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Abstract
This paper defines an object-oriented language with harmless
aspect-oriented advice. A piece of harmless advice is a compu-
tation that, like ordinary aspect-oriented advice, executes when
control reaches a designated control-flow point. However, unlike
ordinary advice, harmless advice is designed to obey a weak non-
interference property. Harmless advice may change the termination
behavior of computations and use I/O, but it does not otherwise in-
fluence the final result of the mainline code. The benefit of harmless
advice is that it facilitates local reasoning about program behavior.
More specifically, programmers may ignore harmless advice when
reasoning about the partial correctness properties of their programs.
In addition, programmers may add new pieces of harmless advice
to pre-existing programs in typical “after-the-fact” aspect-oriented
style without fear they will break important data invariants used by
the mainline code.

In order to detect and enforce harmlessness, the paper defines
a novel type and effect system related to information-flow type
systems. The central technical result is that well-typed harmless
advice does not interfere with the mainline computation. The paper
also presents an implementation of the language and a case study
using harmless advice to implement security policies.

1. Introduction
Aspect-oriented programming languages (AOPL) such as AspectJ
[17] allow programmers to specify both what computation to per-
form as well as when to perform it. For example, AspectJ makes it
easy to implement a profiler that records statistics concerning the
number of calls to each method: The what in this case is the com-
putation that does the recording and the when is the instant of time
just prior to execution of each method body. In aspect-oriented ter-
minology, the specification of what to do is called advice and the
specification of when to do it is called a point cut. A collection of
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point cuts and advice organized to perform a coherent task is called
an aspect.

Many within the AOP community adhere to the tenet that as-
pects are most effective when the code they advise is oblivious to
their presence [12]. In other words, aspects are effective when a
programmer is not required to annotate the advised code (hence-
forth, the mainline code) in any particular way. When aspect-
oriented languages are oblivious, all control over when advice is
applied rests with the aspect programmer as opposed to the main-
line programmer. This design choice simplifies after-the-fact cus-
tomization or analysis of programs using aspects. For example,
obliviousness makes it trivial to implement extremely flexible pro-
filing infrastructure. To adjust the places where profiling occurs,
which might be scattered all across the code base, one need only
make local changes to a single aspect. Obliviousness might be one
of the reasons that aspect-oriented programming has caught on with
such enthusiasm in recent years, causing major companies such as
IBM and Microsoft to endorse the new paradigm and inspiring
academics to create conferences and workshops to study the idea.

On the other hand, obliviousness threatens conventional mod-
ularity principles and undermines a programmer’s ability to rea-
son locally about the behavior of their code. Consequently, many
traditional programming language researchers believe that aspect-
oriented programs are ticking time bombs, which, if widely de-
ployed, are bound to cause the software industry irreparable harm.
One central problem is that while mainline code may be syntacti-
cally oblivious to aspects, it is not semantically oblivious to aspects.
Aspects can reach inside modules, influence the behavior of local
routines and alter local data structures. As a result, to understand
the semantics of code in an aspect-oriented language such as As-
pectJ, programmers will have to examine all external aspects that
might modify local data structures or control flow. As the number
and invasiveness of aspects grows, understanding and maintaining
your program may become more and more difficult.

In this work, we define a new form of harmless aspect-oriented
advice that programmers can use to accomplish nontrivial program-
ming tasks yet also allows them to enjoy most of the local reasoning
principles they have come to depend upon for program understand-
ing, development and maintenance. Like ordinary aspect-oriented
advice, harmless advice is a computation that executes whenever
mainline control reaches a designated control-flow point. Unlike
ordinary aspect-oriented advice, harmless advice is constrained to
prevent it from interfering with the underlying computation. Con-
sequently, it plays a role similar to Clifton and Leavens’ notion
of observer [4]. Since harmless advice does not interfere with the
mainline computation, it can be added to a program at any point
in the development cycle without fear that important program in-
variants will be disrupted. In addition, programmers that develop,
debug or enhance mainline code can safely ignore harmless advice,
if there is any present.

In principle, one could devise many variants of harmless advice
depending upon exactly what it means to interfere with the under-
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lying computation. At the most extreme end, changing the timing
behavior of a program constitutes interference and consequently,
only trivial advice is harmless. A slightly less extreme viewpoint is
one taken by secure programming languages such as Jif [22] and
Flow Caml [24]. These languages ignore some kinds of interfer-
ence such as changes to the timing and termination behavior of
programs, arguing that these kinds of interference will have a min-
imal impact on security. However, overall, they continue to place
very restrictive constraints on programs, prohibiting I/O in high se-
curity contexts, for instance. Allowing unchecked I/O would make
it possible to leak secret information at too great a rate.

In our case, an appropriate balance point between useability
and interference prevention is even more relaxed than in secure
information-flow systems. We say that computation A does not in-
terfere with computation B if A does not influence the final value
produced by B. Computation A may change the timing and termi-
nation behavior of B (influencing whether or not B does indeed
return a value) and it may perform I/O.

Now suppose that A is advice and B is the main program. If
we can establish that A does not interfere with B as defined above,
programmers working on B can reason completely locally about
partial correctness properties of their code. For these properties,
they do not need to know anything about advice A or whether or
not it has been applied to their code. For example, if we are work-
ing in a functional language like ML and enjoy equational rea-
soning, all our favourite (partial correctness) equations continue to
hold. If we are working in an imperative language and reason (per-
haps informally) using Hoare logic-style pre- and post-conditions,
the standard, commonly-used partial-correctness interpretation of
these pre- and post-conditions continues to be valid. In other words,
many of our most important local reasoning principles remain in-
tact in the presence of harmless advice.

Every time a programmer writes new advice and can guarantee
that advice is harmless, he or she will maintain the local reasoning
principles so critical to reliable software development. Hence there
is great incentive to write harmless advice whenever possible. For-
tunately, our notion of harmless, non-interfering advice continues
to support many common aspect-oriented applications, including
the following broad application classes.

• Profiling. Harmless advice can maintain its own state separate
from the mainline computation to gather statistics concerning
the number of times different procedures are called. When
the program terminates, the harmless advice can print out the
profiling statistics.

• Invariant checking and security. Harmless advice can check in-
variants at run-time, maintain access control tables, perform
resource accounting, and terminate programs that disobey dy-
namic security policies.

• Program tracing and monitoring. Harmless advice can print out
all sorts of debugging information including when procedures
are called and what data they are passed.

• Logging and backups. Harmless advice can back up data onto
persistent secondary storage or make logs of events that occur
during program execution for performance analysis, fault re-
covery or post-mortem security audits.

We have also accumulated anecdotal evidence that indicates
enough important applications appear to fall into this category to
make it a useful abstraction. For example, IBM experimented with
aspects in their middleware product line [5], finding them useful
for such “harmless” tasks as enforcing consistency in tracing and
logging concerns and for encapsulating monitoring and statistics
components. We also observed a sequence of emails on the AspectJ
users list [14] cataloging uses of aspects with Java projects. Many

respondents specified that, in addition to some uncommon uses
that they wished to highlight, they certainly used AspectJ for the
common aspect-oriented concerns such as profiling, security, and
monitoring mentioned above. Finally, we have done a case study in
security, rewriting the security policies from Evans’ thesis [10] in
our system, and finding that all but one was harmless.

In the rest of this paper, we develop a theory of harmless advice
following the same strategy as used in previous work by Walker,
Zdancewic and Ligatti [27] (hereafter referred to as WZL) and in-
spired by the type-theoretic definition of Standard ML [13]. This
strategy involves defining type-safe languages at two levels of ab-
straction: a high-level, user-friendly source language for program-
mers and a lower-level semantic intermediate language we call the
core calculus. The core calculus consists of a collection of sim-
ple, orthogonal constructs amenable to formal analysis. The source
language is defined by translation into the core calculus. The pri-
mary reason for this structure is that the source language features
are quite complex and a direct analysis of a deep property such as
noninterference would be incredibly hard and very error-prone. We
simplify the situation by proving a collection of powerful proper-
ties of the core calculus. Then, we show that the translation from
source into core is type-preserving and exploit properties of well-
typed core calculus constructs to obtain properties of the source.
Overall, this structure helps modularize and simplify an otherwise
daunting task.

Section 2 defines the core calculus. The calculus contains prim-
itive notions of point cuts, advice and a collection of static pro-
tection domains, arranged in a partial order. We define a novel type
system to guarantee that code, including advice, in a low-protection
domain cannot influence execution of code in a high-protection do-
main. Though the type system is directly inspired by information-
flow type systems for security [22, 24], we take advantage of the
syntactic separation between advice and code to simplify it. The
key technical result for the core language is a proof that the core
language satisfies a non-interference property. The proof adapts
the technique used by Simonet and Pottier in their proof of non-
interference of Flow Caml [24] to a our aspect-oriented language.

Section 3 develops a surface language that is more amenable
to program- ming. In particular, the high-level language is oblivi-
ous and therefore “aspect-oriented” according to Filman and Fried-
man’s definition, whereas the core language is not.1 The source al-
lows programmers to define aspects that are collections of state, ob-
jects and advice. Each aspect operates in a separate static protection
domain and does not interfere with the mainline computation or the
other aspects. This section defines the syntax of the source and es-
tablishes its semantics through a translation from source into core.
We prove that source language aspects are harmless by exploiting
properties of the core. In addition, we present example code imple-
mented in our system and explain a case study in security we have
performed.

Section 4 discusses related work in more detail and Section 5
concludes.

2. Core Language
Our core language is a typed lambda calculus containing strings,
booleans, tuples, references and simple objects. The two main
features of interest in the language are labeled control-flow points
and advice, both of which are slight variants of related constructs
introduced by WZL.

1 It is neither necessary nor the slightest bit desirable for the core language
to be oblivious as the syntax of the core language does not limit or constrain
programmers in any way. Programmers need only concern themselves with
the surface language, which is oblivious.
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Labels l, which are drawn from some countably infinite set,
mark points in a computation at which advice may be triggered. For
instance, execution of l[e1]; e2 proceeds by first evaluating e1 until
it reduces to a value v and at this point, any advice associated with
the label l executes with v as an input. Once all advice associated
with l has completed execution, control returns to the marked point
and evaluation continues with e2. A marked point l[e1] has type
unit and that no data are returned from the triggered advice. This
stands in contrast to earlier work by WZL, in which labels marked
control-flow points where data exchange could occur.

Harmless advice {pcd.x → e} is a computation that is triggered
whenever execution reaches the control-flow point described by
the pointcut designator pcd. When advice is triggered, the value
at the control-flow point is bound to x, which may be used within
the body of the advice e. The advice body may have “harmless”
effects (such as I/O), but it does not return any data to the mainline
computation and consequently e is expected to have type unit.

Languages such as AspectJ often contain rich sublanguages for
designating control-flow points. However, it is easier to study the
fundamentals of labeled control-flow points and harmless advice
in a setting with the simplist possible pcds. Consequently, we will
start our investigation in a setting where pcds are simply sets of
labels {l1, . . . , lk} and advice is written as {{l1, . . . , lk}.x → e}.

For simplicity, the core language contains a single construct
⇑ a to activate new advice a. When control reaches a label in the
advice’s point cut designator, the advice body will execute after
any previously activated piece of advice. The following example
shows how advice activation works (assuming that there is no other
advice associated with label l in the environment). The code prints
3: hello world.

⇑ {{l}.x → printint x; print ” : hello ”};
⇑ {{l}.y → print ”world”};
l[3]

The expression new : τ allows programs to generate a fresh
label with type τ . Labels are considered first class values, so they
may be passed to functions or stored in data structures before being
used to mark control-flow points. For example, we might write the
following code to allocate a new label and use it in two pieces of
advice.

let pt = new : int in
⇑ {{pt}.x → print ”hello ”};
⇑ {{pt}.y → print ”world”};
pt[3]

2.1 Types for Enforcing Harmlessness

In order to protect the mainline computation from interference from
advice, we have devised a type and effect system for the calculus
we informally introduced in the previous section. The type system
operates by ascribing a protection domain p to each expression in
the language. These protection domains are organized in a lattice
L = (Protections , ≤) where Protections is the set of possible
protection domains and p ≤ q specifies that p should not interfere
with q. Alternatively, one might say that data in q have higher
integrity than data in p. In our examples, we often assume there
are high, med and low protection levels with low < med < high.

Syntax In order to allow programmers to specify protection re-
quirements we have augmented the syntax of the core language
described in the previous section with a collection of protection an-
notations. The formal syntax appears in Figure 1.

The values include unit values and string and boolean constants.
Programmers may also use n-ary tuples. Functions are annotated
with the protection domain p in which they execute. This protection
domain also shows up in the type of the function. Objects are
collections of methods, with each method taking a single parameter

p ∈ Protections l ∈ Labels s ∈ Strings
τ ::= unit | string | bool | τ1 × ... × τn

| τ →p τ | [mi:pi
τi]

1..n

| advicep | τ labelp | τ refp | τ pcdp

v ::= () | s | true | false | (~v)
| λpx : τ.e | [mi = ςp xi.ei]

1..n | {v.x →p e}

| l | r | {~l}p

e ::= v | x | e1; e2 | print e
| if e1 then e2 else e3

| (~e) | split(~x)= e in e
| e e | e.m | {e.x →p e} | ⇑ e
| newp : τ | e[e]
| refp e | ! e | e := e
| {~e}p | e ∪p e | p<e>

Figure 1. Core Language Syntax

(self). Methods and object types are also annotated with protection
domains. Advice values {v.x →p e} are annotated with their
protection domain as well. Labels l and reference locations r do not
appear in initial programs; they only appear as programs execute
and generate new labels and new references.

Most of the expression forms are fairly standard. For instance,
in addition to values and variables, we allow ordinary expression
forms for sequencing, printing strings, conditionals, tuples, func-
tion calls, and method invocations. Expressions for introducing and
eliminating advice were explained in the previous section. The ex-
pressions newp : τ and refp e allocate labels that can be placed in
protection domain p and references associated with protection do-
main p respectively. The last command p<e> is a typing coercion
that changes the current protection domain to the lower protection
domain p.

2.2 Typing

The main typing judgment in our system has the form Γ; p `
e : τ . It states that in the context Γ, expression e has type τ
and may influence computations occurring in protection domains
p or lower. A related judgment Γ ` v : τ checks that value v
has type τ . Since values by themselves do not have effects that
influence the computations, this latter judgment is not indexed by
a protection domain. The context Γ maps variables, labels and
reference locations to their types. We use the notation Γ, x : τ
to extend Γ so that it maps x to τ . Whenever we extend Γ in this
way, we assume that x does not already appear in the domain of Γ.
Since we also treat all terms as equivalent up to alpha-renaming of
bound variables, it will always be possible to find a variable x that
does not appear in Γ when we need to. Figures 2 and 3 contain the
rules for typing expressions and values respectively.

The main goal of the typing relation is to guarantee that no val-
ues other than values with unit type (which have no information
content) flow from a low protection domain to a high protection do-
main, although arbitrary data can flow in the other direction. This
goal is very similar to, but not exactly the same as in, standard infor-
mation flow systems such as Jif and Flow Caml. The latter systems
actually do allow flow of values from low contexts to high contexts,
but mark all such values with a low-protection type. Jif and Flow
Caml typing rules make it impossible to use these low-protection
objects in the high-protection context (without raising the protec-
tion of the context). In our system, we simply cut off the flow of
low-protection values to high-protection contexts completely (aside
from the unit value). We are able to do this in our setting, as there
is a greater syntactic separation between high-integrity code (the
mainline computation) and low-integrity code (the advice, written
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elsewhere) than there might be in a standard secure information-
flow setting. We believe this is the right design choice for us be-
cause it simplifies the type system as we do not have to annotate
basic data such as booleans, strings or tuples with information flow
labels.

Most of the value typing rules are straightforward. For instance,
the rule for functions λpx : τ.e, states that the body of the func-
tion must be checked under the assumption that the code operates
in protection domain p. The resulting type has the shape τ →p τ ′.
Checking our simple objects is similar: the type checker must ver-
ify that each method operates correctly in the declared protection
domain. Labels and references are given types by the context. In the
current calculus, point-cut designators are sets of labels. Unlike the
other values, the rules for typing advice are fairly subtle. We will
discuss these rules in a moment together with the rules for typing
labeled control-flow points.

The first few expression typing rules (see Figure 3) are standard
rules for type systems that track information flow. The rule for if
deviates slightly from the usual rule for tracking information flow.
Normally, types for booleans will contain a security level and the
branches of the if will be checked at a level equal to the join of
the current security level and the level of the boolean. However, in
our system, any data, including booleans, manufactured by code at
level p contains level p information. Consequently, the branches of
the if statement may be safely checked at level p. The typing rules
for function calls and method invocations require that the function
or method in question be safe to run at the current protection level
p.

The typing rules for references enforce the usual integrity con-
straint found in information-flow systems. When in protection do-
main p, we are allowed to dereference references in protection do-
main p′ when p is less than or equal to p′. We are allowed to store
to references in protection domain p′ only if our current domain p
is greater than or equal to p′.

The last rule in Figure 3 is a typing coercion that changes the
protection level. It is legal for the protection level to be lowered
from p to p′ when no information flows back from the computation
e to be executed. We prevent this information flow by constraining
the result type of e to be unit. One might wonder whether the
following dual rule, which allows one to raise the protection level
is sound in our system:

·; p′ ` e : τ ` p ≤ p′

Γ; p ` p′ >e< : τ

This rule raises the protection domain for the expression e and
allows information to flow out of the expression, but does not allow
any information to flow in. In the context of the features we have
looked at so far, this rule appears sound, but in combination with
the context-sensitive advice we will introduce in Section 2.4, it is
not. Fortunately, the rule does not appear useful in our application
and we have omitted it.2

The last component of our type system involves the rules for
typing advice and marking control-flow points. If we want to ensure
that low-protection code cannot interfere with high-protection code
by manipulating advice and control-flow labels, we must be sure
that low-protection code cannot do either of the following:

1. Declare and activate high-protection advice. For instance, as-
sume r is a high-protection reference with type int refhigh
and l is a label that has been placed in high-protection code. If

2 There may well be some strategy that allows us to add this rule together
with the context-sensitive advice of Section 2.4. However, the naive ap-
proach does not appear to work. Rather then complicating the type structure
or operational semantics for something we do not need, we leave it out.

we allow the expression

{l.x →high r := 3 + x} << e

to appear in low-protection code, then this low privilege code
can indirectly cause writes to the reference r.

2. Mark a control-flow point with a label that triggers high-
protection advice. For instance, assume that

{l.x →high r := 3 + x}

is an active piece of high-protection advice which writes to
the high-protection reference r. Placing the label l in low-
protection code allows low-protection code to determine via its
control-flow, when the high-protection advice will run and write
to r.

In order to properly protect high-protection code in the face of
these potential errors, we do the following.

1. Add protection levels to advice types (e.g., advicehigh), which
will allow us to prevent advice from being activated in the
illegal contexts. (eg. low-protection contexts)

2. Add protection levels to label types (e.g., string labelhigh)
which will allow us to prevent labels being placed in illegal
spots. (eg. low-protection contexts)

One might hope that it would be possible to simplify the system and
add protection levels to only one of the two constructs, but doing
so leads to unsoundness.

Five typing rules in the middle of Figure 3 give the well-
formedness conditions for advice and labels. Notice that in the
rule for typing advice introduction, the protection level of the ad-
vice, and therefore the protection level the body of the advice must
operate under, is connected to the protection level of the label that
triggers it. Notice also that when marking a control-flow point
with a label, the protection level of the label is connected to the
protection level of the expression at that point. Finally, given a
high-protection piece of advice, this advice cannot be launched
from low-protection code. The result of these constraints is that
when in a low-protection zone, there is no way to cause execution
of high-protection advice.

2.3 Operational Semantics

The definition of the operational semantics for our language largely
follows earlier work by WZL. In particular, we use a context-based
semantics where contexts E specify a left-to-right, call-by-value
evaluation relation. The top-level operational judgment has the
form (S, A, p, e) 7−→ (S′, A′, p, e′) where S collects the labels
l that may be used to mark control-flow points and also maps
reference locations r to values. The meta-variable A represents an
advice store, which is a list of advice. The current protection level
of the code is p. The protection level does not influence execution
of the code, and could be omitted, but is useful to consider in
our noninterference proof. Most of the real work is done by the
auxiliary relation (S, A, p, e) 7−→β (S′, A′, p, e′). The syntax of
stores and advice stores is given below.

S ::= · | S, r = e | S, l
A ::= · | A, {v.x →p e}

The definitions of these relations can be found in Figure 4.
Notice that the rule for marked control-flow points depends upon
an auxiliary function A[[A]]

l[v] = e. This function selects all
advice in A that is triggered by the label l and combines their
bodies to form the expression e. The advice composition func-
tion can be found in Figure 5. Finally, an abstract machine con-
figuration (S, A, p, e) is well-typed if it satisfies the judgement
`(S, A, p, e)ok specified in Figure 6.
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Γ `() : unit Γ ` s : string

Γ ` true : bool Γ ` false : bool

(Γ ` vi : τi)
1≤i≤n

Γ `(~v) : τ1 × ... × τn

Γ, x : τ ; p ` e : τ ′

Γ ` λpx : τ.e : τ →p τ ′

((Γ, x : [mi:pi
τi]

1..n); pj ` ej : τj)
(1≤j≤n)

Γ ` [mi = ςpi
xi.ei]

1..n : [mi:pi
τi]

1..n

Γ ` v : τ pcdp Γ, x : τ ; p′ ` e : unit ` p′ ≤ p

Γ ` {v.x →p′ e} : advicep′

Γ(l) = τ labelp

Γ ` l : τ labelp

Γ(r) = τ refp

Γ ` r : τ refp

(Γ ` vi : τ labelpi
)(1≤i≤n) ( ` p ≤ pi)

(1≤i≤n)

Γ ` {~l}p : τ pcdp

Figure 2. Core Value Typing

2.4 Context-Sensitive Advice

The advice defined in previous sections could not analyze the call
stack from which it was activated. Programming languages such
as AspectJ allow this flexibility via special pointcut designators
such as CFlow. In this section, we describe a fully general facility
for analysis of information on the current call stack. Our new
mechanism is inspired by earlier work by WZL, but is more general
and fits better with the functional programming paradigm. Figure 7
outlines the syntactic extensions to our calculus.

In order to program with context-sensitive advice, programmers
grab the current stack using the stack()command. Data is explic-
itly allocated on the stack using the command store e1[e2] in e3,
where e1 is a label and e2 represents a value associated with the
label. e2 is typically used to store the value passed into the control
flow point marked by the label. The store command evaluates e1

to a label l and e2 to a value v2, places l[v2] on the stack, eval-
uates e3 to a value v3 and finally removes l[v2] from the stack
and returns v3. The programmer may examine a stack data struc-
ture using the case e of (pat ⇒ e | ⇒ e) command, which
matches the stack e against the pattern pat. If there is a match, the
first branch is executed; otherwise, the second branch is executed.
There are patterns that match the empty stack (e.g., ·), patterns
that match a stack starting with any label in a particular set (e.g.,
{~l}p[x] :: pat) where x is bound to the value associated with
the label on the top of the stack if it is in the label set, patterns
that match a stack starting with anything at all (e.g., :: pat), and
patterns involving stack variables (e.g., x).

The typing rules for these extensions appear in Figure 8. There
are three sets of rules in this figure. The first two extend the value
typing and expression typing relations respectively. The last set of
rules gives types to patterns where the type of a pattern is a context
Γ that describes the types of the variables bound within the pattern.

The rules for evaluating these new expressions appear in Fig-
ure 9. Again, there are three sets of rules. The first defines a new
set of top-level evaluation rules, and the second adds additional β-
evaluation rules. Notice that the top-level rule for evaluating the
stack primitive uses an auxiliary function S(F) that extracts the
current stack of values from F contexts, which contains evaluation
context E’s, and p<F> contexts. Here, we use the notation st@X

Γ ` v : τ
Γ; p ` v : τ

Γ(x) = τ

Γ; p ` x : τ

Γ; p ` e1 : unit Γ; p ` e2 : τ

Γ; p ` e1; e2 : τ

Γ; p ` e : string

Γ; p ` print e : unit

Γ; p ` e1 : bool Γ; p ` e2 : τ Γ; p ` e3 : τ

Γ; p ` if e1 then e2 else e3 : τ

(Γ; p ` ei : τi)
1≤i≤n

Γ; p `(~e) : τ1 × ... × τn

Γ; p ` e1 : τ1 × ... × τn Γ,(~x : ~t); p ` e2 : τ

Γ; p ` split(~x)= e1 in e2 : τ

Γ; p ` e1 : τ1 →p τ2 Γ; p ` e2 : τ1

Γ; p ` e1 e2 : τ2

Γ; p ` e : [mi:pi
τi]

1..n 1 ≤ j ≤ n p = pj

Γ; p ` e.mj : τj

Γ; p ` e1 : τ pcdp′ Γ, x : τ ; p′′ ` e2 : unit ` p′′ ≤ p′

Γ; p ` {e1.x →p′′ e2} : advicep′′

Γ; p ` e : advicep′ ` p′ ≤ p

Γ; p `⇑ e : unit

` p′ ≤ p

Γ; p ` newp′ : τ : τ labelp′

Γ; p ` e1 : τ labelp Γ; p ` e2 : τ

Γ; p ` e1[e2] : unit

Γ; p ` e : τ ` p′ ≤ p

Γ; p ` refp′ e : τ refp′

Γ; p ` e : τ refp′ ` p ≤ p′

Γ; p `!e : τ

Γ; p ` e1 : τ refp′ Γ; p ` e2 : τ ` p′ ≤ p

Γ; p ` e1 := e2 : τ

(Γ; p ` ei : τ labelpi
)(1≤i≤n) ( ` p′ ≤ pi)

(1≤i≤n)

Γ; p ` {~e}p′ : τ pcdp′

Γ; p ` e1 : τ pcdp′′ ` p′ ≤ p′′

Γ; p ` e2 : τ pcdp′′′ ` p′ ≤ p′′′

Γ; p ` e1 ∪p′ e2 : τ pcdp′

Γ; p′ ` e : unit ` p′ ≤ p

Γ; p ` p′<e> : unit

Figure 3. Core Expression Typing
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(S, A, p, e) 7−→β (S
′, A′, p, e′)

(S, A, p, e) 7−→(S′, A′, p, e′)

(S, A, p, e) 7−→(S′, A′, p, e)

(S, A, p, E[e]) 7−→(S′, A′, p, E[e′])

(S, A, p′, e) 7−→(S′, A′, p′, e′)

(S, A, p, p′<e>) 7−→(S′, A′, p, p′<e′>)

(S, A, p,(); e) 7−→β (S, A, p, e)

(S, A, p, print s) 7−→β (S, A, p, ())

(S, A, p, if true then e1 else e2) 7−→β (S, A, p, e1)

(S, A, p, if false then e1 else e2) 7−→β (S, A, p, e2)

(S, A, p, split(~x)=(~v)in e) 7−→β (S, A, p, e{~v/~x})

(S, A, p, λpx : t.e v) 7−→β (S, A, p, e{v/x})

(S, A, p, [mi = ςpi
xi.ei]

1..n.mj) 7−→β

(S, A, p, ej{[mi = ςpi
xi.ei]

1..n/xj})

(S, A, p, ⇑ {v.x →p′ e1}) 7−→β (S,(A, {v.x →p′ e1}), p,())

(l /∈ S) (S, A, p, newp′ : τ) 7−→β ((S, l), A, p, l)

l ∈ S A[[A]]
l[v] = e

(S, A, p, l[v]) 7−→β (S, A, p, e)

(r /∈ S) (S, A, p, refp′ v) 7−→β ((S, r = v), A, p, r)

(S, A, p, ! r) 7−→β (S, A, p, S(r))

(S, A, p, r := v) 7−→β ((S, r = v), A, p, v)

(S, A, p, {~l1}p′ ∪p′′ {~l2}p′′′) 7−→β (S, A, p, {~l1 ~l2}p′′)

(S, A, p, p′<()>) 7−→β (S, A, p, ())

Figure 4. Core Operational Semantics

A[[·]]
l[v] =()

l[v] |= v′ A[[A]]
l[v] = e

A[[{v′.x →p e′}, A]]
l[v] = p<e′{v/x}>; e

l[v]6|=v′ A[[A]]
l[v] = e

A[[{v′.x →p e′}, A]]C = e

l ∈ {~l}p

l[v] |= {~l}p

Figure 5. Core Aspect Composition

dom(S)= dom(Γ)
∀r ∈ dom(S). Γ(r)= τ refp Γ ` S(r) : τ for some p, τ

∀l ∈ dom(S). Γ(r)= τ refp for some p, τ

` S : Γ

Γ ` · ok

Γ ` a : advicep for some p Γ ` A ok

Γ ` A, a ok

` S : Γ Γ ` A ok Γ; p ` e : τ for some τ

`(S, A, p, e)ok

Figure 6. Core Abstract Machine Judgement

τ ::= ... | stack

v ::= ... | · | l[v] :: v

e ::= ... | stack() | store e[e] in e
| case e of(pat ⇒ e | ⇒ e)

pat ::= nil | e[x] :: pat
| :: pat | x

vpat ::= nil | {~l}p[x] :: vpat
| :: vpat | x

E ::= ... | store E[e] in e | store l[E] in e
| store l[v] in E
| case E of(pat ⇒ e | ⇒ e)
| case v of(Epat ⇒ e | ⇒ e)

Epat ::= ... | E[x] :: pat | {~l}p[x] :: Epat
| :: Epat

F ::= ... | [] | E[F ] | p < F >

Figure 7. Context Sensitive Advice Syntax

to append the object X to the bottom of the stack st. The last set of
rules conclude in judgments with the form st |= vpat ⇒ sub.
These rules describe the circumstances under which a stack st
matches an (evaluated) pattern vpat and generates a substitution
of values for variables sub.

For the most part, it is relatively straightforward to reassure
oneself that these extensions will not disrupt the noninterference
properties that our language possesses. However, there is one ma-
jor subtlety to consider: the stack() primitive. In order for this
primitive to be safe, it must be the case that whenever it is ac-
tivated in a high-level context, there is no low-level data on the
stack, which could influence execution in that high-level context.
Fortunately, this is indeed the case. The only way to switch protec-
tion levels from one evaluation context to the next is via the con-
text p<E>, which lowers the protection level. Consequently, any
use of the stack()command is done in the context that looks like
p1<E1[p2<E2[p3<E3>]>]> where p3 ≤ p2 ≤ p1. So while a low-
level expression can read high-level data via the stack()command
and subsequent scase expressions, the opposite is not possible. We
are safe.
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Γ ` v : τ

Γ ` · : stack

Γ ` l : τ labelp Γ ` v1 : τ Γ ` v2 : stack

Γ ` l[v1] :: v2 : stack

Γ; p ` e : τ

Γ; p ` stack() : stack

Γ; p ` e1 : τ ′ labelp′ Γ; p ` e2 : τ ′ Γ; p ` e3 : τ

Γ; p ` store e1[e2] in e3 : τ

Γ; p ` e1 : stack
Γ; p ` pat ⇒ Γ′ Γ, Γ′; p ` e2 : τ Γ; p ` e3 : τ

Γ; p ` case e1 of(pat ⇒ e2 | ⇒ e3) : τ

Γ; p ` pat ⇒ Γ

Γ; p ` nil ⇒ ·

Γ; p ` e : τ pcdp′ Γ; p ` pat ⇒ Γ′

Γ; p ` e[x] :: pat ⇒ Γ′, x : τ

Γ; p ` pat ⇒ Γ′

Γ; p ` :: pat ⇒ Γ′ Γ; p ` x ⇒ ·, x : stack

Figure 8. Advanced Point-cut Designator Typing

2.5 Core Language Meta-theory

To prove noninterference, we use the technique developed by Si-
monet and Pottier [24]. In order to do so, we initially assume the
collection of protection domains has been divided into two groups,
the high protection domains (H) and the low protection domains
(L). The low-protection group is a downward-closed subset of pro-
tection domains and the high-protection group contains all other
protection domains. The goal is to prove that low-protection code
cannot interfere with the behavior of high-protection code, no mat-
ter how aspects, references or labels are used. Overall, our proof
may be broken down into four main steps (See also Figure 10):

• Define a new language Core2 that simulates execution of two
original (henceforth referred to as Core1) programs.

• Show Core2 is a correct simulation of Core1 programs via
Soundness and Completeness theorems.

• Prove Core2 is a safe language and preserves the non-interference
invariants via the standard Progress and Preservation theorems.

• Put the theorems above together to prove the noninterference
result for Core1.

2.5.1 Defining Core2

We begin by defining a new language (Core2) that simulates execu-
tion of two of our original programs. The main syntactic difference
between Core1 expressions and Core2 expressions is the brack-
ets expression, p<e1|e2>. Here p is a low-protection label and the
ei are Core1 expressions. These brackets expressions encapsulate
all differences between the two Core1 expressions that are being
simulated. For instance, the Core2 expression

p<print ‘‘hi’’ | print ‘‘bi’’>;x+3

(S, A, p, e) 7−→top (S
′, A′, p, e′)

(S, A, p, e) 7−→(S′, A′, p, e′)

(S, A, p, e) 7−→top (S
′, A′, p, e′)

(S, A, p, F [stack()]) 7−→top (S, A, p, F [S(F)])

where :

S([]) = ·
S(store l[v] in F) = S(F)@(l[v])

S(p < F > ) = S(F)
S(E[F ]) = S(F)

when E 6= store l[v] in F

(S, A, p, e) 7−→β (S, A, p, e)

(S, A, p, store v1[τ] in v2) 7−→β (S, A, p, v2)

v |= vpat ⇒ sub

(S, A, p, case v of(vpat ⇒ e1 | ⇒ e2)) 7−→β

(S, A, p, sub(e1))

v 6|= vpat ⇒ sub

(S, A, p, case v of(vpat ⇒ e1 | ⇒ e2)) 7−→β

(S, A, p, e2)

v |= vpat ⇒ sub

· |= nil ⇒ ·

l ∈ {~l}p v2 |= vpat ⇒ sub

l[v1] :: v2 |= {~l}p[x] :: vpat ⇒ sub, {v1/x}

v2 |= vpat ⇒ sub

l[v1] :: v2 |= :: vpat ⇒ sub

v |= x ⇒ {v/x}

Figure 9. Advanced Point-cut Designator Evaluation

represents the two Core1 programs

p<print ‘‘hi’’>;x+3

p<print ‘‘bi’’>;x+3

The typing rule for the bracket expression requires that the two
subexpressions have low protection and release no information into
the surrounding high-protection context.

Γ; p′ `2 e1 : unit Γ; p′ `2 e2 : unit
p ∈ H p′ ∈ L `2 p′ ≤ p

Γ; p `2 p′<e1|e2> : unit

To express the operational semantics of Core2 we add need to
add similar bracket constructs for the contents of the reference/label

7 2005/7/28



Figure 10. Noninterference Proof Diagram

store S and the aspect store A.

v2 ::= v | <v|v> | <v|void> | <void|v>
τ 2 ::= τ | <τ|void> | <void|τ>
a2 ::= v | <v|void> | <void|v>
S ::= · | S, r = v2 | S, l → τ 2

A ::= · | A,a2

The void marker indicates that the appropriate element is not
present in the program. For example, if advice a is activated in
only the left instance but not the right instance of simultaneously
executing Core1 programs, the aspect store of the Core2 program
that simulates them will contain <a|void>.

To relate Core1 to Core2, we define the projection function | |i
where i ∈ 1,2. |p<e1|e2>|i is p<ei> and | |i is a homomorphism
on all other expressions. Since p<e1|e2> in Core2 simulates the
simultaneous execution of two low-protection original Core1 ex-
pressions, the projection function extracts one of these two execu-
tions.

The Core2 machine state (S, A, p, e) symbolizes the current
state of the two simultaneously executing Core1 programs where
the i-th projection is the state of the i-th Core1 program:

|(S, A, p, e)|i =(|S|i, |A|i, p, |e|i)

The projection function for the reference/label store and the aspect
store is similar to the one for expressions.

The definition of the complete operational semantics of Core2
is not too difficult, but it does involve a substantial amount of
notation and due to space considerations, we omit the details.
Intuitively, the main ideas are as follows:

• Ordinary Core1 expressions embedded within Core2 expres-
sions operate as Core1 expressions normally do.

• To evaluate inside the brackets expression p<e1|e2>, the seman-
tics nondeterministically chooses one of e1 or e2 to execute.
Operations on references or aspects executed in e1 use the “left-
hand” component of the reference store or aspect store; opera-
tions on references or aspects executed in e2 use the “right-
hand” component of the reference store or aspect store.

• To evaluate the expression p<()|()>, we simply throw away
the brackets, returning the unit value (). Since () carries no
information, no information is transmitted between low- and
high-protection contexts.

• Whenever values v1 and v2 are not both (), the expression
p<v1|v2> is stuck. Fortunately, such an expression is ill-typed
and never arises from evaluation of a well-typed program.

The judgment form for execution of top-level Core2 expressions
has the same shape as the judgment form for Core1 expressions.
The index 2 on the arrow distinguishes the two judgements:

(S, A, p, e) 7−→∗
2,top (S

′, A′, p, e′
)

2.5.2 Relating Core1 and Core2

Once Core2 has been defined, it is necessary to show that it accu-
rately simulates two Core1 programs. Two theorems, one concern-
ing the soundness of Core2 execution relative to Core1 and the
other concerning the completeness of Core2 relative to Core1 help
to establish the proper correspondence.

The soundness theorem states that if a Core2 expression takes a
step, then the two corresponding Core1 programs (the projections
of the Core2 expression) must each take the same respective steps.
The proof of this theorem requires, among other things, an auxiliary
lemma that establishes a soundness result for aspect composition.

THEOREM 2.1 (Soundness). For i ∈ {1, 2},
if (S, A, p, e) 7−→∗

2,top (S
′, A′, p, e′)

then |(S, A, p, e)|i 7−→∗
top |(S′, A′, p, e′)|i

The completeness theorem states that if two Core1 programs
step to values, then the representation in Core2 that simulates them
simultaneously must step to a value. The completeness theorem
requires an auxiliary lemma stating that a Core2 program is only
stuck when one of its corresponding Core1 programs are stuck.

THEOREM 2.2 (Completeness). Assume
|(S, A, p, e)|i 7−→∗

top (S′
i, A

′
i, p, vi) for all i ∈ 1, 2 then there

exists(S′, A′, p, v)such that(S, A, p, e) 7−→∗
2,top (S

′, A′, p, v)

2.5.3 Safety of Core2

To continue we prove that the type system of Core2 is sound with
respect to our operational semantics using Progress and Preserva-
tion theorems. This strategy requires that we extend the typing re-
lation to cover all of the run-time terms in the language as well as
the other elements of the abstract machine (i.e., the code store and
aspect store). A Core2 configuration (S, A, p, e) is well-typed if
it satisfies the judgement `2 (S, A, p, e)ok (omitted due to space
constraints). If the stores and the expression contain brackets, the
protection domains associated with the brackets must be low.

Part of the proof of Progress involves defining the canonical
forms of each type. It is important to notice here that the brackets
expression is not a value and therefore the only values with type
bool, for instance, are true and false. This fact comes into play
later in the noninterference proof. The following lemma gives the
rest of canonical forms.

We now state the standard Progress and Preservation lemmas.

THEOREM 2.3 (Progress). If `2 (S, A, p, e)ok then either e is a
value, or there exists(S′, A′, p, e′)such that
(S, A, p, e) 7−→2,top (S

′, A′, p, e′).

THEOREM 2.4 (Preservation). If `2 (S, A, p, e)ok
and(S, A, p, e) 7−→2,top (S

′, A′, p, e′)then `2 (S
′, A′, p, e′)ok.

2.5.4 Putting it all together: Noninterference

Finally, for the noninterference proof, we assume a high-protection
Core1 expression e steps to a value. We add a low-protection ex-
pression low<e′> where low ∈ L to e so that e with the low-
protection code and e alone are executed simultaneously and their
resulting values compared. This is achieved by constructing the
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Core2 expression low<()|e′>; e where the right projection steps
to e alone and the left projection is the low-protection code e′ com-
posed with e. Using the soundness, completeness, and preserva-
tion theorems, we show that both e alone and e with the added
low-protection code step to the same value. Therefore the low-
protection code, even if it introduced advice, did not interfere with
execution.

THEOREM 2.5 (Noninterference). If high ∈ H and low ∈ L
and ` low ≤ high and e is a core language expression where
·; high ` e : bool and ·; low ` e′ : unit
and(·, ·, high, low<e′>; e) 7−→∗

top(S1, A1, high, v1)
and(·, ·, high, low<()>; e) 7−→∗

top(S2, A2, high, v2)
then v1 = v2.

3. Source Language
Our core calculus will not serve as an effective source-level aspect-
oriented programming language – it is far too low level for con-
venient programming. However, the intended purpose of the core
calculus is not to serve as a user-friendly programming language
itself, but rather to serve as a semantic intermediate language to
which we compile a more practical source language.

As we have already shown, it is possible to prove deep proper-
ties of the core, including our powerful noninterference result. The
primary reason for this is that core calculus consists of a relatively
simple, orthogonal collection of primitive operators. In a more con-
venient source language, these simple operators are combined to-
gether to form complex, higher-level primitives. To obtain proper-
ties of a source language, we give a type-preserving translation into
the core and then exploit properties of type-correct core language
terms. This strategy effectively modularizes proofs of properties
about the source and greatly simplifies the overall proof.

Hence, in this section, we proceed to define a user-friendly
aspect-oriented source language with harmless advice. We have im-
plemented the language in SML and explored the extent to which
we can use harmless aspects to implement dynamic security poli-
cies.

3.1 Syntax

Figure 11 presents the formal syntax of the source language. The
types of the source language objects are a restricted form of the
internal language types. In particular, source language object types
are the composition of a core language object and function type.
Also, since programmers in the source language do not explicitly
manipulate labels, there are no label types in the source language.

Most of the source language expressions and values mimic the
core language expressions and values, although there are a few
differences. For instance, none of the run-time-only values such
as labels, reference locations, or stack values need appear in the
collection of source values as the source language is not executed
directly. Also, for convenience, we allow a local let declaration in
expressions, which programmers can use to allocate values with
basic type, references or objects. Note that we use the meta-variable
o to stand for program variables bound to objects. We use the meta-
variable x to stand for any kind of program variable.

The source language case expressions analyze stack values in
a similar way to the target, only the patterns are slightly different,
reflecting a particular compilation strategy. More specifically, when
compiling a method, we will automatically allocate the following
items on the stack: a label corresponding to the method, a tuple
containing a pointer to self, a pointer to the method argument, and
a string corresponding to the name of the method that was called.
Consequently, the patterns that match stack frames have the form
{o.mi}

1..n[x, y, n], where {o.mi}
1..n is checked against the label,

and x, y, and n are bound to self, the argument and the string

τ ::= unit | string | bool

| [mi:pi
τi →pi

τi]
1..n | τ refp | stack

v ::= () | s | true | false

e ::= v | x | e; e | print e
| if e then e else e
| let ds in e
| e.m(e)
| ! e | e := e
| case e of(pat ⇒ e | ⇒ e)

pat ::= nil | {o.mi}
1..n[x, y, n] :: pat | :: pat | x

d ::= (string x = e)
| (bool x = e)
| (ref x = e)
| (object o = [mi : τi → τ ′

i = ς xi.λyi.ei]
1..n)

ds ::= . | d ds

a ::= (before {o.mi}
1..n(x, y, s, n)= e)

| (after {o.mi}
1..n(x, y, s, n)= e)

as ::= . | d as | a as

aspcts ::= . | p : {as} aspcts

prog ::= ds aspcts e

Figure 11. Source Language Syntax

respectively. The string can be used when printing out debugging
information, profiling information, etc.

Advice in the source language is either before advice that runs
before a method call or after advice that runs after the method call.
Similar to the source-language stack patterns, when the advice is
triggered, x is bound to self, y is bound to the method argument,
and n is bound to a string corresponding to the method name. The
variable s is bound to the stack at the point the advice is triggered.
In the source language, programmers do not explicitly allocate their
own data on the stack, nor do they explicitly grab the current stack.
Code for performing these actions is emitted at specific points
during the translation from source into core.

3.2 Examples

Figure 12 and 13 display example code.3 Figure 12 presents the
(partial) definition of the sys object, which implements a number
of system calls. We have shown some of the file operations here.

Figure 13 presents a couple of simple security policies we have
implemented to exhibit the basic language features. Programmers
would use these aspects to sandbox untrusted code [11, 18, 9, 3].
The first policy, limitdirectories, disallows programs from
opening files in directories other than the tests directory. This is
achieved using before advice that is triggered by execution of any
of the open-file calls in the sys object. The before advice checks
the method call argument to determine the file to be opened. If the
file is not in the right directory the advice prints out a message and
aborts, terminating the program. This advice calls a number of

3 These examples use a number of additional standard operations we have
not formalized, but we have implemented in our system.
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object sys = [
openW : file = x.y:string.

if (x.exi (y))
then (x.openO (y)) else (x.openC (y)),

openA : file = x.y:string. ...,
openR : file = x.y:string. ...,
openO : file = x.y:string. ...,
openC : file = x.y:string. ...,
write : int = x.y:file * string. ...,
read : string = x.y:file * int. ...,
exists: bool = x.y:string. ...,
...
]

Figure 12. System Object

pure string functions as well as the print and abort functions,
which have I/O and termination effects. Our type system correctly
verifies it is harmless.

The second example, limitcreate, limits the number of new
files a program can create. To do so, it allocates a local reference
filescreated to keep track of the number of files created so far.
By default, such references take on the protection level of the aspect
that creates them, in this case limitcreate. Once again, the type
system verifies that the aspect is harmless. Notice that even though
limitcreate and limitdirectories can be invoked at some of
the same control flow points (e.g., sys.openC), they are guaranteed
not to interfere. Hence, these two policies could have being created
by independent programmers and they would still work properly
when composed.

The last example, opencheck, shows how to use stack patterns
to implement a highly simplified stack-inspection-like policy. In
this example, we have assumed that sys.openC and sys.openO
are “helper functions” that should only be called by sys.openW,
which checks to see whether or not the file in question exists before
determining which method to call. In this aspect, before advice
analyzes the control stack (advice argument s) and only allows
execution to proceed if the immediate caller was sys.openW. Real
stack inspection policies examine the whole control stack, not just
the immediate caller. Such policies may be implemented in our
system using a recursive method that runs down the stack.

3.3 A Case Study in Security

To study the usefulness of harmless advice somewhat more broadly
in the security domain, we examined the suite of security policies
that Evans implemented as part of the Naccio system for his the-
sis [10]. At the time, Evans thought of Naccio as a domain specific
language for implementing security policies and he argued effec-
tively (as did Erlingsson and Schneider in concurrent research [9])
that his language, which completely separates security code from
mainline program, was an effective means of developing reliable
security policies. It is now clear that Naccio is form of aspect-
oriented programming language, though at the time Naccio was
developed, aspects had not yet gained much attention.

We lifted the security policies Evans wrote for Java from his
thesis and rewrote them in our language, testing them for harmless-
ness. We omitted those elements of the policies that were particu-
larly Java-specific. Of the group, there was one policy that was not
harmless. It was a networking policy called SoftSendLimit that di-
vided up the data to be sent on the network into small chunks and
limited the sending rate to some preset limit. Some of the other
policies we investigated include the following:

• NoBashingExceptTmp allows modification of files in the
“tmp” directory but no others.

limitdirectories:{
(string alloweddirectory = "tests/")
(before {sys.openR, sys.openW, sys.openA, sys.openC,

sys.openO} (x,y,s,n) =
let
(string directory =

substring (y, 0, (lastindexof (y, "/")+1)))
in
(if (directory == alloweddirectory)
then ()
else ((print "Forbidden directory.\n");

(abort ())) ))
}

limitcreate:{
(ref filescreated:int = 0)
(int createlimit = 10)
(before {sys.openC} (x,y,s,n) =

if ((!filescreated + 1) > createlimit)
then ((print "Too many files created.\n");

(abort ()))
else ())

(after {sys.openC} (x,y,s,n) =
((filescreated := (!filescreated) + 1); ()))

}

opencheck:{
(before {sys.openC, sys.openO} (x,y,s,n) =

case s of
( _::{sys.openW}[x,y,n]::tail => ()
| _ => (print ("Invalid openW call.\n");

abort ())))
}

Figure 13. Simple Security Aspects

• LimitWrite prevents the modification of existing files and lim-
its the number of characters that can be written to the file sys-
tem.

• NetLimit restricts the network send rate to a designated limit.
When the rate is being exceeded, our implementation uses
sleep system calls to slow the send process. This is allowed in
our definition of harmlessness.

• JavaApplet only allows access to a specified file and only al-
lows connections to a specified host. Our harmless implemen-
tation contains aspects on the relevant read, write, observe file
system calls and on the relevant connect and accept network
system calls.

• Paranoid implements file read, write, create and observe limits,
directory restrictions, and network usage prevention.

• TarCustom is a modified NoBashingFiles policy except “.tar”
files can be overwritten. It only allows read access to specified
files, does not allow more bytes written than read, and prohibits
all network use.

3.4 Source Language Metatheory

To gives a semantics to our source language, we define a type-
preserving transformation into the core language. More precisely,
we define a type-preserving transformation into Core2, which
gives us not one, but two semantics for the source. The first se-
mantics is the reference semantics in which every source language
aspect is translated into the unit value. In this semantics, aspects
cannot possibly be anything but harmless. The second semantics

10 2005/7/28



is the implementation semantics. In this latter case, every source
language aspect is implemented as the appropriate core language
state, objects and advice. Each new aspect is placed in its own new
protection domain, which sits underneath the protection domain
main for the mainline code in the security lattice. Clearly, one im-
plements the second (implementation) semantics not the reference
semantics. However, using the key properties of the core — sound-
ness, completeness and preservation — we prove that if the two
semantics both terminate and produce results, then the results they
produce are equal. Consequently, we obtain our central result: the
implementation semantics of source language aspects is harmless.

Overall, the translation is defined as a collection of mutually re-
cursive judgements that both type check the source and simultane-
ously translate it into the core. In general, the judgements have the
form P ; Γ; p ` source : τ

ann
=⇒ e where P describes the program

points that may trigger advice, Γ is a source typing context, p is the
protection domain for the code, source is source-language syntax
to be translated, τ is its type, and e is the Core2 languge code that
results. The annotation ann above the arrow indicates the sort of
source syntax that is being translated (e.g., dec for declarations, as
for aspect declarations, etc.,).

Due to space constraints, we cannot describe all of the details
of the translation here (please see the appendix). However, we
can show the one key rule that gives source-level aspects two
interpretations in the core:

P ; Γ; p′ ` as; .;() : unit
as

=⇒ e′

P ; Γ; main ` .; aspcts ; e : τ
dec
=⇒ e′′ ` p′ < main

P ; Γ; main ` .; p′:{as} aspcts ; e : τ
dec
=⇒ p′<()|e′>; e′′

This rule translates one aspect (p′:{as}) in a sequence into a Core2
expression. Assuming e′ is the code that results from translating as,
the declarations that make up the aspect, then the resulting Core2
expression is p′<()|e′>. In this case, the reference semantics for the
aspect is()and the implementation semantics is e′.

The first important property of the translation is that it only
produces well-typed Core2 expressions.

THEOREM 3.1 (Translation Type Safety).
If ` prog : bool

prog
=⇒ e′, then .; main `2 e′ : bool.

The Translation Type Safety Theorem, when combined with
properties of the core, gives us our final theorem establishing that
the reference and implementation semantics of the source language
coincide and therefore that aspects are harmless. The proof has
a similar structure to the proof of non-interference for the core
covered in Section 2.5.

THEOREM 3.2 (Source Language Aspects are Harmless).
If ` prog : bool

prog
=⇒ e′

and(·, ·, main, |e′|1) 7−→∗
top(S1, A1, main, v1)

and(·, ·, main, |e′|2) 7−→∗
top(S2, A2, main, v2)

then v1 = v2.

4. Related Work
Over the last several years, a number of researchers have begun
to build semantic foundations for aspect-oriented programming
paradigms [28, 8, 15, 16, 21, 26, 27]. This foundational work pro-
vides a starting point from which one can begin to analyze the prop-
erties of aspect-oriented programs, develop principled new pro-
gramming features, study verification techniques and derive useful
type systems. In this paper, our semantic foundations were derived
directly from earlier work by Walker, Zdancewic and Ligatti [27].
The main novelty with respect to this earlier research is the devel-

opment of a type system for ensuring that aspects do not interfere
with each other or the mainline computation.

Clifton and Leavens [4] proposed techniques for Hoare-style
reasoning about aspect-oriented programs using assistants and ob-
servers. Their notion of observers is similar to our conception of
harmless advice — observers do not interfere with the mainline
computation. However, the details of our type and effect system
are entirely different from their Hoare logic. One point of interest
is that Clifton and Leavens mention that it is not clear whether their
model can “accommodate dynamic context join points like CFlow.”
Our analysis of our stack operations, which are sufficient for coding
up CFlow-like primitives, indicates that harmless advice can indeed
safely use these primitives and avoid interfering with the mainline
computation or each other.

Rinard, Salcianu, and Bugrara [25] developed a system that
classifies the interaction between aspects and main program code
into five categories: orthogonal (aspects and main program code
have no fields in common), independent (aspects and main program
code cannot write to fields that the other can access), observation
(aspects can read fields that the main program code writes), actua-
tion (aspects can write to fields that the main program code reads),
and interference (aspects and main program code can write to the
same fields) interactions. Our definition of harmlessness would in-
clude Rinard’s orthogonal, independent, and observation interac-
tions. Rinard’s tool uses a variety of data flow and control flow
analyses and operates within Java’s nominal type structure, so the
details of their system are quite different from our own. In addi-
tion, Rinard’s system is described informally in English; he has not
proven any properties of his analyses.

Douence, Fradet and Südholt [7] analyze aspects defined by re-
cursion together with parallel and sequencing combinators. They
develop a number of formal laws for reasoning about their combi-
nators and an algorithm that is able to detect strong independence.
Two pieces of advice are strongly independent when they do not
interfere with each other regardless of the contents of the advice
bodies or the contents of the programs they are applied to. In other
words, strong independence is determined exclusively by analysis
of the point cut designators of the two pieces of advice and con-
sequently it is orthogonal to our analysis which (mostly) ignores
the point cuts and examines the advice bodies instead. It would be
interesting to explore how to put these two different ideas together.

Krishnamurthi, Fisler and Greenberg [19] tackle the more gen-
eral problem of verifying aspect-oriented programs. Given a set of
properties a program must satisfy, specified in a temporal logic, and
a set of point cut designators, they verify programs using model
checking. Their approach to verification is partly modular since
as long as the set of point cuts does not change and the underly-
ing mainline code remains fixed, it is not necessary to reanalyze
the mainline code as advice definitions are edited. However, if the
pointcuts or mainline code do change, the whole program must be
rechecked. Aside from the fact that we are both interested in mod-
ular checking of aspect-oriented programs, there is not too much
similarity between the techniques. In terms of trade-offs, our ap-
proach is lighter weight (temporal specifications of properties are
unnecessary) and more modular (changing point cut designators
used by advice does not necessitate re-type checking the mainline
program), but checks a much coarser-grained property (we guaran-
tee that all functional properties of advice are preserved). Having
said that, it certainly seems possible to combine these two different
ideas in a single system, an interesting idea for future research.

Another interesting line of current research involves finding
ways to add aspect-oriented programming features to languages
with module systems, or vice-versa. One of the first systems to
combine aspects and modules effectively was Lieberherr, Lorenz
and Ovlinger’s Aspectual Collaborations [20, 23]. Their proposal
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allows module programmers to choose the join points (i.e., control-
flow points) that they will expose to external advice. External ad-
vice cannot intercept control-flow points that have not been ex-
posed. Aldrich [2] has proposed another model for combining as-
pects and modules called Open Modules. Open Modules have a spe-
cial module sealing operator that hides internal control-flow points
from external advice. Aldrich has used logical relations to show
that sealed modules have a powerful implementation-independence
property [1]. The current report differs from this previous research
as it does not suggest that visibility of the interception points be
limited; instead, we suggest limiting the capabilities of advice.
Once again, it seems quite likely that one could combine both ideas.

Finally, together with Washburn and Weirich [6], we have
shown how to extend the core calculus and a related functional
source language with polymorphic functions, polymorphic advice
and run-time type analysis. In the future, we are planning to merge
these two efforts in order to support safe but flexible type-directed
aspect-oriented programming.

5. Conclusions
In this paper, we have investigated the idea of harmless advice:
aspect-oriented advice that does not interfere with the mainline
computation. While strictly less powerful than ordinary advice, we
believe that harmless advice can be used in many contexts including
security monitoring, profiling, logging, and for some debugging
tasks. Harmless advice has the advantage that it may be added to
a program after-the-fact, in the typical aspect-oriented style, yet
programmers do not have to worry about it corrupting important
mainline data invariants and hence they retain the ability to perform
local reasoning about partial correctness of their programs.
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A. Source Language
A.1 Syntax

τ ::= unit | string | bool

| [mi:pi
τi →pi

τi]1..n | τ refp | stack

v ::= () | s | true | false

e ::= v | x | e; e | print e

| if e then e else e
| let ds in e

| e.m(e)
| ! e | e := e

| case e of(pat ⇒ e | ⇒ e)

pat ::= nil | {o.mi}1..n[x, y, n] :: pat | :: pat | x

d ::= (string x = e)
| (bool x = e)
| (ref x = e)

| (object o = [mi : τi → τ ′
i = ς xi.λyi.ei]1..n)

ds ::= . | d ds

a ::= (before {o.mi}1..n(x, y, s, n)= e)

| (after {o.mi}1..n(x, y, s, n)= e)

as ::= . | d as | a as

aspcts ::= . | p : {as} aspcts

prog ::= ds aspcts e

A.2 Translation from Source into Core

Please see the following pages.
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P ; Γ ` v : τ
val

=⇒ v′

P ; Γ `() : unit
val

=⇒() P ; Γ ` s : string
val

=⇒ s

P ; Γ ` true : bool
val

=⇒ true P ; Γ ` false : bool
val

=⇒ false

P ; Γ; p ` e : τ
exp
=⇒ e′

P ; Γ ` v : τ
val

=⇒ v′

P ; Γ; p ` v : τ
exp
=⇒ v′

Γ(x)= τ

P ; Γ; p ` x : τ
exp
=⇒ x

P ; Γ; p ` e1 : unit
exp
=⇒ e′

1 P ; Γ; p ` e2 : τ
exp
=⇒ e′

2

P ; Γ; p ` e1; e2 : τ
exp
=⇒ e′

1; e
′
2

P ; Γ; p ` e : string
exp
=⇒ e′

P ; Γ; p ` print e : unit
exp
=⇒ print e′

P ; Γ; p ` e1 : bool
exp
=⇒ e′

1 P ; Γ; p ` e2 : τ
exp
=⇒ e′

2 P ; Γ; p ` e3 : τ
exp
=⇒ e′

3

P ; Γ; p ` if e1 then e2 else e3 : τ
exp
=⇒ if e′

1 then e′
2 else e′

3

P ; Γ; p ` ds; .; e : τ
dec
=⇒ e′

P ; Γ; p ` let ds in e : τ
exp
=⇒ e′

P ; Γ; p ` e1 : [mi:pi
τi]

1..n exp
=⇒ e′

1 τj = τ →p τ ′

P ; Γ; p ` e2 : τ
exp
=⇒ e′

2 ` pj = p

P ; Γ; p ` e1.mj(e2) : τ ′ exp
=⇒ e′

1.mj e′
2

P ; Γ; p ` e : τ refp′

exp
=⇒ e′ ` p ≤ p′

P ; Γ; p `! e : τ
exp
=⇒! e′

P ; Γ; p ` e1 : τ refp′

exp
=⇒ e′

1 P ; Γ; p ` e2 : τ
exp
=⇒ e′

2 ` p′ ≤ p

P ; Γ; p ` e1 := e2 : unit
exp
=⇒ e′

1 := e′
2

P ; Γ; p ` e1 : stack
exp
=⇒ e′

1 P ; p ` pat
pat

=⇒ pat′ a Γ′; Θ P ; Γ, Γ′; p ` e2 : τ
exp
=⇒ e′

2 P ; Γ; p ` e3 : τ
exp
=⇒ e′

3

P ; Γ; p ` case e1 of(pat ⇒ e2 | ⇒ e3) : τ
exp
=⇒ case e′

1 of(pat′ ⇒ split(Θ, e′
2) | ⇒ e′

3)

split(Θ, e)

split(·, e)= e split(a →(x, y, z), Θ)= split(Θ, split(x, y, z)= a in e)

Γ a Θ ⇒ Γ′

Γ a · ⇒ Γ

Γ a Θ ⇒ Γ′

Γ, x : τ, y : τ ′, z : τ ′′ a Θ, z →(x, y, z)⇒ Γ′, z :(τ × τ ′ × τ ′′)

P ; p ` pat
pat

=⇒ pat′ a Γ′; Θ

(P(o.mi)=(τself , τarg, τres, pi))
(1≤i≤n) P ; p ` pat

pat
=⇒ pat′ a Γ′; Θ

P ; p ` { ~o.m}[x, y, n] :: pat
pat

=⇒ { ~ompre}p[z] :: pat′ :
(Γ′, x : τself , y : τarg, n : string; Θ, z →(x, y, n))

P ; p ` nil
pat

=⇒ nil a ·; ·

P ; p ` pat
pat

=⇒ pat′ a Γ′; Θ

P ; p ` :: pat
pat

=⇒ :: pat′ a Γ′; Θ P ; p ` x
pat

=⇒ x a ·,(x : stack); ·

Figure 14. Translation: Part 1
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P ; Γ; p ` as; aspcts ; e : τ
dec
=⇒ e′

P ; Γ; p′ ` as; .;() : unit
as

=⇒ e′

P ; Γ; main ` .; aspcts ; e : τ
dec
=⇒ e′′ ` p′ < main

P ; Γ; main ` .; p′:{as} aspcts ; e : τ
dec
=⇒ p′<()|e′>; e′′

P ; Γ; p ` e : τ
exp
=⇒ e′

P ; Γ; p ` .; .; e : τ
dec
=⇒ e′

P ; Γ; p ` e1 : string
exp
=⇒ e′

1

P ; Γ, x : string; p ` as; aspcts ; e2 : τ
dec
=⇒ e′

2

P ; Γ; p `(string x = e1)as; aspcts ; e2 : τ
dec
=⇒

let x = e′
1 in e′

2

P ; Γ; p ` e1 : bool
exp
=⇒ e′

1

P ; Γ, x : bool; p ` as; aspcts ; e2 : τ
dec
=⇒ e′

2

P ; Γ; p `(bool x = e1)as; aspcts ; e2 : τ
dec
=⇒

let x = e′
1 in e′

2

(P ;(Γ, x : τself , y : τi); p ` ei : τ ′
i

exp
=⇒ e′

i)
1≤i≤n

(P,(o.mi :(τself , τi, τ
′
i , p))

1..n);(Γ, o : τself); p ` as; aspcts ; e2 : τ
dec
=⇒ e′

2

P ; Γ; p `(object o = [mi : τi → τ ′
i = ς xi.λyi.ei]

1..n)as; aspcts ; e2 : τ
dec
=⇒

let om1,pre = newp :(τself , τ1, string)in ... let omn,pre = newp :(τself , τn, string)in
let om1,post = newp :(τself , τ ′

1, string)in ... let omn,post = newp :(τself , τ ′
n, string)in

let o = [mi = ςp xi.λpyi : τi. store omi,pre[(xi, yi, “o.m′′
i )] in

omi,pre[(xi, yi, “o.mi“)];
let resi = e′

i in
omi,post[(xi, resi, “o.mi“)];
resi

]1..n in e′
2

where τself = [mi:pτi →p τ ′
i ]

1..n

P ; Γ; p ` e1 : τ
exp
=⇒ e′

1 P ; Γ, x : τ refp; p ` as; aspcts ; e2 : τ ′ dec
=⇒ e′

2

P ; Γ; p `(ref x = e1)as; aspcts ; e2 : τ ′ dec
=⇒ let x = refp e′

1 in e′
2

(P(o.mi)=(τself , τarg, τres, pi))
(1≤i≤n)

P ;(Γ, x : τself , y : τarg, s : stack, n : string); p ` e1 : unit
exp
=⇒ e′

1 P ; Γ; p ` as; aspcts ; e2 : τ
dec
=⇒ e′

2

P ; Γ; p `(before { ~o.m}(x, y, s, n)= e1)as; aspcts ; e2 : τ
dec
=⇒

⇑ {{ ~ompre}p.z →p split(x, y, n)= z in
let s = stack()in
e′
1}; e

′
2

(P(o.mi)=(τself , τarg, τres, pi))
(1≤i≤n)

P ;(Γ, x : τself , y : τres, s : stack, n : string); p ` e1 : unit
exp
=⇒ e′

1 P ; Γ; p ` as; aspcts ; e2 : τ
dec
=⇒ e′

2

P ; Γ; p `(after { ~o.m}(x, y, s, n)= e1)as; aspcts ; e2 : τ
dec
=⇒

⇑ {{ ~ompost}p.z →p split(x, y, n)= z in
let s = stack()in
e′
1}; e

′
2

` prog : τ
prog
=⇒ e′

.; .; main ` ds; aspcts ; e : τ
dec
=⇒ e′

` ds aspcts e : τ
prog
=⇒ e′

Figure 15. Translation: Part II
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