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Abstract

This paper establishes the global well-posedness of the nonlinear Fokker–Planck equation for a noisy 
version of the Hegselmann–Krause model. The equation captures the mean-field behavior of a classic multi-
agent system for opinion dynamics. We prove the global existence, uniqueness, nonnegativity and regularity 
of the weak solution. We also exhibit a global stability condition, which delineates a forbidden region for 
consensus formation. This is the first nonlinear stability result derived for the Hegselmann–Krause model.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Network-based dynamical systems feature agents that communicate via a dynamic graph 
while acting on the information they receive. These systems have received increasing attention 
lately because of their versatile use in modeling social and biological systems [1–7]. Typically, 
they consist of a fixed number N of agents, each one located at xk(t) on the real line. The agents’ 
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positions evolve as interactions take place along the edges of a dynamical graph that evolves 
endogenously. The motivation behind the model is to get a better understanding of the dynamics 
of collective behavior. Following [8,9], we express the system as a set of N coupled stochastic 
differential equations:

dxi = − 1

N

N∑
j=1

aij (xi − xj )dt + σdW
(i)
t , (1)

where σ is the magnitude of the noise, W(i)
t are independent Wiener processes, and the “in-

fluence” parameter aij is a function of the distance between agents i and j ; in other words, 
aij = a(|xi − xj |), where a is nonnegative (to create attractive forces) and compactly supported 
over a fixed interval (to keep the range of the forces finite). Intuitively, the model mediates the 
competing tension between two opposing forces: the sum in (1) pulls the agents toward one an-
other while the diffusion term keeps them jiggling in a Brownian motion; the two terms push the 
system into ordered and disordered states respectively. In the mean field limit, N → +∞, Equa-
tion (1) induces a nonlinear Fokker–Planck equation for the agent density profile ρ(x, t) [8]:

ρt (x, t) =
(

ρ(x, t)

∫
ρ(x − y, t)ya(|y|)dy

)
x

+ σ 2

2
ρxx(x, t). (2)

The function ρ(x, t) is the limit density of ρN(x, t) := 1
N

∑
δxj (t)(dx), as N goes to infinity, 

where δx(dx) denotes the Dirac measure with point mass at x. The Fokker–Planck equation is 
a basic model in many areas of physics and it is a deterministic one describing how probability 
density functions evolve in time. A number of mathematical results, including well-posedness 
theory and the convergence to steady state as time t → ∞, has been obtained for linear and 
nonlinear variants of the Fokker–Planck equation (see [10–17] and references therein).

This paper is concerned with the nonlinear, nonlocal Fokker–Planck equation (2) governing 
the density evolution of the noisy Hegselmann–Krause (HK) model. In the classic Hegselmann–
Krause model, one of the most popular systems in consensus dynamics [18–20], each one of the 
N agents moves, at each time step, to the mass center of all the others within a fixed distance. 
The position of an agent represents its “opinion”. If we add noise to this process, we obtain the 
discrete-time version of (1) for a(y) = 1[0,R] (y), where 1A is the usual set indicator function, 
equal to 1 if y ∈ A and 0 otherwise. To be exact, the original HK model does not scale aij by 
1/N but by the reciprocal of the number agents within distance R of agent i. Canuto et al. [21]
have argued that this difference has a minor impact on the dynamics. By preserving the pairwise 
symmetry among the agents, however, the formulation (1) simplifies the analysis.

The HK model has been the subject of extensive investigation. A sample of the literature 
includes work on convergence and consensus properties [1,22,18,23–27], conjectures about the 
spatial features of the attractor set [28], and various extensions such as HK systems with iner-
tia [29], leaders [30–32], or random jumps [33].

Some mathematical models for opinion formation have been proposed under different as-
sumptions. A class of kinetic models of opinion formation and its asymptotic limit Fokker–
Planck type equations are derived in [34], based on two-body interactions involving compromise 
and diffusion properties in exchanges between individuals. Later, based on [34], a mathematical 
model for opinion formation in a society that is built of two groups, one groups of “ordinary” 
people and one group of “strong opinion leaders”, and its corresponding Fokker–Planck type 
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equations are proposed in [35]. Some other opinion dynamics models are obtained in [36]. How-
ever, fewer rigorous mathematical results including the global well-posedness and stability of the 
models are studied so far. In [37], the blow-up of the smooth solution of an aggregation equa-
tions with mildly singular interaction kernels is proved. This model is a continuum one of the 
kinetic equations in the modeling of animal collective behavior such as flocks, schools or swarms 
of insects, fishes and birds, which shares some feature with the Patlak–Keller–Segel model for 
chemotaxis (see [38]).

The present paper focuses on the analysis of the nonlinear Fokker–Planck equation for the 
noisy HK system, which corresponds to setting a(y) = 1[0,R] (y) in (2). For concreteness, let 
us denote U = [−�, �], UT = [−�, �] × (0, T ) for T > 0, and consider the following periodic 
problem for the HK system:⎧⎪⎪⎨

⎪⎪⎩
ρt − σ 2

2
ρxx = (ρGρ

)
x

in UT

ρ (�, ·) = ρ (−�, ·) on ∂U × [0, T ]
ρ = ρ0 on U × {t = 0}

(3)

where

Gρ (x, t) :=
x+R∫

x−R

(x − y)ρ (y, t) dy (4)

and the initial condition ρ0 is assumed to be a probability density, i.e., ρ0 ≥ 0 and∫
U

ρ0 (x) dx = 1. The positive constants �, R and σ are fixed with 0 < R < �. Note that we 
have to periodically extend ρ outside of U in order to make sense of the integral above. The 
periodicity of ρ, together with Eq. (3), immediately implies the normalization condition

∫
U

ρ (y, t) dy = 1 (5)

for all 0 ≤ t < T .

Main results. We establish the global well-posedness of Eq. (3), which entails the existence, 
uniqueness, nonnegativity and regularity of the solution. In addition, we prove a global stability 
condition for the uniform solution ρ = 1

2�
, representing the state without any clustering of opin-

ions. This gives a sufficient condition involving R and σ for which no consensus can be reached 
regardless of the initial condition.

The paper is organized as follows. In Section 2, we first derive the aforementioned global 
stability condition by assuming that a sufficiently smooth solution exists. More precisely, we 

show that as long as σ 2 > 2�
π

(
2R + R2/

√
3�
)

, the uniform solution ρ = 1
2�

is unconditionally 

stable in the sense that ρ (t) → 1
2�

exponentially as t → ∞ for any initial data ρ0 ∈ L2
per (U). 

Instead of employing the usual entropy method (see e.g. [11]), we use energy estimates to directly 
obtain L2

per exponential convergence. An important ingredient in the proof is a L1
per estimate on 

the solution (Lemma 2.1). Interestingly, this estimate immediately implies the nonnegativity of 
the solution while no arguments using maximum principles are required. The latter may not be 
easy to obtain for nonlinear partial integro-differential equations, such as the one we consider 
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here. We close the section by discussing the physical significance of the stability result and how 
it relates to other works in the opinion dynamics literature.

In Section 3, we prove the global existence and uniqueness of the weak solution to (3)
when the initial data ρ0 ∈ L2

per (U). Here, we construct approximate solutions by considering 
a sequence of linear parabolic equations obtained from (3) by replacing ρGρ with ρnGρn−1 . 
Using energy estimates, we find that the sequence of solutions ρn forms a Cauchy sequence in 
L1(0, T ; L1

per (U)) and we use this strong convergence result to simplify the existence proof.
Finally, in Section 4 we establish improved regularity properties of the weak solution if ρ0 ∈

Hk
per (U) for some k ≥ 1. This allows us to remove the a priori smoothness assumptions in the 

stability and positivity results of Section 2. The techniques employed in this section are standard 
in the analysis of partial differential equations. The main results in this paper are summarized in 
Theorem 4.5.

Notation. As customary in the literature, we often treat ρ (and other functions on UT ) not as a 
function from UT to R, but from [0, T ] to a relevant Banach space. In this case, we define for 
each t ,

[ρ (t)] (·) := ρ (·, t) . (6)

For a shorthand, we denote the usual Lp norms on U by

‖ρ (t)‖p := ‖ρ (t)‖Lp(U) (7)

Other Banach space norms will be written out explicitly. Since we are dealing with periodic 
boundary conditions, a subscript “per” will often be attached to the relevant Banach space sym-
bols to denote the subspace of periodic functions on U , e.g.,

L
p
per (U) := {u ∈ Lp (U) : u (−�) = u (+�)

}
,

Hk
per (U) :=

{
u ∈ Hk (U) : u (−�) = u (+�)

}
, (8)

for 1 ≤ p ≤ ∞ and k ≥ 1. They are equipped with the usual norms.
Finally, we denote by C, C1, C2, . . . any generic constants (possibly depending on R, � or σ ) 

used in the various energy estimates. Their actual values may change from line to line. When 
they depend on the time interval under consideration, we will indicate the dependence explicitly, 
e.g., C (T ).

2. Nonnegativity and global stability via a priori estimates

First, let us assume that there exists a sufficiently smooth solution

ρ ∈ C1
(

0,∞;C2
per (U)

)
, (9)

to equation (3). This allows us to prove a priori energy estimates, from which we can deduce the 
solution’s nonnegativity and derive a global stability condition of the spatially uniform solution 
ρ = 1

2�
.

We begin by setting ψ = ρ − 1 so that 
∫

ψ (y, t) dy = 0. Then, ψ satisfies the equation
2� U
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ψt − σ 2

2
ψxx = (ψGψ

)
x

+ 1

2�

(
Gψ

)
x
. (10)

The other two extra terms are zero since 
∫ x+R

x−R (x − y)dy = 0 for all x. Multiplying equation (10)
by ψ and integrating by parts over U , we have

1

2

d

dt
‖ψ (t)‖2

2 + σ 2

2
‖ψx (t)‖2

2 ≤
∣∣∣∣∣∣
∫
U

ψxψGψdx

∣∣∣∣∣∣+
1

2�

∣∣∣∣∣∣
∫
U

ψxGψdx

∣∣∣∣∣∣ . (11)

By the Cauchy–Schwarz inequality,

1

2

d

dt
‖ψ (t)‖2

2 + σ 2

2
‖ψx (t)‖2

2 ≤ ∥∥Gψ (t)
∥∥∞ ‖ψ (t)‖2 ‖ψx (t)‖2

+ 1

2�
‖ψx (t)‖2

∥∥Gψ (t)
∥∥

2 . (12)

First let us estimate 
∥∥Gψ (t)

∥∥∞. For any x and t , we have

∣∣Gψ (x, t)
∣∣≤ ∫

U

|y − x|1{|y−x|≤R} |ψ (y, t)|dy

≤ R ‖ψ (t)‖1

≤ R (1 + ‖ρ (t)‖1) . (13)

In order to proceed with the bound on 
∥∥Gψ (t)

∥∥∞, we need an L1
per estimate of ρ (t).

Lemma 2.1. Suppose ρ ∈ C1
(

0,∞;C2
per (U)

)
is a solution of (3) with ρ0 ∈ L1

per (U), then 
‖ρ (t)‖1 ≤ ‖ρ0‖1 for all t ≥ 0.

Proof. Let ε > 0 and define

χε (r) =
{

|r| |r| > ε

− r4

8ε3 + 3r2

4ε
+ 3ε

8 |r| ≤ ε
. (14)

This is a convex C2-approximation of the absolute value function satisfying |r| ≤ χε (r). Multi-
plying χ ′

ε (ρ) to equation (3) and integrating by parts over U , we have

d

dt

∫
U

χε (ρ (x, t)) dx + σ 2

2

∥∥∥ρx (t)
[
χ ′′

ε (ρ (t))
]1/2
∥∥∥2

2
= −

∫
U

ρGρχ ′′
ε (ρ)ρx dx. (15)

By Cauchy–Schwarz and Young’s inequality,
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d

dt

∫
U

χε (ρ (x, t)) dx + σ 2

2

∥∥∥ρx (t)
[
χ ′′

ε (ρ (t))
]1/2
∥∥∥2

2

≤
∥∥∥ρ (t)Gρ (t)

[
χ ′′

ε (ρ (t))
]1/2
∥∥∥

2

∥∥∥ρx (t)
[
χ ′′

ε (ρ (t))
]1/2
∥∥∥

2

≤ 1

2σ 2

∥∥∥ρ (t)Gρ (t)
[
χ ′′

ε (ρ (t))
]1/2
∥∥∥2

2
+ σ 2

2

∥∥∥ρx (t)
[
χ ′′

ε (ρ (t))
]1/2
∥∥∥2

2
. (16)

Therefore,

d

dt

∫
U

χε (ρ (x, t)) dx ≤ 1

2σ 2

∥∥∥ρ (t)Gρ (t)
[
χ ′′

ε (ρ (t))
]1/2
∥∥∥2

2

≤ 1

2σ 2

∥∥Gρ (t)
∥∥2

∞
∥∥∥ρ (t)

[
χ ′′

ε (ρ (t))
]1/2
∥∥∥2

2
. (17)

Replacing ψ by ρ in (13) we have

∥∥Gρ (t)
∥∥∞ ≤ R ‖ρ (t)‖1 . (18)

The term 
∥∥∥ρ (t)

[
χ ′′

ε (ρ (t))
]1/2
∥∥∥2

2
can be split into two integrals:

∥∥∥ρ (t)
[
χ ′′

ε (ρ (t))
]1/2
∥∥∥2

2
=
∫
U

ρ2χ ′′
ε (ρ) dx

=
∫
U

ρ2χ ′′
ε (ρ)1{|ρ|>ε} dx

+
∫
U

ρ2χ ′′
ε (ρ)1{|ρ|≤ε} dx. (19)

For |ρ| > ε, χ ′′
ε (ρ) = 0 by construction, and hence the first integral above is zero. The second 

integral is estimated as:

∫
U

ρ2χ ′′
ε (ρ)1{|ρ|≤ε} dx =

∫
U

3ρ2
(
ε2 − ρ2

)
2ε3

1{|ρ|≤ε}dx

≤
∫
U

3ε

2
dx = 3�ε. (20)

Therefore, by (18), (19), (20), Eq. (17) becomes

d

dt

∫
χε (ρ (x, t)) dx ≤ 3�R2ε

2σ 2
‖ρ (t)‖2

1 ≤ 3�R2ε

2σ 2

⎡
⎣∫ χε (ρ (x, t)) dx

⎤
⎦

2

.

U U
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Applying Grönwall’s inequality, we get

∫
U

χε (ρ (x, t)) dx ≤
⎛
⎝∫

U

χε (ρ0 (x)) dx

⎞
⎠

× exp

⎡
⎣3�R2ε

2σ 2

t∫
0

∫
U

χε (ρ (x, s)) dx ds

⎤
⎦ . (21)

Since ρ is continuous, the integral in the exponential is finite. Therefore, taking the limit ε → 0
yields

‖ρ (t)‖1 ≤ ‖ρ0‖1 , (22)

for every t ≥ 0, as required. �
Incidentally, Lemma 2.1 establishes the nonnegativity of ρ. This is important because ρ rep-

resents the density of opinions of individuals and, as such, is necessarily nonnegative at all times. 
It is interesting that a L1

per estimate suffices to show nonnegativity and no arguments from max-
imum principles are required.

Corollary 2.2. If ρ ∈ C1
(

0,∞;C2
per (U)

)
is a solution of (3), with ρ0 ≥ 0 and 

∫
U

ρ0 (x) dx = 1, 
then ‖ρ (t)‖1 = 1 and ρ (t) ≥ 0 in U for all t ≥ 0.

Proof. Since 
∫
U

ρ0 (x) dx = 1, the normalization condition (5) is satisfied for t > 0. Applying 
Lemma 2.1, we have

1 =
∫
U

ρ (x, t) dx ≤ ‖ρ (t)‖1 ≤ ‖ρ0‖1 =
∫
U

ρ0 dx = 1. (23)

Hence, ‖ρ (t)‖1 = 1. But

1 =
∫
U

ρ (x, t) dx =
∫
U

ρ1{ρ≥0}dx +
∫
U

ρ1{ρ<0} dx, (24)

1 =
∫
U

|ρ (x, t)|dx =
∫
U

ρ1{ρ≥0}dx −
∫
U

ρ1{ρ<0}dx. (25)

These equations imply that 
∫
U

ρ1{ρ<0}dx = 0, and hence, ρ (t) ≥ 0 a.e. in U . By continuity, 
ρ (t) ≥ 0 in U for all t ≥ 0. �

With Lemma 2.1, it follows from (13) that

∥∥Gψ (t)
∥∥ ≤ 2R (26)
∞
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Next, we also have

(
Gψ (x, t)

)2 =
⎛
⎝ x+R∫

x−R

(x − y)ψ (y, t) dy

⎞
⎠

2

≤
x+R∫

x−R

(x − y)2 dy

x+R∫
x−R

(ψ (y, t))2 dy

= 2

3
R3

x+R∫
x−R

(ψ (y, t))2 dy. (27)

Consequently,

∥∥Gψ (t)
∥∥2

2 ≤ 2

3
R3
∫
U

x+R∫
x−R

(ψ (y, t))2 dydx

= 2

3
R3
∫
U

+R∫
−R

(ψ (x + y, t))2 dydx

= 4R4

3
‖ψ (t)‖2

2 . (28)

With estimates (26) and (28), (12) becomes

1

2

d

dt
‖ψ (t)‖2

2 + σ 2

2
‖ψx (t)‖2

2 ≤
(

2R + R2

√
3�

)
‖ψ (t)‖2 ‖ψx (t)‖2

≤ σ 2

4
‖ψx (t)‖2

2

+ 1

σ 2

(
2R + R2

√
3�

)2

‖ψ (t)‖2
2 . (29)

Hence, we have

1

2

d

dt
‖ψ (t)‖2

2 ≤ 1

σ 2

(
2R + R2

√
3�

)2

‖ψ (t)‖2
2 − σ 2

4
‖ψx (t)‖2

2 . (30)

By construction, 
∫
U

ψ (x, t) dx = 0 for all t . Thus, ψ (t) satisfies the Poincaré inequality

‖ψ (t)‖2 ≤ C ‖ψx (t)‖2 . (31)

For the interval U = [−�, �], the optimal Poincaré constant is C = �/π . Therefore, (30) becomes
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d

dt
‖ψ (t)‖2

2 ≤
(

2

σ 2

(
2R + R2

√
3�

)2

− π2σ 2

2�2

)
‖ψ (t)‖2

2 . (32)

But

‖ψ (0)‖2
2 =

∥∥∥∥ρ0 − 1

2�

∥∥∥∥
2

2
≤ 2‖ρ0‖2

2 + 1

�
. (33)

Thus we obtain the integral form of (30):

‖ψ (t)‖2
2 ≤

(
2‖ρ0‖2

2 + 1

�

)
exp

{(
2

σ 2

(
2R + R2

√
3�

)2

− π2σ 2

2�2

)
t

}
. (34)

In particular, if σ 2 > 2�
π

(
2R + R2/

√
3�
)

, the constant factor in the exponential is negative, 

therefore ‖ψ (t)‖2
2 → 0 as long as ‖ρ0‖2 < ∞. We summarize these results:

Theorem 2.3. Let ρ ∈ C1
(

0,∞;C2
per (U)

)
be a solution of (3) with ρ0 ≥ 0, 

∫
U

ρ0 (x) dx = 1, 

and ρ0 ∈ L2
per (U). If σ 2 > 2�

π

(
2R + R2/

√
3�
)

, then ρ (t) → 1
2�

in L2
per exponentially as 

t → ∞.

2.1. Physical significance of Theorem 2.3

The noisy HK model generally exhibits two types of steady-states. The first is a spatially uni-
form steady-state, i.e., ρ is constant. This represents the case where individuals have uniformly 
distributed opinions, without any local or global consensus. The second involves one or more 
clusters of individuals having similar opinions, in which case ρ is a multi-modal profile. Which 
of these two steady-states appear in the long-time limit depends on the interaction radius R and 
noise σ , as well as the initial profile ρ0.

In this aspect, Theorem 2.3 gives a sufficient condition for the spatially uniform solution to be 
the globally attractive state, irrespective of the initial profile ρ0. In other words, as long as σ 2 >
2�
π

(
2R + R2/

√
3�
)

, any initial profile converges to the spatially uniform state. In particular, 
clustered profiles do not even have local stability. This immediately indicates a forbidden zone 
for consensus: when the volatility of one’s opinion is too large compared to the interaction radius, 
there can be no clustering of opinions regardless of the initial opinion distribution. It should be 
noted that this is the first result regarding the nonlinear stability of the HK system. On the other 
hand, it is possible to perform linear stability analysis of Eq. (3) at the uniform solution ρ = 1

2�
to derive a linear stability condition for the uniform solution [39]. The main idea is to plug ansatz 
ρ(x, t) = 1

2�
+ p(t)e

πxi
� into Eq. (3) and ignore higher order terms to get a linear differential 

equation of p(t), then locate the region of parameters (σ, R) where the trivial solution p(t) = 0
loses its stability. The combination of these two results indicate a region where it is possible to 
have both clustered and uniform states as locally stable solutions (see Fig. 1).

HK system with finite and infinite numbers of agents in both discrete- and continuous-time 
fashions exhibit similar behavior of opinion aggregation and bifurcation [40]. In particular, 
the competition between clustered and uniform solution is also observed in the simulations of 
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Fig. 1. The phase diagram for the noisy HK model. The top (red) curve is the curve σ 2 = 2�
π

(
2R + R2/

√
3�
)

, above 
which the spatially uniform solution (ρ = 1/2�) is unconditionally stable, i.e. no clustering of opinions is possible. The 
bottom (blue) curve is obtained from linear stability analysis around the spatially uniform solution, and has the form 
(σ/�)2 = C(R/�)3 [39]. Below this curve, the uniform solution loses linear stability and only clustered solutions are 
permitted. Between these two curves is the region for which both clustered and uniform solutions can be stable with 
respect to small perturbations. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

discrete-time noisy HK system with finite number of agents [33]. The advantage of considering 
the continuous-time HK system in its mean-field limit is that the stability of non-trivial solutions 
can be carried out analytically, as indicated by Theorem 2.3.

3. Existence and uniqueness

Our discussion so far has assumed the existence of a solution to (3). In this section, we prove 
the existence and uniqueness of the weak solution by defining a sequence of linear parabolic 
equations, whose solutions converge strongly to a function ρ that solves a weak formulation of 
Eq. (3). To begin with, let T > 0 and consider a sequence of linear parabolic equations⎧⎪⎪⎨

⎪⎪⎩
ρnt − σ 2

2
ρnxx = (

ρnGρn−1

)
x

in UT

ρn (�, ·) = ρn (−�, ·) on ∂U × [0, T ]
ρn = ρ0 on U × {t = 0}

(35)

for n ≥ 1, with ρ0 (x, t) := ρ0 (x) for all t > 0. For convenience, we assume that the initial 
condition satisfies ρ0 ∈ C∞

per (U), ρ0 ≥ 0 and 
∫
U

ρ0 (x) dx = 1. The smoothness condition will 
be relaxed later (see Theorem 3.12 at the end of this section).

Consider the case n = 1. Since ρ0 ∈ C∞
per (U) and both Gρ0 and 

(
Gρ0

)
x

are bounded, 
by standard results on linear parabolic evolution equations, there exists a unique ρ1 ∈
C∞

(
0, T ;C∞

per (U)
)

satisfying (35) for n = 1. Iterating this for n > 1 implies that there exists 
a sequence of smooth functions {ρn : n ≥ 1} satisfying (35). Next, we establish some uniform 
energy estimates on ρn.
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Proposition 3.1. Let T > 0 and suppose {ρn : n ≥ 1} satisfy (35) with ρ0 ∈ C∞
per (U). Then, 

‖ρn (t)‖1 ≤ ‖ρ0‖1 for all 0 ≤ t ≤ T and n ≥ 1.

Proof. Since we know that ρn (t) ∈ C∞
(

0, T ;C∞
per (U)

)
for all n ≥ 1 and all 0 ≤ t ≤ T , we can 

proceed exactly as in the proof of Lemma 2.1. In this case, instead of (21) we have

∫
U

χε (ρn (x, t)) dx ≤
⎛
⎝∫

U

χε (ρ0 (x)) dx

⎞
⎠

× exp

⎡
⎣3�R2ε

2σ 2

t∫
0

∫
U

χε (ρn−1 (x, s)) dxds

⎤
⎦ . (36)

Since ρn−1 is smooth, the integral in the exponential is finite, hence we take the limit ε → 0 to 
obtain

‖ρn (t)‖1 ≤ ‖ρ0‖1 , (37)

for all 0 ≤ t ≤ T . �
Corollary 3.2. Let T > 0 and suppose {ρn : n ≥ 1} satisfy (35) with ρ0 ∈ C∞

per (U), ρ0 ≥ 0 and ∫
U

ρ0 (x) dx = 1. Then, ‖ρn (t)‖1 = 1 and ρn (t) ≥ 0 in U for all 0 ≤ t ≤ T and for all n ≥ 1.

Proof. Since the functions ρn are all periodic, we have 
∫
U

ρn (x, t) dx = 1; hence the proof is 
identical to Corollary 2.2. �
Proposition 3.3. Let T > 0 and suppose {ρn : n ≥ 1} satisfy (35) with ρ0 ∈ C∞

per (U), ρ0 ≥ 0 and ∫
U

ρ0 (x) dx = 1. Then, there exists a constant C (T ) > 0 such that

‖ρn‖
L∞
(

0,T ;L2
per (U)

) + ‖ρn‖
L2
(

0,T ;H 1
per (U)

) ≤ C (T )‖ρ0‖2 .

Proof. We proceed as in Section 2 by multiplying (35) by ρn and integrating by parts. This gives 
us

1

2

d

dt
‖ρn (t)‖2

2 + σ 2

2

∥∥ρnx (t)
∥∥2

2 ≤
∫
U

∣∣ρnρnx Gρn−1

∣∣dx

≤ ∥∥ρnx (t)
∥∥

2

∥∥ρn (t)Gρn−1 (t)
∥∥

2

≤ σ 2

4

∥∥ρnx (t)
∥∥2

2

+ 1

σ 2
‖ρn (t)‖2

2

∥∥Gρn−1 (t)
∥∥2

∞ . (38)

Using Proposition 3.1 and Corollary 3.2 we have
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∥∥Gρn−1 (t)
∥∥∞ ≤ R ‖ρn−1 (t)‖1 = R, (39)

and hence (38) becomes

1

2

d

dt
‖ρn (t)‖2

2 + σ 2

4

∥∥ρnx (t)
∥∥2

2 ≤ R

σ 2
‖ρn (t)‖2

2 , (40)

which implies, by integration, that

‖ρn (t)‖2
2 ≤ C (T )‖ρ0‖2

2 , (41)

for all 0 ≤ t ≤ T , and

sup
0≤t≤T

‖ρn (t)‖2
2 +

T∫
0

∥∥ρnx (t)
∥∥2

2 dt ≤ C (T )‖ρ0‖2
2 . � (42)

Proposition 3.4. Let T > 0 and suppose {ρn : n ≥ 1} satisfy (35) with ρ0 ∈ C∞
per (U), ρ0 ≥ 0 and ∫

U
ρ0 (x) dx = 1. Then, there exists a constant C (T ) > 0 such that

‖ρn‖
L∞
(

0,T ;H 1
per (U)

) + ‖ρn‖
L2
(

0,T ;H 2
per (U)

) ≤ C (T )
(
‖ρ0‖2

H 1
per (U)

+ ‖ρ0‖4
2

)1/2
. (43)

Proof. Multiplying equation (35) by −ρnxx and integrating by parts over U , it follows from 
Cauchy–Schwarz, Young’s inequality, and (39) that

1

2

d

dt

∥∥ρnx (t)
∥∥2

2 + σ 2

2

∥∥ρnxx (t)
∥∥2

2

≤
∫
U

∣∣(ρnGρn−1

)
x
ρnxx

∣∣dx

≤ σ 2

4

∥∥ρnxx (t)
∥∥2

2 + C1
∥∥Gρn−1ρnx (t)

∥∥2
2 + C2

∥∥(Gρn−1

)
x
(t) ρn (t)

∥∥2
2

≤ σ 2

4

∥∥ρnxx (t)
∥∥2

2 + C1
∥∥ρnx (t)

∥∥2
2 + C2

∥∥(Gρn−1

)
x
(t) ρn (t)

∥∥2
2
. (44)

Now,

(
Gρn−1

)
x

= ∂

∂x

⎡
⎣ x+R∫

x−R

(x − y)ρn−1 (y, t) dy

⎤
⎦

= −R (ρn−1 (x + R, t) + ρn−1 (x − R, t))

+
x+R∫

ρn−1 (y, t) dy. (45)
x−R
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By (41) and Morrey’s inequality,

∥∥(Gρn−1

)
x
(t) ρn (t)

∥∥2
2
≤ ‖ρn (t)‖2∞

∥∥(Gρn−1

)
x
(t)
∥∥2

2

≤ C ‖ρn (t)‖2
H 1

per (U)
‖ρn−1 (t)‖2

2

≤ C (T )‖ρ0‖2
2 ‖ρn (t)‖2

H 1
per (U)

. (46)

It follows that (44) becomes

1

2

d

dt

∥∥ρnx (t)
∥∥2

2 + σ 2

4

∥∥ρnxx (t)
∥∥2

2 ≤ C1
∥∥ρnx (t)

∥∥2
2

+ C2 (T )‖ρ0‖2
2 ‖ρn (t)‖2

H 1
per (U)

. (47)

Integrating over t , we have

1

2
sup

0≤t≤T

∥∥ρnx (t)
∥∥2

2 + σ 2

4

∥∥ρnxx

∥∥2
L2
(

0,T ;L2
per (U)

)

≤ 1

2

∥∥ρ0x

∥∥2
2 + C (T )

(
‖ρn‖2

L2
(

0,T ;H 1
per (U)

) + ‖ρ0‖2
2 ‖ρn‖2

L2
(

0,T ;H 1
per (U)

)). (48)

Applying the estimates in Proposition 3.3, we find that

sup
0≤t≤T

∥∥ρnx (t)
∥∥2

2 + ∥∥ρnxx

∥∥2
L2
(

0,T ;L2
per (U)

) ≤ C (T )
(
‖ρ0‖2

H 1
per (U)

+ ‖ρ0‖4
2

)
. � (49)

With the uniform estimates above, we can now show that ρn converges strongly to a limit.

Lemma 3.5. Let T > 0 and suppose that {ρn : n ≥ 1} satisfies (35) with ρ0 ∈ C∞
per (U), 

ρ0 ≥ 0 and 
∫
U

ρ0 (x) dx = 1. Then there exists ρ ∈ L1
(

0, T ;L1
per (U)

)
such that ρn → ρ in 

L1
(

0, T ;L1
per (U)

)
.

Proof. We set φn = ρn − ρn−1 for n ≥ 1. For n ≥ 2, the evolution equation for φn reads

φnt − σ 2

2
φnxx = (φnGρn−1 + ρn−1Gφn−1

)
x
. (50)

Let ε > 0. Multiplying the equation above by χ ′
ε (φn) (see definition (14)) and integrating by 

parts yield

d

dt

∫
U

χε (φn) dx + σ 2

2

∥∥∥[χ ′′
ε (φn (t))

]1/2
φnx (t)

∥∥∥2

2

≤
∫ ∣∣χ ′′

ε (φn)φnx φnGρn−1

∣∣dx +
∫ ∣∣χ ′

ε (φn)
(
ρn−1Gφn−1

)
x

∣∣dx
U U
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≤ σ 2

2

∥∥∥[χ ′′
ε (φn (t))

]1/2
φnx (t)

∥∥∥2

2

+ 1

2σ 2

∥∥Gρn−1 (t)
∥∥2

∞
∥∥∥[χ ′′

ε (φn (t))
]1/2

φn (t)

∥∥∥2

2

+
∫
U

∣∣χ ′
ε (φn)

(
ρn−1Gφn−1

)
x

∣∣dx. (51)

By Corollary 3.2, 
∥∥Gρn−1 (t)

∥∥∞ ≤ R ‖ρn−1 (t)‖1 = R. Also, as in (20) from the proof of 
Lemma 2.1, we have

∥∥∥[χ ′′
ε (φn (t))

]1/2
φn (t)

∥∥∥2

2
≤ Cε. (52)

To estimate the last integral in (51), observe that 
∣∣χ ′

ε

∣∣≤ C, hence

∫
U

∣∣χ ′
ε (φn)

(
ρn−1Gφn−1

)
x

∣∣dx ≤ C

∫
U

∣∣(ρn−1)x Gφn−1

∣∣dx

+ C

∫
U

∣∣ρn−1
(
Gφn−1

)
x

∣∣dx

≤ C1
∥∥Gφn−1

∥∥∞ ‖ρn−1‖H 1
per (U)

+ C2 ‖ρn−1‖∞
∥∥(Gφn−1

)
x

∥∥
1
. (53)

But we know that 
∥∥Gφn−1

∥∥∞ ≤ R ‖φn−1‖1 and that 
∥∥(Gφn−1

)
x

∥∥
1

≤ C ‖φn−1‖1 (see expres-
sion (45)). Moreover, Morrey’s inequality implies ‖ρn−1‖∞ ≤ ‖ρn−1‖H 1

per (U). Hence, it follows 
that, as ε tends to 0, (51) becomes

d

dt
‖φn (t)‖1 ≤ C ‖ρn−1 (t)‖H 1

per (U) ‖φn−1 (t)‖1

≤ C (ρ0;1, T )‖φn−1 (t)‖1 , (54)

where in the last line we used Proposition 3.4 and the shorthand

C (ρ0;1, T ) := C (T )
(
‖ρ0‖2

H 1
per (U)

+ ‖ρ0‖4
2

)1/2
. (55)

Now, for N ≥ 2 we define

yN (t) :=
N∑

n=2

‖φn (t)‖1 . (56)
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By (54) and Corollary 3.2,

d

dt
yN (t) ≤ C (ρ0;1, T )

(
yN (t) + ‖φ1 (t)‖1 − ‖φN (t)‖1

)
≤ C (ρ0;1, T ) (yN (t) + 4) . (57)

Moreover, the ρn’s coincide at t = 0, so yN (0) = 0. Thus by Grönwall’s inequality,

yN (t) ≤ 2T C (ρ0;1, T ) eT C(ρ0;1,T ), (58)

uniformly in N and t . Furthermore, for each t , yN (t) is a bounded monotone sequence in N , 
hence there exists

y∞ (t) =
∞∑

n=2

‖φn (t)‖1 ≤ 2T C (ρ0;1, T ) eT C(ρ0;1,T ), (59)

such that yN (t) ↑ y∞ (t), pointwise in t . By the monotone convergence theorem,

T∫
0

yN (t) dt ↑
T∫

0

y∞ (t) dt ≤ 2T 2C (ρ0;1, T ) eT C(ρ0;1,T ). (60)

This result immediately implies that {ρn} is a Cauchy sequence in L1
(

0, T ;L1
per (U)

)
. Indeed, 

for ε > 0 we can pick N ≥ 2 such that 
∫ T

0 y∞ (t) dt − ∫ T

0 yN (t) dt < ε. Hence, for all M ≥ 1,

‖ρN+M − ρN‖
L1
(

0,T ;L1
per (U)

) =
T∫

0

‖ρN+M (t) − ρN (t)‖1 dt

=
T∫

0

∥∥∥∥∥∥
N+M∑

n=N+1

φn (t)

∥∥∥∥∥∥
1

dt

≤
T∫

0

N+M∑
n=N+1

‖φn (t)‖1 dt

=
T∫

0

yN+M (t) dt −
T∫

0

yN (t) dt

≤
T∫

0

y∞ (t) dt −
T∫

0

yN (t) dt

≤ ε. (61)
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Therefore, {ρn} is a Cauchy sequence and there exists ρ ∈ L1
(

0, T ;L1
per (U)

)
such that ρn → ρ

in L1
(

0, T ;L1
per (U)

)
. �

Note that we can extract from {ρn} a subsequence that converges weakly in smaller spaces.

Definition 3.6. We denote by H−1
per (U) the dual space of H 1

per (U).

Since periodic boundary conditions allow integration by parts without extra terms, most char-
acterizations of H−1 = (H 1

0

)∗
carry over to H−1

per .

Lemma 3.7. We have ρ ∈ L2
(

0, T ;H 1
per (U)

)
∩ L∞

(
0, T ;L2

per (U)
)

, with ρt ∈
L2
(

0, T ;H−1
per (U)

)
, and the estimate

‖ρ‖
L∞
(

0,T ;L2
per (U)

) + ‖ρ‖
L2
(

0,T ;H 1
per (U)

) + ‖ρt‖
L2
(

0,T ;H−1
per (U)

) ≤ C (T )‖ρ0‖2 . (62)

Moreover, there exists a subsequence 
{
ρnk

: k ≥ 1
}

such that

ρnk
⇀ ρ in L2

(
0, T ;H 1

per

)
,

and

ρnkt
⇀ ρt in L2

(
0, T ;H−1

per

)
.

Proof. From Proposition 3.3, we have

‖ρn‖
L∞
(

0,T ;L2
per (U)

) + ‖ρn‖
L2
(

0,T ;H 1
per (U)

) ≤ C (T )‖ρ0‖2 . (63)

Next, observe that from the evolution equation of ρn, we have

ρnt =
(

Gρn−1ρn + σ 2

2
ρnx

)
x

. (64)

Hence,

∥∥ρnt

∥∥2
L2
(

0,T ;H−1
per (U)

) ≤
T∫

0

∥∥∥∥Gρn−1 (t) ρn (t) + σ 2

2
ρnx (t)

∥∥∥∥
2

2
dt

≤ 2

T∫ ∥∥Gρn−1 (t)
∥∥2

∞ ‖ρn (t)‖2
2 dt
0
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+ σ 2

T∫
0

∥∥ρnx (t)
∥∥2

2 dt

≤ 2R2

T∫
0

‖ρn (t)‖2
2 dt

+ σ 2

T∫
0

∥∥ρnx (t)
∥∥2

2 dt

≤ C (T )‖ρ0‖2
2 , (65)

where in the last step we used Proposition 3.3. Therefore, we have the uniform estimate

‖ρn‖
L∞
(

0,T ;L2
per (U)

) + ‖ρn‖
L2
(

0,T ;H 1
per (U)

) + ∥∥ρnt

∥∥
L2
(

0,T ;H−1
per (U)

) ≤ C (T )‖ρ0‖2 . (66)

Hence, ρ ∈ L2
(

0, T ;H 1
per (U)

)
∩ L∞

(
0, T ;L2

per (U)
)

, with ρt ∈ L2
(

0, T ;H−1
per (U)

)
and 

they satisfy the same estimate (66). Furthermore, there exists 
{
ρnk

: k ≥ 1
}

such that

⎧⎨
⎩

ρnk
⇀ ρ in L2

(
0, T ;H 1

per (U)
)

,

ρnkt
⇀ ρt in L2

(
0, T ;H−1

per (U)
)

.
� (67)

Following [41], we can deduce from Lemma 3.7 the following result:

Theorem 3.8. Suppose ρ ∈ L2
(

0, T ;H 1
per (U)

)
with ρt ∈ L2

(
0, T ;H−1

per (U)
)

, then ρ ∈
C
(

0, T ;L2
per (U)

)
up to a set of measure zero. Further, the mapping

t → ‖ρ (t)‖2
2 (68)

is absolutely continuous, with

d

dt
‖ρ (t)‖2

2 = 2 〈ρt (t) , ρ (t)〉 , (69)

for a.e. 0 ≤ t ≤ T . Here, 〈, 〉 denotes the pairing between H−1
per and H 1

per .

Proof. The proof is identical to the proof in Evans [41], Section 5.9, Theorem 3. The only 
difference here is that we are considering H 1

per and H−1
per , instead of H 1

0 and H−1. Since periodic 
conditions still guarantee integration by parts without extra terms, all proofs follow through. �
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Now, we are ready to prove the existence of a weak solution to equation (3).

Definition 3.9. We say that ρ ∈ L2
(

0, T ;H 1
per (U)

)
∩ L∞

(
0, T ;L2

per (U)
)

with ρt ∈
L2
(

0, T ;H−1
per (U)

)
is a weak solution of equation (3) if for every η ∈ L2

(
0, T ;H 1

per (U)
)

,

T∫
0

〈ρt (t) , η (t)〉dt +
T∫

0

∫
U

(
σ 2

2
ρxηx + ρGρηx

)
dxdt = 0, (70)

and ρ (0) = ρ0. Note that since ρ ∈ C
(

0, T ;L2
per (U)

)
(Theorem 3.8), the last condition makes 

sense as an initial condition.

Theorem 3.10. (Existence and uniqueness) Let ρ0 ∈ C∞
per (U), ρ0 ≥ 0 and 

∫
U

ρ0 (x) dx = 1. 

Then, there exists a unique weak solution ρ ∈ L∞
(

0, T ;L2
per (U)

)
∩ L2

(
0, T ;H 1

per (U)
)

, with 

ρt ∈ L2
(

0, T ;H−1
per (U)

)
, to equation (3) with the estimate

‖ρ‖
L∞
(

0,T ;L2
per (U)

) + ‖ρ‖
L2
(

0,T ;H 1
per (U)

) + ‖ρt‖
L2
(

0,T ;H−1
per (U)

) ≤ C (T )‖ρ0‖2 .

Proof. For each η ∈ L2
(
0, T ;H 1 (U)

)
, we multiply equation (35) (with n = nk) by η and inte-

grate over UT to obtain

T∫
0

〈
ρnkt

(t) , η (t)
〉
dt + σ 2

2

T∫
0

∫
U

ρnkx
ηxdxdt +

T∫
0

∫
U

ηxρnk
Gρnk−1dxdt = 0. (71)

There are no boundary terms due to periodic boundary conditions. Now,

T∫
0

∫
U

ηxρnk
Gρnk−1dxdt =

T∫
0

∫
U

ηx

(
ρnk

− ρ
)
Gρnk−1dxdt

+
T∫

0

∫
U

ηxρG(
ρnk−1−ρ

)dxdt

+
T∫

0

∫
U

ηxρGρdxdt. (72)

We know from Lemma 3.7 that ρnk
⇀ ρ in L2

(
0, T ;H 1

per (U)
)

⊂ L2
(

0, T ;L2
per (U)

)
. More-

over, Gρn −1 is uniformly bounded so that ηxGρn −1 ∈ L2
(

0, T ;L2
per (U)

)
. Thus,
k k
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T∫
0

∫
U

ηx

(
ρnk

− ρ
)
Gρnk−1dxdt → 0. (73)

Also,

T∫
0

∫
U

ηxρG(
ρnk−1−ρ

)dxdt ≤ ‖ρ‖
L∞
(

0,T ;L2
per (U)

) ‖ηx‖
L2
(

0,T ;L2
per (U)

)
∥∥∥∥G(ρnk−1−ρ

)∥∥∥∥
L2
(

0,T ;L2
per (U)

)
≤ C (T )‖ρ0‖2 ‖η‖

L2
(

0,T ;H 1
per (U)

)
⎛
⎝ T∫

0

∥∥ρnk−1 (t) − ρ (t)
∥∥2

1 dt

⎞
⎠

1/2

. (74)

But 
∥∥ρnk−1 (t) − ρ (t)

∥∥
1 ≤ 2R. Hence, by the strong convergence result in Lemma 3.5, we

have

T∫
0

∥∥ρnk−1 (t) − ρ (t)
∥∥2

1 dt ≤ 2R
∥∥ρnk−1 (t) − ρ (t)

∥∥
L1
(
0,T ;L1(U)

)

→ 0, (75)

and thus

T∫
0

∫
U

ηxρG(
ρnk−1−ρ

)dxdt → 0. (76)

Combining (72), (73) and (76), we have

T∫
0

∫
U

ηxρnk
Gρnk−1dxdt →

T∫
0

∫
U

ηxρGρdxdt. (77)

By the weak convergence results established in Lemma 3.7, we also have

T∫
0

〈
ρnkt

(t) , η (t)
〉
dt →

T∫
0

〈ρt (t) , η (t)〉dt,

T∫ ∫
ρnkx

ηxdxdt →
T∫ ∫

ρxηxdxdt. (78)
0 U 0 U
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Putting together (77) and (78), we obtain in the limit k → ∞,

T∫
0

〈ρt (t) , η (t)〉dt +
T∫

0

∫
U

(
σ 2

2
ρxηx + ρGρηx

)
dxdt = 0, (79)

for every η ∈ L2
(

0, T ;H 1
per (U)

)
.

Finally, we have to show that ρ (0) = ρ0. Pick some η ∈ C1
(

0, T ;H 1
per (U)

)
with η (T ) = 0. 

Then, we have from (79) that

−
T∫

0

〈ρ (t) , ηt (t)〉dt +
T∫

0

∫
U

(
σ 2

2
ρxηx + ρGρηx

)
dxdt = (ρ (0) , η (0)) . (80)

Similarly, we also have

−
T∫

0

〈
ρnk (t) , ηt (t)

〉
dt +

T∫
0

∫
U

(
σ 2

2
ρnkx

ηx + ρnk
Gρnk−1ηx

)
dxdt

= (ρ0, η (0)) . (81)

Where we have used the fact that ρnk (0) = ρ0 for all k. Taking the limit k → ∞ and compar-
ing (80) and (81), we have

(ρ (0) , η (0)) = (ρ0, η (0)) . (82)

Since η is arbitrary, we conclude that ρ (0) = ρ0. This completes the proof of the existence of a 
weak solution.

Now, we prove its uniqueness. Let ρ1 and ρ2 be weak solutions to (3) and set ξ = ρ1 − ρ2. 

Then, for every η ∈ L2
(

0, T ;H 1
per (U)

)
, we have

T∫
0

〈ξt (t) , η (t)〉dt + σ 2

2

T∫
0

∫
U

ξxηxdxdt +
T∫

0

∫
U

(
ρ1Gρ1 − ρ2Gρ2

)
ηxdxdt = 0. (83)

Adding and subtracting 
∫ T

0

∫
U

ρ2Gρ1ηxdxdt , we obtain

T∫
0

〈ξ t (t) , η (t)〉dt + σ 2

2

T∫
0

∫
U

ξxηxdxdt = −
T∫

0

∫
U

ξGρ1ηxdxdt

−
T∫ ∫

ρ2Gξηxdxdt. (84)
0 U
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But, ∣∣∣∣∣∣
T∫

0

∫
U

ξGρ1ηxdxdt

∣∣∣∣∣∣≤
∥∥Gρ1

∥∥
L∞
(

0,T ;L∞
per (U)

)

×‖ηx‖
L2
(

0,T ;L2
per (U)

) ‖ξ‖
L2
(

0,T ;L2
per (U)

)
≤ R ‖ηx‖

L2
(

0,T ;L2
per (U)

) ‖ξ‖
L2
(

0,T ;L2
per (U)

)

≤ σ 2

4
‖ηx‖2

L2
(

0,T ;L2
per (U)

)

+ C ‖ξ‖2
L2
(
0,T ;L2(U)

) , (85)

and ∣∣∣∣∣∣
T∫

0

∫
U

ρ2Gξηxdxdt

∣∣∣∣∣∣≤ ‖ρ2‖
L∞
(

0,T ;L2
per (U)

)

×∥∥Gξ

∥∥
L2
(

0,T ;L2
per (U)

) ‖ηx‖
L2
(

0,T ;L2
per (U)

)
≤ C (T )‖ρ0‖2 ‖ηx‖

L2
(

0,T ;L2
per (U)

) ‖ξ‖
L2
(

0,T ;L2
per (U)

)

≤ σ 2

4
‖ηx‖2

L2
(

0,T ;L2
per (U)

)

+ C (T )‖ρ0‖2
2 ‖ξ‖2

L2
(

0,T ;L2
per (U)

) , (86)

so that

T∫
0

〈ξ t (t) , η (t)〉dt + σ 2

2

T∫
0

∫
U

ξxηxdxdt

≤ σ 2

2
‖ηx‖2

L2
(
0,T ;L2(U)

)
+
(
C1 (T ) + C2 (T )‖ρ0‖2

2

)
‖ξ‖2

L2
(
0,T ;L2(U)

) . (87)

Now, set η = ξ , and use Theorem 3.8, we have

T∫
0

1

2

d

dt
‖ξ (t)‖2

2 dt ≤
(
C1 (T ) + C2 (T )‖ρ0‖2

2

)
‖ξ‖2

L2
(
0,T ;L2(U)

)

=
(
C1 (T ) + C2 (T )‖ρ0‖2

2

) T∫
‖ξ (t)‖2

2 dt. (88)
0
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Since this holds for all T , we must have

d

dt
‖ξ (t)‖2

2 ≤
(
C1 (T ) + C2 (T )‖ρ0‖2

2

)
‖ξ (t)‖2

2 , (89)

and hence

‖ξ (t)‖2 ≤
(
C1 (T ) + C2 (T )‖ρ0‖2

2

)
‖ξ (0)‖2 , (90)

for a.e. 0 ≤ t ≤ T . But ‖ξ (0)‖2
2 = ‖ρ0 − ρ0‖2

2 = 0 and the ρ’s are continuous in time, we have

‖ρ1 (t) − ρ2 (t)‖2 = 0 (91)

for all 0 ≤ t ≤ T .
Finally, the energy estimate is from Lemma 3.7. �

Remark 3.11. The strong convergence result (Lemma 3.5) is important here because with-
out it, we could not have concluded that expression (75) converges to 0, because it involves 
a different subsequence ρnk−1. Strong convergence ensures that all subsequences converge in 

L1
(

0, T ;L1
per (U)

)
.

Throughout this section we assumed that the initial condition is smooth, i.e. ρ0 ∈ C∞
per (U). 

We can in fact relax this condition to ρ0 ∈ L2
per (U) by mollifying the initial data.

Theorem 3.12. (Existence and uniqueness with relaxed regularity assumption on the initial con-
dition) Let ρ0 ≥ 0, 

∫
U

ρ0 (x) dx = 1 and ρ0 ∈ L2
per (U). Then, there exists a unique weak solution 

ρ ∈ L∞
(

0, T ;L2
per (U)

)
∩ L2

(
0, T ;H 1

per (U)
)

, with ρt ∈ L2
(

0, T ;H−1
per (U)

)
to equation (3)

with the estimate

‖ρ‖
L∞
(

0,T ;L2
per (U)

) + ‖ρ‖
L2
(

0,T ;H 1
per (U)

) + ‖ρt‖
L2
(

0,T ;H−1
per (U)

) ≤ C (T )‖ρ0‖2 .

Proof. Let ε > 0 and consider the modified problem

⎧⎪⎪⎨
⎪⎪⎩

ρε
nt

− σ 2

2
ρε

nxx
=
(
ρε

nGρε
n−1

)
x

in UT

ρε
n (�, ·) = ρε

n (−�, ·) on ∂U × [0, T ]

ρε
n = ρε

0 on U × {t = 0}
(92)

where

ρε
0 (x) :=

∫
U

jε (x − y)ρ0 (y) dy, (93)

and jε (x) = ε−1j
(
ε−1x

)
. Here, j is a standard positive mollifier with compact support on U

and 
∫

jε (x) dx=1.

U



B. Chazelle et al. / J. Differential Equations 263 (2017) 365–397 387
With mollification, ρε
0 is now smooth and we can apply Theorem 3.10 to conclude that 

there exists a unique weak solution ρε ∈ L∞
(

0, T ;L2
per (U)

)
∩ L2

(
0, T ;H 1

per (U)
)

, with 

ρε
t ∈ L2

(
0, T ;H−1

per (U)
)

to equation (92) with the estimate

∥∥ρε
∥∥

L∞
(

0,T ;L2
per (U)

) + ∥∥ρε
∥∥

L2
(

0,T ;H 1
per (U)

) + ∥∥ρε
t

∥∥
L2
(

0,T ;H−1
per (U)

) ≤ C (T )
∥∥ρε

0

∥∥
2 . (94)

But for all ε, we have 
∥∥ρε

0

∥∥
2 ≤ ‖ρ0‖2. Hence, there exists ρ ∈ L∞

(
0, T ;L2

per (U)
)

∩
L2
(

0, T ;H 1
per (U)

)
, with ρt ∈ L2

(
0, T ;H−1

per (U)
)

, satisfying

‖ρ‖
L∞
(

0,T ;L2
per (U)

) + ‖ρ‖
L2
(

0,T ;H 1
per (U)

) + ‖ρt‖
L2
(

0,T ;H−1
per (U)

) ≤ C (T )‖ρ0‖2 , (95)

and a sequence {εk}, with εk → 0, such that

⎧⎨
⎩

ρεk ⇀ ρ in L2
(

0, T ;H 1
per (U)

)
,

ρ
εk
t ⇀ ρt in L2

(
0, T ;H−1

per (U)
)

,
(96)

as k → ∞. We now show that ρ is in fact a weak solution to (3). Since each ρεk solves the weak 
formulation of (92) (albeit with different initial data), we have

T∫
0

〈
ρεk (t) , η (t)

〉
dt + σ 2

2

T∫
0

∫
U

ρεkηxdxdt +
T∫

0

∫
U

ηxρ
εkGρεk dxdt = 0. (97)

Using (96), we can replace ρεk by ρ in the first two integrals above in the limit k → ∞. Moreover, 
as in (72), we write the last integral as

T∫
0

∫
U

ηxρ
εkGρεk dxdt =

T∫
0

∫
U

ηx

(
ρεk − ρ

)
Gρεk dxdt

+
T∫

0

∫
U

ηxρG(ρεk −ρ)dxdt

+
T∫

0

∫
U

ηxρGρdxdt. (98)

Since 
∥∥Gρεk (t)

∥∥∞ ≤ R ‖ρεk (t)‖1 ≤ R
∥∥ρεk

0

∥∥
1 = R ‖ρ0‖1 = R, we have ηxGρεk ∈ L2

(
0, T ;

L2
per (U)

)
and hence
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T∫
0

∫
U

ηx

(
ρεk − ρ

)
Gρεk dxdt → 0. (99)

Next, we can write

T∫
0

∫
U

ηxρG(ρεk −ρ)dxdt =
T∫

0

∫
U

ηxρ

⎡
⎣ x+R∫

x−R

(
ρεk − ρ

)
(x − y)dy

⎤
⎦dxdt

=
T∫

0

∫
U

h
(
ρεk − ρ

)
dydt, (100)

where we have defined

h(y, t) :=
y+R∫

y−R

ηx (x, t) ρ (x, t) (x − y)dx.

(101)

Clearly, ‖h(t)‖∞ ≤ R ‖ηx (t)‖2 ‖ρ (t)‖2 so that in particular, h ∈ L2
(

0, T ,L2
per (U)

)
and 

from (100) we obtain

T∫
0

∫
U

ηxρG(ρεk −ρ)dxdt → 0. (102)

Thus, we have shown that ρ satisfies

T∫
0

〈ρ (t) , η (t)〉dt + σ 2

2

T∫
0

∫
U

ρηxdxdt +
T∫

0

∫
U

ηxρGρdxdt = 0. (103)

To show that ρ (0) = ρ0, we again take η ∈ C1
(

0, T ;H 1
per (U)

)
with η (T ) = 0. Since ρεk

0 → ρ0

uniformly, we have (cf. expressions (80) and (81))

(ρ (0) , η (0)) = (ρ0, η (0)) . (104)

Since η is arbitrary, we have ρ (0) = ρ0. The uniqueness follows from exactly the same argument 
in the proof of Theorem 3.10 and we omit writing it again here. �
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4. Higher regularity

In this section, we prove improved regularity of the weak solution to (3). This allows us to 
put the results in Section 2 on a rigorous footing. As in the previous section, we always mollify 
ρ0 by jε so that the resulting evolution equations (35) admit smooth solutions. This allows us to 
differentiate the equation as many times as required, and we take the limit ε → 0 at the end. For 
simplicity of notation, we drop the ε superscripts on ρn and implicitly assume that we perform 
the limit at the end.

First, we prove a useful estimate.

Proposition 4.1. Let u, v ∈ C∞ (U). Then for k ≥ 2 we have the estimate

‖uGv‖Hk
per (U) ≤ C ‖u‖Hk

per (U) ‖v‖
Hk−1

per (U)
. (105)

Proof. We have

‖uGv‖2
Hk

per (U)
≤ C

(
‖uGv‖2

2 +
∥∥∥(uGv)

(k)
∥∥∥2

2

)
,

where (·)(k) denotes the kth derivative with respect to x. Applying the Leibniz rule, we have

(uGv)
(k) =

k∑
i=0

(
k

i

)
u(k−i) (Gv)

(i) . (106)

But,

(Gv)
(i) (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gv (x) i = 0

−R [v (x + R) + v (x − R)] + ∫ x+R

x−R
v (y) dy i = 1

−R
[
v(i−1) (x + R) + v(i−1) (x − R)

]
+ v(i−2) (x + R) − v(i−2) (x − R) i ≥ 2

(107)

Hence we have the bound

∥∥∥(uGv)
(k)
∥∥∥2

2
≤ C0

∥∥∥u(k)
∥∥∥2

2
‖Gv‖2∞

+
k∑

i=1

Ci

∥∥∥u(k−i)
∥∥∥2

∞

∥∥∥(Gv)
(i)
∥∥∥2

2

≤ C0 ‖u‖2
Hk

per (U)
‖v‖2

2

+
k∑

i=1

Ci

∥∥∥u(k−i)
∥∥∥2

H 1
per (U)

∥∥∥(Gv)
(i)
∥∥∥2

2
. (108)

For i ≥ 2,
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∥∥∥(Gv)
(i)
∥∥∥2

2
≤ C

(∥∥∥v(i−1)
∥∥∥2

2
+
∥∥∥v(i−2)

∥∥∥2

2

)

≤ C ‖v‖2
Hi−1

per (U)
, (109)

and for i = 1,

∥∥∥(Gv)
(i)
∥∥∥2

2
≤ C

(
‖v‖2

2 + ‖v‖2
1

)
≤ C ‖v‖2

2 . (110)

Keeping only the highest Sobolev norms, we have

∥∥∥(uGv)
(k)
∥∥∥2

2
≤ C0 ‖u‖2

Hk
per (U)

‖v‖2
2 + C1 ‖u‖2

Hk
per (U)

‖v‖2
Hk−1

per (U)

≤ C ‖u‖2
Hk

per (U)
‖v‖2

Hk−1
per (U)

. � (111)

Now, we assume that ρ0 ∈ Hk
per for some k ≥ 0 and prove the corresponding regularity of ρ.

Theorem 4.2. (Improved regularity) Let k ≥ 0 and suppose ρ0 ∈ Hk
per (U) with ρ0 ≥ 0 and ∫

U
ρ0 (x) dx = 1. Then the unique solution to (3) satisfies

ρ ∈ L2
(

0, T ;Hk+1
per (U)

)
∩ L∞ (0, T ;Hk

per (U)
)

,

with the estimate

‖ρ‖
L2
(

0,T ;Hk+1
per (U)

) + ‖ρ‖
L∞
(

0,T ;Hk
per (U)

) ≤ C (ρ0; k,T ) ,

where

C (ρ0; k,T ) := C (T )

(
k∑

i=0

‖ρ0‖2i+1

Hk−i
per (U)

)1/2

.

Proof. We prove the statements by proving uniform estimates on ρn by induction on k. The base 
case k = 0 is provided in Proposition 3.3. The k = 1 case is Proposition 3.4. Suppose for some 
k ≥ 1,

‖ρn‖
L2
(

0,T ;Hk+1
per (U)

) + ‖ρn‖
L∞
(

0,T ;Hk
per (U)

) ≤ C (ρ0; k,T ) , (112)

for all n. We differentiate equation (35) k times with respect to x, multiply it by −∂k+2
x ρn and 

integrate over U to get
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1

2

d

dt

∥∥∥∂k+1
x ρn (t)

∥∥∥2

2
+ σ 2

2

∥∥∥∂k+2
x ρn (t)

∥∥∥2

2

≤
∫
U

∣∣∣∂k+1
x ρn (t) ∂k+1

x

(
ρnGρn−1

)
(t)

∣∣∣dx

≤ σ 2

4

∥∥∥∂k+2
x ρn (t)

∥∥∥2

2
+ C

∥∥∥∂k+1
x

(
ρnGρn−1

)
(t)

∥∥∥2

2
. (113)

Using Proposition 4.1 with u = ρn (t) and v = ρn−1 (t), we have

1

2

d

dt

∥∥∥∂k+1
x ρn (t)

∥∥∥2

2
+ σ 2

4

∥∥∥∂k+2
x ρn (t)

∥∥∥2

2

≤ C

(
‖ρn (t)‖2

Hk+1
per (U)

‖ρn−1 (t)‖2
Hk

per (U)

)
(114)

Integrating over time, we get

sup
0≤t≤T

‖ρn (t)‖2
Hk+1

per (U)
+ ‖ρn‖2

L2
(

0,T ;Hk+2
per (U)

)

≤ ‖ρ0‖2
Hk+1

per (U)

+ C

(
‖ρn−1‖2

L∞
(

0,T ;Hk
per (U)

) ‖ρn‖2
L2
(

0,T ;Hk+1
per (U)

)
)

≤ ‖ρ0‖2
Hk+1

per (U)
+ [C (ρ0; k,T )]4

≤ C (ρ0; k + 1, T )2 (115)

This completes the induction. Taking limits, we obtain

ρ ∈ L2
(

0, T ;Hk+2
per (U)

)
∩ L∞ (0, T ;Hk+1

per (U)
)

, (116)

with the estimate

‖ρ‖
L2
(

0,T ;Hk+2
per (U)

) + ‖ρ‖
L∞
(

0,T ;Hk+1
per (U)

) ≤ C (ρ0; k + 1, T ) . � (117)

So far we have only considered regularity in space. The same can also be done in the time 
domain.

Theorem 4.3. (Improved regularity) Let k ≥ 0 and suppose ρ0 ∈ H 2k
per (U) with ρ0 ≥ 0 and ∫

U
ρ0 (x) dx = 1. Then,
(i) For every 0 ≤ m ≤ k, the unique solution to (3) satisfies

dmρ ∈ L2
(

0, T ;H 2k−2m+1
per (U)

)
∩ L∞ (0, T ;H 2k−2m

per (U)
)

,

dtm
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with the estimate

k∑
m=0

⎛
⎝∥∥∥∥dmρ

dtm

∥∥∥∥
L2
(

0,T ;H 2k−2m+1
per (U)

) +
∥∥∥∥dmρ

dtm

∥∥∥∥
L∞
(

0,T ;H 2k−2m
per (U)

)
⎞
⎠≤ D (ρ0; k,T ) ,

where

D (ρ0; k,T ) :=
⎛
⎝ k∑

j=0

C (ρ0;2k,T )2j+1

⎞
⎠

1/2

.

(ii) Moreover,

dk+1ρ

dtk+1
∈ L2

(
0, T ;H−1

per (U)
)

,

with the estimate

∥∥∥∥dk+1ρ

dtk+1

∥∥∥∥
L2
(

0,T ;H−1
per (U)

) ≤ D (ρ0; k,T ) .

Proof. Let us prove that for all M ≤ k,

M∑
m=0

⎛
⎝∥∥∥∥dmρn

dtm

∥∥∥∥
L2
(

0,T ;H 2k−2m+1
per (U)

) +
∥∥∥∥dmρn

dtm

∥∥∥∥
L∞
(

0,T ;H 2k−2m
per (U)

)
⎞
⎠

≤ C (ρ0; k,M,T ) , (118)

where we have defined

C (ρ0; k,M,T ) :=
⎛
⎝ M∑

j=0

C (ρ0;2k,T )2j+1

⎞
⎠

1/2

. (119)

This is done by induction on M up to k. The case M = 0 is Theorem 4.2. Suppose we have for 
some 0 ≤ M < k the estimate (118). Differentiating equation (35) M times with respect to t and 
using the Leibniz rule, we have

ρ(M+1)
n = σ 2

2
ρ(M)

nxx
+ (ρnGρn−1

)(M)

x

= σ 2

2
ρ(M)

nxx
+ C

M∑
m=0

(
ρ(m)

n G
ρ

(M−m)
n−1

)
x
, (120)

where we used the shorthand ρ(m)
n := ∂mρn/∂tm. Thus, we have
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∥∥∥ρ(M+1)
n (t)

∥∥∥2

H 2k−2M−1
per (U)

≤ C1

∥∥∥ρ(M)
n (t)

∥∥∥2

H 2k−2M+1
per (U)

+ C2

M∑
m=0

∥∥∥ρ(m)
n (t)G

ρ
(M−m)
n−1

(t)

∥∥∥2

H 2k−2M
per (U)

. (121)

Using Proposition 4.1 with u = ρ
(m)
n (t) and v = ρ

(M−m)
n−1 (t), we have

∥∥∥ρ(M+1)
n (t)

∥∥∥2

H 2k−2M−1
per (U)

≤ C1

∥∥∥ρ(M)
n (t)

∥∥∥2

H 2k−2M+1
per (U)

+ C2

M∑
m=0

∥∥∥ρ(m)
n (t)G

ρ
(M−m)
n−1

(t)

∥∥∥2

H 2k−2M
per (U)

≤ C1

∥∥∥ρ(M)
n (t)

∥∥∥2

H 2k−2M+1
per (U)

+ C2

M∑
m=0

∥∥∥ρ(m)
n (t)

∥∥∥2

H 2k−2M
per (U)

∥∥∥ρ(M−m)
n−1 (t)

∥∥∥2

H 2k−2M−1
per (U)

≤ C1

∥∥∥ρ(M)
n (t)

∥∥∥2

H 2k−2M+1
per (U)

+ C2

M∑
m=0

∥∥∥ρ(m)
n (t)

∥∥∥2

H 2k−2m+1
per (U)

∥∥∥ρ(M−m)
n−1 (t)

∥∥∥2

H
2k−2(M−m)
per (U)

. (122)

Integrating over time then gives

∥∥∥ρ(M+1)
n

∥∥∥2

L2
(

0,T ;H 2k−2M−1
per (U)

)

≤ C1

∥∥∥ρ(M)
n

∥∥∥2

L2
(

0,T ;H 2k−2M+1
per (U)

)

+ C2

M∑
m=0

∥∥∥ρ(m)
n

∥∥∥2

L2
(

0,T ;H 2k−2m+1
per (U)

) ∥∥∥ρ(M−m)
n−1

∥∥∥2

L∞
(

0,T ;H 2k−2(M−m)
per (U)

) . (123)

Since 0 ≤ m, M − m ≤ M , we can apply the inductive hypothesis (118) to conclude that

∥∥∥ρ(M+1)
n

∥∥∥2

L2
(

0,T ;H 2k−2M−1
per (U)

) ≤ C (ρ0; k,M,T )2 + C (ρ0; k,M,T )4

≤ C (ρ0; k,M + 1, T )2 . (124)

Similarly,
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∥∥∥ρ(M+1)
n

∥∥∥2

L∞
(

0,T ;H 2k−2M−2
per (U)

)

≤ C1

∥∥∥ρ(M)
n

∥∥∥2

L∞
(

0,T ;H 2k−2M
per (U)

)

+ C2

M∑
m=0

∥∥∥ρ(m)
n

∥∥∥2

L∞
(

0,T ;H 2k−2m
per (U)

) ∥∥∥ρ(M−m)
n−1

∥∥∥2

L∞
(

0,T ;H 2k−2(M−m)
per (U)

) .

≤ C (ρ0; k,M + 1, T )2 . (125)

This completes the induction on M up to k. Putting M = k into (118) and taking limits prove
part (i).

To prove the second part, notice that

ρ(k+1)
n =

(
σ 2

2
ρ(k)

nx
+ C

k∑
m=0

(
ρ(m)

n G
ρ

(k−m)
n−1

))
x

. (126)

Hence,

∥∥∥ρ(k+1)
n

∥∥∥2

L2
(

0,T ;H−1
per (U)

)

≤
∥∥∥∥∥σ 2

2
ρ(k)

nx
+ C

k∑
m=0

(
ρ(m)

n G
ρ

(k−m)
n−1

)∥∥∥∥∥
2

L2
(

0,T ;L2
per (U)

)

≤ C1

∥∥∥ρ(k)
n

∥∥∥2

L2
(

0,T ;H 1
per (U)

)

+ C2

k∑
m=0

∥∥∥ρ(m)
n

∥∥∥2

L∞
(

0,T ;L2
per (U)

) ∥∥∥ρ(M−m)
n−1

∥∥∥2

L2
(

0,T ;L2
per (U)

)
≤ D (ρ0; k,T ) . (127)

Taking limits then proves part (ii). �
Corollary 4.4. Let T > 0 and ρ0 ∈ H 3

per (U) with ρ0 ≥ 0 and 
∫
U

ρ0 (x) dx = 1. Then the unique 
solution to (3) satisfies

ρ ∈ C1
(

0, T ;C2
per (U)

)
,

after possibly being redefined on a set of measure zero.

Proof. By Theorem 4.2, ρ ∈ L∞
(

0, T ;H 3
per (U)

)
, i.e. ρxx ∈ L∞

(
0, T ;H 1

per (U)
)

. Hence 

there exists a version of ρ with ρxx (t) ∈ C
0, 1

2
per (U), so that in particular, ρ (t) ∈ C2

per (U). Next, 
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using Theorem 4.3, we have ρt ∈ L2
(

0, T ;H 1
per (U)

)
and ρtt ∈ L2

(
0, T ;H−1

per (U)
)

, hence by 

Theorem 3.8 there is a version of ρ so that ρt ∈ C
(

0, T ;L2
per (U)

)
. Hence we have

ρ ∈ C1
(

0, T ;C2
per (U)

)
, (128)

up to a set of measure zero. �
This result allows us to restate the results in Section 2 without the a priori smoothness as-

sumption. We summarize the main results of this paper in the following:

Theorem 4.5. Let ρ0 ∈ H 3
per (U) with ρ0 ≥ 0 and 

∫
U

ρ0 (x) dx = 1. Then, there exists a unique 
weak solution ρ to equation (3), with

(i) (Regularity) ρ ∈ C1
(

0,∞;C2
per (U)

)
.

(ii) (Nonnegativity) ρ (t) ≥ 0 for all t ≥ 0.

(iii) (Stability) Furthermore, if σ 2 > 2�
π

(
2R + R2/

√
3�
)

, then ρ (t) → 1
2�

in L2
per exponen-

tially as t → ∞.

Proof. Existence and uniqueness follow from Theorem 3.12. (i) follows from Corollary 4.4. 
Having established (i), (ii) and (iii) then follows from Corollary 2.2 and Theorem 2.3 respec-
tively. �
Acknowledgments

B. Chazelle is supported in part by NSF grants CCF-0963825, CCF-1016250 and
CCF-1420112. Q. Jiu is partially supported by National Natural Sciences Foundation of China 
(Nos. 11171229, 11231006) and Project of Beijing Chang Cheng Xue Zhe. Q. Li acknowledges 
support from the Agency for Science, Technology and Research, Singapore.

This work was completed while Q. Jiu was visiting the Department of Mathematics at Prince-
ton University. The authors are grateful for many discussions with Prof. Weinan E.

References

[1] R. Axelrod, The Evolution of Cooperation, Basic Books, 2006.
[2] V.D. Blondel, J.M. Hendrickx, J.N. Tsitsiklis, On Krause’s multi-agent consensus model with state-dependent con-

nectivity, IEEE Trans. Automat. Control 54 (11) (2009) 2586–2597.
[3] C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics, Rev. Modern Phys. 81 (2) (2009) 591.
[4] B. Chazelle, Diffusive influence systems, SIAM J. Comput. 44 (5) (2015) 1403–1442.
[5] B. Chazelle, An algorithmic approach to collective behavior, J. Stat. Phys. 158 (2015) 514–548.
[6] D. Easley, J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge 

Univ. Press, 2010.
[7] A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, 

IEEE Trans. Automat. Control 48 (2003) 988–1001.
[8] J. Garnier, G. Papanicolaou, T. Yang, Consensus convergence with stochastic effects, Vietnam J. Math. 45 (2017) 

51–75.
[9] S. Motsch, E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev. 56 (4) (2014) 577–621.

[10] M. Herrmann, B. Niethammer, J.J. Velázquez, Kramers and non-Kramers phase transitions in many-particle systems 
with dynamical constraint, Multiscale Model. Simul. 10 (3) (2012) 818–852.

https://refhub.elsevier.com/S0022-0396(17)30105-5/bib6178656C726F6431393937636F6D706C6578697479s1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib626C6F6E64656C323030396B7261757365s1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib626C6F6E64656C323030396B7261757365s1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib63617374656C6C616E6F32303039737461746973746963616Cs1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib6368617A656C6C6532303135646966667573697665s1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib6368617A656C6C6532303135416C676Fs1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib6561736C6579323031326E6574776F726B73s1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib6561736C6579323031326E6574776F726B73s1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib6A61646261626169654C4D3033s1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib6A61646261626169654C4D3033s1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib44424C503A6A6F75726E616C732F636F72722F4761726E69657250593135s1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib44424C503A6A6F75726E616C732F636F72722F4761726E69657250593135s1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib6D6F747363683230313468657465726F7068696C696F7573s1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib686572726D616E6E323031326B72616D657273s1
https://refhub.elsevier.com/S0022-0396(17)30105-5/bib686572726D616E6E323031326B72616D657273s1


396 B. Chazelle et al. / J. Differential Equations 263 (2017) 365–397
[11] A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev inequalities and the rate of convergence 
to equilibrium for Fokker–Planck type equations, 2001.

[12] P.A. Markowich, C. Villani, On the trend to equilibrium for the Fokker–Planck equation: an interplay between 
physics and functional analysis, Mat. Contemp. 19 (2000) 1–29.

[13] L. Desvillettes, C. Villani, On the spatially homogeneous Landau equation for hard potentials. Part II: H-theorem 
and applications, Comm. Partial Differential Equations 25 (1–2) (2000) 261–298.

[14] W. Dreyer, R. Huth, A. Mielke, J. Rehberg, M. Winkler, Global existence for a nonlocal and nonlinear Fokker–
Planck equation, Z. Angew. Math. Phys. 66 (2) (2015) 293–315.

[15] J.A. Carrillo, R.J. McCann, C. Villani, et al., Kinetic equilibration rates for granular media and related equations: 
entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam. 19 (3) (2003) 971–1018.

[16] D. Benedetto, E. Caglioti, J.A. Carrillo, M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional 
granular media, J. Stat. Phys. 91 (5–6) (1998) 979–990.

[17] P. Biler, J. Dolbeault, P.A. Markowich, Large time asymptotics of nonlinear drift-diffusion systems with Poisson 
coupling, Transport Theory Statist. Phys. 30 (4–6) (2001) 521–536.

[18] S. Fortunato, On the consensus threshold for the opinion dynamics of Krause–Hegselmann, Internat. J. Modern 
Phys. C 16 (02) (2005) 259–270.

[19] R. Hegselmann, U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation, J. Artif. 
Soc. Soc. Sim. 5 (3) (2002).

[20] U. Krause, A discrete nonlinear and non-autonomous model of consensus formation, in: Communications in Dif-
ference Equations, Gordon and Breach, Amsterdam, 2000, pp. 227–236.

[21] C. Canuto, F. Fagnani, P. Tilli, An Eulerian approach to the analysis of Krause’s consensus models, SIAM J. Control 
Optim. 50 (1) (2012) 243–265.

[22] A. Bhattacharyya, M. Braverman, B. Chazelle, H.L. Nguyen, On the convergence of the Hegselmann–Krause sys-
tem, in: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ACM, 2013, pp. 61–66.

[23] J. Hendrickx, V. Blondel, Convergence of different linear and non-linear Vicsek models, in: Proc. 17th Int. Symp. 
Math. Theory Networks Syst., MTNS 2006, 2006, pp. 1229–1240.

[24] J. Lorenz, A stabilization theorem for dynamics of continuous opinions, Phys. A 355 (1) (2005) 217–223.
[25] S. Martínez, F. Bullo, J. Cortés, E. Frazzoli, On synchronous robotic networks – Part II: time complexity of ren-

dezvous and deployment algorithms, IEEE Trans. Automat. Control 52 (12) (2007) 2214–2226.
[26] L. Moreau, Stability of multiagent systems with time-dependent communication links, IEEE Trans. Automat. Con-

trol 50 (2) (2005) 169–182.
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