must
be a valid prefix of τ because there may be no more input (i.e., the target may not
generate more actions).

However, there is a corner case in which an edit automaton can effectively=

enforce a valid infinite-length execution τ that has only finitely many valid prefixes.
If, after processing a prefix of τ , the automaton can decide that τ is the only valid
extension of this prefix, then the automaton can cease processing input and enter

ACM Journal Name, Vol. V, No. N, January 2007.

18 · Jay Ligatti et al.

an infinite loop to insert the remaining actions of τ . While in this infinite loop,
the automaton need not output infinitely many valid prefixes, since it is certain to
be able to extend the current (invalid) output into an infinite-length valid output
sequence.

The following theorem presents the tight boundary for effective= enforcement of
properties by edit automata, including the corner case described above. Because
we believe that the corner case adds relatively little to the enforcement capabilities
of edit automata, we only sketch the proof.

Theorem 3.5 Effective= E∞-Enforcement. A property P̂ on a system with
action set A can be effectively= enforced by some edit automaton E if and only if
the following constraints are met.

(1) ∀σ ∈ Aω : P̂ (σ) ⇐⇒

∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)
∨ P̂ (σ) ∧
∃σ′�σ : ∀τ�σ′ : P̂ (τ) =⇒ τ=σ ∧
the existence and actions of σ
are computable from σ′

(2) P̂ (·)
(3) ∀σ ∈ A? : P̂ (σ) is decidable

Proof. (If Direction) We sketch the construction of an edit automaton E that
effectively= enforces any such P̂ as follows.

—States: Q = A? × A? (the sequence of actions output so far paired with the
sequence of actions suppressed since the previous insertion)

—Start state: q0 = (·, ·) (nothing has been output or suppressed)
—Transition function (for simplicity, we abbreviate δ):

Consider processing the action a in state (τ ′, σ′).
(A). If we can compute from τ ′;σ′ the existence and actions of some σ ∈ Aω

such that ∀τ�(τ ′;σ′) : P̂ (τ) =⇒ τ=σ, enter an infinite loop that inserts one by
one all actions necessary to output every prefix of σ.
(B). Otherwise, if P̂ (τ ′;σ′; a) then insert σ′; a (one action at a time), suppress
a, and continue in state (τ ′;σ′; a, ·).
(C). Otherwise, suppress a and continue in state (τ ′, σ′; a).

This automaton is an informal version of the one constructed in the “if” direction
of the proof of Theorem 3.4, except for the addition of transition (A), and E
effectively= enforces P̂ for the same reasons given there. The only difference is that
E can insert an infinite sequence of actions if it computes that only that sequence
of actions can extend the current input to satisfy P̂ . In this case, E continues to
effectively= enforce P̂ because its output satisfies P̂ and equals any valid input
sequence.

(Only-If Direction). Consider any σ ∈ Aω such that P̂ (σ). By the definition
of effective= enforcement, (q0, σ) ⇓E σ, where q0 is the initial state of E. By
the definitions of ⇓E and =, E must output all prefixes of σ and only prefixes of σ
when σ is input. Assume for the sake of obtaining a contradiction that the extended
ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 19

renewal constraint is untrue for σ. This implies that there is some valid prefix σ′

of σ after which all longer prefixes of σ violate P̂ . After outputting σ′ on input
σ′, E cannot output any prefix of σ without outputting every prefix of σ (if it did,
its output would violate P̂). But because the extended renewal constraint does
not hold on σ by assumption, either (1) more than one valid execution will always
extend the automaton’s input or (2) E can never compute or emit all prefixes of
σ. Therefore, E cannot output every prefix of σ after outputting σ′, so E fails to
effectively= enforce P̂ on this σ. Our assumption was therefore incorrect, and the
renewal constraint must hold.

Next consider any σ ∈ Aω such that ¬P̂ (σ). The extended portion of the re-
newal constraint trivially holds because ¬P̂ (σ). Assume for the sake of obtaining a
contradiction that the rest of the renewal constraint does not hold on σ, implying
that there are an infinite number of prefixes of σ that satisfy P̂ . Because E is an
effective= enforcer and can only enforce P̂ on sequences obeying P̂ by emitting them
verbatim, E must eventually output every prefix of σ and only prefixes of σ when
σ is input. Hence, (q0, σ) ⇓E σ, which is a contradiction because E effectively=

enforces P̂ and ¬P̂ (σ). Our assumption that the renewal constraint does not hold
is therefore incorrect.

Also, P̂ (·) because E could otherwise not effectively= enforce P̂ when input the
empty sequence.

Finally, we decide P̂ (σ) for all σ ∈ A? using the same procedure described in the
“Only-If” direction of the proof of Theorem 3.2.

We have found it difficult to precisely characterize the properties effectively≈
enforceable by edit automata. Unfortunately, the simplest way to specify this set
appears to be to encode the semantics of edit automata into recursive functions
that operate over streams of actions. Then, we can reason about the relationship
between input and output sequences of such functions just as the definition of
effective≈ enforcement requires us to reason about the relationship between input
and output sequences of automata. Our final theorem takes this approach; we
present it for completeness.

Theorem 3.6 Effective≈ E∞-Enforcement. Let repls be a decidable func-
tion repls : A? × A? → A ∪ {·}. Then R?

repls is a decidable function R?
repls :

A? × A? × A? → A? parameterized by repls and inductively defined as follows,
where all metavariables are universally quantified.

—R?
repls(·, σ, τ) = τ

—(repls(σ; a, τ) = ·) =⇒ R?
repls(a;σ′, σ, τ ′) = R?

repls(σ
′, σ; a, τ ′)

—(repls(σ; a, τ) = a′) =⇒ R?
repls(a;σ′, σ, τ ′) = R?

repls(a;σ′, σ, τ ′; a′)

A property P̂ on a system with action set A can be effectively≈ enforced by some
edit automaton E if and only if there exists a decidable repls function (as described
above) such that for all (input sequences) σ ∈ A∞ there exists (output sequence)
τ ∈ A∞ such that the following constraints are met.

(1) ∀σ′�σ : ∀τ ′ ∈ A? : (R?
repls(σ

′, ·, ·) = τ ′) =⇒ τ ′�τ

ACM Journal Name, Vol. V, No. N, January 2007.

20 · Jay Ligatti et al.

(2) ∀τ ′�τ : ∃σ′�σ : R?
repls(σ

′, ·, ·) = τ ′

(3) P̂ (τ)
(4) P̂ (σ) =⇒ σ ≈ τ

Proof. Intuitively, repls(σ, τ) = a (or ·) iff a is the next action to be output
(or suppressed) by an edit automaton when σ is the automaton input and τ is the
automaton output so far. Also, R?

repls(σ, σ′, τ ′) = τ iff the overall output of an edit
automaton whose transition function is guided by repls is τ when σ remains to be
processed, σ′ has already been processed, and τ ′ has already been output.

(If Direction). Given repls, we construct an edit automaton E that effectively≈
enforces any such P̂ as follows.

—States: Q = A? ×A? (the input processed and the output emitted so far)
—Start state: q0 = (·, ·) (nothing processed or output)

—Transition function: δ((σ, τ), a) =
{

((σ, τ ; a′), a′) if repls(σ; a, τ) = a′

((σ; a, τ), ·) otherwise

For all prefixes σ′ of the input σ to E, E emits a τ ′ such that R?
repls(σ

′, ·, ·) = τ ′.
The proof is by induction on the length of σ′, using the definition of R?

repls. Then,
by the constraints in the theorem statement and the definitions of ⇓E and effective≈
enforcement, E effectively≈ enforces P̂ .

(Only-If Direction). Define repls(σ, τ) as follows. Run E on input σ until τ is
output (if τ is not a prefix of the output then arbitrarily define repls(σ, τ) = ·),
and then continue running E until either all input is consumed (i.e., suppressed) or
another action a′ is output. In the former case, let repls(σ, τ) = · and in the latter
case repls(σ, τ) = a′. D is decidable because σ and τ have finite lengths and the
transition function of E is computable.

By the definitions of repls and R?
repls, we have the following. ∀σ, τ ∈ A? :

(R?
repls(σ, ·, ·) = τ) ⇐⇒ (∃q′ : (q0, σ) τ=⇒E (q′, ·)), where q0 is the initial state

of E. Combining this with the definition of ⇓E and the fact that E effectively≈
enforces P̂ ensures that all of the constraints given in the theorem statement are
satisfied.

As with truncation automata, we believe that the theorems related to edit au-
tomata acting as effective= enforcers more naturally capture their inherent power
than does the theorem of effective≈ enforcement. Effective= enforcement provides
an elegant lower bound for what can be effectively≈ enforced in practice.

Limitations. In addition to standard assumptions of program monitors, such as
that a target cannot circumvent or corrupt a monitor, our theoretical model makes
assumptions particularly relevant to edit automata that are sometimes violated in
practice. Most importantly, our model assumes that security automata have the
same computational capabilities as the system that observes the monitor’s output.
If an action violates this assumption by requiring an outside system in order to
be executed, it cannot be feigned (i.e., suppressed) by the monitor. For example,
it would be impossible for a monitor to feign sending email, wait for the target
ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 21

to receive a response to the email, test whether the target does something invalid
with the response, and then decide to undo sending email in the first place. Here,
the action for sending email has to be made observable to systems outside of the
monitor’s control in order to be executed, so this is an unsuppressible action. A
similar limitation arises with time-dependent actions, where an action cannot be
feigned (i.e., suppressed) because it may behave differently if made observable later.
In addition to these sorts of unsuppressible actions, a system may contain actions
uninsertable by monitors because, for example, the monitors lack access to secret
keys that must be passed as parameters to the actions. In the future, we plan to
explore the usefulness of including sets of unsuppressible and uninsertable actions
in the specification of systems. We might be able to harness some of our other
work [Ligatti et al. 2005a], which defined security automata limited to inserting
(insertion automata) or suppressing (suppression automata) actions, toward this
goal.

4. INFINITE RENEWAL PROPERTIES

In this section, we examine some interesting aspects of the class of infinite renewal
properties. We compare renewal properties to safety and liveness properties and
provide several high-level examples of renewal properties that are neither safety nor
liveness properties. Section 5 contains lower-level examples of concrete nonsafety
policies that we have enforced in an implemented system.

4.1 Renewal, Safety, and Liveness

The most obvious way in which safety and infinite renewal properties differ is that
safety properties place restrictions on finite executions (invalid finite executions
must have some prefix after which all extensions are invalid), while renewal prop-
erties place no restrictions on finite executions. Thus, if we consider systems that
only exhibit finite executions, edit automata can enforce every reasonable prop-
erty [Ligatti et al. 2005a]. Without infinite-length executions, every property is a
renewal property.

Moreover, an infinite-length renewal execution can be valid even if it has infinitely
many invalid prefixes (as long as it also has infinitely many valid prefixes), but a
valid safety execution can contain no invalid prefixes. Similarly, although invalid
infinite-length renewal executions can have prefixes that alternate a finite number
of times between being valid and invalid, invalid safety executions must contain
some finite prefix before which all prefixes are valid and after which all prefixes are
invalid. Hence, every safety property is a renewal property. Given any system with
action set A, it is easy to construct a nonsafety renewal property P̂ by choosing an
element a in A and letting P̂ (·), P̂ (a; a), but ¬P̂ (a).

There are renewal properties that are not liveness properties (e.g., the property
that is only satisfied by the empty sequence), and there are liveness properties that
are not renewal properties (e.g., the nontermination property only satisfied by infi-
nite executions). Some renewal properties, such as the one only satisfied by the
empty sequence and the sequence a; a, are neither safety nor liveness. Although
Alpern and Schneider [Alpern and Schneider 1985] showed that exactly one prop-
erty is both safety and liveness (the property satisfied by every execution), some
interesting liveness properties are also renewal properties. We examine examples

ACM Journal Name, Vol. V, No. N, January 2007.

22 · Jay Ligatti et al.

of such renewal properties in the following subsection.

4.2 Example Properties

We next present several examples of renewal properties that are not safety prop-
erties, as well as some examples of nonrenewal properties. By the theorems in
Sections 3.1.2 and 3.2.2, the nonsafety renewal properties are effectively= enforce-
able by edit automata but not by truncation automata. Moreover, the proof of
Theorem 3.4 shows how to construct an edit automaton to enforce any of the re-
newal properties described in this subsection. Later, in Section 5, we examine
additional nonsafety properties and show how they can be specified and enforced
using practical program monitors.

Renewal properties. Suppose we wish to constrain a user’s interaction with a
computer system. A user may execute any sequence of actions that does not involve
opening files but must eventually log out. The process of executing non-file-open
actions and then logging out may repeat indefinitely, so we might write the requisite
property P̂ more specifically as (a1

?; a2)∞, where a2 ranges over all actions for
logging out, a3 over actions for opening files, and a1 over all other actions.4 This P̂
is not a safety property because a finite sequence of only a1 events disobeys P̂ but
can be extended (by appending a2) to obey P̂ . Our P̂ is also not a liveness property
because there are finite executions that cannot be extended to satisfy P̂ , such as
the sequence containing only a3. However, this nonsafety, nonliveness property is
a renewal property because infinite-length executions are valid if and only if they
contain infinitely many (valid) prefixes of the form (a1

?; a2)
?.

Interestingly, if we enforce the policy described above on a system that only has
actions a1 and a2, we remove the safety aspect of the property to obtain a liveness
property that is also a renewal property. On the system {a1, a2}, the property
satisfied by any execution matching (a1

?; a2)∞ is a liveness property because any
illegal finite execution can be made legal by appending a2. The property is still a
renewal property because an infinite execution is invalid if and only if it contains a
finite number of valid prefixes after which a2 never appears.

There are other interesting properties that are both liveness and renewal. For
example, consider a property P̂ specifying that an execution that does anything
must eventually perform an audit by executing some action a. This is similar
to the example renewal property given in Section 3.2.2. Because we can extend
any invalid finite execution with the audit action to make it valid, P̂ is a liveness
property. It is also a renewal property because an infinite-length valid execution
must have infinitely many prefixes in which a appears, and an infinite-length invalid
execution has no valid prefix (except the empty sequence) because a never appears.
Note that for this “eventually audits” renewal property to be enforceable by an edit
automaton, we have to consider the empty sequence valid.

As briefly mentioned in Section 3.2.2, edit automata derive their power from be-
ing able to operate in a way similar to intentions files in database transactions. At
a high level, any transaction-based property is a renewal property. Let τ range over

4As Alpern and Schneider note [Alpern and Schneider 1985], this sort of P̂ might be expressed

with the (strong) until operator in temporal logic; event a1 occurs until event a2.

ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 23

finite sequences of single, valid transactions. A transaction-based policy could then
be written as τ∞; a valid execution is one containing any number of valid transac-
tions. Such transactional properties can be nonsafety because executions may be
invalid within a transaction but become valid at the conclusion of that transaction.
Transactional properties can also be nonliveness when there exists a way to irre-
mediably corrupt a transaction (e.g., every transaction beginning with start ;self-
destruct is illegal). Nonetheless, transactional properties are renewal properties
because infinite-length executions are valid if and only if they contain an infinite
number of prefixes that are valid sequences of transactions. The renewal properties
described above as matching sequences of the form (a1

?; a2)∞ can also be viewed
as transactional; each transaction must match a1

?; a2.

Nonrenewal properties. An example of an interesting liveness property that is
not a renewal property is general availability. Suppose that we have a system with
actions oi for opening (or acquiring) and ci for closing (or releasing) some resource
i. Our policy P̂ is that for all resources i, if i is opened, it must eventually be closed.
This is a liveness property because any invalid finite sequence can be made valid sim-
ply by appending actions to close every open resource. However, P̂ is not a renewal
property because there are valid infinite sequences, such as o1; o2; c1; o3; c2; o4; c3; ...,
that do not have an infinite number of valid prefixes. An edit automaton can only
enforce this sort of availability property when the number of resources is limited
to one (in this case, the property is transactional: valid transactions begin with
o1 and end with c1). Even on a system with two resources, infinite sequences like
o1; o2; c1; o1; c2; o2; c1; o1; ... prevent this resource-availability property from being
a renewal property. Please note, however, that we have been assuming effective=

enforcement; in practice we might find that o1; o2; c1 ≈ o1; c1; o2, in which case edit
automata can effectively≈ enforce these sorts of availability properties.

Of course, there are many nonrenewal, nonliveness properties as well. We can
arrive at such properties by combining a safety property with any property that is
a liveness but not a renewal property. For example, termination is not a renewal
property because invalid infinite sequences have an infinite number of valid prefixes.
Termination is however a liveness property because any finite execution is valid.
When we combine this liveness, nonrenewal property with a safety property, such
as that no accesses are made to private files, we arrive at the nonliveness, nonrenewal
property in which executions are valid if and only if they terminate and never access
private files. The requirement of termination prevents this from being a renewal
property; moreover, this property is outside the upper bound of what is effectively=

enforceable by edit automata.
Figure 1 summarizes the results of the preceding discussion and that of Sec-

tion 4.1. The Trivial property in Figure 1 considers all executions legal and is the
only property in the intersection of safety and liveness properties.

5. ENFORCING NONSAFETY POLICIES WITH PRACTICAL MONITORS

Section 4 showed that program monitors modeled by edit automata can enforce
some nonsafety properties and provided high-level examples of such properties.
This section details lower-level nonsafety monitoring policies that we have imple-
mented and enforced; these examples demonstrate the practical applicability of our

ACM Journal Name, Vol. V, No. N, January 2007.

24 · Jay Ligatti et al.

All Properties

Renewal

Safety Liveness

1

2

3

4

5

6

7
8

9

Nontermination

Resource availability

Stack inspection

Log out and never open files

Property 4 on system without

file-open actions

Eventually audits

Transaction property

Termination +

file access control

Trivial

1

2

3

4

5

6

7

8

9

Legend:

Fig. 1. Relationships between safety, liveness, and renewal properties.

theoretical analysis.
In Section 5.1, we provide an overview of Polymer, the system in which we have

implemented concrete nonsafety policies. This overview should suffice for under-
standing the basic concepts underlying the example policies presented in Section 5.2.
We refer interested readers to other papers for more details regarding the Polymer
language and enforcement system [Bauer et al. 2005a; Ligatti 2006].

5.1 Polymer Overview

Polymer is a language and system for enforcing run-time policies. It allows users
to specify policies describing the behavior of Java programs, and it compiles those
policies into Java bytecode monitors. When users execute untrusted Java applica-
tions, Polymer rewrites the class files used by the untrusted applications to invoke
the previously compiled monitors. This technique of bytecode (or binary) rewrit-
ing to invoke run-time monitors is a common implementation strategy [Erlingsson
2003; Evans 2000; Hamlen 2006].

A user specifies a Polymer policy by writing a new class that extends Polymer’s
default Policy class. In the new policy class, the user defines two key methods:
public Sug query(Action a) and public void accept(Sug s).

The query method gets invoked immediately before a monitored method (called
the trigger action) executes, allowing the monitor to intervene and suppress or insert
actions. The Action object passed to the query method describes the about-to-
be-executed trigger action; the Sug (i.e., suggestion) object returned by the query
method is the monitor’s response to that trigger action. The types of suggestions a
monitor can make include InsSug (which inserts an action), ReplSug (which sup-
presses an action by replacing it with some precomputed return value), HaltSug
(which suppresses all future actions of the untrusted application by halting it en-
tirely), and IrrSug and OKSug (which both allow the trigger action to proceed
undisturbed).

The accept method in a Polymer policy performs state updates after the query
method has executed and returned a suggestion object. The separation of accept
ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 25

from query methods relates to Polymer’s ability to compose policies (for more
details, see [Bauer et al. 2005a]).

5.2 Example Nonsafety Policies Enforceable in Polymer

Because Polymer implements all the ways in which edit automata can react to trig-
ger actions—InsSug inserts an action, and ReplSug and HaltSug are different ways
to suppress actions (and IrrSug and OKSug are different ways to accept actions)—we
can use the Polymer system to enforce some nonsafety properties. For the remain-
der of this section we will study two reasonable and simple examples of nonsafety
policies enforceable in Polymer. The first example ensures that (hypothetical) ATM
machines generate a proper log when dispensing cash, while the second example
ensures that targets writing to a file eventually give the file satisfactory contents
(e.g., that the file obeys the required file format).

ATM-logging Policy. Let us first consider a simple ATM system for dispensing
cash. It contains the following three methods.

(1) logBegin(n) creates a log message that the ATM is about to dispense n dollars.

(2) dispense(n) causes the ATM to dispense n dollars.

(3) logEnd(n) creates a log message that the ATM just completed dispensing n
dollars.

Suppose we wish to require that the ATM machine’s (frequently updated and oc-
casionally buggy) software properly logs all cash dispensations; we will consider an
execution valid if and only if it has the form (logBegin(n); dispense(n); logEnd(n))∞.
That is, valid executions must be sequences of valid transactions, where each valid
transaction consists of logging that some amount of cash is about to be dispensed,
dispensing that cash, and then logging that that amount of cash has just been
dispensed. Our desired policy is a nonsafety, nonliveness, renewal property. It is
nonsafety because there exists an invalid execution (logBegin(20)) that prefixes
a valid execution (logBegin(20); dispense(20); logEnd(20)). It is nonliveness be-
cause some invalid execution (dispense(20)) cannot be made valid through exten-
sion. Nonetheless, this nonsafety, nonliveness property is clearly a transaction-style
renewal property (as described in Section 4.2).

We can enforce this nonsafety policy in Polymer by suppressing preliminary
logBegin and dispense actions until we are guaranteed that the current trans-
action is valid, at which point the suppressed actions get re-inserted. Figure 2
contains the AtmPolicy, which employs this enforcement technique and suppresses
actions simply by returning ReplSugs in the query method. For simplicity, we
assume in the example code that all re-inserted methods complete normally. This
frees us from worrying about exceptions being raised and program-terminating ac-
tions being called during the inserted methods, which could prevent our policy
from inserting all of the actions necessary to satisfy the property. We can remove
this simplifying assumption by modifying our policy so that it catches exceptions
raised (and done actions invoked) during execution of inserted actions but does not
allow the exceptions to propagate or the virtual machine to exit until all required
insertions have been made.

ACM Journal Name, Vol. V, No. N, January 2007.

26 · Jay Ligatti et al.

public class AtmPolicy extends Policy {
// What dollar amount is the basis for the current transaction?

private int amt = 0;

// Which state of the transaction are we in? 0=initial, 1=logBegin, 2=logBegin;dispense
private int transState = 0;

// Are we in the process of inserting suppressed methods?

private boolean isInsert = false;

public Sug query(Action a) {
aswitch (a) {
case 〈void examples.ATM.logBegin(int n)〉:

if (transState==0) return new ReplSug(null, a);
else return new HaltSug(a);

case 〈void examples.ATM.dispense(int n)〉:
if (transState==1 && amt==n) return new ReplSug(null, a);
else return new HaltSug(a);

case 〈void examples.ATM.logEnd(int n)〉:
if (transState==2 && amt==n) return new OKSug(a);

else return new HaltSug(a);

default :
if (transState 〉 0) return new HaltSug(a);

else return new IrrSug();

}
}

public void accept(Sug s) {
aswitch (s.getTrigger()) {

case 〈void examples.ATM.logBegin(int n)〉: transState = 1; amt = n; break ;
case 〈void examples.ATM.dispense(int n)〉: transState = 2;

}
if (s.isOK()) { // Transaction is valid.

isInsert = true;

examples.ATM.logBegin(amt); examples.ATM.dispense(amt);
isInsert = false;

amt = 0; transState = 0;

}
}

}

Fig. 2. Nonsafety Polymer policy ensuring that ATM cash dispensation gets logged properly.

File-contents Policy. Let us consider enforcing a property that allows files to be
written, possibly using multiple file-write operations, if and only if the file contents
eventually satisfy some predicate that is passed to the policy as a parameter. This
predicate could be satisfied, for example, if the file ends with an appropriate copy-
right notice or disclaimer. This predicate might not hold in the middle of a sequence
of writes but could be satisfied after a later write, and must hold at the end of a
sequence of file writes to ensure that every file on the system carries the proper
copyright notice. This requirement that a file contain a copyright notice is not a
safety property: we can overwrite a file’s copyright notice with other data, making
the execution invalid; however, we can extend the invalid execution to satisfy the
property by appending the proper copyright text to the file. Actually, if we assume
that the file predicate is satisfiable then this file-contents policy is a liveness prop-
ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 27

public class FilePredPolicy extends Policy {
// FilePrediate has a method for testing whether a file’s contents are OK.

private FilePredicate filePred;

// Store whether file writes are due to our inserting them.
private boolean areWeInserting = false;

public FilePredPolicy(FilePredicate filePred) {
this.filePred = filePred;

}

public Sug query(Action a) {
if (areWeInserting)

return new IrrSug(this);

aswitch (a) {
case 〈abs void absact.FileWrite(byte [] b, int off, int len)〉:

return new ReplSug(this, a, null);
case 〈abs long absact.FileRead(byte [] b, int off, int len)〉:

return new ReplSug(this, a, readWithSuppressedWrites(a));

default :
return new IrrSug(this);

}
}

public void accept(Sug s) {
aswitch (s.getTrigger()) {

case 〈abs void absact.FileWrite(byte [] b, int off, int len)〉:
// We are suppressing a write; next insert all suppressed writes that need to be
// inserted (performInsertions uses filePred to determine what must be inserted).

areWeInserting = true;

performInsertions(s.getTrigger());
areWeInserting = false;

}
}

}

Fig. 3. Abbreviated nonsafety Polymer policy ensuring that files are written satisfactorily.

erty: any invalid finite execution becomes valid when the target executes whatever
file-write operations satisfy the file predicate.

As expected, we enforce this nonsafety, liveness, file-contents property by sup-
pressing (feigning) writes to files until we can ensure their validity, at which point
we re-insert all suppressed writes to the now-valid file. Figure 3 contains an abbre-
viated Polymer policy that enforces this file-contents property. In its constructor,
FilePredPolicy accepts an object that implements the FilePredicate interface,
which contains a method to test file validity when given a file name and a se-
quence of writes to that file. The FilePredPolicy uses the FilePredicate in its
performInsertions method to check whether to insert a file’s suppressed writes.
The policy remembers which writes have been suppressed for each file by maintain-
ing a mapping from files to ordered lists of pending write operations. Maintenance
of this mapping occurs in the performInsertions method. In order to properly
feign file write operations, FilePredPolicy also monitors actions that read data
associated with files (i.e., file contents, lengths, and modification times), and en-

ACM Journal Name, Vol. V, No. N, January 2007.

28 · Jay Ligatti et al.

sures that the target sees files as if suppressed writes have actually executed. Hence,
our Polymer monitor effectively enforces the file-contents policy: the monitor does
not modify valid executions’ semantics (though intermediate file writes may be per-
formed later than they normally would), and the monitor ensures that all observed
executions are valid.

Practicality Constraints. This subsection has demonstrated that practical pro-
gram monitors can sometimes enforce nonsafety, and even liveness, renewal prop-
erties. The key reason we can enforce our example nonsafety properties in prac-
tice is that monitors can successfully feign dangerous logBegin, dispense, and
FileWrite actions. As described in Section 3.2.2, monitors in many situations lack
the ability to feign, or even insert, the necessary actions, so there exist many re-
newal properties unenforceable by practical program monitors. In the future, we
plan to refine our theoretical model to capture situations in which monitors lack
the full computational abilities present in the executing machine.

6. CONCLUSIONS

This article improves our understanding of the space of policies program monitors
can enforce. We conclude by summarizing our primary contributions (Section 6.1),
enumerating some directions for future work (Section 6.2), and making closing
remarks (Section 6.3).

6.1 Summary

As outlined in Section 1.2, we have made four principal contributions. First, we
have created a framework for reasoning about run-time policy enforcement. The
framework makes explicit all of our assumptions about what constitutes a policy,
a monitor, and enforcement of a policy by a monitor. Second, we have applied the
framework to delineate the policies enforceable by two models of monitors, finding
that although simple monitors enforce exactly the set of reasonable safety proper-
ties, sophisticated monitors enforce exactly the set of infinite renewal properties,
which we have introduced. Third, we have analyzed the set of renewal properties
and found that it contains some nonsafety (and even some liveness) properties;
hence, monitors can enforce some nonsafety properties. Fourth, we have validated
our formal analysis by demonstrating concrete nonsafety policies we have imple-
mented and enforced with run-time monitors in the Polymer system.

6.2 Future Work

There are many possibilities for extending our work to address open problems. We
enumerate some of the possibilities in two domains.

Practical Constraints on Theoretical Monitors. Sections 3.2.2 and 5 discuss a
practical limitation of monitors absent from our current theoretical model: mon-
itors often do not have the same computational capabilities as the machine that
executes target actions. This limitation of real monitors implies that some actions
cannot be suppressed (i.e., the monitor cannot “feign” an action), and some actions
cannot be inserted (i.e., the monitor cannot obtain information needed to invoke
an action). One easily imagined extension of our current framework is to incorpo-
rate sets of unsuppressible and uninsertable actions into system definitions and to
ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 29

analyze which properties edit automata can enforce under those conditions. This
extension would make our model more precise, though significantly more complex.

Several additional practical constraints could be placed on monitors For instance,
Fong has shown that limiting the memory available to monitors induces limits on
the properties they can enforce [Fong 2004]. We might ask similar questions of
time bounds on monitors: Are there useful properties that require super-polynomial
monitoring time to enforce? How can we add real-time constraints to our model to
reflect practical limits on the amount of real time monitors may consume, and how
do these constraints affect the enforcement of real-time policies?

Formally Linking Edit Automata with Polymer Policies. Section 5.2 included an
informal description of the ability of Polymer policies to implement edit automata:
Polymer’s InsSug inserts an action, and its ReplSug and HaltSug suppress actions
(and its IrrSug and OKSug accept actions). This implementation is simple and
intuitive, but it would be nice to have a formally proven bisimulation between
the operational semantics of edit automata and the policies expressible in a system
like Polymer. Proving such a bisimulation would be interesting because it would tie
practical monitor specifications to properties enforceable by edit automata, allowing
us to describe formally the space of policies enforceable in practice.

6.3 Closing Remarks

Given their abundance and practicality as enforcement mechanisms, it seems strange
that we understand relatively little of monitors’ actual enforcement capabilities
and have relatively primitive tools for designing, reasoning about, and implement-
ing monitors. Even basic results, such as that practical monitors can sometimes
enforce liveness properties (Section 5), surprise us.

By continuing to explore the capabilities and designs of various types of program
monitors, we hope to improve our fundamental knowledge of these important mech-
anisms and make them easier to use and verify. As a long-term goal, we would like
to see a wide variety of static and dynamic mechanisms, and the ways in which they
can be composed to enforce policies, understood so deeply that tools and techniques
will exist for generating, when possible, efficient mechanisms that provably enforce
given policies.

REFERENCES

Abadi, M. and Fournet, C. 2003. Access control based on execution history. In Proceedings of
the 10th Annual Network and Distributed System Symposium.

Alpern, B. and Schneider, F. 1987. Recognizing safety and liveness. Distributed Computing 2,

117–126.

Alpern, B. and Schneider, F. B. 1985. Defining liveness. Information Processing Letters 21, 4

(Oct.), 181–185.

Bauer, L., Ligatti, J., and Walker, D. 2002. More enforceable security policies. In Foundations

of Computer Security. Copenhagen, Denmark.

Bauer, L., Ligatti, J., and Walker, D. 2003. Types and effects for non-interfering program
monitors. In Software Security—Theories and Systems. Mext-NSF-JSPS International Sym-
posium, ISSS 2002, Tokyo, Japan, November 8-10, 2002, Revised Papers, M. Okada, B. Pierce,

A. Scedrov, H. Tokuda, and A. Yonezawa, Eds. Lecture Notes in Computer Science, vol. 2609.
Springer.

ACM Journal Name, Vol. V, No. N, January 2007.

30 · Jay Ligatti et al.

Bauer, L., Ligatti, J., and Walker, D. 2005a. Composing security policies with polymer. In

Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation. Chicago.

Bauer, L., Ligatti, J., and Walker, D. 2005b. Polymer: A language for composing run-time

security policies. http://www.cs.princeton.edu/sip/projects/polymer/.

Biba, K. J. 1975. Integrity considerations for secure computer systems. Tech. Rep. ESD-TR-76-

372, MITRE Corporation. July.

Brewer, D. F. C. and Nash, M. J. 1989. The chinese wall security policy. In Proceedings of the
IEEE Symposium on Security and Privacy. 206–214.

Büchi, J. R. 1962. On a decision method in restricted second order arithmetic. In Proceedings of
the 1960 International Congress on Logic, Methodology, and Philosophy of Science. Stanford,

1–11.

Damianou, N., Dulay, N., Lupu, E., and Sloman, M. 2001. The Ponder policy specification

language. Lecture Notes in Computer Science 1995, 18–39.

Edjlali, G., Acharya, A., and Chaudhary, V. 1998. History-based access control for mobile
code. In ACM Conference on Computer and Communications Security. 38–48.

Erlingsson, Ú. 2003. The inlined reference monitor approach to security policy enforcement.

Ph.D. thesis, Cornell University.

Erlingsson, Ú. and Schneider, F. B. 1999. SASI enforcement of security policies: A retro-

spective. In Proceedings of the New Security Paradigms Workshop. Caledon Hills, Canada,
87–95.

Erlingsson, Ú. and Schneider, F. B. 2000. IRM enforcement of Java stack inspection. In IEEE

Symposium on Security and Privacy. Oakland, CA.

Evans, D. 2000. Policy-directed code safety. Ph.D. thesis, Massachusetts Institute of Technology.

Evans, D. and Twyman, A. 1999. Flexible policy-directed code safety. In IEEE Security and

Privacy. Oakland, CA.

Fong, P. W. L. 2004. Access control by tracking shallow execution history. In IEEE Symposium

on Security and Privacy. Oakland, CA.

Hamlen, K. 2006. Security policy enforcement by automated program-rewriting. Ph.D. thesis,
Cornell University.

Hamlen, K., Morrisett, G., and Schneider, F. B. 2006. Computability classes for enforcement

mechanisms. ACM Transactions on Progamming Languages and Systems 28, 1 (Jan.), 175–205.

Havelund, K. and Roşu, G. 2004. Efficient monitoring of safety properties. International Journal

on Software Tools for Technology Transfer (STTT) 6, 2 (Aug.), 158–173.

Jeffery, C., Zhou, W., Templer, K., and Brazell, M. 1998. A lightweight architecture for pro-
gram execution monitoring. In Program Analysis for Software Tools and Engineering (PASTE).

ACM Press, 67–74.

Kim, M., Kannan, S., Lee, I., Sokolsky, O., and Viswantathan, M. 2002. Computational

analysis of run-time monitoring—fundamentals of Java-MaC. In Run-time Verification.

Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee, I., and Sokolsky, O. 1999.

Formally specified monitoring of temporal properties. In European Conference on Real-time
Systems. York, UK.

Lamport, L. 1977. Proving the correctness of multiprocess programs. IEEE Transactions of

Software Engineering 3, 2, 125–143.

Liao, Y. and Cohen, D. 1992. A specificational approach to high level program monitoring and

measuring. IEEE Trans. Softw. Eng. 18, 11, 969–978.

Ligatti, J. 2006. Policy enforcement via program monitoring. Ph.D. thesis, Princeton University.

Ligatti, J., Bauer, L., and Walker, D. 2003. Edit automata: Enforcement mechanisms for
run-time security policies. Tech. Rep. TR-681-03, Princeton University. May.

Ligatti, J., Bauer, L., and Walker, D. 2005a. Edit automata: Enforcement mechanisms for
run-time security policies. International Journal of Information Security 4, 1–2 (Feb.), 2–16.

ACM Journal Name, Vol. V, No. N, January 2007.

Run-time Enforcement of Nonsafety Policies · 31

Ligatti, J., Bauer, L., and Walker, D. 2005b. Enforcing non-safety security policies with pro-

gram monitors. In 10th European Symposium on Research in Computer Security (ESORICS).
Milan, Italy.

Lynch, N. A. and Tuttle, M. R. 1987. Hierarchical correctness proofs for distributed algorithms.

In Proceedings of the 6th annual ACM Symposium on Principles of Distributed Computing.
ACM Press, 137–151.

Paxton, W. H. 1979. A client-based transaction system to maintain data integrity. In Proceedings

of the 7th ACM symposium on Operating Systems Principles. ACM Press, 18–23.

Robinson, W. 2002. Monitoring software requirements using instrumented code. In HICSS

’02: Proceedings of the 35th Annual Hawaii International Conference on System Sciences
(HICSS’02)-Volume 9. IEEE Computer Society, Washington, DC, USA, 276.2.

Russinovich, M. 2005. Sony, rootkits and digital rights management gone too far.

http://www.sysinternals.com/blog/2005/10/sony-rootkits-and-digital-rights.html.

Schneider, F. B. 2000. Enforceable security policies. ACM Transactions on Information and
Systems Security 3, 1 (Feb.), 30–50.

Sen, K., Vardhan, A., Agha, G., and Rosu, G. 2004. Efficient decentralized monitoring of safety

in distributed systems. In 26th International Conference on Software Engineering (ICSE’04).
418–427.

Viswanathan, M. 2000. Foundations for the run-time analysis of software systems. Ph.D. thesis,

University of Pennsylvania.

Wahbe, R., Lucco, S., Anderson, T., and Graham, S. 1993. Efficient software-based fault

isolation. In Fourteenth ACM Symposium on Operating Systems Principles. Asheville, 203–
216.

ACM Journal Name, Vol. V, No. N, January 2007.

