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ABSTRACT
Motivation: Determining protein function is one of the most
important problems in the post-genomic era. For the typical
proteome, there are no functional annotations for one-third
or more of its proteins. Recent high-throughput experiments
have determined proteome-scale protein physical interaction
maps for several organisms. These physical interactions are
complemented by an abundance of data about other types
of functional relationships between proteins, including genetic
interactions, knowledge about co-expression and shared evol-
utionary history. Taken together, these pairwise linkages can
be used to build whole-proteome protein interaction maps.
Results: We develop a network-flow based algorithm, Func-
tionalFlow, that exploits the underlying structure of protein
interaction maps in order to predict protein function. In cross-
validation testing on the yeast proteome, we show that Func-
tionalFlow has improved performance over previous methods
in predicting the function of proteins with few (or no) annot-
ated protein neighbors. By comparing several methods that
use protein interaction maps to predict protein function, we
demonstrate that FunctionalFlow performs well because it
takes advantage of both network topology and some measure
of locality. Finally, we show that performance can be improved
substantially as we consider multiple data sources and use
them to create weighted interaction networks.
Availability: http://compbio.cs.princeton.edu/function
Contact: msingh@princeton.edu

INTRODUCTION
A major challenge in the post-genomic era is to determine
protein function at the proteomic scale. Even the best-studied
model organisms contain a large number of proteins whose
functions are currently unknown. For example, about one-
third of the proteins in the baker’s yeastSaccharomyces
cerevisiae remain uncharacterized. Traditionally, computa-
tional methods to assign protein function have relied largely
on sequence homology. The recent emergence of high-
throughput experimental datasets have led to a number of

∗To whom correspondence should be addressed.

alternative, non-homology based methods for functional
annotation. These methods have generally exploited the
concept of guilt by association, where proteins are func-
tionally linked through either experimental or computational
means.

Large-scale experiments have linked proteins that phys-
ically interact (Ito et al., 2001; Uetzet al., 2000; Gavin
et al., 2002; Hoet al., 2002; Rainet al., 2001; Giotet al.,
2003; Li et al., 2004), that are synthetic lethals (Tonget al.,
2001, 2004) and that are coexpressed (Edgaret al., 2002)
or coregulated (Leeet al., 2002; Harbisonet al., 2004). In
addition, computational techniques linking pairs of proteins
include phylogenetic profiles (Gaasterland and Ragan, 1998;
Pellegriniet al., 1999), gene clusters (Overbeeket al., 1999),
conserved gene neighbors (Dandekaret al., 1998) and gene
fusion analysis (Enrightet al., 1999; Marcotteet al., 1999a).
Perhaps not surprisingly, integrating the information from
several sources provides the best method for linking proteins
functionally (Marcotteet al., 1999b; von Meringet al., 2003a;
Troyanskayaet al., 2003; Jansenet al., 2003; Leeet al., 2004).

Taken together, these functional linkages form large protein
interaction networks, with nodes corresponding to proteins
and edges between any two proteins that are functionally
linked with each other (Fig. 1). It has been postulated that ana-
lysis of these protein interaction maps should provide hints to
the higher-level organization of the cell, and help uncover pro-
tein functions and pathways (reviews, Alm and Arkin, 2003;
Ideker, 2004). We focus here on the problem of predicting
protein function by analyzing proteins as components within
protein interaction networks.

Several groups have attempted to partition interaction net-
works into functional modules that correspond to sets of
proteins that are part of the same cellular function or take part
in the same protein complex. These functional modules, or
clusters, are useful for annotating uncharacterized proteins,
as the most common functional annotation within a cluster
can be transferred to uncharacterized proteins. Proteins in
experimentally and computationally determined interaction
graphs have been grouped together based on shared interac-
tions (Brunet al., 2003; Schlittet al., 2003; Stronget al.,

i302 © The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org

https://compbio.cs.princeton.edu/function


“bti1054” — 2005/6/10 — page 303 — #2

Protein function via analysis of interaction maps

c

a

i

h

g

b

ed f

Fig. 1. A protein interaction graph. Nodes represent proteins and
edges represent interactions between proteins. For example, pro-
tein d interacts with proteinsa,b, c ande. Proteinsa,b, c,g,h and
i (shown in black) are known to take part in the same biological
process, and proteinsd, e andf are unannotated.

2003; von Meringet al., 2003b; Leeet al., 2004), the simil-
arity between shortest path vectors to all other proteins in the
network (Rives and Galitski, 2003) and shared membership
within highly connected components or cliques (Spirin and
Mirny, 2003).

The research described here is more closely related to the
recent attempts to classify proteins according to the functional
annotations of their network neighbors; these methods do
not explicitly cluster proteins. Schwikowskiet al. (2000) use
physical interaction data for baker’s yeast, and predict the bio-
logical process for each protein by considering its neighboring
interactions and taking the three most frequent annotations.
Although such a simple majority vote approach, which we
refer to as Majority, has clear predictive value, it takes only
limited advantage of the underlying graph structure of the
network. For example, in the interaction network given in
Figure 1, Majority would assign functions to proteinsd and
f , but not to proteine, even though our intuition might indic-
ate that proteine has the same function as proteinsd andf ;
there are several examples in the yeast proteome similar to
this one (Schwikowskiet al., 2000). Naturally, one wishes to
generalize this principle to consider functional linkages bey-
ond the immediate neighbors in the interaction graph, both
to provide a systematic framework for analyzing the entirety
of physical interaction data for a given proteome and to make
predictions for proteins with no annotated interaction partners.

Hishigakiet al. (2001) extend Majority by predicting a pro-
tein’s function by looking at all proteins within a particular
radius and finding over-represented functional annotations.
However, this approach, which we refer to as Neighborhood,
does not consider any aspect of network topology within the
local neighborhood. For example, Figure 2 shows two interac-
tion networks that are treated equivalently when considering a
radius of 2 and annotating proteina; however, in the first case,
there is a single link that connects proteina to the annotated
proteins, and in the second case, there are several independ-
ent paths betweena and the annotated proteins, and moreover,
two of these proteins are directly adjacent toa.

Two recent papers (Vazquezet al., 2003; Karaozet al.,
2004) exploit the global topological structure of the interaction
network by annotating proteins so as to minimize the number
of times different annotations are associated with neighboring
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Fig. 2. Two protein interaction graphs that are treated identically by
Neighborhood with radius 2 when annotating proteina. Dark colored
nodes correspond to proteins that are known to take part in the same
process.

proteins. Karaozet al. (2004) additionally consider the case
where edges in physical interaction networks are weighted
using gene-expression data. We refer to this overall approach
as GenMultiCut, as it is a generalization of the well-studied
multiwayk-cut problem in computer science. While GenMul-
tiCut takes into account more global properties of interaction
maps, it does not reward local proximity in the graph. For
example, if only two proteins have annotations in a particu-
lar network, all other proteins will be labeled by one of these
annotations, regardless of the size of the network.

To overcome the weaknesses of previous methods, we intro-
duce an algorithm, FunctionalFlow, for annotating protein
function in interaction networks. FunctionalFlow uses the
idea of network flow, which is dual to the notion of graph
cut (Cormenet al., 1990). Each protein of known functional
annotation is treated as a ‘source’ of ‘functional flow’ which
is then propagated to unannotated nodes, using the edges in
the interaction graph as a conduit. This propagation is gov-
erned by simple local rules. By considering a formulation
based on flow, we can incorporate a distance effect. That
is, the effect of each annotated protein on any other protein
decreases with increasing distance between them. In addi-
tion, network connectivity is exploited, as each edge has a
‘capacity’ and multiple paths between two proteins result pos-
sibly in more flow between them. After simulating the spread
of this functional flow for a fixed number of time steps (so
that flow from a source is restricted to a local neighborhood
around it) we obtain the ‘functional score’ for each protein.
This score corresponds to the amount of flow for that func-
tion the protein has received over the course of simulation.
In contrast to Majority, FunctionalFlow considers functional
annotations from proteins that are not immediate neighbors,
and thus can annotate proteins that have no neighbors with
known annotations. In contrast to Neighborhood, Functional-
Flow considers the underlying topology of the graph, and the
multiple edge-disjoint interaction paths between two proteins
give additional evidence for common function. Finally, in con-
trast to GenMultiCut, FunctionalFlow takes into account the
network locality.

The locality effect in FunctionalFlow is similar in some
ways to the locally constrained diffusion kernel developed
by Tsuda and Noble (2004). However, the flow in the
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FunctionalFlow algorithm is limited by capacities on edges,
and in the context of our method, this prevents proteins
that have the same annotation but have largely overlapping
paths to proteina from exerting too much influence ona.
Moreover, Tsuda and Noble (2004) use the diffusion kernel
with support vector machines, whereas FunctionalFlow is not
a learning method and does not require any training data to
be used.

We compare the performance of FunctionalFlow with
Majority, Neighborhood and GenMultiCut. In the process, we
reformulate the computational problem given by the objective
function of Vazquezet al. (2003) and Karaozet al. (2004) as
an integer linear program (ILP), and as opposed to the previ-
ous two studies, we find optimal (not heuristic) solutions to
the problem using ILP. Since we find optimal solutions, we
directly test the utility of the GenMultiCut objective function.
In addition, we show how to obtain multiple optimal solutions
using ILP, and show that this is one way to incorporate the idea
of distance implicitly within the GenMultiCut framework.
In cross-validation testing on the yeast physical interaction
network, we show that FunctionalFlow outperforms Neigh-
borhood and GenMultiCut, and has better performance than
Majority in predicting the function of proteins with few (or
no) annotated protein neighbors. We estimate that in the
yeast proteome, there are currently∼1200 such unannotated
proteins where FunctionalFlow would make improved predic-
tions over Majority. This number is 2400 for fruit fly, and the
fraction of such proteins should be much higher for less char-
acterized proteomes. Finally, we propose a simple weighting
scheme that captures the variation in reliability of the experi-
mental data that form the basis of the interaction network, and
show that this scheme results in improved performance for all
methods.

Overall, we demonstrate that network analysis algorithms,
such as FunctionalFlow, provide an effective new line of
attack in determining protein function. Moreover, we show
empirically that network analysis algorithms for function
prediction obtain the best performance when incorporat-
ing overall network topology, network distance and edges
weighted by a reliability parameter estimated from multiple
data sources. The FunctionalFlow method we introduce incor-
porates these features and outperforms previously published
methods. Although all of our cross-validation testing has been
on baker’s yeast, FunctionalFlow is likely to be especially
useful in characterizing less-studied proteomes.

MATERIALS AND METHODS
Physical interaction network
We construct the protein–protein physical interaction net-
work using the protein interaction dataset compiled by GRID
(Breitkreutzet al., 2003). The resulting network is a simple
undirected graphG = (V ,E), where there is a vertex or node
v ∈ V for each protein, and an edge between nodesu and

v if the corresponding proteins are known to interact phys-
ically (as determined by one or more experiments). Initially,
we consider a graph with unit-weighted edges, and then con-
sider weighting the edges by our ‘confidence’ in the edge (see
below). The weight of the edge betweenu andv is denoted by
wu,v. For all reported results, we consider only the proteins
making up the largest connected component of the physical
interaction map (4495 proteins and 12 531 physical interaction
links).

Functional annotations
Several controlled vocabulary systems exist for describing
biological function, including Munich Information Center for
Protein Sequences (MIPS) (Meweset al., 2002) and the Gene
Ontology (GO) project (Ashburneret al., 2000). We use the
MIPS functional hierarchy, and consider the 72 MIPS bio-
logical processes that comprise the second level of hierarchy.
Of the 4495 proteins in the largest connected component of
the yeast physical interaction map, 2946 have MIPS bio-
logical process annotations. We also experimented with GO
annotations; the overall conclusions made in this paper are
not affected.

Weighting functional linkages
It is well known that the reliability of different data sources
vary, even if they are based on the same underlying techno-
logy (von Meringet al., 2002; Denget al., 2003; Sprinzak
et al., 2003). In the context of network-based algorithms, it is
possible to weight edges so as to model the reliability of each
interaction. For physical interactions, this reliability is in turn
based on the experimental sources that contribute to our know-
ledge about the existence of the interaction. To determine these
values, we separate all experimental sources of physical inter-
action data into several groups, placing each high-throughput
dataset into a separate group (five groups corresponding to
each of Itoet al., 2001, 2000; Fromont-Racineet al., 1997;
Uetz et al., 2000; Gavinet al., 2002; Hoet al., 2002), and
allocating one group for the family of all specific experiments.
For each group of experiments, we compute what fraction of
its interactions connect proteins with a known shared func-
tion. We assume that the reliabilities of different sources are
independent, and thus conclude by estimating the reliabil-
ity of an interaction to be the noisy-or of the unreliability of
the underlying data sources. That is, ifri is the reliability of
experimental groupi, we compute the reliability of the edge
by 1− �i(1− ri), where the product is taken over all experi-
mentsi where this interaction is found. This treats eachri as a
probability and assumes independence; this approach is very
similar to the one taken by von Meringet al. (2003a).

We also consider augmenting the interaction network by
considering genetic interactions from GRID (Breitkreutz
et al., 2003). Almost all of these interactions are synthetic
lethals, and the weighting scheme can be immediately exten-
ded to this network by treating the new types of interactions
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as an additional experimental source. Thus, our weighting
scheme gives us a way of integrating data of different types in
addition to integrating different sources of data of one type.

Cross-validation testing and evaluation
We test the performance usingn-fold cross-validation, i.e. the
yeast proteome is divided inton groups, and each group, in
turn, is separated from the original dataset and used for test-
ing. The goal of each method is to predict the annotations
of the proteins in the test set using the functional annota-
tions of the remaining proteins. We performed experiments
with 2-, 3-, 5- and 10-fold cross-validation. All our cross-
validation testing gives qualitatively similar results. We report
our findings using a 2-fold cross-validation, as baker’s yeast
is the most extensively studied organism, and 2-fold cross-
validation better represents what one may expect to see in
other organisms.

We evaluate the performance of the algorithms by consid-
ering, for each protein in the test set, whether the top scoring
prediction above some threshold is a known functional annota-
tion (true positive, TP) or not (false positive, FP). In the case
of multiple predictions, the TP versus FP status is tricky. For
example, we may choose to count a prediction for a protein
as a TP if at least one of the predictions made for it is cor-
rect, and as a FP otherwise. However, a method that predicts
every protein to participate in every function would only have
TPs in this framework. Alternatively, we could count a pro-
tein as a TP if every prediction made for it is correct. This,
however, would count as FPs those proteins that get many
correct predictions and only one incorrect one. We settle for a
compromise approach, in which we count a protein’s predic-
tion as a TP if more than half of the predictions made for it
are correct and as a FP otherwise. All results will be reported
using this interpretation of TP and FP, and we use a variant
of receiver operating characteristic (ROC) curves, where we
plot the number of TPs as a function of the number of FPs as
we vary the scoring threshold.

ALGORITHMS
Majority
We consider all neighboring proteins and sum up the number
of times each annotation occurs for each protein as described
in Schwikowskiet al. (2000). In the case of weighted interac-
tion graphs, we simply extend the method by taking a weighted
sum instead. For each protein, the score of a particular function
is the corresponding sum.

Neighborhood
For each protein, we consider all other proteins within a
radius r as described in Hishigakiet al. (2001), and then
for each function, we use aχ2-test to determine if it is
over-represented. For each protein, the score of a particular
function is given by the value of theχ2-test. Neighborhoods

of radius 1, 2 and 3 are considered. This method does
not extend naturally to the case of weighted interaction
graphs.

GenMultiCut
Two groups of researchers have suggested that functional
annotations on interaction networks should be made in order to
minimize the number of times different annotations are associ-
ated with neighboring proteins (Vazquezet al., 2003; Karaoz
et al., 2004). Vazquezet al. (2003) use simulated annealing in
an attempt to minimize this objective function and aggregate
results from multiple runs, whereas Karaozet al. (2004) use
a deterministic approximation, and consider the case where
edges are weighted using gene expression information. As
mentioned earlier, the formulation in these two studies is sim-
ilar to the minimum multiwayk-cut problem. In multiway
k-cut, the task is to partition a graph in such a way that each
of k terminal nodes belongs to a different subset of the parti-
tion and so that the (weighted) number of edges that are ‘cut’
in the process is minimized. In the more general version of
the multiwayk-cut problem considered here, the goal is to
assign a unique function to all the unannotated nodes so as to
minimize the sum of the costs of the edges joining nodes with
no function in common.

Our implementation of GenMultiCut Although minimum
multiway k-cut is NP-hard (Dahlhauset al., 1994), we have
found that the particular instances of minimum multiway
cut arising here can, in practice, be solved exactly when
stated as an ILP. We introduce a node variablexu,a for each
protein u and functiona. This variable will be set to 1 if
proteinu is predicted to have functiona. If a proteinu has
known functional annotations, variablexu,a is fixed as 1 for
its known annotationsa and as 0 for all other annotations.
We also introduce an edge variablexu,v,a for each function
a and each pair of adjacent proteinsu and v. This vari-
able is set to 1 if both proteinsu andv are annotated with
functiona. Minimizing the weighted number of neighboring
proteins with different annotations is the same as maximiz-
ing the number with the same annotation, and so we have the
following ILP:
maximize

∑
(u,v)∈E,a∈FUNC

xu,v,awu,v

subject to∑
a

xu,a = 1 if annot(u) = ∅
xu,a = 1 if a ∈ annot(u)

xu,a = 0 if a /∈ annot(u), annot(u) �= ∅
xu,v,a ≤ xu,a for (u,v) ∈ E anda ∈ FUNC
xu,v,a ≤ xv,a for (u,v) ∈ E anda ∈ FUNC
xu,v,a ,xu,a ∈ {0, 1} for all u, v anda.

Here, annot(u) is the set of known annotations for protein
u, and FUNC = ∪uannot(u) is the set of all functional
annotations. The first constraint specifies that exactly one
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Fig. 3. Proteinsx1 andx8 are annotated with functionsF1 andF2,
respectively. There are seven ways to annotate proteins so that there
is only one edge that connects proteins with different annotations.
However, proteins farther away from proteinx1 are less likely to have
functionF1 than those closer tox1. GenMultiCut does not take into
account such distance effects.

functional annotation is made for any protein. The second
and third constraints ensure that if proteinu is annotated with
function a,xu,a is set as a constant to 1, and if proteinu is
annotated but not with functiona,xu,a is set as a constant
to 0. The third and fourth constraints ensure that a particular
function is picked for an edge only if it is also chosen for the
corresponding proteins.

Considering multiple GenMultiCut optimal solutions An
important consideration in this framework is the existence
of multiple optimal solutions. For example, the network in
Figure 3 has seven minimum cuts of value 1, and while the
GenMultiCut criterion does not favor any one cut over the
other, if we find all optimal cuts for this graph, we observe
thatx2 is in fact annotated withF1 more often than withF2 in
the assignments made by these cuts. Thus, a sense of distance
to annotated nodes is in fact present in the set of all optimal
solutions.

The simulated annealing method of Vazquezet al. (2003)
implicitly utilizes this information about multiple solutions.
Vazquezet al. (2003) ran simulated annealing 100 times, and
predicted for each protein the function that is assigned to it
most often. If each run does indeed converge to an optimal
solution, considering multiple runs amounts to sampling from
the space of optimal solutions.

We deliberately attempt to sample from the space of optimal
solutions. We explore two approaches for ensuring that
multiple solutions are obtained by the solver. In the solution-
exclusion approach, we add constraints to the ILP which
require that each consecutive solution is different from any
previous solution in the value it assigns to at least 5% of the
node variablesxu,a . For the weighted yeast physical interac-
tion graph, the first 50 solutions obtained with this restriction
are all optimal. Note that in this approach, each successive
solution takes longer to find. In the random weight perturb-
ation approach, we introduce uniform self-weightswu,a for
each proteinu and functiona. These self-weights are then
perturbed by adding a very small offset to each, drawn at ran-
dom from the uniform distribution on (−0.00001, 0.00001).
We now modify the objective function in the ILP given above
to maximize∑

(u,v)∈E,a∈FUNC

xu,v,awu,v +
∑

u∈V,a∈FUNC

xu,awu,a .

The perturbation in weights is too small to change the solution
to the underlying problem, but it does cause the solver to
choose a different optimal solution each time. Both methods
perform very similarly in the accuracy of predictions made.
For the reported results, we use the latter method for obtaining
multiple solutions.

We let the score for assigning a function to a protein be
the number of times this function is assigned to the pro-
tein among the obtained solutions. We ran the ILP 50 times,
and thus, there are 51 possible scores (0–50) for any func-
tion for any protein. One solution to the ILP problem on the
yeast interaction network with annotations for 50% of the pro-
teins cleared can be obtained by AMPL (Foureret al., 2002)
and CPLEX (http://www.ilog.com/products/cplex/; ILOG
CPLEX, 2000) in∼5 min when running on a public UNIX
machine.

FunctionalFlow
The functional flow algorithm generalizes the principle of
‘guilt by association’ to groups of proteins that may or may not
interact with each other physically. We achieve this by treat-
ing each protein of known functional annotation as a ‘source’
of ‘functional flow’ for that function. After simulating the
spread over time of this functional flow through the neigh-
borhoods surrounding the sources, we obtain the ‘functional
score’ for each protein in the neighborhood; this score cor-
responds to the amount of ‘flow’ that the protein has received
for that function, over the course of the simulation. The func-
tional flow-based model allows us to incorporate a distance
effect, i.e. the effect of each annotated protein on any other
protein depends on the distance separating these two proteins.
Running this process for each biological function in turn, we
obtain, for each protein, the score for each function (the score
may be 0 if the flow for a function did not reach that protein
during the simulation). Thereupon, for any protein, we take
the functions for which the highest score was obtained as its
predicted functions.

More specifically, for each function in turn, we simulate
the spread of functional flow by an iterative algorithm using
discrete time steps. We associate with each node (protein)
a ‘reservoir’ which represents the amount of flow that the
node can pass on to its neighbors at the next iteration, and
with each edge, a capacity constraint that dictates the amount
of flow that can pass through the edge during one iteration.
The capacity of an edge is taken to be its weight. Each itera-
tion of the algorithm updates the reservoirs using simple local
rules: a node pushes the flow residing in its reservoir to its
neighbors proportionally to the capacities of the respective
edges and subject to further constraints that the amount of flow
pushed through an edge during an iteration does not exceed
the capacity of the edge, and that flow only spreads ‘downhill’
(i.e. from proteins with more filled reservoirs to nodes with
less filled reservoirs). Finally, at each iteration, an ‘infinite’
amount of flow is pumped into the source protein nodes; thus,
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the sources always have enough flow in their reservoir to fill
the capacity of their outgoing edges.

The functional score is the amount of flow that has entered a
protein’s reservoir in the course of all iterations. Since the flow
is pumped into the sources at each step, the amount of flow a
node receives from each source is greater for nodes that are
closer to that source than for nodes that are farther away from
it. Thus, a source’s immediate neighbor in the graph receives
d iterations worth of flow from the source, whereas a node that
is two links away from the source receivesd − 1 iterations
worth of flow. Similarly, the number of iterations for which
the algorithm is run determines the maximum shortest-path
distance that can separate a recipient node from a source in
order for the flow to propagate from the source to the recipient.
In the context of protein interaction, a relatively small number
of iterations is sufficient. We choosed = 6, which is half the
diameter of the yeast physical interaction network.

More formally, for each proteinu in the interaction network,
we define a variableRa

t (u) that corresponds to the amount in
the reservoir for functiona that nodeu has at timet . For each
edge(u,v) in the interaction network, we define variables
ga

t (u,v) andga
t (v,u) that represent the flow of functiona at

timet from proteinu to proteinv, and from proteinv to protein
u. We will run the algorithm ford time steps or iterations. At
time 0, we only have reservoirs of functiona at annotated
nodes:

Ra
0(u) =

{ ∞, if u is annotated witha,
0, otherwise.

At each subsequent time step, we recompute the reservoir
of each protein by considering the amount of flow that has
entered the node and the amount that has left:

Ra
t (u) = Ra

t−1(u) +
∑

v:(u,v)∈E

(
ga

t (v,u) − ga
t (u,v)

)
.

Initially, at time 0, there is no flow on the edges, and
ga

0(u,v) = 0. At each subsequent time step, we have the flow
proceeding downhill and satisfying the capacity constraints:

ga
t (u,v) =

{
0, if Ra

t−1(u)<Ra
t−1(v)

min
(
wu,v, wu,v∑

(u,y)∈E wu,y

)
, otherwise.

Finally, the functional score for nodeu and functiona over
d iterations is calculated as the total amount of flow that has
entered the node:

fa(u) =
d∑

t=1

∑
v:(u,v)∈E

ga
t (v,u).
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Fig. 4. ROC analysis of Majority, Neighborhood, GenMultiCut and
FunctionalFlow on the yeast unweighted physical interaction map.

RESULTS AND DISCUSSION
Comparison of four basic methods on the
unweighted physical interaction map
We compare the performance of Majority, Neighborhood,
GenMultiCut and FunctionalFlow on the unweighted yeast
physical interaction map, using a 2-fold cross-validation.
Figure 4 plots as a function of FP the number of TPs each
method predicts (i.e. these graphs are obtained by varying the
scoring threshold for each of the methods). The Functional-
Flow algorithm identifies more TPs over the entire range of
FPs than either GenMultiCut or Neighborhood using radius
1, 2 or 3. FunctionalFlow performs better than Majority when
proteins are not directly interacting with at least three proteins
of the same function; this is evident from Figure 4 since the
score for Majority counts up the most frequent neighboring
annotation (e.g. the rightmost point for Majority corresponds
to proteins whose highest functional scores are one). Thus,
FunctionalFlow is the method of choice when considering
proteins that do not interact with many annotated proteins.
Even in well-characterized proteomes, such as baker’s yeast,
there are∼1200 proteins that have fewer than three annotated
neighbors.

The Neighborhood algorithm performs similarly with either
radius 1 or 2 in the high-confidence region (i.e. corresponding
to a low FP rate, given in left-most portion of the ROC curve).
However, radius 1 (i.e. considering just direct interactions)
has better overall performance than radius 2 or 3, demonstrat-
ing that Neighborhood’s strategy of ignoring topology is not
optimal. Moreover, comparing Majority with Neighborhood
using radius 1 demonstrates that theχ2-test is not as effective
in scoring as just summing up the number of times a particular
annotation occurs in the neighboring proteins.

Since the score for GenMultiCut comes from multiple solu-
tions to the underlying optimization problem, each point in
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Figure 4 for GenMultiCut corresponds to the proteins that
are annotated with a particular function the same number
of times. For example, the leftmost point for GenMultiCut
corresponds to proteins where the top scoring functional pre-
diction is found in each of the 50 solutions found. If we were to
find just one optimal GenMultiCut solution, its performance
in terms of TPs and FPs is comparable to the rightmost point
for GenMultiCut (data not shown).1 Thus, multiple solutions
for GenMultiCut are necessary to identify its most confident
predictions, and as pointed out earlier, these multiple solutions
capture some notion of locality in the graph.

Vazquezet al. (2003) report in their paper improved per-
formance for GenMultiCut over Majority for proteins with
degree>1. Their measure of success is the fraction of times
the top prediction for each protein is correct. Although they
do not specify how they deal with multiple top predictions,
we note that this measure corresponds to computing TPs and
FPs for the rightmost points in Figure 4 for each of the meth-
ods. Assuming that the top predictions for each protein are
treated separately, and that failure to make a prediction for
a protein corresponds to an incorrect prediction, the top pre-
dictions for proteins with degree>1 are correct 0.267 of the
time for Majority. These values are 0.242 for Neighborhood
with radius 1, 0.188 for Neighborhood with radius 2, 0.297
for GenMultiCut and 0.311 for FunctionalFlow. Although we
believe ROC curve analysis gives a more complete picture of
performance, FunctionalFlow performs better than the other
methods using this measure. Moreover, we tested the perform-
ance of all methods clearing a smaller fraction of the annotated
proteins. In a 10-fold cross-validation (i.e. where only 10% of
the yeast annotations are cleared), GenMultiCut has a slight
advantage (25 proteins out of∼2500) over FunctionalFlow
in the very low-confidence region; all other observations are
qualitatively the same as for 2-fold cross-validation.

Reliability and data integration
To evaluate our approach for modeling physical interac-
tion reliability as edge weights, we test the performance of
FunctionalFlow using three ways of assigning physical inter-
action weights. First, we assign each edge a unit weight;
this corresponds to the unweighted physical interaction map
used above. Second, we assign each experimental source
a reliability score of 0.5; this rewards interactions that are
found by more than one experiment. Finally, we assign each
experimental source the predictive value (estimated in cross-
validation) as described in the Materials and Methods section;
here, edges obtained from multiple, more reliable experi-
ments are given higher weights. Figure 5 shows that rewarding
multiple experimental evidence is beneficial, but that the
main advantage comes from taking into account the actual
reliability values for the different experiments.

1It is not precisely the rightmost point in Figure 4 since this point aggregates
solutions from multiple runs.
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Figure 6 shows how Majority, GenMultiCut and Func-
tionalFlow perform on the yeast physical interaction map,
where edges are weighted by individual experimental reliabil-
ity. The baseline performance of Majority on the unweighted
physical interaction graph is also shown. There is substan-
tial improvement in predictions using all three methods when
incorporating edges weighted by reliability.

We further explored whether the network analysis
algorithms would perform well when other types of experi-
mental information are added. As a proof of principle, we
explore the effect of adding genetic linkages to the graph.
Reliabilities for genetic interactions are estimated as described
earlier, and incorporated into the edge weights. Figure 7 shows
the performance of FunctionalFlow on the weighted physical
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Fig. 7. Comparison of functional predictions of FunctionalFlow
when considering (1) the physical interaction map weighted by exper-
imental source reliability and (2) the integrated physical and genetic
interaction map.

interaction network and the weighted physical and genetic
interaction network. As is evident, adding genetic interac-
tion data significantly improves prediction quality. Major-
ity and GenMultiCut show similar improvements (data not
shown).

CONCLUSIONS
We have shown that our network analysis algorithm Func-
tionalFlow provides an effective means for predicting protein
function from protein interaction maps. Our algorithm util-
izes indirect network interactions, network topology, network
distances and edges weighted by reliability estimated from
multiple data sources. However, we have also shown that
the simplest methods, such as Majority, perform well if there
are enough direct neighbors with known function. In the
present work, simple independence assumptions are made for
estimating the reliability of interactions. Although these work
reasonably well, it may be even more beneficial to use a more
sophisticated approach for weight assignment and perform
more complete data integration. Finally, although we have
applied our method to baker’s yeast, FunctionalFlow is likely
to be especially useful when analyzing less characterized
proteomes.
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