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Abstract. We introduce the total s-energy of a multiagent system with time-dependent links.
This provides a new analytical perspective on bidirectional agreement dynamics, which we use to
bound the convergence rates of dynamical systems for synchronization, flocking, opinion dynamics,
and social epistemology.
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1. Introduction. We introduce an analytical device for the study of multiagent
agreement systems. Consider an infinite sequence of graphs, G0, G1, G2, . . . , each one
defined on n nodes labeled 1, . . . , n. We assume that each graph Gt is embedded in
Euclidean d-space, and we let xi(t) ∈ R

d denote the position of node i at time t. The
total s-energy E(s) of the embedded graph sequence encodes all of the edge lengths:

(1) E(s) =
∑
t≥0

∑
(i,j)∈Gt

‖xi(t)− xj(t)‖s2 ,

where the exponent s is a real (or complex) variable. The definition generalizes both
the Dirichlet form derived from the graph Laplacian and the Riesz s-energy of points
on a sphere. Sometimes, variants of the total s-energy are more convenient; for
example, we will use the kinetic s-energy,

(2) K(s) =
∑
t≥0

n∑
i=1

‖xi(t+ 1)− xi(t)‖s2 .

Note that these definitions make no assumptions about the temporal network, which
is the name given to a graph sequence sharing the same node set. There is no reason
to think that s-energies should even be finite, let alone useful: for example, E(0)
is usually infinite. In fact, it is immediate to embed a temporal network so as to
make its total s-energy diverge everywhere, so one clearly needs assumptions on the
embeddings. In this paper we consider the case of multiagent agreement systems [33],
which we define in the next section. There are two kinds: bidirectional and non–
bidirectional. We consider only the former type in this work. We thus assume that
each Gt is undirected, meaning that if (i, j) is an edge, then so is (j, i). (The directed
case is quite different and warrants a separate treatment.)

We use the total s-energy to bound the convergence rates of classical systems for
opinion dynamics (section 2.1), social epistemology (section 2.2), Kuramoto synchro-
nization (section 2.3), and bird flocking (section 2.4). We deal only with discrete-time
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dynamical systems or, as in [33], time-1 maps of continuous systems. We also improve
a classic bound for the products of stochastic matrices (section 2.5).

Our proofs are algorithmic and make no use of algebraic graph theory (with a
single exception for reversible systems (section 1.1), where we turn to a standard �2
argument). In particular, the proofs focus on the agents rather than on the matrices
governing their dynamics. In fact, the proofs themselves can be viewed as dynamical
systems which embed convergence measures directly within the interagent communi-
cation. We hope this, perhaps opaque, comment finds clarification below and that the
benefits of an algorithmic approach to multiagent dynamics becomes apparent [6, 8].

1.1. Multiagent dynamics. Moreau [33] introduced a geometric framework for
multiagent agreement dynamics of appealing generality. He established convergence
criteria based on connectivity in both the directed and the undirected case. We seek to
analyze the dynamics of bidirectional systems without any connectivity assumptions:
specifically, our goal is to provide bounds on convergence rates that hold in all cases.

Bidirectional agreement systems. The one-dimensional case features all the tech-
niques used in this paper and it is straightforward to extend our analysis to d > 1; we
briefly mention how to do that below. For simplicity, therefore, we assume that d = 1.
The model involves n agents located at the points x1(t), . . . , xn(t) in R at any time
t ≥ 0. The input consists of their positions at time t = 0, together with an infinite
sequence (Gt)t≥0 of undirected graphs over n ≥ 2 nodes (the agents); each node has
a self-loop. These graphs represent the various configurations of a communication
network changing over time. The sequence need not be known ahead of time: in
practice, the system will often be embedded in a closed loop, and the next Gt will be
a function of the configuration at time 0, . . . , t− 1. The strength of the model is that
it makes no assumption about the generation of the temporal networks nor about
their connectivity properties. In the case of directed graphs, such a level of generality
precludes blanket statements about convergence; bidirectionality, on the other hand,
allows such statements. The neighbors of i form the set Ni(t) = { j | (i, j) ∈ Gt },
which includes i. At time t, each agent i moves anywhere within the interval formed
by its neighbors, though not too close to the boundary: formally, if mi,t is the mini-
mum of { xj(t) | j ∈ Ni(t) } and Mi,t is the maximum, then

(3) (1− ρ)mi,t + ρMi,t ≤ xi(t+ 1) ≤ ρmi,t + (1− ρ)Mi,t,

where 0 < ρ ≤ 1/2 is the (time-independent) agreement parameter, fixed once and for
all. All of the agents are updated in parallel at each step t = 0, 1, 2, etc. We conclude
the presentation of bidirectional agreement systems with a few remarks.

• The model describes a nondeterministic dynamical system. This refers to the
fact that the sequence of graphs, as well as the particular motion of the agents,
are left completely arbitrary within the constraints imposed by (3): they could
be decided ahead of time or, as is more common, endogenously in a closed-
loop system; we give several examples below. The embedding at time 0 is
provided as input and, from then on, all subsequent embeddings are generated
by the system itself in abidance of rule (3). It may seem surprising at first
that one can prove convergence in the presence of such high nondeterminism
and without the slightest assumption about connectivity.

• Bidirectionality does not imply symmetry among neighbors. In fact, the
behavior of neighboring agents may be completely different. The condition
ρ > 0 is essential. Without it, a two-agent system with a single edge could see
the agents swap places forever without ever converging. This simple example
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1682 BERNARD CHAZELLE

shows that one may legally move the two agents toward each other so that
their distance decreases by a factor of merely 1− 2ρ at each step. This shows
that no worst-case convergence rate can be faster than e−2ρt.

• There are several ways to extend the model to a higher dimension. Perhaps
the easiest is to assume that agent i is positioned at xi(t) ∈ R

d and then en-
force (3) along each dimension. This is equivalent to having d one-dimensional
systems sharing the same temporal network; it is the method we use in this pa-
per. A different, coordinate-free approach stipulates that agent i may move
anywhere within the convex hull Ci(t) of its neighbors { xj(t) | j ∈ Ni(t) }
but not too close to the boundary (Figure 1). This requires shrinking Ci(t)
by a factor of 1 − ρ centrally toward a well-chosen center, for example, the
Löwner–John center of Ci(t), which is uniquely defined as the center of the
minimum-volume ellipsoid that encloses Ci(t) [14].

Fig. 1. The agent can move anywhere inside the pentagon but may not touch the thick boundary.

Much of the previous work on agreement systems has been concerned with con-
ditions for consensus (i.e., for all agents to come together), beginning with the pi-
oneering work of [41, 42] and then followed by [1, 2, 4, 5, 18, 19, 24, 28, 33, 34].
Bounds on the convergence rate have been obtained under various connectivity as-
sumptions [5, 34] and for specialized closed-loop systems [7, 30]. The convergence of
bidirectional agreement systems can be derived from the techniques in [18, 27, 33].
Bounding the convergence rate, however, has been left open. This is the main focus of
this paper. Before stating our results in the next section, we discuss a few extensions
of the model.

The fixed-agent agreement model. We can fix one agent if we so desire. By this,
we mean skipping the update rule at an arbitrary agent i0, selected ahead of time, or
equivalently, directing all edges incident to i0 toward that node. To see why fixing an
agent is permissible, create the point reflection of the n − 1 mobile agents about i0
to create a bidirectional system of 2n− 1 agents. Figure 2 illustrates this process in
two dimensions for visual clarity. We duplicate each graph Gt, with the exception of
the fixed agent i0. In this way, at time t, each edge (i, j) is given a duplicate (i′, j′).
Placing the origin of a Cartesian coordinate system at xi0(0), we position agent i′

at time 0 so that xi′(0) = −xi(0), which inductively implies that xi′(t) = −xi(t)
for all t ≥ 0. No edges connect the two copies of the original graphs. Every mobile
agent (and its reflected copy) mimics the behavior of its counterpart in the original
n-agent system while respecting (3). The fixed agent always lies at the midpoint of the
smallest interval enclosing its neighbors; therefore, it does not need to move, even for
the maximum value of ρ allowed, which is 1/2. To summarize, any n-agent agreement
system with one fixed agent can be simulated with a (2n − 1)-agent bidirectional
agreement system with the same value of ρ and at most twice the diameter. We apply
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Fig. 2. Reflecting the system about the agent i0 that we wish to fix.

this result to truth-seeking systems in section 2.2.
Reversible agreement systems. Assign to each agent i a time-independent motion

parameter qi ≥ |Ni(t)|, and define the mass center of the agent’s neighbors as

μi(t) =
1

|Ni(t)|
∑

j∈Ni(t)

xj(t) .

A reversible agreement system satisfies the transition

xi(t+ 1) = xi(t) +
|Ni(t)|

qi

(
μi(t)− xi(t)

)
.

The agents obey the dynamics x(t+ 1) = P (t)x(t), where

(4) pij(t) =

⎧⎪⎨
⎪⎩

1− (|Ni(t)| − 1)/qi if i = j,

1/qi if i �= j ∈ Ni(t),

0 else.

A quick examination of (3) shows that the dynamics, indeed, defines an agreement
system with parameter ρ = 1/maxi qi. Why is it called reversible? We take note
of the identity qipij(t) = qjpji(t). This is the standard balanced condition of a
reversible Markov chain, with (qi) in the role of the stationary distribution (up to
scaling). Indeed, we easily verify that the sum

∑
i qixi(t) is independent of t and that

a lazy random walk in a graph is a special case of a reversible agreement system. The
latter is much more general, of course, since the graph can change over time. We
note that, if each node has its own degree fixed over time, then moving each agent to
the mass center of its neighbors satisfies reversibility and, hence, as we shall see, fast
convergence. This is equivalent to setting qi = |Ni(t)|.

The definition of a reversible system is simple yet somewhat contrived. Does the
concept lend itself to intuition? Yes. At each step, each agent picks a set of neighbors
(the graph Gt) and slides toward their mass center—but not all the way! The agent
might have to stop before hitting the mass center. When? This is where the qi’s come
in. They ensure that the qi-weighted mass center of the whole system stays put. Not
to have that mass center wiggle around and produce exponentially small coefficients is
a key reason why reversibility implies faster convergence. We flesh out this intuition
in section 1.3.

The matrix approach. It is customary to model agreement systems by using prod-
ucts of stochastic matrices: x(t + 1) = P (t)x(t), where x(t) = (x1(t), . . . , xn(t))

T

and P (t) is a row-stochastic matrix whose entries pij(t) are positive for all i, j with
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j ∈ Ni(t). Bidirectionality means that both pij(t) and pji(t) should be positive or
zero, which is a form of mutual confidence [27]. Typically, one also requires a uniform
lower bound on each nonzero entry of the matrices. We observe that condition (3) is
not nearly as demanding: all we require is that if the agent i has at least one neighbor
(besides itself), then the entries corresponding to the leftmost and rightmost neighbors
l(i) and r(i) should be at most 1− ρ. These conditions have a natural interpretation
that we summarize as follows: For all t,
(5){
Mutual confidence: No pair pij(t), pji(t) has exactly one zero.

No extreme influence: For any nonisolated agent i, max{pil(i)(t), pir(i)(t)} ≤ 1− ρ.

Conditions (5) are weaker than the usual set of three constraints associated with the
bidirectional case [18, 27], which, besides mutual confidence, include self-confidence
(nonzero diagonal entries) and nonvanishing confidence (lower bound on all nonzero
entries). Our model requires bounds on only two entries per matrix row. Previous
work [2, 6, 27] highlighted the importance of self-confidence (pii(t) > 0) for the con-
vergence of agreement systems. Our results refine this picture as follows: To reach
harmony in a group with bidirectional communication, individuals may be influenced
extremely by nonextreme positions but must be influenced nonextremely by extreme
positions (mi,t or Mi,t). In the case of a two-agent system, this maxim coincides
with the need for self-confidence; in general, the latter is not needed. We conclude
this comment about the matrix representation of agreement systems by emphasizing
that the total s-energy seeks to move the focus away from the matrices themselves
and, instead, to reason about the agents’ motion in phase space and their temporal
communication network.

Random walks and ergodicity. At the risk of oversimplifying, one might say that
to understand agreement systems is to understand backward products of stochastic
matrices,

P (t)P (t− 1) · · ·P (1)P (0),

as t grows to infinity. Forward products P (0)P (1) · · ·P (t), for t → ∞, are different,
but much can be inferred about them from the backward variety. A forward product
of stochastic matrices models a random walk in a temporal network: imagine walking
randomly in a graph that may change at every step. Such products have been studied
by computational complexity theorists, who call them colored random walks [10, 11].
This connection suggests that a complete theory of agreement systems would need to
include, as a special case, a theory of discrete-time Markov chains. As we shall see,
the total s-energy allows us to retrieve classical mixing bounds for random walks in
undirected graphs.

A general principle behind the convergence of products of stochastic matrices is
that, if all goes well, as t grows, the product will tend to a matrix of rank one or a
(possibly permuted) block-diagonal matrix with blocks of rank one. Many analytical
devices have been designed to keep track of this evolution, most of which fall into the
category of ergodicity coefficients [38]. There is a simple geometric interpretation of
this which is worth a short detour. From a stochastic matrix such as P (0), construct
a convex polytope by taking the convex hull, denoted convP (0), of the points formed
by the rows of P (0): here, each row forms the n coordinates of a point. When we
multiply P (1) by P (0), each row of the product is a convex combination of the rows
of P (0), so the corresponding point lies inside the convex hull convP (0); therefore
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Fig. 3. The total s-energy is a global instrument for tracking how fast the polytopes shrink.

conv{P (1)P (0)} ⊆ convP (0). A coefficient of ergodicity is typically a measure of how
quickly the nesting shrinks; i.e., it might keep track of the width, diameter, volume,
or any other “shrinking” indicator as follows:

conv{P (t) · · ·P (0)} ⊆ conv{P (t− 1) · · ·P (0)} ⊆ · · · ⊆ conv{P (1)P (0)} ⊆ convP (0).

For example, when all the matrices are identical (as in a Markov chain), the spectral
gap gives us an �2-norm tracker of the contraction. What all coefficients of ergodicity
share is time locality; i.e., they measure the contraction from one step to the next.
The total s-energy, instead, is a global instrument (see Figure 3). It monitors the
shrinking over all time steps in a global fashion: the parameter s plays the role of
frequency in Fourier analysis and allows us to choose the correct “frequency” at which
we want to monitor the shrinking process. This gives us Chernoff-like bounds on the
distribution of the edge lengths.

1.2. The total s-energy. There is no obvious reason why the total s-energy,
as defined in (1), should ever converge, so we treat it as a formal series for the time
being. We prove that it converges for any real s > 0, and we bound its maximum
value, En(s), over all moves and n-node graph sequences. We may assume that all
the agents start out in the unit interval (which, of course, implies that they remain
there at all times). The justification is that the total s-energy obeys a power-law
under scaling: x 
→ Cx implies that En(s) 
→ CsEn(s). We also assume throughout
the remainder of this paper that ρ is smaller than a suitable constant. All the proofs
of the results below are deferred to section 3.

Theorem 1.1. The maximal total s-energy of an n-agent bidirectional agreement
system with unit initial diameter satisfies

En(s) ≤
{
ρ−O(n) for s = 1,

s1−nρ−n2−O(1) for 0 < s < 1.

There is a lower bound of O(ρ)−�n/2� on En(1) and of s1−nρ−Ω(n) on En(s) for n
large enough, any s ≤ s0, and any fixed s0 < 1.

The asymptotic notation hides the presence of absolute constant factors. For
example, ρ−O(n), O(ρ)−�n/2�, and ρ−Ω(n) mean, respectively, at most ρ−an, at least
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(bρ)−�n/2�, and at least ρ−cn for some suitable constants a, b, c > 0. Since no edge
length exceeds 1, En(s) ≤ En(1) for s ≥ 1, and so the theorem proves the convergence
of the total s-energy for all s > 0.

When the temporal network always stays connected, it is useful to redefine the
total s-energy as the sum of the sth powers of the diameters. Its maximum value, for
unit initial diameter, is denoted by

ED
n (s) =

∑
t≥0

(
diam {x1(t), . . . , xn(t)}

)s
.

In dimension d = 1, the diameter is the length of the smallest enclosing interval. The
following result is the sole breach of our pledge to avoid any connectivity assumption.

Theorem 1.2. The maximal diameter-based total s-energy of a connected n-agent
reversible agreement system with unit initial diameter satisfies

n−2En(s) ≤ ED
n (s) ≤ 2n

s

(2n
ρ

)s/2+1

for all 0 < s ≤ 1.
We proceed with general remarks about the function E(s). All of the terms in

the series are nonnegative, so we can assume they are rearranged in nonincreasing
order. This allows us to express the total s-energy as a general Dirichlet series

(6) E(s) =
∑
k≥1

nke
−λks,

where λk = − ln dk and nk is the number of edges of length dk. Thus, E(s) is the
Laplace transform of a sum of scaled Dirac delta functions centered at x = λk. This
implies that the total s-energy can be inverted and, hence, provides a lossless encoding
of the edge lengths.

We show that E(s) converges for any real s > 0. By the theory of Dirichlet
series [15], it follows that E(s) is uniformly convergent over any finite region D of
the complex plane within �(s) ≥ r for any r > 0; furthermore, the series defines
an analytic function over D. It is immediate to determine the maximum s-energy
of a two-agent system with unit initial diameter. For ρ = 1/2 − 1/2e, E2(s) =∑

t(1− 2ρ)st = 1/(1− e−s); therefore, writing s = x+ iy, it satisfies (see Figure 4)

|E2(s)| = 1/
√
1− 2e−x cos y + e−2x .

The singularities are the simple poles s = 2πik for all k. The maximal total s-energy
can be continued meromorphically over the whole complex plane. Note that this is
obviously false for nonmaximal s-energies; for example, the function

∑
k e

−sk! is a
valid total s-energy, but its singularities form a dense subset of its line of convergence
(the imaginary axis), and hence an impassable barrier for any analytic continuation
into �(s) < 0.

1.3. Convergence. When bounding the convergence rate of agreement systems,
we face the obvious difficulty that an adversary can always make the temporal network
free of any edges joining distinct nodes for as long as it wants, and then, at some point
far into the future, add all

(
n
2

)
edges permanently to the temporal network in order to

make all the agents cluster around the same point. How then can one hope to bound
the convergence time since it can be arbitrarily large yet finite? The total s-energy is
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Fig. 4. By analytic continuation, the maximum total s-energy of a two-agent system is a
meromorphic function over the whole complex plane; the function is depicted in absolute value, with
the real axis stretching to the right.

Fig. 5. ε-convergence is reached when the agents fall within groups with disjoint enclosing
intervals of length at most ε and no further interaction ever takes place between distinct groups.

meant to deal with precisely that problem. Given 0 < ε < 1/2, we say that a step t
is trivial (where ε is understood) if all the edges of Gt have length at most ε. Recall
that Gt always has n self-loops.1 The communication count Cε is defined as the total
number of nontrivial steps. Intuitively, it is a way of ignoring microscopic motions.
The system is said to ε-converge if the n agents can eventually be partitioned into
subsets with disjoint enclosing intervals of length at most ε and, from that point on,
no further interaction ever takes place between distinct subsets (Figure 5). Consensus
refers to the case of a one-set partition. Visually, ε-convergence means that the system
eventually freezes. We have this obvious relation between ε-convergence and triviality.

Fact 1.3. An n-agent bidirectional agreement system (n − 1)ε-converges by the
time its last nontrivial step has elapsed. If the temporal network remains connected
at all times, then the system (n− 1)ε-converges to consensus within Cε time.

Theorem 1.4. The maximum communication count Cε(n) of any n-agent bidi-
rectional agreement system with unit initial diameter satisfies

O(ρ)−�n/2� log
1

ε
≤ Cε(n) ≤ min

{
1

ε
ρ−O(n) ,

(
log

1

ε

)n−1

ρ−n2−O(1)

}
.

If the initial diameter D is not 1, then we must replace ε by ε/D in the bounds
for Cε(n). We easily check that the bound is essentially tight as long as ε is not
superexponentially small. Indeed, for any constant a > 0, there exist two constants
b, c > 0 such that, if ε ≥ ρan, then (i) the communication count is at most (1/ρ)bn,

1A self-loop always has zero length, but an edge (i, j) may be of zero length without being a
self-loop.
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and (ii) there exist an agreement system and a starting configuration for which the
communication count exceeds (1/ρ)cn. We put this more succinctly in the next corol-
lary.

Corollary 1.5. If ε ≥ ρO(n), then Cε(n) = ρ−Θ(n).
Theorem 1.6. For any 0 < ε < ρ/n, an n-agent reversible agreement system

ε-converges to consensus in time O( 1ρ n
2 log 1

ε ).

Let δ = maxi,t |Ni(t)| be the maximum degree of any node in the temporal net-
work. The assignment qi = δ is valid and gives ρ = 1/δ. The theorem implies
ε-convergence to consensus in O(δn2 log 1

ε ) time. A similar result holds if the de-
gree of any given node does not change over time and each agent moves to the mass
center of its neighbors as follows: xi(t + 1) = (1/|Ni(t)|)

∑
j∈Ni(t)

xj(t). If we now
consider the case of a time-invariant graph, we retrieve the usual polynomial mixing
time bound for lazy random walks in undirected graphs.

The communication count is related to the total s-energy via the obvious inequal-
ity

Cε ≤ ε−sE(s).

In view of this relation, the two upper bounds in Theorem 1.4 follow directly from
those in Theorem 1.1: simply set s = 1 and s = n/ ln 1

ε , respectively. Note that
the second assignment can be assumed to satisfy s < 1, since it concerns only the
case where 1

ερ
−O(n) is the bigger term in the right-hand side of the expression in

Theorem 1.4. For reversible systems, we set s = 1/ ln 1
ε and observe that the number

of steps witnessing a diameter in excess of ε is at most ε−sED
n (s) = O( 1ρ n

2 log 1
ε ).

This bounds the time it takes for the diameter to dip below ε and stay there forever
(since it cannot grow); hence Theorem 1.6 holds.

2. Applications. We highlight the utility of the total s-energy by looking at the
following five examples: opinion dynamics (section 2.1), social epistemology (section
2.2), Kuramoto synchronization (section 2.3), bird flocking (section 2.4), and products
of stochastic matrices (section 2.5).

2.1. Opinion dynamics. The Krause opinion dynamics model [16, 21] is a
sociological framework for tracking opinion polarization in a population. In its d-
dimensional version, the bounded-confidence model, as it is often called, sets a param-
eter 0 < r < 1 and, at time 0, specifies the opinions of n agents as n points in the unit
cube [0, 1]d. At time t ≥ 0, each opinion x moves to the position given by averaging
all the opinions that happen to fall within the Euclidean ball centered at x of radius
r (or some other shape). Viewed as a multiagent agreement system, Gt consists of
n nodes (the agents) with edges joining any two of them within a distance r of each
other. The dynamics is specified by

(7) xi(t+ 1) =
1

|Ni(t)|
∑

j∈Ni(t)

xj(t),

where Ni(t) is the set of neighbors of node i in Gt, which as usual includes i itself.
The system is known to converge [3, 21, 26, 27]. Theorem 1.4 allows us to bound how
long it takes to reach equilibrium. Consider a Cartesian coordinate system. In view
of (5, 7), we may set pij(t) = 1/|Ni(t)| and ρ = 1/n to make the opinion dynamics
system along each coordinate axis conform to a one-dimensional multiagent agreement
model (3). We can assume that the maximum diameter D along each axis is at most
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rn at time 0 and hence remains so thereafter. Indeed, by convexity, if along any
coordinate axis the n opinions have diameter greater than rn, then they can be split
into two subsets with no mutual interaction now and forever. Set ε = r/2 and let tε
be the smallest t such that Gt consists only of edges in R

d of length at most ε. During
the first dCε/

√
d (n) + 1 steps, it must be the case that, at some time t, the graph Gt

contains only edges of length at most ε. By Theorem 1.4, therefore

(8) tε ≤ d3/2
D

ε
nO(n) = 2d3/2 n1+O(n) = nO(n).

Each connected component of Gtε is a complete graph. To see why, observe that if
opinion x is adjacent to y in Gtε and the same is true of y and z, then x and z are at a
distance of at most 2ε = r, and hence are connected and therefore at a distance of at
most ε at time tε. This “transitive closure” argument proves our claim. This implies
that the opinions within any connected component end up at the same position at
time tε + 1. Of course, when two opinions are joined together they can never be
separated. The argument is now easy to complete. Either Gtε consists entirely of
isolated nodes, in which case the system is frozen in place, or it consists of complete
subgraphs that collapse into single points. The number of distinct opinions decreases
by at least one, so this process can be repeated at most n − 2 times. By (8), this
proves that Krause opinion dynamics converges in nO(n) time. We summarize our
result.

Theorem 2.1. Any initial configuration of n opinions in the bounded-confidence
Krause model with equal-weight averaging converges to a fixed configuration in nO(n)

time.
Martinez et al. [30] have established a polynomial bound for the one-dimensional

case, d = 1. While extending their proof technique to higher dimension might be
difficult, a polynomial bound could well hold for any constant d. We leave this as an
interesting open problem.

2.2. Truth-seeking systems. In their pioneering work in computer-aided so-
cial epistemology, Hegselmann and Krause considered a variant of the bounded-
confidence model that assumes a cognitive division of labor [17]. The idea is to take
the previous model and fix one agent, the truth, while keeping the n−1 others mobile.
A truth seeker is a mobile agent joined to the truth in every Gt. All the other mobile
agents are ignorant, meaning that they never connect to the truth via an edge, al-
though they might indirectly communicate with it via a path. Any two mobile agents
are joined in Gt whenever their distance is less than r. (Using open balls simplifies the
proofs a little.) Hegselmann and Krause [17] showed that, if all the mobile agents are
truth seekers, they eventually reach consensus with the truth. Kurz and Rambau [22]
proved that the presence of ignorant agents cannot prevent the truth seekers from
converging toward the truth. The proof is quite technical and the authors leave open
the higher-dimensional case. We generalize their results to any dimension and, as a
bonus, bound the convergence rate.

Theorem 2.2. Any initial configuration of n opinions in R
d in the truth-seeking

model converges, with all the truth seekers coalescing around the truth. If, in addition,
we assume that the initial coordinates of each opinion as well as the radius r are
encoded as O(n)-bit rationals, then, after nO(n) time, all the truth seekers lie within
a ball of radius 2−ncn

centered at the truth for any arbitrarily large constant c > 0.
Ignorant agents either lie in that ball or are frozen in place forever. This holds in any
fixed dimension.
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Proof. Along each coordinate axis, a truth-seeking system falls within the fixed-
agent agreement model and, as we saw in section 1.1, can be simulated by a (2n− 1)-
agent one-dimensional bidirectional agreement system with at most twice the initial
diameter. (Note that the 2n − 1 agents do not form a truth-seeking system because
there are no edges connecting the group of n original agents to its reflection.) Con-
vergence follows from Fact 1.3. As we observed in the previous section, restricting
ourselves to the equal-weight bounded confidence model allows us to set ρ = 1/(2n−1).
(We could easily handle more general weights, but this complicates the notation with-
out adding anything of substance to the argument.) Kurz and Rambau [22] observed
that the convergence rate cannot be bounded as a function of n and ρ alone because
it also depends on the initial conditions (hence the need to bound the encoding length
of the initial coordinates).

Set ε = 2−bn for some large enough constant b > 0, and define tε as the smallest
t such that Gt consists only of edges not longer than ε. By the same projection
argument we used in (8) and the observation that the initial diameter is 2O(n), tε =
nO(n). The subgraph of Gtε induced by the mobile agents consists of disjoint complete
subgraphs. Indeed, the transitive closure argument of the previous section shows that
the distance between any two agents within the same connected component is at
most 2ε = 21−bn < r (the inequality following from the O(n)-bit encoding of r), and
hence at most ε. For similar reasons, the truth agent cannot join more than one of
these complete subgraphs (referring here and below to the original system and not
the duplicated version); therefore, all the subgraphs consist of ignorant agents, except
for one of them, which contains all the truth seekers and to which the truth agent
is joined. This truth group might contain some ignorant agents as well, i.e., mobile
agents not connected to the truth. For that reason, the truth group, in which we
include the truth, is a connected subgraph that might not be complete. At time
tε + 1, the truth group has collapsed into either a single edge with the truth at one
end or a collinear three-agent system consisting of the truth, a truth seeker, and an
ignorant agent. (We refer to a single agent or truth seeker although it may be a
collection of several of them collapsed into one.) All the other complete subgraphs
collapse into all-ignorant single agents. By Theorem 2.1, there is a time

(9) t0 = tε + nO(n) = nO(n)

by which the all-ignorant agents will have converged into frozen positions unless they
get to join with agents in the truth group at some point.

Case I. Assume that the all-ignorant agents do not join with any agent in the
truth group at any time t > tε; the truth group then behaves like a one-dimensional
fixed-agent system with two or three agents embedded in R

d. We assume the latter,
the former case being similar, only easier. We saw in section 1.1 how such a system
can be simulated by a one-dimensional five-agent bidirectional system of at most twice
the diameter. Recall that agents may represent the collapse of several of them, so we
must keep the setting ρ = 1/(2n − 1). The five-agent system remains connected at
all times (since its diameter cannot grow); therefore, by Fact 1.3 and Theorem 1.4,
it β-converges to consensus by (conservatively) time t0 + nO(1)(log 1

β )
4. By (9), this

implies that, for any fixed c0 > 0, the agents of the truth group are within a distance
of 2−nc0n

of the truth after nO(n) time.
Case II. Assume now that an all-ignorant agent z joins with an agent y of

the truth group at time t1 but not earlier in [tε, t1). That means that the distance
‖y(t1)z(t1)‖2 dips below r for the first time after tε. We want to show that t1 ≤
t0 + nO(n), so we might as well assume that t1 > t0. Recall that t0 is an upper
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bound on the time by which the all-ignorant agents would converge if they never
interacted again with the truth group past tε. Let L be the line along which the truth
group evolves, and let σ be its (nonempty) intersection with the open ball of radius
r centered at z(t1) = z(t0). Note that σ cannot be reduced to a single point. This
implies that the shortest nonzero distance Δ between the truth and the two endpoints
of σ is well defined. (By definition, if the truth sits at one endpoint, Δ is determined
by the other one.) We claim that

(10) Δ ≥ 2−nO(n)

.

Here is why. It is elementary to express Δ as a feasible value of a variable in a
system of m linear and quadratic polynomials over m variables, where m is a constant
(depending on d). The coefficients of the polynomials can be chosen to be integers over
� = nO(n) bits. (We postpone the explanation.) We need a standard root separation
bound [46]. Given a system of m integer-coefficient polynomials in m variables with
a finite set of complex solution points, any nonzero coordinate has modulus at least

2−�γO(m)

, where γ − 1 is the maximum degree of any polynomial and � is the number
of bits needed to represent any coefficient. This implies our claimed lower bound of

2−nO(n)

on Δ.
Why is � = nO(n)? At any given time, consider the rationals describing the

positions of the n agents and put them in a form with one common denominator.
At time 0, each of the initial positions now requires O(n2) bits (instead of just O(n)
bits). A single time step produces new rationals whose common denominator is at
most n! times the previous one, while the numerators are sums of at most n previous
numerators, each one multiplied by an integer at most n!. This means that, at time
t, none of the numerators and denominators require more than O(n2 + tn logn) bits.
The system of equations expressing Δ can be formulated using integer coefficients
with O(n2+ t0n logn) bits; hence the bound � = nO(n). Next, we distinguish between
two cases.

• The truth is not an endpoint of σ: In this case there is a closed segment of
L centered at the truth that lies either entirely outside of σ or inside of it.

By (10), the segment can be chosen to be of length at least 2−nO(n)

. Setting
c0 large enough, as we saw earlier, the agents of the truth group are within a
distance of 2−nc0n

of the truth after nO(n) time; therefore, t1 ≤ t0+nO(n), or
else the diameter of the truth group becomes too small to accommodate Δ.

• The truth is an endpoint of σ: Quite clearly, β-convergence alone does not
suffice to bound t1, so we reason as follows. When the truth group has β-
converged (for the previous value of β), the only way its mobile agents avoided
falling within σ (in which case the previous bound on t1 would hold) is if the
truth group ended up separated from σ by the truth (lest one of the mobile
agents lay in σ). By convexity, however, this property remains true from then
on, and so z can never join y, which contradicts our assumption.

When agents y and z join in Gt at time t = t1, their common edge is of length at
least r/3 unless y or z has traveled a distance of at least r/3 between tε and t1. In
all cases, the system must expend 1-energy at least r/3 during that time interval. By
Theorem 1.1, this can happen at most nO(n)(3/r) = nO(n) times. We can repeat the
previous argument safely each time, even though the bit lengths will increase. At the
completion of this process, we are back to Case I.

2.3. Kuramoto synchronization. The Kuramoto model is a general frame-
work for nonlinear coupled oscillators, with a dazzling array of applications: circadian
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Fig. 6. Four coupled oscillators connected by four edges.

neurons, chirping crickets, microwave oscillators, yeast cell suspensions, pacemaker
cells in the heart, etc. Winfree’s pioneering work on the subject led Kuramoto to for-
mulate the standard sync model for coupled oscillators [39, 45]. The system consists
of n oscillators: the ith one has phase θi and natural frequency ωi. In its original for-
mulation, the model is a mean-field approximation that assumes all-pair coupling. A
more realistic assumption is to use a time-varying network to model communications.
Considerable work has been done on this problem; see [13, 20, 25, 29, 31, 35, 36, 44, 47]
for a small sample. Further research introduced a time-1 discretization of the con-
tinuous model [29, 33, 37, 40]. Assuming that all oscillators share the same natural
frequency, a fixed phase shift yields the dynamics

θi(t+ 1) = θi(t) +
KΔT

|Ni(t)|
∑

j∈Ni(t)

sin(θj(t)− θi(t)),

where |Ni(t)| is the degree of i in the communication graph Gt, which, as always,
counts the self-loop at i (see Figure 6). As in [33], we also assume that all the agents’
phases start in the same open half-circle. By shifting the origin, we express this
condition as α − π/2 ≤ θi(0) ≤ π/2 for some arbitrarily small positive constant α.
This implies that

sin(θj(0)− θi(0)) = aij(θj(0)− θi(0))

for α/4 ≤ aij ≤ 1. By (5), therefore, to make the dynamics conform to a bidirectional
multiagent agreement system at time 0, it suffices to enforce the constraints

4nρ

α
≤ KΔT ≤ 1− ρ .

Choosing ρ = bα/n for a small enough constant b > 0, we note that the constraints
are roughly equivalent to 0 < KΔT < 1. By convexity, the angles at time 1 remain
within [α− π/2, π/2]; therefore, our previous argument can be repeated to show that
the synchronization dynamics fits within the bidirectional agreement model at all
times. The result below follows from Corollary 1.5. We note that it is impossible to
bound the actual time to convergence unless we make assumptions about the temporal
network.

Theorem 2.3. Any Kuramoto synchronization system with n oscillators sharing
the same natural frequency and initialized in an open half-circle ε-converges after
nO(n) nontrivial steps for any ε > n−cn and any constant c > 0. This holds regardless
of the temporal communication network.
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2.4. Bird flocking. Beginning with Reynolds’s pioneering work in the mid-
1980s, bird flocking has generated an abundant literature, with a sudden flurry of
interest in the last few years. Mathematically, flocking appears more complex than
the previous agreement systems because the averaging and the communications do not
operate over precisely the same objects: it is the velocities that are averaged, but the
positions (i.e., the integrals of the velocities) that determine the temporal network.
Many models have been studied in the literature, but most of them are variants of
the following [6, 12, 19, 43]: Given the initial conditions z(0) and z(1), for any t > 0,

(11)

{
z(t) = z(t− 1) + v(t),

v(t+ 1) = P (t)v(t).

The vectors z(t), v(t) encode the positions and velocities of the n birds in R
3, and

each coordinate of z(t) and v(t) is itself a three-dimensional vector. (These vectors
are often expressed in R

3n via a tensor product; the notation here is easier as long as
one remembers that the coordinates are themselves three-dimensional vectors.) The
n-by-n stochastic matrix P (t) has nonzero diagonal entries, and its other positive
entries correspond to the edges of Gt; the communication graph Gt links any two
birds within a fixed distance of each other. Intuitively, each bird averages out its own
velocity with those of its neighbors in Gt: all of its neighbors weigh equally in the
average except perhaps for itself; i.e., for fixed i, all nonzero pij(t)’s are equal, with
the possible exception of pii(t); all the entries in P (t) are rationals over O(log n) bits.

It suffices to set ρ = n−b, for a large enough constant b > 0, to make flocking
conform to the bidirectional multiagent agreement model, with v(t) encoding into a
single vector the n points (x1(t), . . . , xn(t)). By Corollary 1.5, the system ε-converges
within nO(n) nontrivial steps for ε ≥ n−cn and any constant c > 0. We showed in [7]
that the sequence Gt always converges to a fixed graph G but that the number of
steps to get there can be astronomical: it can be as high as a tower-of-twos of height
on the order of logn, which, amazingly, is tight.

Theorem 2.4. The velocities of n birds ε-converge after nO(n) nontrivial steps for
any ε > n−cn and any constant c > 0. The number of steps prior to the convergence
of the temporal network to a fixed graph is no higher than a tower-of-twos of height
O(log n); this bound is optimal in the worst case.

2.5. Products of stochastic matrices. Let P be the family of n-by-n stochas-
tic matrices such that each P ∈ P satisfies the following three standard constraints:
(i) self-confidence (nonzero diagonal entries); (ii) mutual confidence (no pair pij , pji
with exactly one 0); and (iii) nonvanishing confidence (positive entries at least ρ).
Lorenz [27] and Hendrickx and Blondel [18] independently proved the following coun-
terintuitive result: In any finite product of matrices in P , each nonzero entry is at
least ρO(n2). What is surprising is that this lower bound is uniform, in that it is
independent of the number of multiplicands in the product. We improve this lower
bound to its optimal value as follows.

Theorem 2.5. Let P be the family of n-by-n real stochastic matrices such that
any P ∈ P satisfies the following: each diagonal entry is nonzero; no pair pij , pji
contains exactly one zero; and each positive entry is at least ρ. In any finite product
of matrices in P, each nonzero entry is at least ρn−1. The bound is optimal.
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3. The proofs. It remains for us to prove Theorem 1.1 (upper bound for s = 1
in section 3.1, upper bound for s < 1 in section 3.2, and lower bounds in section
3.4), Theorem 2.5 (section 3.2), Theorem 1.2 (section 3.3), and the lower bound of
Theorem 1.4 (section 3.4).

3.1. The general case: s = 1. We prove the upper bound of Theorem 1.1 for
s = 1. We show that En(1) ≤ ρ−O(n) by bounding the kinetic s-energy.

Wingshift systems. We introduce a wingshift system, which provides a simpler
framework for the proof (see Figure 7). Since we focus on a single transition at a
time, we write ai, bi instead of xi(t), xi(t + 1) for notational convenience, and we
relabel the agents so that 0 ≤ a1 ≤ · · · ≤ an ≤ 1. Given a1, . . . , an, the agents move
to their next positions b1, . . . , bn and then repeat this process endlessly in the manner
described below. Let �(i) and r(i) be indices satisfying the following inequalities:

Rule 1: 1 ≤ �(i) ≤ i ≤ r(i) ≤ n and (� ◦ r)(i) ≤ i ≤ (r ◦ �)(i).
Rule 2: a�(i) + δi ≤ bi ≤ ar(i) − δi, where δi = ρ(ar(i) − a�(i)).

Each agent i picks an associate to its left (perhaps itself) and one to its right, �(i) and
r(i), respectively. It then shifts anywhere in the interval [a�(i), ar(i)], though keeping
away from the endpoints by a small distance δi. This process is repeated forever,
with each agent given a chance to change associates at every step. Any multiagent
agreement system with parameter ρ can be modeled as a wingshift system: each agent
picks its leftmost and rightmost neighbors as associates; note that the wingshift graph
is sparser but now dependent on the embedding. Bidirectionality ensures Rule 1: it
says that the interval [�(i), r(i)] should contain i as well as all agents j pointing to
i.2 By analogy, we define the total 1-energy of the wingshift system as V =

∑
t≥0 Vt,

where (with ai denoting xi(t)) Vt =
∑n

i=1 (ar(i) − a�(i)). The desired upper bound

En(1) = ρ−O(n) follows trivially from this bound on V as follows.
Theorem 3.1. The maximal total 1-energy of an n-agent wingshift system with

unit initial diameter and parameter ρ is at most ρ−O(n).

Fig. 7. A six-node wingshift system.

As usual, we assume that ρ is smaller than a suitable constant. We need some
notation to describe rightward paths in the wingshift system: r(i, 0) = i and r(i, k) =
r(r(i, k − 1)) for k > 0. We define the distance between an agent and its right
associate, Δi = ar(i) − ai. See Figure 8. When traversing a rightward path i =
r(i, 0), r(i, 1), . . . , r(i, k), etc., a sudden drop in Δr(i,k) is of particular interest, so we
introduce ri = r(i, ki), where

ki = min

{
k ≥ 0 |Δr(i,k) ≥ 2

ρ
Δr(i,k+1)

}
.

2This is necessary for convergence. Consider three agents a1 = 0, a2 = 1
2
, a3 = 1, with

�(1) = r(1) = �(2) = 1 and r(2) = �(3) = r(3) = 3. Agents 1 and 3 are stuck in place while agent 2
can move about freely forever.
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Fig. 8. The stopper of agent i is r(i, 3), ri = r(i, 2), and ki = 2.

The agent r(ri) is called the stopper of i. Our interest in stoppers is that the nontrivial
ones always move left, thus pointing to some obligatory motion in the system at the
time step under consideration.

Lemma 3.2. The stopper u of any agent i satisfies au − bu ≥ (ρ2 )
ki+1Δi.

Proof. By Rule 1, ar(u) − a�(u) ≥ Δri +Δu. Since Δu ≤ ρ
2 Δri , it follows by Rule

2 that

bu ≤ ar(u) − ρ(ar(u) − a�(u)) ≤ au +Δu − ρ(Δri +Δu)

≤ au + ((1− ρ)ρ/2− ρ)Δri ≤ au − (1 + ρ)(ρ/2)ki+1Δi .

The last inequality follows from the fact that Δri ≥ (ρ/2)kiΔi; it is not strict because
both sides are equal if ki = 0.

We bound V by tallying the kinetic 1-energy of the system, K =
∑

t≥0 Kt, where

Kt =
∑n

i=1 |ai − bi|. Recall that ai and bi are the positions of agent i at times t and
t+ 1, respectively.

Lemma 3.3. If K is finite, then V ≤ n2nρ1−nK.
Proof. Obviously,

V =
∑
t≥0

n∑
i=1

(ar(i) − a�(i)) ≤
∑
t,i

{
(ai − a�(i)) + (ar(i) − ai)

}
≤
∑
t,i

Δi +
∑
t,i

Δ′
i ,

where Δ′
i = ai − a�(i). By Lemma 3.2,

∑
t≥0

n∑
i=1

Δi ≤
∑
t≥0

n∑
i=1

(2
ρ

)ki+1

(ar(ri) − br(ri)) ≤ n
(2
ρ

)n−1∑
t≥0

n∑
i=1

|ai − bi| .

A mirror-image argument yields the same upper bound on
∑

t,i Δ
′
i.

The idea behind the proof. By symmetry, we can assume that at least half of the
contribution to K is provided by rightward motions, i.e., 1

2K ≤∑t,i{ bi−ai | bi > ai }.
Thus we can conveniently ignore all leftward travel for accounting purposes. We use
an “amortization” technique that involves assigning a credit account to each agent.
Whenever the agent moves right it is required to pay for its travel cost by decreasing
its account by an amount equal to the distance it travels. Credits are injected into
the system only at time 0; if all travel is paid for and no account is overdrawn, then
clearly the initial injection is an upper bound on 1

2K. The benefit of this approach is
that accounts can borrow from one another, thus creating an “economy” of credits.
The proof takes the form of an algorithm that drives the trading in a manner that
keeps all accounts solvent; in other words, it is an algorithmic proof [8].

Agent i cannot, in a single step, move to the right by a distance greater than Δi.
Lemma 3.2 suggests a paying mechanism by which we charge its stopper u = r(ri)
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that travel cost; in other words, the leftward travel of u would pay for the rightward
travel of the agents that claim u as a stopper. If u moves only to the left, then its
own travel distance is bounded by 1, and the charging scheme is essentially sound.
But what if u zigzags left and right? The premise of charging u for the cost of i is
that we know how to bound the cost of u. But, if u moves in both directions, we
cannot bound its cost a priori (whereas we can if it only travels left). The solution is
to look at u’s own stopper u′ and charge it. This may, in turn, force u′ to charge u′′,
etc. The “buck passing” evolves from left to right, so it must eventually stop. This
picture suggests that agents should hold more credits the further to the right they
are; indeed, our credit invariant will relate an agent’s account to its rank.

The algorithmic proof. At time t, the agents are ordered as 0 ≤ a1 < · · · < an ≤ 1.
By using standard perturbation techniques, we can assume strict inequalities among
all agent positions at all times. We maintain the following credit invariant: At the
beginning of each time step, every agent i holds aiα

i credits in its account, for some
fixed parameter α, where again ai is shorthand for xi(t). By way of illustration,
consider the trivial case of two agents, one at 0 and the other at 1, meeting at 1− ρ
at the next step (we use ties for convenience). The system holds α2 at time 0 and
(1 − ρ)(α + α2) at time 1. The difference exceeds the travel cost of 1 − ρ if α is
sufficiently larger than 1/ρ.

Our algorithmic proof involves setting up a simple data structure, a linked list,
and moving credits around according to specific rules. Let u be a stopper such that
bu < au. Consider the lowest-ranked agent h that claims u as its stopper. We build
a doubly linked list Lu consisting of u − h + 1 nodes, each one corresponding to an
agent: h is at the head and u at the tail; scanning Lu takes us through the agents
h, h + 1, . . . , u. The nodes scanned after v are called the antecedents of v. The rank
s(v) is h plus the number of steps it takes to get from h to v in Lu. Ranks are
implied by the list, so that inserting a node automatically adds one to the ranks of
its antecedents. Initially, the rank of the node v corresponding to agent k is just k,
and its position, denoted by a(v), is ak. The node following (resp., preceding) v in
Lu, if it exists, is denoted by next(v) (resp., prev(v)). We identify the node m with
the highest-ranked agent such that am < bu. Let β = ρ/2 and α = 6/ρ2 (see Figure
10).

Step [1]. Since bu < au, node u is the stopper of at least one node strictly to its
left, so |Lu| > 1 and m is well defined. By assigning a(w) = bu, in effect we move
the stopper u to its new position bu, right after agent m in Lu. Shifting accounts
one step backward gets w to inherit the account of m+ 1 and the new tail to receive
the credits formerly at u. If m = u − 1, step [1] ends with the list in the same state
as before except for a(tail); otherwise, the u − m − 1 antecedents of w see their
ranks automatically incremented by one, and, among them, the node for any agent k
acquires the credit account of k + 1. (The alternative of keeping the list intact and
shifting positions a(v) to the right works but breaks the immutable correspondence
between nodes and agents.) To summarize, at the end of step [1], any node v in Lu

ends up with a(v)αs(v) credits if v comes before w in the list and a(next(v))αs(v)

otherwise (see Figure 9).3

Step [2]. We prove that all the credit allocations are feasible. Suppose that v is
either w or an antecedent of w. Agent v has a(next(v))αs(v) credits. It receives β(au−
a(next(v)))αs(next(v)) credits from next(v) (which, by our notational convention, is
zero if v is the new tail); it also gives away β(au − a(v))αs(v) credits and keeps

3By abuse of notation, a(next(v)) denotes au if v is the new tail.
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Fig. 9. Credits are transferred via plain arrows in step [1] and dashed arrows in step [2].
Position a(v) = ah, am, bu, au for v = h,m,w, u.

• For each stopper u from right to left, if bu < au, do:

[1] Insert a new node w into Lu right after m: next(w) ← next(m) and
next(m) ← w. Set a(w) = bu. For each antecedent v of w, transfer the
account of v to prev(v). Delete node u from Lu.

[2] For each node v from the new tail to next(h):

• transfer β(au − a(v))αs(v) credits from v to prev(v);
• keep (βa(v) + (1− β)au)α

s(v) credits in the account of v.

[3] Move from ai to bi any agent i claiming u as its stopper, provided that
bi > ai. Enforce all credit invariants.

• Move from ai to bi any nonstopper i such that bi < ai. Enforce all credit invariants.

Fig. 10. The algorithmic proof.

(βa(v) + (1 − β)au)α
s(v) of them, for a total need of auα

s(v). Since s(next(v)) =
s(v) + 1, the transaction balances out if

a(next(v))αs(v) + β(au − a(next(v)))αs(v)+1 ≥ auα
s(v),

which holds because αβ ≥ 1. Suppose now that v comes before w in the list. The
only difference is that v now starts out with an account worth a(v)αs(v) credits. The
balance condition becomes

a(v)αs(v) + β(au − a(next(v)))αs(v)+1 ≥ auα
s(v),

which is equivalent to

(12) au − a(v) ≤ αβ(au − a(next(v))).

To see why (12) holds, we turn to the wingshift condition—as, at some point, we must.
Among the agents of Lu claiming u as a stopper and v as an antecedent, let z be the
last one. (Note that z may not be equal to v, but because of h it is sure to exist.)
Extending the notation in the obvious way, by Lemma 3.2, Δz ≤ ( 2ρ)

kz+1(au − bu). If
kz = 0, then

au − a(v)

au − a(next(v))
≤ au − az

au − bu
=

Δz

au − bu
≤ 2

ρ
< αβ,
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which proves (12). If kz > 0, then, by the maximality of z,

a(next(v)) ≤ ar(z) ≤ ar(r(z)) ≤ au,

and condition (12) follows from

au − a(v)

au − a(next(v))
≤ au − az

au − ar(z)
=

Δz +Δr(z) + au − ar(r(z))

Δr(z) + au − ar(r(z))
≤ Δz +Δr(z)

Δr(z)
≤ 1 +

2

ρ
.

Step [3]. Having shown that all the accounts can afford the amounts specified
in the second bullet of step [2], we now explain how they can pay for all rightward
travel. We use an accounting trick, which is to move agents without crossing: all
agents move continuously, one at a time. Should agent i bump into agent j, the latter
completes the former’s journey while i stops; the process is repeated at each collision.
The main advantage of this scheme is that agents now keep their ranks at all times (of
course they must also swap identities, thus becoming virtual agents). Unlike before,
a rightward move ai → bi will now entail the motion of all the virtual agents in the
interval [ai, bi] and not only those claiming u as their stopper. By step [2], each node
v is supplied with (βa(v) + (1− β)au)α

s(v) credits, which is at least

a(v)αs(v) + (1− ρ)(au − a(v))αs(v) + au − a(v),

because s(v) ≥ 1. The three-part sum shows explicitly why virtual agent v, whose
rank is now fixed, can move right by a distance of at least (1−ρ)(au−a(v)) while both
maintaining its credit invariant and paying (comfortably) for the travel cost. Virtual
agent v never needs to move further right than that. Why is that? The motion might
be generated by v itself (if u is its stopper) or by the “push” from an agent on its
left. Either way, at any instant during the continuous motion of virtual v, there is
a causing agent i (perhaps v itself) whose corresponding interval [ai, bi] contains the
position of v at that instant. Our claim follows then from Rule 2. Indeed,

bi≤ar(i)−ρ(ar(i)−a�(i))≤ρa�(i)+(1−ρ)ar(i)≤ρa(v)+(1−ρ)au≤a(v)+(1−ρ)(au−a(v)).

Returning all agents to their nonvirtual status, we observe that processing stopper
u moves to the right only the agents that claim it as a stopper. Treating stoppers u
in descending order from right to left means that none of the agents with u as their
stopper have yet been moved (either to the left as stoppers or to the right) by the time
we handle u. The last step in the algorithm can only release credits—think of virtual
agents to see why—and so, maintaining the corresponding invariants is immediate.
This allows us to bound the kinetic 1-energy by4

1

2
K ≤

n∑
i=1

xi(0)α
i ≤ 2αn = ρ−O(n).

Theorem 3.1 now follows from Lemma 3.3, which completes the proof of the upper
bound of Theorem 1.1 for s = 1.

4A more sophisticated argument allows us to lower α to O(1/ρ) and thus reduce the constant in
the O(n) exponent to 1; this sort of finetuning is not needed for the purposes of this paper.
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3.2. The general case: s < 1. We prove the upper bound of Theorem 1.1 for
0 < s < 1. We show that the total s-energy satisfies the recurrence: E1(s) = 0 and,
for n ≥ 2,

(13) En(s) ≤ 2nEn−1(s) + (1− (ρ/2)n)sEn(s) + n3.

We prove (13) “algorithmically” by describing a procedure to track the propagation
of information across the temporal network and monitor its effect on the geometry
of the system. All agents are initially dry, except for agent 1, which is wet. Every
time a wet agent communicates with a dry one, the latter becomes wet. Once wet,
an agent always remains so. Through the communication provided by the temporal
network, water propagates from agent to agent. Bidirectionality ensures that, when
the water ceases to spread to dry nodes, the interval spanned by the wet agents will
be expected to have shrunken a little; in other words, communication acts as a spring
that pulls recipients together (see Figure 11).

[1] Initially, all agents are dry except for agent 1. Set W (0) = {x1(0)}.
[2] For t = 0, 1, . . . ,∞:

[2.1] Declare wet any agent adjacent to a wet agent in Gt.
[2.2] W ∗(t)←W (t)∪ { positions at time t of dry agents just turned wet }.
[2.3] Move each agent i from xi(t) to xi(t+1). [ If no newly wet agent, then

all motion within W (t) = W (t∗) occurs in isolation from the n−
|W (t)| other agents. ]

[2.4] W (t+ 1)← { positions at time t+ 1 of agents corresponding to W ∗(t) }.

Fig. 11. The flow algorithm.

The set W (t) tracks the positions of the wet agents at time t. The auxiliary set
W ∗(t) includes the positions at time t of the agents wet at time t+ 1; it differs from
W (t+ 1) only in that the latter gives the positions at time t+ 1. Let ‖W (t)‖ denote
the length of the smallest interval enclosing W (t), and let {tk}k≥1 be the times t ≥ 0,
in chronological order, at which |W ∗(t)| > |W (t)| (i.e., at least one dry agent turns
wet at time t).5 Recall that ρ is smaller than a suitable constant. We show that

(14) ‖W (tk)‖ ≤ 1−
(ρ
2

)k
.

The smallest interval [a, b] defining ‖W (tk)‖ is in [0, 1]. By symmetry, we can always
assume that a+ b ≥ 1. Because ‖W (t1)‖ = 0, we can also safely assume by induction
that (14) holds up to tk; hence a ≥ 1

2 (ρ/2)
k. Since ‖W (t)‖ can increase only when at

least one dry agent becomes wet, i.e., at times of the form t = tl, we can prove (14)
for tk+1 by showing that ‖W (tk + 1)‖ ≤ 1 − (ρ/2)k+1. This easily follows from
[0, aρ)∩W (tk +1) = ∅, so it suffices to prove the latter, which we do by contradiction
(see Figure 12). Consider an agent i contributing to W (tk + 1) with xi(tk + 1) < aρ.
Agent i is wet at time tk + 1, so at least one agent in Ni(tk) was wet at time tk
(possibly i itself). This implies that Mi,tk ≥ a and, by (3),

xi(tk + 1) ≥ (1 − ρ)mi,tk + ρMi,tk ≥ aρ,

which is impossible and proves (14).

5Both W (t) and W ∗(t) are understood as multisets. Note that tk might not exist.
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Fig. 12. Bounding the interval spanned by wet agents.

The set W (tk) can only gain agents, as k grows, but the set may stop growing
before it absorbs all of them. When t is not of the form tk, the agents of W (t) interact
only among themselves, so the total s-energy expended during steps tk−1+1, . . . , tk−1
is bounded by E|W (tk)|(s) + En−|W (tk)|(s). At time t = tk, the extra energy involved
is

∑
(i,j)∈Gt

|xi(t)− xj(t)|s ≤
(
n

2

)
.

Using obvious monotonicity properties, it follows that, up to the highest value of tk,
the s-energy is bounded by

n−1∑
l=1

{
El(s) + En−l(s) +

(
n

2

)}
< 2nEn−1(s) + n3.

This includes the case where no tk exists. When it does and reaches its highest value
t, if |W (t+ 1)| < n, then all the energy has been accounted for above. Otherwise, we
must add the energy expended by the n agents past t. By (14), however, at time t+1,
the n agents fit within an interval of length 1 − (ρ/2)n. By the scaling (power) law
of the total s-energy, all we need to do is add (1 − (ρ/2)n)sEn(s) to the sum; hence
(13) holds.

The case n = 2 is worthy of attention because it is easy to solve exactly. In
the worst case, the two agents start at 0 and 1 and move toward each other by the
minimum allowed distance of ρ. This gives us the equation E2(s) = (1−2ρ)sE2(s)+1;
hence, by (17) ahead,

(15) E2(s) =
1

1− (1− 2ρ)s
≤ 1

2sρ
.

We now consider the case n > 2. By (17) and (13),

En(s) ≤ 2nEn−1(s) + n3

s(ρ/2)n
.

By (15) and the monotonicity of En(s), we verify that the numerator is less than
3n3En−1(s); therefore, for n > 2, by (15),

En(s) <
3n3En−1(s)

s(ρ/2)n
≤ s1−nρ−n2−O(1).

This proves the upper bound of Theorem 1.1 for s < 1.
Proof of Theorem 2.5. Recall that P is the family of n-by-n stochastic matrices

such that any P ∈ P satisfies the following: each diagonal entry is nonzero; no pair
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pij , pji contains exactly one zero; and each positive entry is at least ρ. By (5), the
entry (i, j) of a product of t such matrices can be viewed as the position of agent i after
t iterations of a bidirectional system with agreement parameter ρ, initialized with all
the agents at 0, except for j positioned at xj(0) = 1. Referring back to the algorithm,
we designate agent j as the one initially wet, with all the others dry. Let m(t) be the
minimum value in W (t). At every time tk when W (t) grows in size, the minimum
m(t) cannot approach 0 closer than ρm(t). Since |{tk}| < n, agent i either stays dry
forever and does not leave 0 or joins W (t) and cannot be smaller than mint m(t),
which is at least ρn−1. The lower bound proof suggests a trivial construction that
achieves the very same bound and therefore proves its optimality. This completes the
proof of Theorem 2.5.

3.3. The reversible case. Our proof of Theorem 1.2 is based on a standard
use of the Dirichlet form and classical spectral gap arguments [9, 23, 32]. Let πi =
qi/
∑

j qj . We easily verify that π = (π1, . . . , πn) is the (time-invariant) stationary
distribution of the stochastic matrix P = P (t) specified by (4):

pij =

⎧⎪⎨
⎪⎩

1− (|Ni| − 1)/qi if i = j,

1/qi if i �= j ∈ Ni,

0 else.

The argument focuses on a fixed step, so we may drop t to simplify the notation.
Let x = (x1, . . . , xn) and, for u, v ∈ R

n, let 〈u, v〉π =
∑

πiu
T
i vi. The dynamics is

invariant under translation, so we may move the origin to ensure that 〈x,1〉π = 0.
Because π is the stationary distribution, this property is time-invariant; in particular,
〈Px,1〉π = 0. Because P is reversible, we can decompose x =

∑
i aivi in an eigenbasis

{vi} for P orthonormal with respect to 〈·〉π ; all the eigenvalues are real. Any positive
pij is at least 1/qi ≥ ρ. Let 1 = λ1 > λ2 ≥ · · · ≥ λn ≥ 2ρ − 1 be the eigenvalues
of P , with the labeling matching the vi’s. Why the inequalities? Briefly, the gap is
strict between the two largest eigenvalues because the graph is connected; the smallest
eigenvalue is separated from −1 by at least 2ρ because (P − ρI)/(1 − ρ) is itself a
reversible Markov chain (with the same eigenvectors), and hence with real-valued
spectrum in [−1, 1]. By the Perron–Frobenius theorem, if μ = max{λ2

2, λ
2
n} then, by

reversibility, πipij = πjpji, and

〈x, x〉π − 〈Px, Px〉π = 〈x, (I − P 2)x〉π =
∑
i,j

aiaj〈vi, (I − P 2)vj〉π =
∑
i

a2i (1− λ2
i )

≥ (1 − μ)
∑
i

a2i = (1 − μ)
∑
i,j

aiaj〈vi, vj〉π = (1− μ)〈x, x〉π .

(16)

Because P is reversible and any nonzero πipij is at least ρ/n, it holds that, for any
vector z,

〈z, (I − P )z〉π =
1

2

∑
i,j

πipij(zi − zj)
2 ≥ ρ

2n

∑
(i,j)∈Gt

(zi − zj)
2.

Set z = v2. By orthonormality, 〈z, z〉π = 1 and 〈z,1〉π = 0; therefore, z must contain
a coordinate za such that |za| ≥ 1 and another one, zb, of opposite sign. Since Gt is
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connected, there is a simple path L connecting nodes a and b. By the Cauchy–Schwarz
inequality,

1− λ2 = 〈z, (I − P )z〉π ≥ ρ

2n

∑
(i,j)∈L

(zi − zj)
2 ≥ ρ

2n2

( ∑
(i,j)∈L

|zi − zj |
)2

≥
( ρ

2n2

)
(za − zb)

2 =
ρ

2n2
.

Since λn + 1 ≥ 2ρ, it then follows that

μ ≤
(
1− ρ

2n2

)2
≤ 1− ρ

2n2
,

and, by (16),

〈Px, Px〉π ≤ μ〈x, x〉π ≤
(
1− ρ

2n2

)
〈x, x〉π .

Let ED
n (L, s) be the maximum value of the (diameter-based) total s-energy of an

n-agent reversible agreement system such that 〈x, x〉π = L at time 0. Since Gt is
connected, qi ≥ 2; therefore the diameter is at most

2max
i

|xi| ≤ 2
√
L/min

i
πi ≤

√
2Ln/ρ ;

therefore,

ED
n (L, s) ≤ ED

n ((1− ρ/2n2)L, s) + (2Ln/ρ)s/2.

The total s-energy obeys the scaling law ED
n (αL, s) = αs/2ED

n (L, s). The definition of
ED

n (s) assumes unit initial diameter, which implies that 〈x, x〉π ≤ 1; hence ED
n (s) ≤

ED
n (1, s) and

ED
n (s) ≤ (2n/ρ)s/2

1− (1− ρ/2n2)s/2
≤ 2n

s

(2n
ρ

)s/2+1

,

which proves Theorem 1.2. This follows immediately from an inequality we use re-
peatedly. For any 0 ≤ a, b ≤ 1,

(17) (1− a)b ≤ 1− ab.

3.4. The lower bounds. We prove the lower bounds in Theorems 1.1 and 1.4.
The case s < 1. We describe an algorithm An(a, b) that moves n agents initially

within [a, b] toward a single point a + (b − a)y(n) while producing a total s-energy
equal to (b−a)sE(n, s). Clearly, E(1, s) = 0, so assume n > 1. We specify An(0, 1) as
follows. Place n−1 agents at position 0 and one at position 1. The graph G0 consists
of a single edge between agent 1 at position 1 and agent 2 at position 0. At time 0,
agent 2 moves to position ρ while agent 1 shifts to 1− ρ. The n− 2 other agents stay
put. Next, apply An−1(0, ρ) to the set of all agents except 1. By induction, we can
assume that this brings them to position ρy(n−1). Finally, apply An(ρy(n−1), 1−ρ)
to all the agents. The operations of An leave the center of mass invariant, so if y(n)
exists, it must be 1/n. Here is a formal argument. The attractor point y(n) satisfies
the recurrence

y(n) = ρy(n− 1) + (1− ρy(n− 1)− ρ)y(n),
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where, for consistency, y(1) = 1. This implies that

1

y(n)
= 1 +

1

y(n− 1)
;

therefore y(n) = 1/n, as claimed. The total s-energy E(n, s) satisfies the relation
E(1, s) = 0, and, for n > 1,

E(n, s) = ρsE(n− 1, s) + (1− ρy(n− 1)− ρ)sE(n, s) + 1

≥ ρsE(n− 1, s) + 1

1− (1− 2ρ)s
≥ ρ(n−2)s

(1 − (1− 2ρ)s)n−1
.

Since ρ is small enough, (1− 2ρ)s ≥ 1− 3ρs and E(n, s) ≥ s1−nρ−Ω(n) for any n large
enough, s ≤ s0, and fixed s0 < 1. We observe that algorithm An cannot start the
second recursive call before the first one is finished, which literally takes forever. This
technicality is easily handled, however, and we skip the discussion. This completes
the proof of the lower bound of Theorem 1.1 for s < 1.

The case s = 1. Suppose that each Gt consists of two nodes joined by an edge.
The length of the edge can be made to shrink by a factor of 1 − 2ρ. We show that
having n agents allows us to mimic the behavior of a two-agent system with ρ replaced
by (roughly) ρn; in other words, contraction can be made to slow down exponentially
in n. Without loss of generality, we assume that n is an even integer 2m ≥ 4. Our
construction is symmetric by reflection along the X-axis about the origin, so we label
the agents −m, . . . ,−1, 1, . . . ,m from left to right and restrict our discussion to the m
agents with positive coordinates. (Equivalently, we could fix one agent.) The evolution
of the system consists of phases denoted by θ = 0, 1, 2, etc. At the beginning of phase
θ, agent i lies at x1(θ) = (1− ρm)θ for i = 1 and at6

xi(θ) = xi−1(θ) + ρi−1(1− ρm)θ

for 2 ≤ i ≤ m. As usual, we assume that ρ > 0 is small enough. The system includes
a mirror image of this configuration about the origin at all times. Note that all the
agents are comfortably confined to the interval [−2, 2], so the diameter D is at most
4.

We now describe the motion at phase θ in chronological order, beginning with
agent m. During phase θ, the first graph Gt (t = θm) consists of two edges: one joins
m and m− 1; the other is its mirror image across x = 0. The last graph in phase θ,
Gt+m−1, follows a different pattern: it joins the two agents indexed 1 and −1. Except
for m, all of these agents (to the right of the origin) are moved twice during phase
θ: first to the right, then to the left. Specifically, agent 1 ≤ i < m moves right at
time t+m− i − 1 and left at time t +m− i. We use barred symbols to denote the
intermediate states, i.e., the location after the rightward motions. At phase θ,

Gt :

{
xm(θ + 1) = αmxm−1(θ) + (1 − αm)xm(θ) = (1− ρm)xm(θ),

x̄m−1(θ) =
1
2xm−1(θ) +

1
2xm(θ) = xm−1(θ) +

1
2ρ

m−1(1− ρm)θ .

We easily verify the identities above for αm = (ρ− ρm+1)/(1− ρ). For i = m− 1,m−
2, . . . , 2, with Gt+m−i joining agents i− 1 and i, the two moves are specified by

Gt+m−i :

{
xi(θ + 1) = αixi−1(θ) + (1 − αi)x̄i(θ) = (1 − ρm)xi(θ) ,

x̄i−1(θ) = (1 − βi)xi−1(θ) + βix̄i(θ) = xi−1(θ) +
1
2ρ

i−1(1− ρm)θ ,

6We deviate slightly from our usual notation by letting the argument of xi(θ) refer to the phase
of the construction and not the time t.
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where βi = 1/(2 + ρ) and

αi =
ρ

2 + ρ
+

2(1− ρi)ρm−i+1

(1− ρ)(2 + ρ)
.

Finally, at time t+m− 1, choosing α1 = (ρ+ 2ρm)/(4 + 2ρ) allows us to write

Gt+m−1 : x1(θ + 1) = −α1x̄1(θ) + (1− α1)x̄1(θ) = (1 − ρm)x1(θ) .

All the coefficients αi are Θ(ρ), so we can rescale ρ by a constant factor to make the
dynamics conform to a standard one-dimensional bidirectional agreement system with
parameter ρ (and likewise ensure unit diameter). Obviously the system converges to
consensus. In each phase θ, the union of the intervals formed by the edges of all of
that phase’s graphs Gt covers [−xm(θ), xm(θ)]; therefore, the total 1-energy is at least

2

∞∑
θ=0

xm(θ) =
2(1− ρm)

1− ρ

∞∑
θ=0

(1− ρm)θ > ρ−m.

This proves the lower bound of Theorem 1.1 for s = 1. For any positive ε < 1/2,
the length of the edge in Gt+m−1, which is 2x1(θ), does not fall below ε until θ is on
the order of ρ−m log 1

ε , which establishes the lower bound of Theorem 1.4. We note
that the first agent oscillates around its initial position by roughly ρ/2 until θ reaches
ρ−Ω(n), so the kinetic 1-energy is, like the total 1-energy, exponential in n.
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