
Harmless Advice∗

Daniel S. Dantas
Princeton University

ddantas@cs.princeton.edu

David Walker
Princeton University

dpw@cs.princeton.edu

ABSTRACT
This paper defines an object-oriented language with harm-

less aspect-oriented advice. A piece of harmless advice is a
computation that, like ordinary aspect-oriented advice, ex-
ecutes when control reaches a designated control-flow point.
However, unlike ordinary advice, harmless advice is designed
to obey a weak non-interference property. Harmless advice
may change the termination behavior of computations and
use I/O, but it does not otherwise influence the final result of
computations that trigger it. The benefit of harmless advice
is that it facilitates local reasoning about program behavior.
More specifically, programmers may ignore harmless advice
when reasoning about the partial correctness properties of
their programs. In addition, programmers may add new
pieces of harmless advice to pre-existing programs in typi-
cal “after-the-fact” aspect-oriented style without fear they
will break important data invariants used by the main-line
program.
In order to detect and enforce harmlessness, the paper

defines a novel type and effect system related to information-
flow type systems. The central technical result is that well-
typed harmless advice does not interfere with the mainline
computation. We have also implemented a type checker and
interpreter for our system.

1. INTRODUCTION
Aspect-oriented programming languages (AOPL) such as

AspectJ [16] allow programmers to specify both what com-
putation to perform as well as when to perform it. For ex-
ample, AspectJ makes it easy to implement a profiler that
records statistics concerning the number of calls to each

∗This research was supported in part by ARDA Grant
no. NBCHC030106, NSF grants CCR-0238328 and CCR-
0208601, and an Alfred P. Sloan Fellowship. Opinions, find-
ings, conclusions, and recommendations expressed through-
out this work are not necessarily the views of the NSF,
ARDA or Sloan foundation and no official endorsement
should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

method: The what in this case is the computation that does
the recording and the when is the instant of time just prior
to execution of each method body. In aspect-oriented ter-
minology, the specification of what to do is called advice and
the specification of when to do it is called a point cut. A
collection of point cuts and advice organized to perform a
coherent task is called an aspect.
Many within the AOP community adhere to the tenet

that aspects are most effective when the code they advise
is oblivious to their presence. In other words, aspects are
effective when a programmer is not required to annotate
the advised code (henceforth, the mainline code) in any
particular way. In fact, Filman and Friedman [12] argue
that obliviousness is one of two defining characteristics of
any aspect-oriented programming language. When aspect-
oriented languages are oblivious, all control over when ad-
vice is applied rests with the aspect programmer as opposed
to the mainline programmer. This design choice simplifies
after-the-fact customization or analysis of programs using
aspects. For example, obliviousness makes it trivial to im-
plement extremely flexible profiling infrastructure. To ad-
just the places where profiling occurs, which might be scat-
tered all across the code base, one need only make local
changes to a single aspect. Obliviousness might be one of
the reasons that aspect-oriented programming has caught on
with such enthusiasm in recent years, causing major compa-
nies such as IBM and Microsoft to endorse the new paradigm
and inspiring academics to create a series of conferences and
workshops to study the idea.
On the other hand, obliviousness threatens conventional

modularity principles and undermines a programmer’s abil-
ity to reason locally about the behavior of their code. Conse-
quently, many traditional programming language researchers
believe that aspect-oriented programs are a ticking time
bomb, which, if widely deployed, are bound to cause the
software industry irreparable harm. One of the main prob-
lems they forsee is that while mainline code may be syntac-

tically oblivious to aspects, it is not semantically oblivious
to aspects. Aspects can reach inside modules, influence the
behavior of local routines and alter local data structures. As
a result, to understand the semantics of code in an aspect-
oriented language such as AspectJ, programmers will have
to examine all external aspects that might modify local data
structures or control flow. As the number and invasiveness
of aspects grows, understanding and maintaining your pro-
gram may become more and more difficult.
In this work, we define a new form of harmless aspect-

oriented advice that programmers can use to accomplish

nontrivial programming tasks yet also allows them to en-
joy most of the local reasoning principles they have come to
depend upon for program understanding, development and
maintenance. Like ordinary aspect-oriented advice, harm-
less advice is a computation that executes whenever main-
line control reaches a designated control-flow point. Un-
like ordinary aspect-oriented advice, harmless advice is con-
strained to prevent it from interfering with the underlying
computation. Consequently, it plays a role similar to Clifton
and Leavens’ notion of observer [5]. Since harmless advice
does not interfere with the mainline computation, it can be
added to a program at any point in the development cycle
without fear that important program invariants will be dis-
rupted. In addition, programmers that develop, debug or
enhance mainline code can safely ignore harmless advice, if
there is any present.
In principle, one could devise many variants of harmless

advice depending upon exactly what it means to interfere

with the underlying computation. At the most extreme end,
changing the timing behavior of a program constitutes inter-
ference and consequently, only trivial advice is harmless. A
slightly less extreme viewpoint is one taken by secure pro-
gramming languages such as Jif [20] and Flow Caml [22].
These languages ignore some kinds of interference such as
changes to the timing behavior and termination behavior
of programs, arguing that these kinds of interference will
have a minimal impact on security. However, overall, they
continue to place very restrictive constraints on programs,
prohibiting I/O in high security contexts, for instance. Al-
lowing unchecked I/O would make it possible to leak secret
information at too great a rate.
In our case, an appropriate balance point between useabil-

ity and interference prevention is even more relaxed than in
secure information-flow systems. We say that computation
A does not interfere with computation B if A does not in-
fluence the final value produced by B. Computation A may
change the timing and termination behavior of B (influenc-
ing whether or not B does indeed return a value) and it may
perform I/O. In practice, of course, I/O by A may change
the result eventually produced by B. However, we are will-
ing to live with this relatively minor danger as disallowing
I/O eliminates too many useful forms of advice.
Our notion of harmless, non-interfering advice continues

to support many of the most common aspect-oriented ap-
plications, include the following.

• Profiling. Harmless advice can maintain its own state
separate from the mainline computation to gather statis-
tics concerning the number of times different proce-
dures are called. When the program terminates, the
harmless advice can print out the profiling statistics.

• Invariant checking and security. Harmless advice can
check invariants at run-time, maintain access control
tables, perform resource accounting, and terminate pro-
grams that disobey dynamic security policies.

• Program tracing and monitoring. Harmless advice can
print out all sorts of debugging information including
when procedures are called and what data they are
passed.

• Logging and backups. Harmless advice can back up
data onto persistent secondary storage or make logs

of events that occurred during program execution for
performance analysis, fault recovery or post-mortem
security audits.

While not all applications of aspects and aspect-oriented
programming can be simulated using harmless advice, we
have accumulated anecdotal evidence to determine that enough
important applications appear to fall into this category to
make it a useful abstraction. IBM experimented with as-
pects in their middleware product line [6], finding them use-
ful for such “harmless” tasks as enforcing consistency in
tracing and logging concerns and for encapsulating moni-
toring and statistics components. We also observed a se-
quence of emails on the AspectJ users list [13] cataloging
uses of aspects with Java projects. Many respondents spec-
ified that, in addition to some uncommon uses that they
wished to highlight, they certainly used AspectJ for the com-
mon aspect-oriented concerns such as profiling, security, and
monitoring mentioned above. From this anecdotal evidence,
we determined that our definition of “harmlessness” encom-
passes many of the common uses of aspects. While it cer-
tainly may be fruitful to combine harmless advice with stan-
dard forms of advice and corresponding protection mecha-
nisms such as Aldrich’s Open Modules [1], in this paper we
restrict our attention to harmless advice alone and its non-
interference properties.
In the rest of this paper, we develop a theory of harmless

advice following the same strategy as used in previous work
by Walker, Zdancewic and Ligatti [24] (hereafter referred to
as WZL). More specifically, we first develop a core calculus
at an intermediate level of abstraction. The calculus con-
tains primitive notions of point cuts, advice and a collection
of static protection domains, arranged in a partial order.
We define a novel type system to guarantee that code, in-
cluding advice, in a low-protection domain cannot influence
execution of code in a high-protection domain. Though the
type system is directly inspired by information-flow type
systems for security [20, 22], we take advantage of the syn-
tactic separation between advice and code to simplify it.
Also, since we are not interested in security, our type sys-
tem can be somewhat less strict than information-flow type
systems. We believe our simplifications make our language
easier to use than existing information-flow type systems.
The key technical result of our research is a proof that our
type system satisfies a non-interference property. The proof
adapts the syntactic technique used by Simonet and Pottier
in their proof of non-interference of Flow Caml [22] to a our
language involving aspects.
After developing the core language, we define a higher-

level surface language that is more amenable to program-
ming. In particular, the high-level language is oblivious and
therefore “aspect-oriented” according to Filman and Fried-
man’s definition [12], whereas the core language is not.1 The
high-level language allows programmers to define aspects
that are collections of state, objects and advice. Each aspect
operates in a separate static protection domain and does not

1It is neither necessary nor the slightest bit desirable for the
core language to be oblivious as the syntax of the core lan-
guage does not limit or constrain programmers in any way.
Programmers need only concern themselves with the sur-
face language, which is oblivious. Of course, in any aspect-
oriented language, obliviousness is only a property of the
source — every oblivious language is compiled into a non-
oblivious language at some point.

interfere with the mainline computation or the other aspects.
The semantics of the high-level language is defined via trans-
lation into the core language. We prove the translation rules
directly define a type system for the surface language and
we prove the translation only creates well-typed core lan-
guage programs. Since the translation places each aspect in
its own protection domain, which has a lower privilege than
the mainline code, and the translated code is well-typed,
the non-interference theorem for the core calculus guaran-
tees that our aspects do not interfere with the mainline code.
In addition to engaging in a full meta-theoretic analysis

of our language, we have implemented a type checker and
interpreter for it in SML. We briefly describe our implemen-
tation towards the end of the paper, where we also have a
summary of related work in this area and some conclusions.

2. CORE LANGUAGE
Our core language is a typed lambda calculus contain-

ing strings, booleans, tuples, references and simple objects.
The two main features of interest in the language are labeled
control-flow points and advice, both of which are slight vari-
ants of related constructs introduced by WZL.
Labels l, which are drawn from some countably infinite

set, mark points in a computation at which advice may be
triggered. For instance, execution of l[e1]; e2 proceeds by
first evaluating e1 until it reduces to a value v and at this
point, any advice associated with the label l executes with
v as an input. Once all advice associated with l has com-
pleted execution, control returns to the marked point and
evaluation continues with e2. Notice that a marked point
l[e1] has type unit and that no data are returned from the
triggered advice. This stands in contrast to earlier work by
WZL, in which labels marked control-flow points where data
exchange could occur.
Harmless advice {pcd.x → e} is a computation that is

triggered whenever execution reaches the control-flow point
described by the pointcut designator pcd. When advice is
triggered, the value at the control-flow point is bound to x,
which may be used within the body of the advice e. The
advice body may have “harmless” effects (such as I/O), but
it does not return any data to the mainline computation and
consequently e is expected to have type unit.
Languages such as AspectJ often contain rich sublanguages

for designating control-flow points. However, it is easier to
study the fundamentals of labeled control-flow points and
harmless advice in a setting with the simplist possible pcds.
Consequently, we will start our investigation in a setting
where pcds are simply sets of labels {l1, . . . , lk} and advice
is written as {{l1, . . . , lk}.x→ e}.
For simplicity, the core language contains a single con-

struct ⇑ a to activate new advice a. When control reaches a
label in the advice’s point cut designator, the advice body
will execute after any previously activated piece of advice.
The following example shows how advice activation works
(assuming that there is no other advice associated with label
l in the environment).

⇑ {{l}.x→ printint x; print ” : hello ”};
⇑ {{l}.y → print ”world”};
l[3]

prints 3 : hello world

The expression new : τ allows programs to generate a fresh

label with type τ . Labels are considered first class values, so
they may be passed to functions or stored in data structures
before being used to mark control-flow points. For example,
we might write

let pt = new : int in
⇑ {{pt}.x→ print ”hello ”};
⇑ {{pt}.y → print ”world”};
pt[3]

to allocate a new label and use it in two pieces of advice.

2.1 Types for Enforcing Harmlessness
In order to protect the mainline computation from inter-

ference from advice, we have devised a type and effect sys-
tem for the calculus we informally introduced in the previous
section. The type system operates by ascribing a protection
domain p to each expression in the language. These protec-
tion domains are organized in a lattice L = (Protections,≤)
where Protections is the set of possible protection domains
and p ≤ q specifies that p should not interfere with q. Alter-
natively, one might say that data in q have higher integrity
than data in p. In our examples, we often assume there are
high, med and low protection levels with low < med < high.

Syntax. In order to allow programmers to specify protec-
tion requirements we have augmented the syntax of the core
language described in the previous section with a collection
of protection annotations. The formal syntax appears be-
low.

p ∈ Protections l ∈ Labels s ∈ Strings
τ ::= unit | string | bool | τ1 × ...× τn

| τ →p τ | [mi:pi
τi]

1..n

| advicep | τ labelp | τ refp | τ pcdp
v ::= () | s | true | false | (~v)

| λpx : τ.e | [mi = ςp xi.ei]
1..n | {v.x→p e}

| l | r | {~l}p
e ::= v | x | e1; e2 | print e

| if e1 then e2 else e3

| (~e) | split (~x)= e in e
| e e | e.m | {e.x→p e} | ⇑ e
| newp : τ | e[e]
| refp e | ! e | e := e
| {~e}p | e ∪p e | p<e>

The values include unit values and string and boolean con-
stants. Programmers may also use n-ary tuples. Functions
are annotated with the protection domain p in which they
execute. This protection domain also shows up in the type
of the function. Objects are collections of methods, with
each method taking a single parameter (self). Methods and
object types are also annotated with protection domains.
Advice values {v.x →p e} are annotated with their protec-
tion domain as well. Labels l and reference locations r do
not appear in initial programs; they only appear as programs
execute and generate new labels and new references.
Most of the expression forms are fairly standard. For in-

stance, in addition to values and variables, we allow ordinary
expression forms for sequencing, printing strings, condition-
als, tuples, function calls, and method invocations. Expres-
sions for introducing and eliminating advice were explained
in the previous section. The expressions newp : τ and refp e
allocate labels that can be placed in protection domain p and

references associated with protection domain p respectively.
The last command p<e> is a typing coercion that changes the
current protection domain to the lower protection domain
p.

2.2 Typing
The main typing judgment in our system has the form

Γ; p ` e : τ . It states that in the context Γ, expression
e has type τ and may influence computations occurring in
protection domains p or lower. A related judgment Γ ` v : τ
checks that value v has type τ . Since values by themselves
do not have effects that influence the computations, this
latter judgment is not indexed by a protection domain. The
context Γ maps variables, labels and reference locations to
their types. We use the notation Γ, x : τ to extend Γ so
that it maps x to τ . Whenever we extend Γ in this way,
we assume that x does not already appear in the domain of
Γ. Since we also treat all terms as equivalent up to alpha-
renaming of bound variables, it will always be possible to
find a variable x that does not appear in Γ when we need
to. Figures 1 and 2 contain the rules for typing expressions
and values respectively.
The main goal of the typing relation is to guarantee that

no values other than values with unit type (which have no
information content) flow from a low protection domain to
a high protection domain, although arbitrary data can flow
in the other direction. This goal is very similar to, but not
exactly the same as in, standard information flow systems
such as Jif and Flow Caml. The latter systems actually
do allow flow of values from low contexts to high contexts,
but mark all such values with a low-protection type. Jif
and Flow Caml typing rules make it impossible to use these
low-protection objects in the high-protection context (with-
out raising the protection of the context). In our system,
we simply cut off the flow of low-protection values to high-
protection contexts completely (aside from the unit value).
We are able to do this in our setting, as there is a greater
syntactic separation between high-integrity code (the main-
line computation) and low-integrity code (the advice, writ-
ten elsewhere) than there might be in a standard secure
information-flow setting. We believe this is the right design
choice for us because it simplifies the type system as we do
not have to annotate basic data such as booleans, strings or
tuples with information flow labels.
Most of the value typing rules are straightforward. For

instance, the rule for functions λpx : τ.e, states that the
body of the function must be checked under the assumption
that the code operates in protection domain p. The resulting
type has the shape τ →p τ ′. Checking our simple objects
is similar: the type checker must verify that each method
operates correctly in the declared protection domain. Labels
and references are given types by the context. In the current
calculus, point-cut designators are sets of labels. Unlike the
other values, the rules for typing advice are fairly subtle.
We will discuss these rules in a moment together with the
rules for typing labeled control-flow points.
The first few expression typing rules (see Figure 2) are

standard rules for type systems that track information flow.
The rule for if deviates slightly from the usual rule for track-
ing information flow. Normally, types for booleans will con-
tain a security level and the branches of the if will be checked
at a level equal to the join of the current security level and
the level of the boolean. However, in our system, any data,

including booleans, manufactured by code at level p con-
tains level p information. Consequently, the branches of the
if statement may be safely checked at level p. The typing
rules for function calls and method invocations require that
the function or method in question be safe to run at the
current protection level p.
The typing rules for references enforce the usual integrity

constraint found in information-flow systems. When in pro-
tection domain p, we are allowed to dereference references
in protection domain p′ when p is less than or equal to p′.
We are allowed to store to references in protection domain
p′ only if our current domain p is greater than or equal to
p′.
The last rule in Figure 2 is a typing coercion that changes

the protection level. It is legal for the protection level to
be lowered from p to p′ when no information flows back
from the computation e to be executed. We prevent this
information flow by constraining the result type of e to be
unit. One might wonder whether the following dual rule,
which allows one to raise the protection level is sound in our
system:

·; p′ ` e : τ ` p ≤ p′

Γ; p ` p′ >e< : τ

This rule raises the protection domain for the expression e
and allows information to flow out of the expression, but
does not allow any information to flow in. In the context
of the features we have looked at so far, this rule appears
sound, but in combination with the context-sensitive advice
we will introduce in Section 2.4, it is not. Fortunately, the
rule does not appear useful in our application and we have
omitted it.2

The last component of our type system involves the rules
for typing advice and marking control-flow points. If we
want to ensure that low-protection code cannot interfere
with high-protection code by manipulating advice and control-
flow labels, we must be sure that low-protection code cannot
do either of the following:

1. Declare and activate high-protection advice. For in-
stance, assume r is a high-protection reference with
type int refhigh and l is a label that has been placed
in high-protection code. If we allow the expression

{l.x→high r := 3 + x} << e

to appear in low-protection code, then this low privi-
lege code can indirectly cause writes to the reference
r.

2. Mark a control-flow point with a label that triggers
high-protection advice. For instance, assume that

{l.x→high r := 3 + x}

is an active piece of high-protection advice which writes
to the high-protection reference r. Placing the label
l in low-protection code allows low-protection code to

2There may well be some strategy that allows us to add
this rule together with the context-sensitive advice of Sec-
tion 2.4. However, the naive approach does not appear to
work. Rather then complicating the type structure or oper-
ational semantics for something we do not need, we leave it
out.

Γ `() : unit Γ ` s : string

Γ ` true : bool Γ ` false : bool

(Γ ` vi : τi)
1≤i≤n

Γ `(~v) : τ1 × ...× τn

Γ, x : τ ; p ` e : τ ′

Γ ` λpx : τ.e : τ →p τ ′

((Γ, x : [mi:pi
τi]

1..n); pj ` ej : τj)
(1≤j≤n)

Γ ` [mi = ςpi
xi.ei]

1..n : [mi:pi
τi]

1..n

Γ ` v : τ pcdp Γ, x : τ ; p′ ` e : unit ` p′ ≤ p

Γ ` {v.x→p′ e} : advicep′

Γ(l) = τ labelp

Γ ` l : τ labelp

Γ(r) = τ refp

Γ ` r : τ refp

(Γ ` vi : τ labelpi
)(1≤i≤n) (` p ≤ pi)

(1≤i≤n)

Γ ` {~l}p : τ pcdp

Figure 1: Value Typing

determine via its control-flow, when the high-protection
advice will run and write to r.

In order to properly protect high-protection code in the
face of these potential errors, we do the following.

1. Add protection levels to advice types (e.g., advicehigh),
which will allow us to prevent advice from being acti-
vated in the illegal contexts. (eg. low-protection con-
texts)

2. Add protection levels to label types (e.g., string labelhigh)
which will allow us to prevent labels being placed in
illegal spots. (eg. low-protection contexts)

One might hope that it would be possible to simplify the
system and add protection levels to only one of the two
constructs, but doing so leads to unsoundness.
Five typing rules in the middle of Figure 2 give the well-

formedness conditions for advice and labels. Notice that
in the rule for typing advice introduction, the protection
level of the advice, and therefore the protection level the
body of the advice must operate under, is connected to the
protection level of the label that triggers it. Notice also
that when marking a control-flow point with a label, the
protection level of the label is connected to the protection
level of the expression at that point. Finally, given a high-
protection piece of advice, this advice cannot be launched
from low-protection code. The result of these constraints is
that when in a low-protection zone, there is no way to cause
execution of high-protection advice.

2.3 Operational Semantics
The definition of the operational semantics for our lan-

guage largely follows earlier work by WZL. In particular, we
use a context-based semantics. The top-level operational
judgment has the form (S,A, p, e) 7−→ (S′, A′, p, e′) where
S collects the labels l that may be used to mark control-
flow points and also maps reference locations r to values.

Γ ` v : τ
Γ; p ` v : τ

Γ(x) = τ

Γ; p ` x : τ

Γ; p ` e1 : unit Γ; p ` e2 : τ

Γ; p ` e1; e2 : τ

Γ; p ` e : string

Γ; p ` print e : unit

Γ; p ` e1 : bool Γ; p ` e2 : τ Γ; p ` e3 : τ

Γ; p ` if e1 then e2 else e3 : τ

(Γ; p ` ei : τi)
1≤i≤n

Γ; p `(~e) : τ1 × ...× τn

Γ; p ` e1 : τ1 × ...× τn Γ,(~x : ~t); p ` e2 : τ

Γ; p ` split (~x)= e1 in e2 : τ

Γ; p ` e1 : τ1 →p τ2 Γ; p ` e2 : τ1

Γ; p ` e1 e2 : τ2

Γ; p ` e : [mi:pi
τi]

1..n 1 ≤ j ≤ n p = pj

Γ; p ` e.mj : τj

Γ; p ` e1 : τ pcdp′ Γ, x : τ ; p′′ ` e2 : unit ` p′′ ≤ p′

Γ; p ` {e1.x→p′′ e2} : advicep′′

Γ; p ` e : advicep′ ` p′ ≤ p

Γ; p `⇑ e : unit

` p′ ≤ p

Γ; p ` newp′ : τ : τ labelp′

Γ; p ` e1 : τ labelp Γ; p ` e2 : τ

Γ; p ` e1[e2] : unit

Γ; p ` e : τ ` p′ ≤ p

Γ; p ` refp′ e : τ refp′

Γ; p ` e : τ refp′ ` p ≤ p′

Γ; p `!e : τ

Γ; p ` e1 : τ refp′ Γ; p ` e2 : τ ` p′ ≤ p

Γ; p ` e1 := e2 : τ

(Γ; p ` ei : τ labelpi
)(1≤i≤n) (` p′ ≤ pi)

(1≤i≤n)

Γ; p ` {~e}p′ : τ pcdp′

Γ; p ` e1 : τ pcdp′′ ` p′ ≤ p′′

Γ; p ` e2 : τ pcdp′′′ ` p′ ≤ p′′′

Γ; p ` e1 ∪p′ e2 : τ pcdp′

Γ; p′ ` e : unit ` p′ ≤ p

Γ; p ` p′<e> : unit

Figure 2: Expression Typing

The meta-variable A represents an advice store, which is
a list of advice. The current protection level of the code
is p. The protection level does not influence execution of
the code, and could be omitted, but is useful to consider
in our noninterference proof. Most of the real work is done
by the auxiliary relation (S,A, p, e) 7−→β (S′, A′, p, e′). The
additional syntactic categories are given below.

S ::= · | S, r = e | S, l
A ::= · | A, {v.x→p e}

E ::= E; e | print E | if E then e2 else e3

| (vi, ..., vi, E, ei+2, ..., en)
| split (~x)= E in e
| E e | v E | E.m
| {E.x→p e} | ⇑ E
| E[e] | l[E]

| refp E | ! E | E := e | r := E
| {v1, . . . , vi, E, ei+2, . . . , en}p | E ∪p e | v ∪p E

The definitions of these relations can be found in Figure 3.
Notice that the rule for marked control-flow points depends
upon an auxiliary function A[[A]]

l[v] = e. This function
selects all advice in A that is triggered by the label l and
combines their bodies to form the expression e. The advice
composition function can be found in Figure 4. Finally, an
abstract machine configuration (S,A, p, e) is well-typed if it
satisfies the judgement `(S,A, p, e)ok specified in Figure 5.

2.4 Context-Sensitive Advice
The advice defined in previous sections could not analyze

the call stack from which it was activated. Programming
languages such as AspectJ allow this flexibility via special
pointcut designators such as CFlow. In this section, we
describe a fully general facility for analysis of information
on the current call stack. Our new mechanism is inspired
by earlier work by WZL, but is more general and fits better
with the functional programming paradigm. The following
definitions describe the syntactic extensions to our calculus:

τ ::= ... | stack

v ::= ... | · | l[v] :: v

e ::= ... | stack() | store e[e] in e
| case e of(pat⇒ e | ⇒ e)

pat ::= nil | e[x] :: pat
| :: pat | x

vpat ::= nil | {~l}p[x] :: vpat
| :: vpat | x

E ::= ... | store E[e] in e | store l[E] in e
| store l[v] in E
| case E of(pat⇒ e | ⇒ e)
| case v of(Epat⇒ e | ⇒ e)

Epat ::= ... | E[x] :: pat | {~l}p[x] :: Epat
| :: Epat

F ::= ... | [] | E[F] | p < F >

(S,A, p, e) 7−→β (S
′, A′, p, e′)

(S,A, p, e) 7−→(S′, A′, p, e′)

(S,A, p, e) 7−→(S′, A′, p, e)

(S,A, p, E[e]) 7−→(S′, A′, p, E[e′])

(S,A, p′, e) 7−→(S′, A′, p′, e′)

(S,A, p, p′<e>) 7−→(S′, A′, p, p′<e′>)

(S,A, p,(); e) 7−→β (S,A, p, e)

(S,A, p, print s) 7−→β (S,A, p, ())

(S,A, p, if true then e1 else e2) 7−→β (S,A, p, e1)

(S,A, p, if false then e1 else e2) 7−→β (S,A, p, e2)

(S,A, p, split (~x)=(~v) in e) 7−→β (S,A, p, e{~v/~x})

(S,A, p, λpx : t.e v) 7−→β (S,A, p, e{v/x})

(S,A, p, [mi = ςpi
xi.ei]

1..n.mj) 7−→β

(S,A, p, ej{[mi = ςpi
xi.ei]

1..n/xj})

(S,A, p,⇑ {v.x→p′ e1}) 7−→β (S,(A, {v.x→p′ e1}), p,())

(l /∈ S) (S,A, p, newp′ : τ) 7−→β ((S, l), A, p, l)

l ∈ S A[[A]]
l[v] = e

(S,A, p, l[v]) 7−→β (S,A, p, e)

(r /∈ S) (S,A, p, refp′ v) 7−→β ((S, r = v), A, p, r)

(S,A, p, ! r) 7−→β (S,A, p, S(r))

(S,A, p, r := v) 7−→β ((S, r = v), A, p, v)

(S,A, p, {~l1}p′ ∪p′′ {~l2}p′′′) 7−→β (S,A, p, {~l1 ~l2}p′′)

(S,A, p, p′<()>) 7−→β (S,A, p, ())

Figure 3: Operational Semantics

A[[·]]
l[v] =()

l[v] |= v′ A[[A]]
l[v] = e

A[[{v′.x→p e′}, A]]
l[v] = p<e′{v/x}>; e

l[v]6|=v′ A[[A]]
l[v] = e

A[[{v′.x→p e′}, A]]C = e

l ∈ {~l}p

l[v] |= {~l}p

Figure 4: Aspect Composition

dom(S)= dom(Γ)
∀r ∈ dom(S). Γ(r)= τ refp Γ ` S(r) : τ for some p, τ

∀l ∈ dom(S). Γ(r)= τ refp for some p, τ

` S : Γ

Γ ` · ok

Γ ` a : advicep for some p Γ ` A ok

Γ ` A, a ok

` S : Γ Γ ` A ok Γ; p ` e : τ for some τ

`(S,A, p, e) ok

Figure 5: Abstract Machine Judgement

In order to program with context-sensitive advice, pro-
grammers grab the current stack using the stack() com-
mand. Data is explicitly allocated on the stack using the
command store e1[e2] in e3, where e1 is a label and e2

represents a value associated with the label. e2 is typically
used to store the value passed into the control flow point
marked by the label. The store command evaluates e1 to a
label l and e2 to a value v2, places l[v2] on the stack, evalu-
ates e3 to a value v3 and finally removes l[v2] from the stack
and returns v3. The programmer may examine a stack data
structure using the case e of (pat ⇒ e | ⇒ e) com-
mand, which matches the stack e against the pattern pat. If
there is a match, the first branch is executed; otherwise, the
second branch is executed. There are patterns that match
the empty stack (e.g., ·), patterns that match a stack start-

ing with any label in a particular set (e.g., {~l}p[x] :: pat)
where x is bound to the value associated with the label on
the top of the stack if it is in the label set, patterns that
match a stack starting with anything at all (e.g., :: pat),
and patterns involving stack variables (e.g., x).
The typing rules for these extensions appear in Figure 6.

There are three sets of rules in this figure. The first two
extend the value typing and expression typing relations re-
spectively. The last set of rules gives types to patterns where
the type of a pattern is a context Γ that describes the types
of the variables bound within the pattern.
The rules for evaluating these new expressions appear in

Figure 7. Again, there are three sets of rules. The first de-
fines a new set of top-level evaluation rules, and the second
adds additional β-evaluation rules. Notice that the top-level
rule for evaluating the stack primitive uses an auxiliary func-
tion S(F) that extracts the current stack of values from F
contexts, which contains evaluation context E’s, and p<F>

contexts. Here, we use the notation st@X to append the
object X to the bottom of the stack st. The last set of rules
conclude in judgments with the form st |= vpat ⇒ sub.
These rules describe the circumstances under which a stack
st matches an (evaluated) pattern vpat and generates a sub-
stitution of values for variables sub.
For the most part, it is relatively straightforward to reas-

sure oneself that these extensions will not disrupt the nonin-
terference properties that our language possesses. However,
there is one major subtlety to consider: the stack() prim-
itive. In order for this primitive to be safe, it must be the
case that whenever it is activated in a high-level context,
there is no low-level data on the stack, which could influ-
ence execution in that high-level context. Fortunately, this
is indeed the case. The only way to switch protection levels

Γ ` v : τ

Γ ` · : stack

Γ ` l : τ labelp Γ ` v1 : τ Γ ` v2 : stack

Γ ` l[v1] :: v2 : stack

Γ; p ` e : τ

Γ; p ` stack() : stack

Γ; p ` e1 : τ ′ labelp′ Γ; p ` e2 : τ ′ Γ; p ` e3 : τ

Γ; p ` store e1[e2] in e3 : τ

Γ; p ` e1 : stack
Γ; p ` pat⇒ Γ′ Γ,Γ′; p ` e2 : τ Γ; p ` e3 : τ

Γ; p ` case e1 of(pat⇒ e2 | ⇒ e3) : τ

Γ; p ` pat⇒ Γ

Γ; p ` nil⇒ ·

Γ; p ` e : τ pcdp′ Γ; p ` pat⇒ Γ′

Γ; p ` e[x] :: pat⇒ Γ′, x : τ

Γ; p ` pat⇒ Γ′

Γ; p ` :: pat⇒ Γ′ Γ; p ` x⇒ ·, x : stack

Figure 6: Advanced Point-cut Designator Typing

from one evaluation context to the next is via the context
p<E>, which lowers the protection level. Consequently, any
use of the stack()command is done in the context that looks
like p1<E1[p2<E2[p3<E3>]>]> where p3 ≤ p2 ≤ p1. So while a
low-level expression can read high-level data via the stack()
command and subsequent scase expressions, the opposite
is not possible. We are safe.

2.5 Core Language Meta-theory
To prove noninterference, we use the technique developed

by Simonet and Pottier [22]. In order to do so, we initially
assume the collection of protection domains has been divided
into two groups, the high protection domains (H) and the
low protection domains (L). The low-protection group is a
downward-closed subset of protection domains and the high-
protection group contains all other protection domains. The
goal is to prove that low-protection code cannot interfere
with the behavior of high-protection code, no matter how
aspects, references or labels are used. Overall, our proof
may be broken down into five steps:

• Define a new language Core2 that simulates execution
of two original (henceforth referred to as Core1) pro-
grams.

• Show Core2 is a correct simulation of Core1 programs
via Soundness and Completeness theorems.

• Prove Core2 is a safe language via the standard Progress
and Preservation theorems.

• Show that the previous step implies well-typed Core2

programs simulate Core1 programs that produce in-
distinguishable results.

• Put the theorems above together to prove the final
noninterference result for Core1.

A diagram of the proof may be seen in Figure 8.
Each of the following subsections sketches one portion of

the proof.

2.5.1 Defining Core2

We begin by defining a new language (Core2) that simu-
lates execution of two of our original programs. The main
syntactic difference between Core1 expressions and Core2

expressions is the brackets expression, p<e1|e2>. Here p is a
low-protection label and the ei are Core1 expressions. These
brackets expressions encapsulate all differences between the
two Core1 expressions that are being simulated. For in-
stance, the Core2 expression

p<print ‘‘hi’’ | print ‘‘bi’’>;x+3

represents the two Core1 programs

p<print ‘‘hi’’>;x+3

p<print ‘‘bi’’>;x+3

The typing rule for the bracket expression requires that
the two subexpressions have low protection and release no
information into the surrounding high-protection context.

Γ; p′ `2 e1 : unit Γ; p′ `2 e2 : unit
p ∈ H p′ ∈ L `2 p′ ≤ p

Γ; p `2 p′<e1|e2> : unit

(S,A, p, e) 7−→top (S
′, A′, p, e′)

(S,A, p, e) 7−→(S′, A′, p, e′)

(S,A, p, e) 7−→top (S
′, A′, p, e′)

(S,A, p, F [stack()]) 7−→top (S,A, p, F [S(F)])

where :

S([]) = ·
S(store l[v] in F) = S(F)@ (l[v])

S(p < F >) = S(F)

S(E[F]) = S(F)

when E 6= store l[v] in F

(S,A, p, e) 7−→β (S,A, p, e)

(S,A, p, store v1[τ] in v2) 7−→β (S,A, p, v2)

v |= vpat⇒ sub

(S,A, p, case v of(vpat⇒ e1 | ⇒ e2)) 7−→β

(S,A, p, sub(e1))

v 6|= vpat⇒ sub

(S,A, p, case v of(vpat⇒ e1 | ⇒ e2)) 7−→β

(S,A, p, e2)

v |= vpat⇒ sub

· |= nil⇒ ·

l ∈ {~l}p v2 |= vpat⇒ sub

l[v1] :: v2 |= {~l}p[x] :: vpat⇒ sub, {v1/x}

v2 |= vpat⇒ sub

l[v1] :: v2 |= :: vpat⇒ sub

v |= x⇒ {v/x}

Figure 7: Advanced Point-cut Designator Evalua-

tion

Figure 8: Noninterference Proof Diagram

To express the operational semantics of Core2 we add need
to add similar bracket constructs for the contents of the
reference/label store S and the aspect store A.

v2 ::= v | <v|v> | <v|void> | <void|v>
τ2 ::= τ | <τ|void> | <void|τ>
a2 ::= v | <v|void> | <void|v>
S ::= · | S, r = v2 | S, l→ τ2

A ::= · | A, a2

The void marker indicates that the appropriate element
is not present in the program. For example, if advice a
is activated in only the left instance but not the right in-
stance of simultaneously executing Core1 programs, the as-
pect store of the Core2 program that simulates them will
contain <a|void>.
To relate Core1 to Core2, we define the projection function

| |i where i ∈ 1,2. |p<e1|e2>|i is p<ei> and | |i is a homo-
morphism on all other expressions. Since p<e1|e2> in Core2

simulates the simultaneous execution of two low-protection
original Core1 expressions, the projection function extracts
one of these two executions.
The Core2 machine state (S,A, p, e) symbolizes the cur-

rent state of the two simultaneously executing Core1 pro-
grams where the i-th projection is the state of the i-th Core1

program:

|(S,A, p, e)|i =(|S|i, |A|i, p, |e|i)

The projection function for the reference/label store and the
aspect store is similar to the one for expressions.
The definition of the complete operational semantics of

Core2 is not too difficult, but it does involve a substantial
amount of notation. To avoid overwhelming the reader with
details in this short report, we omit the full definition. In-
tuitively, the main ideas are as follows:

• Ordinary Core1 expressions embedded within Core2

expressions operate as Core1 expressions normally do.

• To evaluate inside the brackets expression p<e1|e2>,
the semantics nondeterministically chooses one of e1

or e2 to execute. Operations on references or aspects
executed in e1 use the “left-hand” component of the

reference store or aspect store; operations on refer-
ences or aspects executed in e2 use the “right-hand”
component of the reference store or aspect store.

• To evaluate the expression p<()|()>, we simply throw
away the brackets, returning the unit value(). Since()
carries no information, no information is transmitted
between low- and high-protection contexts.

• Whenever values v1 and v2 are not both(), the expres-
sion p<v1|v2> is stuck. Fortunately, such an expression
is ill-typed and never arises from evaluation of a well-
typed program.

The judgment form for execution of top-level Core2 expres-
sions has the same shape as the judgment form for Core1

expressions. The index 2 on the arrow distinguishes the two
judgements:

(S,A, p, e) 7−→∗
2,top (S

′, A′, p, e′)

2.5.2 Relating Core1 and Core2

Once Core2 has been defined, it is necessary to show that
it accurately simulates two Core1 programs. Two theorems,
one concerning the soundness of Core2execution relative to
Core1 and the other concerning the completeness of Core2
relative to Core1 help to establish the proper correspon-
dence.
The soundness theorem states that if a Core2 expression

takes a step, then the two corresponding Core1 programs
(the projections of the Core2 expression) must each take the
same respective steps. The proof of this theorem requires,
among other things, an auxiliary lemma that establishes a
soundness result for aspect composition.

Lemma 2.1 (Aspect Composition Soundness Lemma).
For i ∈ {1, 2}, if A[[A]]

l[v] = e, then A[[|A|i]]l[|v|i] = |e|i.

Proof. By induction on the structure of the definition
of A[[A]]

l[v] = e.

Theorem 2.1 (Soundness). For i ∈ {1, 2},
if (S,A, p, e) 7−→∗

2,top (S
′, A′, p, e′)

then |(S,A, p, e)|i 7−→
∗
top |(S

′, A′, p, e′)|i

Proof. By induction on the structure of the operational
judgment(S,A, p, e) 7−→∗

2,top (S
′, A′, p, e′), with use of Lemma 2.1

The completeness theorem states that if two Core1 pro-
grams step to values, then the representation in Core2 that
simulates them simultaneously must step to a value. The
completeness theorem requires an auxiliary lemma stating
that a Core2 program is only stuck when one of its corre-
sponding Core1 programs are stuck.

Lemma 2.2 (Completeness Stuck Lemma). Assume

(S,A, p, e) is stuck. Then |(S,A, p, e)|i is stuck for some

i ∈ {1, 2}.

Proof. Proof by induction on the structure of e.

Theorem 2.2 (Completeness). Assume

|(S,A, p, e)|i 7−→
∗
top (S

′
i, A

′
i, p, vi) for all i ∈ 1, 2 then there

exists (S′, A′, p, v) such that (S,A, p, e) 7−→∗
2,top (S

′, A′, p, v)

Proof. If(S,A, p, e)yields an infinite reduction sequence,
then |(S,A, p, e)|i yields a infinite reduction sequence by
Theorem 2.1. If (S,A, p, e) is stuck, then |(S,A, p, e)|i is
stuck by Lemma 2.2. Therefore, (S,A, p, e) reduces to a
successful configuration.

2.5.3 Safety of Core2
To continue we prove that the type system of Core2 is

sound with respect to our operational semantics using Progress
and Preservation theorems. This strategy requires that we
extend the typing relation to cover all of the run-time terms
in the language as well as the other elements of the abstract
machine (i.e., the code store and aspect store). A Core2

configuration(S,A, p, e) is well-typed if it satisfies the judge-
ment `2 (S,A, p, e)ok specified in Figure 9. Note that if the
stores and the expression contain brackets, the protection
domains associated with the brackets must be low.
Part of the proof of Progress involves defining the canon-

ical forms of each type. It is important to notice here that
the brackets expression is not a value and therefore the only
values with type bool, for instance, are true and false.
This fact comes into play later in the noninterference proof.
The following lemma gives the rest of canonical forms.

Lemma 2.3 (Canonical Forms). Suppose · `2 v : τ
is a closed, well-formed value.

• If τ = unit, then v =().

• If τ = string, then v = s.

• If τ = bool, then v = true or false.

• If τ = τ1 × ...× τn, then v =(~v).

• If τ = τ1 →p τ2, then v = λpx : τ1.e.

• If τ = [mi:pi
τi]

1..n, then v = [mi = ςp xi.ei]
1..n.

• If τ = advicep, then v = {v.x→p e}.

• If τ = τ labelp, then v = l.

• If τ = τ refp, then v = r.

• If τ = τ pcdp, then v = {~l}p.

• If τ = stack, then v = · or l[v1] :: v2.

Proof. By induction on the structure of Γ `2 v : τ , using
the fact that v is a value.

We now state the standard Progress and Preservation lem-
mas.

Theorem 2.3 (Progress). If `2 (S,A, p, e) ok then

either e is a value, or there exists (S ′, A′, p, e′) such that

(S,A, p, e) 7−→2,top (S
′, A′, p, e′).

Proof. By induction on the structure of the typing judg-
ment `2 (S,A, p, e) ok.

Theorem 2.4 (Preservation). If `2 (S,A, p, e) ok
and(S,A, p, e) 7−→2,top (S

′, A′, p, e′)then `2 (S
′, A′, p, e′)ok.

Proof. By induction on the structure of the operational
judgment (S,A, p, e) 7−→2,top (S

′, A′, p, e′).

`2 (S,A, p, e) ok

`2 S : Γ Γ `2 A ok Γ; p `2 e : τ for some τ p ∈ H

`2 (S,A, p, e) ok

`2 S : Γ

dom(S)= dom(Γ)
∀r ∈ dom(S). Γ `2 S(r)⇒ Γ(r)
∀l ∈ dom(S). `2 S(l)⇒ Γ(l)

`2 S : Γ

Γ `2 v2 ⇒ τ refp

Γ `2 v : τ

Γ `2 v ⇒ τ refp

Γ `2 v1 : τ Γ `2 v2 : τ p ∈ L

Γ `2 <v1|v2>⇒ τ refp

Γ `2 v : τ p ∈ L

Γ `2 <v|void>⇒ τ refp

Γ `2 v : τ p ∈ L

Γ `2 <void|v>⇒ τ refp

`2 τ2 ⇒ τ labelp

`2 τ ⇒ τ labelp

p ∈ L

`2 <τ |void>⇒ τ labelp

p ∈ L

`2 <void|τ>⇒ τ labelp

Γ `2 A ok

Γ `2 · ok

Γ `2 A ok Γ `2 a2 ⇒ advicep

Γ `2 A, a2 ok

Γ `2 a2 ⇒ advicep

Γ `2 a : advicep

Γ `2 a⇒ advicep

Γ `2 a : advicep p ∈ L

Γ `2 <a|void>⇒ advicep

Γ `2 a : advicep p ∈ L

Γ `2 <void|a>⇒ advicep

Figure 9: Core2 Abstract Machine Judgement

2.5.4 Well-typed Core2 programs produce indistin-
guishable Core1 results

Most of the difficult work has now been done. We merely
need to apply lemmas and theorems we have already proven
to get our first powerful result: If a high-protection Core2

expression steps to a boolean value, then the corresponding
Core1 projections (which differ only in low protection code)
step to equal values. In other words, no low-production code
(be it aspect-oriented features or otherwise) has influenced
execution of high-protection expressions.

Lemma 2.4 (Equivalent Execution in Core2).
If high ∈ H and ·;high `2 e : bool and

(·, ·, high, e) 7−→∗
2,top (S,A, high, v) then |v|1 = |v|2.

Proof. By Theorem 2.4, `2 S : Γ and Γ `2 v : bool.
By Lemma 2.3, v is either true or false. |true|1 = |true|2
and |false|1 = |false|2.

2.5.5 Putting it all together: Noninterference
Finally, for the noninterference proof, we assume a high-

protection Core1 expression e steps to a value. We add
a low-protection expression low<e′> where low ∈ L to e so
that e with the low-protection code and e alone are executed
simultaneously and their resulting values compared. This is
achieved by constructing the Core2 expression low<e′|()>; e
where the left projection is e with the low-protection code
and the right projection steps to e alone. Using the sound-
ness, completeness, preservation theorems, and the equiva-
lent execution in Core2 lemma, we show that both e with
the added low-protection code and e alone step to the same
value. Therefore the low-protection code did not interfere
with execution.

Theorem 2.5 (Noninterference). If high ∈ H and

low ∈ L and ` low ≤ high and e is a core language ex-

pression where ·;high ` e : bool and ·; low ` e′ : unit and

(·, ·, high, low<e′>; e) 7−→∗
top (S1, A1, high, v1) and

(·, ·, high, low<()>; e) 7−→∗
top (S2, A2, high, v2) then v1 = v2.

Proof. Construct the Core2 expression low<e′|()>; e, such
that |low<e′|()>; e|1 = low<e′>; e and |low<e′|()>; e|2 = low<()>; e.
Therefore, |(·, ·, high, low<e′|()>; e)|1 7−→

∗
2,top(S1, A1, high, v1)

and |(·, ·, high, low<e′|()>; e)|2 7−→
∗
2,top (S2, A2, high, v2).

By Theorem 2.2,(·, ·, high, low<e′|()>; e) 7−→∗
2,top(S,A, high, v)

for some S, A, and v.
By Theorem 2.1, for i ∈ {1, 2}, |(·, ·, high, low<e′|()>; e)|i
7−→∗

2,top |(S,A, high, v)|i.
Therefore, |v|1 = v1 and |v|2 = v2.
By Lemma 2.4, |v|1 = |v|2.
Therefore, v1 = v2.

3. SOURCE LANGUAGE
Our core calculus is intended to be used as a semantic

intermediate language rather than as a source-level pro-
gramming language of its own. The main reason for this
is that core calculus sits at a convenient level of abstraction
for formulating a semantics, but programmers would almost
certainly complain that it is inconvenient to have to mark
control-flow labels in code, to allocate values on the stack
by hand, and to deal with the low-level core calculus notion
of advice. In addition, the core calculus does not actually
define a policy concerning whether or not advice can inter-
fere with each other or the mainline computation. Rather, it

defines a way for a programmer (or compiler) to assign dif-
ferent protection levels to code and a mechanism (the type
system) that can check that there is no interference between
the appropriate protection levels.
In order to show how the core calculus can be used, we

define a simple source language and show how to translate
it into the core calculus. This source language consists of a
sequence of ordinary declarations, aspects, which are collec-
tions of advice declarations and ordinary declarations, and a
mainline program. The translation from the source into the
core places the state and code for each aspect into its own
protection domain. The mainline code and initial declara-
tions get their own protection domain, which sits above the
protection domains for the aspects in the security lattice.
Consequently, the translation specifies the noninterference
policy that we wish to enforce, namely that no aspect in-
terferes with any other aspect and that no aspect interferes
with the mainline computation. The syntax of the source
language appears below.

τ ::= unit | string | bool

| [mi:pi
τi →pi

τi]
1..n | τ refp | stack

v ::= () | s | true | false

e ::= v | x | e; e | print e
| if e then e else e
| let ds in e
| e.m(e)
| ! e | e := e
| case e of(pat⇒ e | ⇒ e)

pat ::= nil | {o.mi}
1..n[x, y, n] :: pat | :: pat | x

d ::= (stringx = e)
| (boolx = e)
| (refx = e)
| (object o = [mi : τi → τ ′i = ς xi.λyi.ei]

1..n)

ds ::= . | d ds

a ::= (before {o.mi}
1..n(x, y, s, n)= e)

| (after {o.mi}
1..n(x, y, s, n)= e)

as ::= . | d as | a as

aspcts ::= . | p : {as} aspcts

prog ::= ds aspcts e

The types of the source language objects are a restricted
form of the internal language types. In particular, source
language object types are the composition of a core language
object and function type. Also, since programmers in the
source language do not explicitly manipulate labels, there
are no label types in the source language.
Most of the source language expressions and values mimic

the core language expressions and values, although there are
a few differences. For instance, none of the run-time-only
values such as labels, reference locations, or stack values
need appear in the collection of source values as the source

language is not executed directly.3 Also, for convenience, we
allow a local let declaration in expressions, which program-
mers can use to allocate values with basic type, references
or objects. Note that we use the meta-variable o to stand
for program variables bound to objects. We use the meta-
variable x to stand for any kind of program variable.
The source language case expressions analyze stack val-

ues in a similar way to the target, only the patterns are
slightly different, reflecting a particular compilation strat-
egy. More specifically, when compiling a method, we will
allocate automatically on the stack the label corresponding
to the method on top of the stack and a tuple containing
a pointer to self, a pointer to the method argument, and a
string corresponding to the name of the method that was
called. Consequently, the patterns that match stack frames
have the form {o.mi}

1..n[x, y, n], where {o.mi}
1..n is checked

against the label, and x, y, and n are bound to self, the ar-
gument and the string respectively. The string can be used
when printing out debugging information, profiling informa-
tion, etc.
Advice in the source language is either before advice that

runs before a method call or after advice that runs after the
method call. Similar to the source-language stack patterns,
when the advice is triggered, x is bound to self, y is bound
to the method argument, and n is bound to a string corre-
sponding to the method name. The variable s is bound to
the stack at the point the advice is triggered. In the source
language, programmers do not explicitly allocate their own
data on the stack, nor do they explicitly grab the current
stack. Code for performing these actions is emitted at spe-
cific points during the translation from source into core.
Finally, as mentioned above, a whole source-language pro-

gram (prog) is a collection of declarations (ds) together with
a collection of aspects (aspcts) and a mainline computation
(e). The protection level of the mainline code is main. Each
aspect is given a distinct name p, which will also serve as
its protection domain when translated into the core calculus.
We assume the translation program operates in the presence
of a security lattice in which p ≤ main for all aspects p in
the program. Figure 10 displays the protection domains for
the mainline code and several aspects. Aspects are simply
collections of local declarations and advice (as).
As an example of the basic features of our source language,

consider the code in Figure 11, where we take the liberty of
assuming our language has been augmented with integers.
It declares a math object which has a internal integer state
that can be modified with the set, add, and sub methods.
We write a tracer aspect that prints informative messages
before and after the add and subtract methods are executed.
The mainline computation performs a series of arithmetic
operations on the math object.

3.1 Translation to Core Language
The translation from source into core is defined by a series

of 5 mutually recursive judgments. The translation judg-
ments are generally parameterized by a typing context in-
volving a point-cut context (P), which contains a collec-
tion of declarations that can be used in source-level point-
cuts, a standard type context (Γ), which maps source vari-
ables to types, and a protection level/aspect name (p). The

3“Execution” of the source occurs by translation of the
source into the core and then execution of the resulting core
program.

Figure 10: Organization of Protection Domains

ref r = 0

object math = [

get:unit->int = ςx.λy.!r
set:int->unit = ςx.λy.r:=y
add:int->int = ςx.λy.

let z = y + x.get() in

x.set(z); z

sub:int->int = ςx.λy.
let z = y - x.get() in

x.set(z); z

]

tracer: {
before {math.add,math.sub}(x,y,s,n) =

print "entering "; print n;

print " with arg "; print (itos y)

after {math.add,math.sub}(x,y,s,n) =

print " and leaving\n"
}
let x = math.add(math.add(1)) in

math.sub(3 - x)

Figure 11: Source Language Example

point-cut context P contains declarations of the form o.m :
(τself , τarg, τres, p). These declarations say that an object
named o with method m has been declared and may be ad-
vised. The object has the type τself and the method takes
an argument with type τarg and returns a result with type
τres. The object inhabits protection domain p.
The form of the translation judgments are as follows.

• The judgment P ; Γ ` v : τ
val
=⇒ v′ describes the trans-

lation from source language values v with type τ to
core language values v′ with type τ .

• The judgment P ; Γ; p ` e : τ
exp
=⇒ e′ describes the

translation from source language expressions e with
type τ to core language expressions e′ with type τ .

• The judgement split(Θ, e) is used by the stack case
operation. What is extracted from the core language
stack is a tuple containing the object, the argument of
the method, and the name of the method. The split

function extracts the individual elements from these
tuples.

• The judgement Γ a Θ ⇒ Γ′ takes a context for indi-
vidual elements pulled from the stack–the object, the
argument of the method, and the name of the method
and returns a context containing a tuple of those in-
dividual elements. This new context with tuples is
what is actually generated by the pattern translation
described in the next section. This judgement is used
in the proof of translation type safety.

• The judgment P ; p ` pat
pat
=⇒ pat′ a Γ;Θ describes

the translation from source language patterns pat to
core language patterns pat′ binding variables described
by Γ. Notice that the context Γ returned describes
individual elements–the object, the argument to the
method, and the name of the method. It is modified
by Θ by the judgement Γ a Θ ⇒ Γ′ to generate the
new context containing tuples that the core language
pattern pat′ actually generates. Later, the split com-
mand in the stack case translation will be used to ex-
tract the individual elements from the tuples.

• The judgment P ; Γ; p ` as; aspcts; e : τ
dec
=⇒ e′ de-

scribes the translation of declarations as, aspects aspcts

and mainline code e. The scope of the declarations as
includes both aspcts and e. Mainline code e has type τ
and the expression e′ that results from the translation
has type τ as well.

• The judgment ` ds aspcts e
prog
=⇒ e′ translates a whole

program prog with a mainline computation producing
values of type τ into a core language expression e′ with
type τ .

The definition of these judgments may be found in Fig-
ures 12 and 13. Throughout the translation we use the ab-
breviation letx = e1 in e2 to stand for (λpx:τ.e2) e1 for
some appropriate type τ and protection p, which can be
determined from the context.
Most of the translation is rather mundane. The interest-

ing cases involve object declarations and advice. Object dec-
larations are translated by first allocating two sets of labels,

one set for the control flow points at the beginning of meth-
ods, and one for the control flow points at the end of meth-
ods. In a rather severe abuse of notation, we bind these new
labels to variables with the names “omi,pre” and “omi,post.”
During the translation, we maintain the invariant that when-
ever o.m :(τself , τarg, τres, p) appears in the context P , the
translated term is well typed in a context including the
variables omi,pre with type (τself , τarg, string) labelp and
omi,post with type (τself , τres, string) labelp. In the body
of each method of an object, the translation first allocates
onto the stack the omi,pre label with a tuple containing self,
the argument of the method, and a string name correspond-
ing to the source object and method name4. Then we mark
the following control-flow point with the omi,pre label for the
method, passing a tuple including self, the argument and the
string to the advice. Next comes the body of the method
and finally, the omi,post label including self, the result and
the string.
Before and after advice are translated similarly although

before advice is triggered by the omi,pre label whereas after
advice is triggered by omi,post label. In both cases, the first
action inside the advice body involves extracting the com-
ponents (self, method argument or result, and string name)
from the advice argument z. Next, the translated advice
grabs the current stack and binds it to the variable s. Fi-
nally, the advice executes the translated body. After declar-
ing the advice, the translated code immediately activates it,
placing it after any previously encountered advice.

3.2 Translation Meta-theory
An important property of the translation is that it pro-

duces well-typed core language expressions. Define T(o.m :
(τself , τarg, τres, p)) to be the context ompre :(τself × τarg ×
string)labelp, ompost :(τself × τres × string)labelp and
let T(P)be the point-wise extension of the previous T func-
tion.

Lemma 3.1 (Translation Split Lemma). If Γ,Γ′; p `
e : τ and Γ′ a Θ⇒ Γ′′, then Γ,Γ′′; p ` split(Θ, e) : τ

Proof. By induction on the structure of Γ a Θ⇒ Γ′.

Lemma 3.2 (Translation Type Safety Lemmas).

• If P ; p ` pat
pat
=⇒ pat′ a Γ;Θ and Γ a Θ ⇒ Γ′ then

T(P); p ` pat′ ⇒ Γ′.

• If P ; Γ ` v : τ
val
=⇒ v′, then T(P),Γ ` v′ : τ .

• If P ; Γ; p ` e : τ
exp
=⇒ e′, then T(P),Γ; p ` e′ : τ .

• If P ; Γ; p ` as; aspcts; e : τ
dec
=⇒ e′, then T(P),Γ; p `

e′ : τ .

Proof. By induction on the structure of P ; p ` pat
pat
=⇒

pat′ a Γ;Θ, P ; Γ ` v : τ
val
=⇒ v′, P ; Γ; p ` e : τ

exp
=⇒ e′, and

P ; Γ; p ` as; aspcts; e : τ
dec
=⇒ e′, with use of Lemma 3.1.

Using these lemmas, we can now prove translation type
safety.

Theorem 3.1 (Translation Type Safety).

If ` ds aspcts e
prog
=⇒ e′, then .;main ` e′ : τ for some τ .

Proof. Straightforward use of Lemma 3.2.

4Again, there is an abuse of notation here. We assume that
we may write ”o.m” for the string equivalent of the object
name and method.

P ; Γ ` v : τ
val
=⇒ v′

P ; Γ `() : unit
val
=⇒() P ; Γ ` s : string

val
=⇒ s

P ; Γ ` true : bool
val
=⇒ true P ; Γ ` false : bool

val
=⇒ false

P ; Γ; p ` e : τ
exp
=⇒ e′

P ; Γ ` v : τ
val
=⇒ v′

P ; Γ; p ` v : τ
exp
=⇒ v′

Γ(x)= τ

P ; Γ; p ` x : τ
exp
=⇒ x

P ; Γ; p ` e1 : unit
exp
=⇒ e′1 P ; Γ; p ` e2 : τ

exp
=⇒ e′2

P ; Γ; p ` e1; e2 : τ
exp
=⇒ e′1; e

′
2

P ; Γ; p ` e : string
exp
=⇒ e′

P ; Γ; p ` print e : unit
exp
=⇒ print e′

P ; Γ; p ` e1 : bool
exp
=⇒ e′1 P ; Γ; p ` e2 : τ

exp
=⇒ e′2 P ; Γ; p ` e3 : τ

exp
=⇒ e′3

P ; Γ; p ` if e1 then e2 else e3 : τ
exp
=⇒ if e′1 then e

′
2 else e

′
3

P ; Γ; p ` ds; .; e : τ
dec
=⇒ e′

P ; Γ; p ` let ds in e : τ
exp
=⇒ e′

P ; Γ; p ` e1 : [mi:pi
τi]

1..n exp
=⇒ e′1 τj = τ →p τ ′

P ; Γ; p ` e2 : τ
exp
=⇒ e′2 ` pj = p

P ; Γ; p ` e1.mj(e2) : τ
′ exp
=⇒ e′1.mj e′2

P ; Γ; p ` e : τ refp′

exp
=⇒ e′ ` p ≤ p′

P ; Γ; p `! e : τ
exp
=⇒! e′

P ; Γ; p ` e1 : τ refp′

exp
=⇒ e′1 P ; Γ; p ` e2 : τ

exp
=⇒ e′2 ` p′ ≤ p

P ; Γ; p ` e1 := e2 : unit
exp
=⇒ e′1 := e′2

P ; Γ; p ` e1 : stack
exp
=⇒ e′1 P ; p ` pat

pat
=⇒ pat′ a Γ′; Θ P ; Γ,Γ′; p ` e2 : τ

exp
=⇒ e′2 P ; Γ; p ` e3 : τ

exp
=⇒ e′3

P ; Γ; p ` case e1 of(pat⇒ e2 | ⇒ e3) : τ
exp
=⇒ case e′1 of(pat′ ⇒ split(Θ, e′2) | ⇒ e′3)

split(Θ, e)

split(·, e)= e split(a→(x, y, z),Θ)= split(Θ, split (x, y, z)= a in e)

Γ a Θ⇒ Γ′

Γ a · ⇒ Γ

Γ a Θ⇒ Γ′

Γ, x : τ, y : τ ′, z : τ ′′ a Θ, z →(x, y, z)⇒ Γ′, z :(τ × τ ′ × τ ′′)

P ; p ` pat
pat
=⇒ pat′ a Γ′; Θ

(P(o.mi)=(τself , τarg, τres, pi))
(1≤i≤n) P ; p ` pat

pat
=⇒ pat′ a Γ′; Θ

P ; p ` { ~o.m}[x, y, n] :: pat
pat
=⇒ { ~ompre}p[z] :: pat′ :

(Γ′, x : τself , y : τarg, n : string; Θ, z →(x, y, n))

P ; p ` nil
pat
=⇒ nil a ·; ·

P ; p ` pat
pat
=⇒ pat′ a Γ′; Θ

P ; p ` :: pat
pat
=⇒ :: pat′ a Γ′; Θ P ; p ` x

pat
=⇒ x a ·,(x : stack); ·

Figure 12: Translation: Part 1

P ; Γ; p ` as; aspcts; e : τ
dec
=⇒ e′

P ; Γ; p′ ` as; .;() : unit
as

=⇒ e′ P ; Γ; p ` .; aspcts; e : τ
dec
=⇒ e′′ ` p′ ≤ p

P ; Γ; p ` .; p′ : {as} aspcts; e : τ
dec
=⇒ p′<e′>; e′′

P ; Γ; p ` e : τ
exp
=⇒ e′

P ; Γ; p ` .; .; e : τ
dec
=⇒ e′

P ; Γ; p ` e1 : string
exp
=⇒ e′1 P ; Γ; p ` e1 : bool

exp
=⇒ e′1

P ; Γ, x : string; p ` as; aspcts; e2 : τ
dec
=⇒ e′2

P ; Γ; p `(stringx = e1)as; aspcts; e2 : τ
dec
=⇒

P ; Γ, x : bool; p ` as; aspcts; e2 : τ
dec
=⇒ e′2

P ; Γ; p `(boolx = e1)as; aspcts; e2 : τ
dec
=⇒

let x = e′1 in e′2 let x = e′1 in e′2

(P ;(Γ, x : τself , y : τi); p ` ei : τ
′
i

exp
=⇒ e′i)

1≤i≤n

(P,(o.mi :(τself , τi, τ
′
i , p))

1..n);(Γ, o : τself); p ` as; aspcts; e2 : τ
dec
=⇒ e′2

P ; Γ; p `(object o = [mi : τi → τ ′i = ς xi.λyi.ei]
1..n)as; aspcts; e2 : τ

dec
=⇒

let om1,pre = newp :(τself , τ1, string) in ... let omn,pre = newp :(τself , τn, string) in
let om1,post = newp :(τself , τ

′
1, string) in ... let omn,post = newp :(τself , τ

′
n, string) in

let o = [mi = ςp xi.λpyi : τi. store omi,pre[(xi, yi, “o.m
′′
i)] in

omi,pre[(xi, yi, “o.mi“)];
let resi = e′i in
omi,post[(xi, resi, “o.mi“)];
resi

]1..n in e′2

where τself = [mi:pτi →p τ ′i]
1..n

P ; Γ; p ` e1 : τ
exp
=⇒ e′1 P ; Γ, x : τ refp; p ` as; aspcts; e2 : τ ′

dec
=⇒ e′2

P ; Γ; p `(refx = e1)as; aspcts; e2 : τ ′
dec
=⇒ let x = refp e′1 in e′2

(P(o.mi)=(τself , τarg, τres, pi))
(1≤i≤n)

P ;(Γ, x : τself , y : τarg, s : stack, n : string); p ` e1 : unit
exp
=⇒ e′1 P ; Γ; p ` as; aspcts; e2 : τ

dec
=⇒ e′2

P ; Γ; p `(before { ~o.m}(x, y, s, n)= e1)as; aspcts; e2 : τ
dec
=⇒

⇑ {{ ~ompre}p.z →p split (x, y, n)= z in

let s = stack() in

e′1}; e
′
2

(P(o.mi)=(τself , τarg, τres, pi))
(1≤i≤n)

P ;(Γ, x : τself , y : τres, s : stack, n : string); p ` e1 : unit
exp
=⇒ e′1 P ; Γ; p ` as; aspcts; e2 : τ

dec
=⇒ e′2

P ; Γ; p `(after { ~o.m}(x, y, s, n)= e1)as; aspcts; e2 : τ
dec
=⇒

⇑ {{ ~ompost}p.z →p split (x, y, n)= z in

let s = stack() in

e′1}; e
′
2

` ds aspcts e
prog
=⇒ e′

.; .;main ` ds; aspcts; e : τ
dec
=⇒ e′

` ds aspcts e
prog
=⇒ e′

Figure 13: Translation: Part II

4. IMPLEMENTATION
We have implemented an interpreter for our language in

Standard ML. There are three major elements to the imple-
mentation: the translator, the typechecker, and the evalua-
tor. Each component has been implemented as specified in
this report.
The translator parses and converts a high-level source pro-

gram to a low-level core language program according to the
translation rules defined in section 3.1. As we have ex-
plained, the source language program is oblivious and the
programmer can write aspects independently of the main-
line program. The translator will automatically insert the
labels that are necessary to properly trigger the harmless
advice.
The typechecker verifies that a core language program sat-

isfies the static semantics of our language as presented in
section 2.2. The protection domain lattice that it uses is
created during the translation. It contains the main protec-
tion domain as well as separate protection domains pi for
each aspect the programmer declares. The lattice is orga-
nized so that for all i, pi ≤ main.
Finally, the evaluator implements the operational seman-

tics defined in section 2.3. Due to the progress and preser-
vation theorems of the core language, once a core language
program has passed the typechecker, the evaluator will never
get “stuck”

5. RELATED WORK
Over the last several years, a number of researchers have

begun to build semantic foundations for aspect-oriented pro-
gramming paradigms [25, 9, 14, 15, 19, 23, 24]. This foun-
dational work provides a starting point from which one can
begin to analyze the properties of aspect-oriented programs,
develop principled new programming features, study verifi-
cation techniques and derive useful type systems. In this
paper, our semantic foundations were derived directly from
earlier work by Walker, Zdancewic and Ligatti [24]. The
main novelty with respect to this earlier research is the de-
velopment of a type system for ensuring that aspects do not
interfere with each other or the mainline computation.
Clifton and Leavens [5] proposed techniques for Hoare-

style reasoning about aspect-oriented programs using assis-

tants and observers. Their notion of observers is similar to
our conception of harmless advice — observers do not inter-
fere with the mainline computation. However, the details of
our type and effect system are entirely different from their
Hoare logic. One point of interest is that Clifton and Leav-
ens mention that it is not clear whether their model can “ac-
commodate dynamic context join points like CFlow.” Our
analysis of our stack operations, which are sufficient for cod-
ing up CFlow-like primitives, indicates that harmless advice
can indeed safely use these primitives and avoid interfering
with the mainline computation or each other.
Several authors have looked specifically at techniques for

explicitly combining several pieces of advice and detecting
interference between them. For instance, Bauer, Ligatti
and Walker [3] introduced a calculus that included several
different kinds of aspect combinators (parallel conjunction
and disjunction; sequenced conjunction and disjunction) and
used a type and effect system to prevent interference be-
tween them. The technical machinery used here was ex-
tremely complicated and quite different from the current

work. In contrast to our work here, they did not concern
themselves with the effects these aspects would have on the
mainline computation. Recently, Bauer, Ligatti and Walker
have completed the implementation of a general-purpose,
higher-order language for composing aspects in the context
of Java [4].
In similar work, Douence, Fradet and Südholt [10, 11] an-

alyze aspects defined by recursion together with parallel and
sequencing combinators. They develop a number of formal
laws for reasoning about their combinators and an algorithm
that is able to detect strong independence. Two pieces of
advice are strongly independent when they do not interfere
with each other regardless of the contents of the advice bod-
ies or the contents of the programs they are applied to. In
other words, strong independence is determined exclusively
by analysis of the point cut designators of the two pieces
of advice and consequently it is orthogonal to our analysis
which (mostly) ignores the point cuts and examines the ad-
vice bodies instead. It would be interesting to explore how
to put these two different ideas together.
Krishnamurthi, Fisler and Greenberg [17] tackle the more

general problem of verifying aspect-oriented programs. Given
a set of properties a program must satisfy, specified in a tem-
poral logic, and a set of point cut designators, they verify
programs using model checking. Their approach to verifi-
cation is partly modular since as long as the set of point
cuts does not change and the underlying program remains
fixed, it is not necessary to reanalyze the underlying pro-
gram as advice definitions are edited. Aside from the fact
that we are both interested in modular checking of aspect-
oriented programs, there is not too much similarity between
the techniques. In terms of trade-offs, our approach is lighter
weight (temporal specifications of properties are unneces-
sary) and more modular (changing point cut designators
used by advice does not necessitate re-type checking the
mainline program), but checks a much coarser-grained prop-
erty (we guarantee that all functional properties of advice
are preserved) and applies in fewer situations (for instance,
we cannot handle around advice). It would be interesting
to explore how these two different ideas could be combined
in a single system.
Another interesting line of current research involves find-

ing ways to add aspect-oriented programming features to
languages with module systems, or vice-versa. The goal of
this research is often quite similar to our own work: To
find mechanisms to protect the internals of a module from
outside interference by advice. However, the techniques
used and resulting properties are quite different. One of
the first systems to combine aspects and modules effectively
was Lieberherr, Lorenz and Ovlinger’s Aspectual Collabo-

rations [18, 21]. Their proposal allows module program-
mers to choose the join points (i.e., control-flow points)
that they will expose to external advice. External advice
cannot intercept control-flow points that have not been ex-
posed. In this sense, Aspectual Collaborations are not com-
pletely oblivious – programmers must make choices about
which control-flow points to expose upfront, during pro-
gram design. Aspectual collaborations do enjoy a number
of important properties including strong encapsulation, type
safety and the possibility of separately compiling and check-
ing module definitions. Aldrich [2] has proposed another
model for combining aspects and modules called Open Mod-

ules. The central novelty of this proposal is a special mod-

ule sealing operator that hides internal control-flow points
from external advice. Aldrich has used logical relations to
show that sealed modules have a powerful implementation-
independence property [1]. In an earlier report [7], we sug-
gested augmenting these proposals with access-control spec-
ifications in the module interfaces that allow programmers
to specify whether or not data at join points may be read
or written. The current report differs from this previous
research as it does not suggest that visibility of the inter-
ception points be limited; instead, we suggest limiting the
capabilities of advice. However, once again, it seems quite
likely that one could design a powerful system that combines
both ideas.

6. CONCLUSIONS
In this paper, we have investigated the idea of harmless

advice: aspect-oriented advice that does not interfere with
the mainline computation. While strictly less powerful than
ordinary advice, we believe that harmless advice can be used
in many contexts including security monitoring, profiling,
logging, and for some debugging tasks. Harmless advice has
the advantage that it may be added to a program after-the-
fact, in the typical aspect-oriented style, yet programmers
do not have to worry about it corrupting important mainline
data invariants.
There are a number of directions for future research, sev-

eral of which we are currently working on. Our first prior-
ity is to extend the calculus to include additional features
common to object-oriented languages. In particular, we are
interested in adding Java-style classes to the language and
granting our aspect language the capability to externally
extend classes while maintaining appropriate noninterfer-
ence properties. In addition, together with Washburn and
Weirich [8], we are investigating how to extend the calculus
with polymorphic functions, polymorphic advice and type
analysis to support safe but flexible type-directed aspect-
oriented programming.

Acknowledgments
Stimulating discussions on aspects and related topics with
Geoff Washburn, Stephanie Weirich and Steve Zdancewic
helped form some of the ideas in this paper.
This research was supported in part by ARDA Grant

no. NBCHC030106, National Science Foundation CAREER
grant No. CCR-0238328 and an Alfred P. Sloan Fellowship.
This work does not necessarily reflect the opinions or policy
of the federal government or Sloan foundation and no official
endorsement should be inferred.

7. REFERENCES
[1] J. Aldrich. Open modules: A proposal for modular

reasoning in aspect-oriented programming. In Workshop on
foundations of aspect-oriented languages, Mar. 2004.

[2] J. Aldrich. Open modules: Reconciling extensibility and
information hiding. In Proceedings of the Software
Engineering Properties of Languages for Aspect
Technologies, Mar. 2004.

[3] L. Bauer, J. Ligatti, and D. Walker. Types and effects for
non-interfering program monitors. In International
Symposium on Software Security, Tokyo, Japan, Nov. 2002.

[4] L. Bauer, J. Ligatti, and D. Walker. A language and system
for composing security policies. Technical Report
TR-699-04, Princeton University, Jan. 2004.

[5] C. Clifton and G. T. Leavens. Assistants and observers: A
proposal for modular aspect-oriented reasoning. In
Foundations of Aspect Languages, Apr. 2002.

[6] A. Colyer and A. Clement. Large-scale aosd for
middleware. In Proceedings of the 3rd international
conference on Aspect-oriented software development, pages
56–65. ACM Press, 2004.

[7] D. S. Dantas and D. Walker. Aspects, information hiding
and modularity. Technical Report TR-696-04, Princeton
University, Nov. 2003.

[8] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich.
Analyzing polymorphic advice. Technical Report
TR-717-04, Princeton University, Dec. 2004.

[9] R. Douence, O. Motelet, and M. Südholt. A formal
definition of crosscuts. In Third International Conference
on Metalevel architectures and separation of crosscutting
concerns, volume 2192 of Lecture Notes in Computer
Science, pages 170–186, Berlin, Sept. 2001. Springer-Verlag.

[10] R. Douence, O. Motelet, and M. Südholt. Detection and
resolution of aspect interactions. Technical Report 4435,
INRIA, Apr. 2002.

[11] R. Douence, O. Motelet, and M. Südholt. Composition,
reuse and interaction analysis of stateful aspects. In
Conference on Aspect-Oriented Software Development,
pages 141–150, Mar. 2004.

[12] R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness. In
Workshop on Advanced Separation of Concerns, Oct. 2000.

[13] List of main users. AspectJ Users List:
aspectj-users@eclipse.org, June 2004. Requires subscription
to access archives.

[14] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of typed
aspect-oriented programs. Unpublished manuscript., 2003.

[15] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of
untyped aspect-oriented programs. In European Conference
on Object-Oriented Programming, Darmstadt, Germany,
July 2003.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of AspectJ. In European
Conference on Object-oriented Programming.
Springer-Verlag, 2001.

[17] S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying
aspect advice modularly. In Foundations of Software
Engineering, Oct.-Nov. 2004.

[18] K. J. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual
collaborations – combining modules and aspects. The
Computer Journal, 46(5):542–565, September 2003.

[19] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation
semantics of aspect-oriented programs. In G. T. Leavens
and R. Cytron, editors, Foundations of Aspect-Oriented
Languages Workshop, pages 17–25, Apr. 2002.

[20] A. Myers and B. Liskov. Jflow: Practical mostly-static
information flow control. In Twenty-Sixth ACM Symposium
on Principles of Programming Languages, pages 226–241,
Jan. 1998.

[21] J. Ovlinger. Modular Programming with Aspectual
Collaborations. PhD thesis, Northeastern University, 2003.

[22] F. Pottier and V. Simonet. Information flow inference for
ML. ACM Transactions on Programming Languages and
Systems, 25(1):117–158, Jan. 2003.

[23] D. B. Tucker and S. Krishnamurthi. Pointcuts and advice
in higher-order languages. In Proceedings of the 2nd
International Conference on Aspect-Oriented Software
Development, pages 158–167, 2003.

[24] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. In ACM International Conference on Functional
Programming, Uppsala, Sweden, Aug. 2003.

[25] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for
advice and dynamic join points in aspect-oriented
programming. In G. T. Leavens and R. Cytron, editors,
Foundations of Aspect-Oriented Languages Workshop,

pages 17–25, Apr. 2002. Iowa State University University
technical report 02-06.

