
Modal Proofs As Distributed Programs?

(Extended Abstract)

Limin Jia David Walker

Princeton University
{ljia, dpw}@cs.princeton.edu

fax: 609-258-1771

Abstract. We develop a new foundation for distributed programming
languages by defining an intuitionistic, modal logic and then interpreting
the modal proofs as distributed programs. More specifically, the proof
terms for the various modalities have computational interpretations as
remote procedure calls, commands to broadcast computations to all nodes
in the network, commands to use portable code, and finally, commands
to invoke computational agents that can find their own way to safe
places in the network where they can execute. We prove some simple
meta-theoretic results about our logic as well as a safety theorem that
demonstrates that the deductive rules act as a sound type system for a
distributed programming language.

1 Introduction

One of the characteristics of distributed systems that makes developing robust
software for them far more difficult than developing software for single stand-
alone machines is heterogeneity. Different places in the system may have vastly
different properties and resources. For instance, different machines may be at-
tached to different hardware devices, have different software installed and run
different services. Moreover, differing security concerns may cause different hosts
to provide different interfaces to distributed programs, even when the underlying
computational resources are similar.

In order to model such heterogeneous environments, programming language
researchers usually turn to formalisms based on one sort of process algebra or an-
other. Prime examples include the distributed join calculus [6] and the ambient
calculus [3]. These calculi often come with rich theories of process equivalence and
are useful tools for reasoning about distributed systems. However, a significant
disadvantage of starting with process algebras as a foundation for distributed
computing is that they immediately discard the wealth of logical principles that
underlie conventional sequential programming paradigms and that form the se-
quential core of any distributed computation.

? This research was supported in part by NSF Career Award CCR-0238328 and
DARPA award F30602-99-1-0519.

2

In this paper, we develop a foundation for safe distributed programming,
which rather than rejecting the logical foundations of sequential (functional)
programming, extends them with new principles tuned to programming in het-
erogeneous distributed environments. More specifically, we develop an intuition-
istic, modal logic and provide an operational interpretation of the logical proofs
as distributed programs. Our logic has the property that at any given place,
all of the intuitionistic propositional tautologies are provable. Consequently, our
correspondence between proofs and programs implies we can safely execute any
(closed) functional program at any place in our distributed programming envi-
ronment.

We extend these simple intuitionistic proofs with modal connectives and
provide computational interpretations of the connectives as operations for remote
code execution:

– Objects with type τ @ p are return values with type τ . They are the results
of remote procedure calls from the place p.

– Objects with type 2 τ are computations that run safely everywhere, and
may be broadcast to all places in the network.

– Objects with type ◊τ are logically equivalent to those objects with type
2 τ , but are treated operationally simply as portable code that can run ev-
erywhere, but is not actually broadcast.

– Objects with type 3τ are computational agents that have internalized the
place p where they may execute safely to produce a value with type τ .

The central technical contributions of our work may be summarized as fol-
lows.

– We develop an intuitionistic, modal logic from first principles following the
logical design techniques espoused by Martin Löf [12] and Frank Pfenning [14,
15]. Our logic is a relative of the hybrid logics, which are discussed in more
detail at the end of the paper (see Section 4).

– Each connective in the logic is defined orthogonally to all others, is shown
to be locally sound and complete, and supports the relevant substitution
principles.

– This paper concentrates on the natural deduction formulation of the logic
due to its correspondence with functional programs. However, we have also
developed a sequent calculus that has cut elimination and shown that the
sequent calculus is sound and complete with respect to the natural deduction
system.

– We give an operational interpretation of the proofs in our logic as distributed
functional programs. We prove that the logical deduction rules are sound
when viewed as a type system for the programming language.

Due to space considerations, we have omitted many details from this ex-
tended abstract. Proofs of our theorems, language extensions (including an ad-
ditional modality interpreted as place-relative remote procedure call, references
and recursive functions), and further programming examples may be found in
our extended technical report [9].

3

2 A Logic of Places

2.1 Preliminaries

The central purpose of our logic is to facilitate reasoning about heterogeneous
distributed systems where different nodes may have different properties and may
contain different resources. Hence, the primary judgment in the logic not only
considers whether a formula is true, but also where it is true. More precisely,
each primitive judgment has the form

`P F at p

where F is a formula from the logic and p is a particular place in the system.
These places are drawn from the set P . When P is unimportant or easy to guess
from the context (i.e. most of the time) we omit them from the judgment and
simply write ` F at p. For any syntactic object X, FP(X) denote the set of free
places that appear in X. We consider judgments `P F at p to have no meaning
if FP(F) ∪ {p} 6⊆ P .

To gain some intuition about this preliminary set up, consider a network of
five computers (A, B, C, D, E). Each of these computers (A, B, C, etc.) may
have different physical devices attached to it. For instance, E may have a printer
attached to it and B may have a scanner attached. If sc (“there is a scanner
here”) and pt (“there is a printer here”) are propositions in the logic, we might
assert judgments such as ` pt at E and ` sc at B to describe this situation.

Hypothetical Judgments In order to engage in more interesting reasoning about
distributed resources, we must define hypothetical judgments, facilities for rea-
soning from hypotheses and the appropriate notion of substitution. To begin
with, hypothetical judgments have the form ∆ `P F at p where ∆ is a list of
(variable-labeled) assumptions:

contexts ∆ : : = · | ∆, x : F at p

We do not distinguish between contexts that differ only in the order of assump-
tions. We use hypotheses according to the following inference rule (where L
stands for use of a Local hypothesis).

∆, x : F at p ` F at p
L

Intuitionistic Connectives With the definition of hypothetical judgments in
hand, we may proceed to give the meaning of the usual intuitionistic connectives
for truth (>), implication (F1 → F2) and conjunction (F1∧F2) in terms of their
introduction and elimination rules.

∆ ` > at p
>I

∆, x : F1 at p ` F2 at p

∆ ` F1 → F2 at p
→ I

∆ ` F1 → F2 at p ∆ ` F1 at p

∆ ` F2 at p
→ E

4

∆ ` F1 at p ∆ ` F2 at p

∆ ` F1 ∧ F2 at p
∧I

∆ ` F1 ∧ F2 at p

∆ ` F1 at p
∧E1

∆ ` F1 ∧ F2 at p

∆ ` F2 at p
∧E2

None of the rules above are at all surprising: Each rule helps explain how one
of the usual intuitionistic connectives operates at a particular place. Hence, if
we limit the set of places to a single place “ ” the logic will reduce to ordinary
intuitionistic logic. So far, there is no interesting way to use assumptions at
multiple different places, but we will see how to do that in a moment.

As a simple example, consider reasoning about the action of the printer at
place E in the network we introduced earlier. Let pdf be a proposition indicating
the presence of a PDF file waiting to be printed and po be a proposition indi-
cating the presence of a printout. The following derivation demonstrates how we
might deduce the presence of a printout at E. The context ∆ referenced below
is

fE : pdf at E, ptrE : pt at E, print : pdf ∧ pt → po at E

This context represents the presence of a PDF file and printer at E as well as
some software (a function) installed at E that can initiate the printing process.

∆ ` pdf ∧ pt → po at E
L

∆ ` pdf at E
L

∆ ` pt at E
L

∆ ` pdf ∧ pt at E
∧I

∆ ` po at E
→ E

2.2 Inter-place Reasoning

To reason about relationships between objects located at different places we
introduce a modal connective, which describes objects in terms of their location
in the system.

We derive our modal connective by internalizing the judgmental notion that
a formula is true at a particular place, but not necessarily elsewhere. We write
this new modal formula as F @ p. The introduction and elimination rules follow.

∆ ` F at p

∆ ` F @ p at p′ @ I
∆ ` F @ p at p′

∆ ` F at p
@ E

This connective allows us to reason about objects, software or devices “from
a distance.” For instance, in our printer example, it is possible to refer to
the printer located at E while reasoning at D; to do so we might assert ∆ `
pt@E at D. Moreover, we can relate objects at one place to objects at another.
For instance, in order to share E’s printer, D needs to have software that can
convert local PDF files at D to files that may be used and print properly at E
(perhaps this software internalizes some local fonts, inaccessible to E). An as-
sumption of the form DtoE : pdf → pdf @E at D would allow us to reason about

5

such software.1 If ∆′ is the assumption DtoE above together with an assumption
fD : pdf at D, the following derivation allows us to conclude that we can get the
PDF file to E. We can easily compose this proof with the earlier one to demon-
strate that PDF files at D can not only be sent to E, but actually printed there.

∆′ ` pdf → pdf @ E at D
L

∆′ ` pdf at D
L

∆′ ` pdf @ E at D
→ E

∆′ ` pdf at E
@ E

2.3 Global Reasoning

While our focus is on reasoning about networks with heterogeneous resources,
we cannot avoid the fact that certain propositions are true everywhere. For in-
stance, the basic laws of arithmetic do not change from one machine to the next,
and consequently, we should not restrict the application of these laws to any par-
ticular place. Just as importantly, we might want to reason about distributed
applications deployed over a network of machines, all of which support a com-
mon operating system interface. The functionality provided by the operating
system is available everywhere, just like the basic laws of arithmetic, and use of
the functionality need not be constrained to one particular place or another.

Global Judgments To support global reasoning, we generalize the judgment con-
sidered so far to include a second context that contains assumptions that are
valid everywhere. Our extended judgments have the form Γ ;∆ `P F at p where
Γ is a global context and ∆ is the local context we considered previously.

Global Contexts Γ : : = · | Γ, x : F
Local Contexts ∆ : : = · | ∆, x : F at p

Our extended logic contains two sorts of hypothesis rules, one for using each
sort of assumption. Rule L is identical to the hypothesis rule used in previous
sections (modulo the unused global context Γ). Rule G specifies how to use
global hypotheses; they may be placed in any location and used there.

Γ ; ∆, x : F at p ` F at p
L

Γ, x : F ; ∆ ` F at p
G

All rules from the previous sections are included in the new system unchanged
aside from the fact that Γ is passed unused from conclusion to premises.

Internalizing Global Truth The modal connective 2 F internalizes the notion
that the formula F is true everywhere. If a formula may be proven true at a new
place p, which by definition can contain no local assumptions, then that formula
must be true everywhere:2
1 We assume that “@ ” binds tighter than implication or conjunction. When fully

parenthesized, the assumption above has the following form: (pdf → (pdf @ E)) at D
2 By convention, judgments are meaningless when they contain places not contained

in the sets P that annotate the judgment. Consequently, this rule requires that
p 6∈ FP(Γ) ∪ FP(∆) ∪ FP(F).

6

Γ ; ∆ `P+p F at p

Γ ; ∆ `P 2 F at p′ 2I

Here, we use P + p to denote the disjoint union P ∪ {p}. If p ∈ P , we consider
P + p, and any judgment containing such notation, to be undefined. If we can
prove 2 F , we can assume that F is globally true in the proof of any other
judgment F ′ at p′:

Γ ; ∆ `P 2 F at p Γ, x : F ; ∆ `P F ′ at p′

Γ ; ∆ `P F ′ at p′ 2E

Returning to our printing example, suppose node E decides to allow all ma-
chines to send it PDF files. In order to avoid hiccups in the printing process, E
intends to distribute software to all machines that allow them to convert local
PDF files to files that will print properly on E’s printer. We might represent this
situation with a hypothesis ToE : 2 (pdf → pdf @E) at E. Now, given a PDF file
at any other node q in the network (coded as the assumption fq : pdf at q), we
can demonstrate that it is possible to send the PDF file to E using the following
proof, where ∆′′ contains assumptions ToE and fq. The global context Γ contains
the single assumption ToE′ : pdf → pdf @E.

D

Γ ; ∆′′ ` pdf → pdf @ E at q
G

Γ ; ∆′′ ` pdf at q
L

Γ ; ∆′′ ` pdf @ E at q
→ E

Γ ; ∆′′ ` pdf at E
@ E

·; ∆′′ ` pdf at E
2 E

where the derivation D = ·; ∆′′ ` 2 (pdf → pdf @ E) at E
L

The Truth is Out There The dual notion of a globally true proposition F is
a proposition that is true somewhere, although we may not necessarily know
where. We already have all the judgmental apparatus to handle this new idea;
we need only internalize it in a connective (3F). The introduction rule states
that if the formula holds at any particular place p in the network, then it holds
somewhere. The elimination rule explains how we use a formula F that holds
somewhere: We introduce a new place p and assume F holds there.

Γ ; ∆ `P F at p

Γ ; ∆ `P 3F at p′ 3I

Γ ; ∆ `P 3F at p′

Γ ; ∆, x : F at p `P+p F ′ at p′′

Γ ; ∆ `P F ′ at p′′ 3E

Modal Axioms Possibility and necessity satisfy the following standard modal
axioms (taken from Huth and Ryan [8, p. 284]).

K: ·; · ` 2 (F1 → F2) → (2 F1 → 2 F2) at p
B: ·; · ` F → 2 3F at p
D: ·; · ` 2 F → 3F at p
T: ·; · ` 2 F → F at p
4: ·; · ` 2 F → 2 2 F at p
5: ·; · ` 3F → 2 3F at p

7

2.4 Properties

We have proved local soundness and completeness properties (i.e., subject reduc-
tion for beta-reduction and eta-expansion of proofs) for each of the connectives
in our logic, as well as standard substitution properties. In addition, we have
developed a sequent calculus and proved the following two theorem:

Theorem 1. The natural deduction system is sound and complete with regard
to the sequent calculus (SEQ).

Theorem 2. The cut rule is admissible in SEQ.

3 λrpc: A Distributed Programming Language

The previous section developed an intuitionistic, modal logic capable of concisely
expressing facts about the placement of various objects in a network. Here,
we present the proof terms of the logic and show how they may be given an
operational interpretation as a distributed programming language, which we
call λrpc. The logical formulas serve as types that prevent distributed programs
from “going wrong” by attempting to access resources that are unavailable at
the place where the program is currently operating.

Types τ : : =
b | > | τ1 → τ2 | τ1 ∧ τ2 | τ @ p | 2 τ | ◊τ | 3τ

Proof Terms/Programs e : : =
c | x | sync (x) | run (x [p]) | () const/var/>
| λx:τ.e | e1 e2 functions(→)
| 〈 e1 , e2 〉 | πie pairs (∧)
| ret(e, p) | rpc(e, p) rpc (@)
| close(λp. e) | bc e1 at p asx in e2 broadcast (2)
| port(λp. e) | pull e1 at p asx in e2 portable (◊)
| agent[e, p] | go e1 at p returnx, q in e2 agent (3)

Fig. 1. λrpc Syntax

3.1 Syntax and Typing

Figure 1 presents the syntax of programs and their types, and Figure 2 presents
the typing rules for the language, which are the natural deduction-style proof
rules for the logic.

8

Types and Typing Judgments. The types correspond to the formulas of the logic;
we use the meta variable τ rather than F to indicate a shift in interpretation.
We also included a set of base types (b).

Since we have discovered two different operational interpretations of 2 F ,
and we would like to explain both of them in this paper, we have extended
the language of formulas (types) to include an extra modality ◊τ to handle the
second interpretation. To support the two universal modalities, we also separate
the logical context Γ into two parts, Γ2 and Γ◊, during type checking. Hence
the overall type checking judgment has the following form.

Γ2 ; Γ◊; ∆ `P e : τ at p

By deleting either 2 τ or ◊τ (and the associated context), we recover exactly the
same logic as discussed in the previous section.3

Programs. The programs include an unspecified set of constants (c), and the
standard introduction and elimination forms for unit, functions and pairs.

Variables from each different context are used in different ways. As a mnemonic
for the different sorts of uses, we have added some syntactic sugar to the stan-
dard proof terms. Uses of local variables from ∆ are just like ordinary uses of
variables in your favorite (call-by-value) functional language so they are left un-
decorated. Variables in Γ2 refer to computations that have been broadcast at
some earlier point. In order to use such a variable, the program must synchro-
nize with the concurrently executing computation. Hence, we write sync (x) for
such uses. Variables in Γ◊ refer to portable closures. The use of a variable in
this context corresponds to running the closure with the current place p as an
argument. Hence, we write run (x [p]) for such uses.

Our first modality τ @ p has an operational interpretation as a remote pro-
cedure call. The introduction form (ret(e, p)) constructs a “return value” for a
remote procedure call. This “return value” can actually be an arbitrary expres-
sion e, which will be returned to and run at the place p. The elimination form
(rpc(e, p′)) is the remote procedure call itself. It sends the expression e to the
remote site p′ where e will be evaluated. If the expression is well-typed, it will
eventually evaluate to ret(e′, p): a return value that can be run safely at the
caller’s place, which, in this case is place p.

The introduction form for 2 F is close(λp. e). It creates a closure that may
be broadcast by the elimination form (bc e1 at p1 asx in e2) to every node in
the network. More specifically, the elimination form executes e1 at p1, expecting
e1 to evaluate to close(λp. e). When it does, the broadcast expression chooses
a new universal reference for the closure, which is bound to x, and sends λp.e
to every place in the network where it is applied to the current place and the
resulting expression is associated with its universal reference. Finally expression
e2 is executed with the universal reference bound to x. Remote procedure calls or

3 We could have defined two languages, one language for each interpretation of 2 F ,
where the typing rules of each language correspond exactly to the logical inference
rules. However, we obtain a more powerful result by showing that these two inter-
pretations inter-operate.

9

Γ2; Γ◊; ∆, x : τ at p `P x : τ at p
L

Γ2, x : τ ; Γ◊; ∆ `P sync (x) : τ at p
G2

Γ2; Γ◊, x : τ ; ∆ `P run (x [p]) : τ at p
G◊

Γ2; Γ◊; ∆ `P () : > at p
Unit

Γ2; Γ◊; ∆ `P c : b at p
Const

Γ2; Γ◊; ∆, x : τ1 at p `P e : τ2 at p

Γ2; Γ◊; ∆ `P λx:τ1.e : τ1 → τ2 at p
→ I

Γ2; Γ◊; ∆ `P e1 : τ1 → τ2 at p Γ2; Γ◊; ∆ `P e2 : τ1 at p

Γ2; Γ◊; ∆ `P e1 e2 : τ2 at p
→ E

Γ2; Γ◊; ∆ `P e1 : τ1 at p Γ2; Γ◊; ∆ `P e2 : τ2 at p

Γ2; Γ◊; ∆ `P 〈 e1 , e2 〉 : τ1 × τ2 at p
∧I

Γ2; Γ◊; ∆ `P e : τ1 × τ2 at p

Γ2; Γ◊; ∆ `P πie : τi at p
∧E

Γ2; Γ◊; ∆ `P e : τ at p

Γ2; Γ◊; ∆ `P ret(e, p) : τ @ p at p′ @ I
Γ2; Γ◊; ∆ `P e : τ @ p at p′

Γ2; Γ◊; ∆ `P rpc(e, p′) : τ at p
@ E

Γ2; Γ◊; ∆ `P+p e : τ at p

Γ2; Γ◊; ∆ `P close(λp. e) : 2 τ at p′ 2I

Γ2; Γ◊; ∆ `P e1 : 2 τ at p Γ2, x : τ ; Γ◊; ∆ `P e2 : τ ′ at p′

Γ2; Γ◊; ∆ `P bc e1 at p asx in e2 : τ ′ at p′ 2E

Γ2; Γ◊; ∆ `P+p e : τ at p

Γ2; Γ◊; ∆ `P port(λp. e) : ◊τ at p′ ◊I

Γ2; Γ◊; ∆ `P e1 : ◊τ at p Γ2; Γ◊, x : τ ; ∆ `P e2 : τ ′ at p′

Γ2; Γ◊; ∆ `P pull e1 at p asx in e2 : τ ′ at p′ ◊E

Γ2; Γ◊; ∆ `P e : τ at p

Γ2; Γ◊; ∆ `P agent[e, p] : 3τ at p′ 3I

Γ2; Γ◊; ∆ `P e1 : 3τ at p′ Γ2; Γ◊; ∆, x : τ at p `P+p e2 : τ ′ at p′′

Γ2; Γ◊; ∆ `P go e1 at p′ returnx, p in e2 : τ ′ at p′′ 3E

Fig. 2. λrpc Typing

10

broadcasts generated during evaluation of e2 may refer to the universal reference
bound to x, which is safe, since x has been broadcast everywhere.

Objects of type ◊τ are portable closures; they may be run anywhere. The
elimination form (pull e1 at p1 asx in e2) takes advantage of this portability by
first computing e1 at p1, which should result in a value with the form port(λp. e).
Next, it pulls the closure λp.e from p1 and substitutes it for x in e2. The typ-
ing rules will allow x to appear anywhere, including in closures in e2 that will
eventually be broadcast or remotely executed. Once again, this is safe since e is
portable and runs equally well everywhere.

Our last connective 3τ is considered the type of a computational agent
that is smart enough to know where it can go to produce a value with type
τ . We introduce such an agent by packaging an expression with a place where
the expression may successfully be run to completion. The elimination form
(go e1 at p1 returnx, p in e2) first evaluates e1 at p1, producing an agent
(agent[e, p2]). Next, it commands the agent to go to the hidden place p2 and exe-
cute its encapsulated computation there. When the agent has completed its task,
it synchronizes with the current computation and e2 continues with p bound to
p2 and x bound to a value that is safe to use at p2.

Simple examples. To gain a little more intuition about how to write programs
in this language, consider computational interpretations of some of the proofs
from the previous section. The context ∆ referenced below contains the following
assumptions.

fD : pdf at D print : pdf ∧ pt → po at E
fE : pdf at E DtoE : pdf → pdf @ E at D
ptrE : pt at E ToE : 2 (pdf → pdf @ E) at E

Printing a PDF file (involving local computation only):

·; ∆ ` print(fE , ptrE) : po at E

Fetching a PDF file (involving a remote procedure call in which the computation
DtoE fD is executed at D):

·; ∆ ` rpc(DtoE fD, D) : pdf at E

Fetching then printing:

·; ∆ ` (λx:pdf.print (x, ptrE))(rpc(DtoE fD, D)) : po at E

Broadcasting E’s PDF conversion function to all nodes then fetching a PDF
file from node q (recall that in general, uses of these global variables involves
synchronizing with the broadcast expression; below the broadcast expression is
a value, but we synchronize anyway):

·; ∆, fq : pdf at q ` bcToE at E asToE′ in rpc(sync (ToE′) fq, q) : pdf at E

Another way to manage PDF files is to make them portable. For instance, if C
and D contain portable PDF files, then E can pull these files from their resident
locations and print them on its local printer. Remember that portable values are

11

polymorphic closures that are “run” when used. In this case, the closure simply
returns the appropriate PDF file.

·; ∆, fC : ◊pdf at C, fD : ◊pdf at D `
pull fC at C as f′C in
pull fD at D as f′D in
let = print(run (f′C [E]), ptrE) in
let = print(run (f′D [E]), ptrE) in
... : τ at E

3.2 Operational Semantics and Safety

When one defines an operational semantics for a language, it is essential to choose
the correct level of abstraction. When the level of abstraction is too low, details
get in the way of understanding the larger issues; when the level of abstraction
is too high, there may be confusion as to how the semantics relates to reality.

In our case, we could give an operational semantics based directly on proof
reduction, but this semantics would be at too high a level of abstraction to
observe important details concerning the distribution of values over a network.
In particular, we would not be able to distinguish between the two very dif-
ferent interpretations of 2 . Consequently, we give an operational semantics at
a lower level of abstraction than proof reduction by including an explicit, con-
crete network in the semantics as shown in Figure 3.2.4 Nevertheless, the basis
for the semantics is the interaction of introduction and elimination rules as the
proof theory suggests. The various new syntactic objects we use to specify our
operational model are listed below.

Networks N : : = (P,L)
Process Envs. L : : = · | L, `→ e at p
Values v : : = c | λx:τ.e | 〈 v1 , v2 〉 | ret(e, p)

| close(λp. e) | port(λp. e) | agent[e, p]
RT Terms e : : = · · · | sync (`) | run (λp.e [p1]) | sync (rpc(`, p))

| sync (bc ` at p asx in e2) | sync (pull ` at p asx in e2)
| sync 1(go ` at p returnx, q in e) | sync 2(go ` at p returnx, q in e)

Contexts C : : = [] | C e2 | v1 C | 〈C , e2 〉 | 〈 v1 , C 〉 | πi C

Networks N are pairs consisting of a set of places P , a distributed process
environment L. We have seen places before. The process environment L is a
4 Our choice here is also informed by the history of operational interpretations of linear

logic. Several researchers [1, 11] gave interpretations of linear logic using a store-less
semantics derived directly from logical proof reduction. These semantics led to sig-
nificant confusion about the memory management properties of the languages: How
many pointers to a linear object could there be, and can linear objects be deallo-
cated after they are used? It was impossible to say because the operational models
did not contain pointers! Only when Chirimar et al. [4] and Turner and Wadler [18]
later gave interpretations that deviated from the proof-theoretic interpretation by
including an explicit store was the story made clear. Our interpretation of modal
logic deviates from the proof theory in a similar way to these latter works as we
include an explicit network.

12

L 7−→ L′

sync OS
L, `′ → C [sync (`)] at p, ` → v at p
7−→ L, `′ → C [v] at p, ` → v at p

runOS
L, ` → C [run (λp.e [p1])] at p2

7−→ L, ` → C [e [p1 / p]] at p2

→ OS
L, ` → C [(λx:τ.e) v] at p
7−→ L, ` → C [e [v / x]] at p

∧OS
L, ` → C [πi〈 v1 , v2 〉] at p
7−→ L, ` → C [vi] at p

@ OS1
L, ` → C [rpc(e, p1)] at p0

7−→ L, ` → C [sync (rpc(`1, p1))] at p0, `1 → e at p1

@ OS2
L, ` → C [sync (rpc(`1, p1))] at p0, `1 → ret(e, p0) at p1

7−→ L, ` → C [e] at p0, `1 → ret(e, p0) at p1

2OS1
L, ` → C [bc e1 at p1 asx in e2] at p0

7−→ L, ` → C [sync (bc `1 at p1 asx in e2)] at p0, `1 → e1 at p1

2OS2
L, ` → C [sync (bc `1 at p1 asx in e2)] at p0, `1 → close(λp. e) at p1

7−→ L, ` → C [e2 [`2 / x]] at p0, `1 → close(λp. e) at p1,
{ `2 → e [q / p] at q } (∀q ∈ P)

◊OS1
L, ` → C [pull e1 at p1 asx in e2] at p0

7−→ L, ` → C [sync (pull `1 at p1 asx in e2)] at p0, `1 → e1 at p1

◊OS2
L, ` → C [sync (pull `1 at p1 asx in e2)] at p0, `1 → port(λp. e) at p1

7−→ L, ` → C [e2 [λp.e / x]] at p0, `1 → port(λp. e) at p1

3OS1
L, ` → C [go e1 at p1 returnx, q in e2] at p0

7−→ L, ` → C [sync 1(go `1 at p1 returnx, q in e2)] at p0, `1 → e1 at p1

3OS2
L, ` → C [sync 1(go `1 at p1 returnx, q in e2)] at p0, `1 → agent[e, p2] at p1

7−→ L, ` → C [sync 2(go `2 at p2 returnx, q in e2)] at p0,
`1 → agent[e, p2] at p1, `2 → e at p2

3OS3
L, ` → C [sync 2(go `1 at p1 returnx, q in e2)] at p0, `1 → v at p1

7−→ ` → C [e2 [p1 / q] [v / x]] at p0, `1 → v at p1

Fig. 3. λrpc Operational Semantics

finite partial map from places p in P to process ids to expressions. We write
these partial maps as lists of elements with the form `→ e at p. We assume that
no pair of place and location (p and `) appears in two different components of
the map. We do not distinguish between maps that differ only in the ordering of
their elements. L(p)(`) denotes e when L = L′, `→ e at p. We use the notation
L\ ` to denote the mapping L with all elements of the form `→ e at p removed.

We also introduce new expressions (the RT terms above) that only occur at
run time to give an operation semantics to our program. Run-time terms are
used to represent expressions, which are suspended part-way through evaluation
and are waiting to synchronize with remotely executing expressions.

Lastly, we define evaluation contexts C to specify the order of evaluation.

In order to show that the network is well-typed at every step in evaluation, we
add typing rules to give types to the RT terms and we also give well-formedness

13

conditions for the network as a whole. The typing judgment for a network has
the form ` L : Γ2; ·;∆. See the technical report [9] for further details.
Operational Rules and Type Safety. The state of a network N = (P,L) evolves
according to the operational rules listed in Figure 3.2. These rules specify a
relation with the form L 7−→ L′.

The type system is sound with respect to our operational semantics for dis-
tributed program evaluation. The proofs of Preservation and Progress theorems,
stated below, follow the usual strategy.

Theorem 3 (Preservation). If ` L : Γ2; ·; ∆ and L 7−→ L′ then there exists Γ ′
2

and ∆′ such that ` L′ : Γ ′
2; ·; ∆′.

Theorem 4 (Progress). If ` L : Γ2; ·; ∆ then either

– L 7−→ L′, or
– for all places p in P , and for all ` in Dom(L(p)), L(p)(`) is a value.

4 Discussion

Extensions and Variations This paper presents a solid foundation on which to
build a distributed functional programming language. However, in terms of lan-
guage design, it is only the beginning. A few interesting extensions and variations
are discussed briefly below.

– Values everywhere. Our interpretation of 2 involves either broadcasting a
closure or substituting a closure into local code. In each case, there is some
computational overhead to manage the closure: Either we synchronize or
we run the closure when it gets used. To avoid this overhead, we could
place a value restriction on the expression in the introduction form for 2.
One possibility that is definitely not an option is evaluating eagerly under
2 before broadcasting or substitution: In the presence of references (and
almost certainly other effects), this evaluation strategy is unsound.

– Dynamic network evolution. The current work assumes that the set of net-
work places and the network topology is fixed. While this is a reasonable
assumption for some distributed programming environments, others allow
the topology to evolve. An interesting challenge for future work is to extend
our logic and language with features that express evolution. We believe that
the new name connectives developed in the context of nominal logics [16, 13]
may be of help here.

– Synchronous and asynchronous variations. Just as ordinary sequential pro-
gramming languages may be defined with different evaluation strategies (call-
by-value, call-by-name, call-by-need), it appears possible to develop different
operational interpretations of the modal connectives in which execution is
more or less synchronized. For instance, when defining the operation of the
2 -connective, we could wait until all broadcast expressions have completed
evaluation before proceeding with the evaluation of the second expression
e2. Likewise, remote procedure calls are synchronized: Evaluation does not

14

proceed until they have received the return value, even though the follow-
ing computation does not necessarily require the value immediately. In the
future, we plan to explore these nuances in greater detail.

Related Work Hybrid logics are an old breed of logic that date back to Arthur
Prior’s work in the 1960s [17]. As does our logic, they mix modal necessity and
possibility with formulas such as F @ p that are built from pure names. More
recently, researchers have developed a rich semantic theory for these logics and
studied both tableau proofs and sequents; many resources on these topics and
others are available off the hybrid logics web page.5 However, work on hybrid
logics is usually carried out in a classical setting and we have not found an
intuitionistic, natural deduction style proof theory like ours that can serve as
a foundation for distributed functional programming languages. The reason for
this is likely that Pfenning and Davies [15] have only recently shown how to
assign a robust natural deduction-style proof theory to pure modal logic.

Cardelli and Gordon’s ambient logic [2] highlights the idea that modalities for
possibility and necessity need not only be interpreted temporally, but can also
be interpreted spatially, and this abstract idea was a central influence in our
work. However, at a more technical level, the ambient logic is entirely different
from the logic we develop here: The ambient logic has a widely different set of
connectives, is classical as opposed to intuitionistic, and is defined exclusively
by a sequent calculus rather than by natural deduction. Moreover, it does not
serve as a type system for ambient programs; rather, it is a tool for reasoning
about them.

Much effort has been invested in interpreting proof search in sequent cal-
culus of linear logic as concurrent computation. Recently along this line of re-
search, Kobayshi et al. have explained how modal linear logic can be viewed as
a distributed concurrent programming language [10]. In this work, they intro-
duce a formula similar to our F @ p but they define it axiomatically rather than
through introduction and elimination rules (or left and right rules), as we have
done. Consequently, their formulation cannot serve as the basis for a functional
programming language. They did not consider modal necessity and possibility.

Another major influence on our work is Pfenning and Davies’ judgmental
reconstruction of modal logic [15], which is developed in accordance with Martin
Löf’s design patterns for type theory [12]. Pfenning and Davies go on to interpret
modal necessity temporally (as opposed to spatially) in their work on staged
computation [5]. One obvious technical difference between our logic and theirs
is that our logic is founded on local judgments that include the specific place
where a proposition is true whereas their logic is not.

Concurrently with this research, Harper, Moody and Pfenning [7] have begun
to investigate the role that modal logics may play in developing a foundation for
distributed computing. More specifically, they interpret objects with type 2 τ as
jobs that may be injected into the Grid and run anywhere. This interpretation

5 See http://www.hylo.net.

15

appears to resemble our portable code more closely than our broadcast code.
In addition, in their Grid computing domain, every node is assumed to contain
identical resources, so they are investigating type systems derived from pure
modal logics rather than hybrid logics like the one we have presented here.
Consequently, they have no analogue of our remote procedure calls.

References

1. S. Abramsky. Computational interpretations of linear logic. Theoretical Computer
Science, 111:3–57, 1993.

2. L. Cardelli and A. Gordon. Anytime, anywhere: Modal logics for mobile ambients.
In Twenty-Seventh ACM Symposium on Principles of Programming Languages,
pages 365–377. ACM Press, Jan. 2000.

3. L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, June 2000.

4. J. Chirimar, C. A. Gunter, and J. G. Riecke. Proving memory management in-
variants for a language based on linear logic. In ACM Conference on Lisp and
Functional Programming, pages 139–150, Apr. 1992.

5. R. Davies and F. Pfenning. A modal analysis of staged computation. Journal of
the ACM, 48(3):555–604, 2001.

6. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In 7th International Conference on Concurrency Theory (CON-
CUR’96), volume 1119 of Lecture Notes in Computer Science, pages 406–421, Pisa,
Italy, Aug. 1996. Springer.

7. R. Harper. Trustless grid computing in concert, June 2003. Talk. http://www-
2.cs.cmu.edu/ concert/talks/Harper2003Trustless/trustless.ppt.

8. M. R. A. Huth and M. D. Ryan. Logic in Computer Science: Modelling and Rea-
soning about Systems. Cambridge University Press, Cambridge, England, 2000.

9. L. Jia and D. Walker. Modal proofs as distributed programs. Technical Report
TR-671-03, Princeton University, 2003. Forthcoming.

10. N. Kobayashi, T. Shimizu, and A. Yonezawa. Distributed concurrent linear logic
programming. Theoretical Computer Science, 227(1–2):185–220, Sept. 1999.

11. P. Lincoln and J. Mitchell. Operational aspects of linear lambda calculus. In Pro-
ceedings 7th Annual IEEE Symp. on Logic in Computer Science, LICS’92, Santa
Cruz, CA, USA, 22–25 June 1992, pages 235–246. IEEE Computer Society Press,
Los Alamitos, CA, 1992.

12. M. Löf. On the meanings of the logical constants and the justifications of the
logical laws. Technical Report 2, University of Siena, 1985.

13. D. Miller and A. Tiu. A proof theory for generic judgments. In IEEE Symposium
on Logic in Computer Science, pages 118–127, Ottawa, Canada, June 2003.

14. F. Pfenning. Logical frameworks. In A. Robinson and A. Voronkov, editors, Hand-
book of Automated Reasoning, chapter 16, pages 977–1061. Elsevier Science and
MIT Press, 2001.

15. F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Mathe-
matical Structures in Computer Science, 11:511–540, 2001.

16. A. M. Pitts. Nominal logic, a first order theory of names and binding. Information
and computation, 2003. To appear.

17. A. Prior. Past, present and future. Oxford University press, 1967.
18. D. N. Turner and P. Wadler. Operational interpretations of linear logic. Theoretical

Computer Science, 227:231–248, 1999. Special issue on linear logic.

