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Side chain positioning is an important subproblem of the general protein-structure-prediction problem, with
applications in homology modeling and protein design. The side chain positioning problem takes a fixed

backbone and a protein sequence and predicts the lowest energy conformation of the protein’s side chains on
this backbone. We study a widely used version of the problem where the side chain positioning procedure uses
a rotamer library and an energy function that can be expressed as a sum of pairwise terms. The problem is
NP-complete; we show that it cannot even be approximated. In practice, it is tackled by a variety of general
search techniques and specialized heuristics. Here, we propose formulating the side chain positioning problem
as an instance of semidefinite programming (SDP). We introduce two novel rounding schemes and provide
theoretical justification for their effectiveness under various conditions. We apply our method on simulated
data, as well as on the computational redesign of two naturally occurring protein cores, and show that our
SDP approach generally finds good solutions. Beyond the context of side chain positioning, our very general
rounding schemes should be applicable elsewhere.
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1. Introduction
A central problem in molecular biology is that of
predicting a protein’s three-dimensional fold when
given only its one-dimensional amino-acid sequence.
This is an important problem because the structure
of a protein plays a critical role in its function, and
while the number of known protein sequences is
growing rapidly, their corresponding protein struc-
tures are being determined at a significantly slower
pace. Despite decades of work, the problem of pre-
dicting the 3D structure of a protein from its amino-
acid sequence remains unsolved. Here, we consider
the side chain positioning (SCP) problem, a challeng-
ing and important component of the general protein-
structure-prediction problem.

1.1. Further Background
A protein molecule is formed from a chain of amino
acids. Each amino acid consists of a central carbon
atom, and attached to this carbon is a hydrogen atom,
an amino group (NH2), a carboxyl group (COOH),
and a side chain that characterizes the amino acid.
Side chains vary in composition. For example, the side
chain for the amino acid glycine consists of a single
hydrogen atom, and the side chain for the amino acid

alanine consists of a carbon atom with three hydro-
gen atoms attached. The amino acids of a protein are
connected in sequence with the carboxyl group of one
amino acid forming a peptide bond with the amino
group of the next amino acid. This forms the pro-
tein backbone, and the repeating amino-acid units (also
called residues) within the protein consist of both the
main chain atoms that comprise the backbone as well
as the side chain atoms.
There are 20 commonly occurring amino acids,

and each protein molecule is specified by a sequence
corresponding to the amino acids that make it up.
Whereas a protein’s sequence immediately reveals
its chemical composition, its structure is significantly
more difficult to determine. The structure of a pro-
tein is specified by the coordinates of its main chain
and side chain atoms, and it is generally believed that
a protein’s native structure corresponds to its global
free-energy minimum. An approach to predicting pro-
tein structure computationally is thus to start with the
protein’s amino-acid sequence, specify an appropri-
ate energy function, and find the conformation that
minimizes the energy function. Protein structures are
difficult to predict due to inaccuracies in energy func-
tions as well as the infeasibility of computationally
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searching over all possible conformations; in prac-
tice, predictions are often made by settling for sub-
optimal solutions when considering imperfect energy
functions.
In this paper, we focus on the computational issues

involved in protein-structure prediction and consider
the problem where the structure of a protein’s back-
bone is known, and the goal is to predict the coor-
dinates of its side chains atoms. More specifically, in
SCP, one is given a fixed backbone and a protein
sequence, and the task is to predict the best confor-
mation of the protein’s side chains on the backbone.
The problem is made discrete by the observation
that in actual protein structures, side chains tend
to occupy one of a small number of conformations
(Ponder and Richards 1987), called rotamers. These
rotamers are identified by finding frequently occur-
ring side chain conformations in databases of protein
structures, and common conformations for each side
chain are collected into rotamer libraries (Dunbrack
and Karplus 1993). The total energy of the molecule
is expressed as a sum of pairwise energies between
atoms (i.e., when computing energies, only two atoms
are considered at a time). SCP can then be formulated
as a combinatorial-optimization problem: choose a
rotamer for each side chain such that the overall
energy of the molecule is minimized (see §2).

1.2. Applications
This formulation of SCP is the basis of some of the
more successful methods for protein design (Dahiyat
and Mayo 1997) and homology modeling (Lee and
Subbiah 1991). In protein design, the goal is to find
the sequence of amino acids that will fold into a
given shape. This is often reduced to SCP by the
following method: rather than specifying exactly the
amino acid at each position, we allow the optimiza-
tion problem to choose among rotamers from several
different types of amino acids at each position. The
optimization problem is solved and the amino acid
that corresponds to the rotamer that was chosen at
position i is taken to be the ith amino acid in the
sequence. This sequence is the one that best fits this
backbone, and thus, it is hoped, will fold into this
shape. This approach has led to some dramatic suc-
cesses in protein design, including the design of a 28-
residue zinc finger domain that folds in the absence
of zinc (Dahiyat and Mayo 1997). We computationally
redesign two naturally-occurring proteins in §4.
Homology modeling is used to predict the struc-

ture of a protein when there is another protein of
known structure with which it shares high sequence
similarity. In this case, the two proteins almost always
have a similar overall shape, and thus the protein
of known structure can provide a reasonable tem-
plate backbone for the protein under investigation.

The fixed-backbone formulation of SCP we study
here is the basis of several widely-used and success-
ful homology-modeling packages (e.g., Bower et al.
1997).

1.3. Related Work
SCP is NP-complete (Pierce and Winfree 2002), and,
as we show here, inapproximable. However, there
has been progress on both exhaustive and heuris-
tic techniques for this problem. Within the past 12
years, a series of papers on dead-end elimination (DEE)
(Desmet et al. 1992, 1994; Goldstein 1994; Lasters et al.
1995; Gordon and Mayo 1998) have given rules for
throwing out rotamers that cannot possibly be in
the optimal solution. Special-purpose heuristic search
techniques for specific energy functions have been
successfully applied, e.g., as in the SCRWL package
(Bower et al. 1997). More general search methods such
as simulated annealing, (see e.g., Lee and Subbiah
1991), A∗ (Leach and Lemon 1998), and mean-field
optimization (Lee 1994) have also been applied.
More recently, the side chain positioning problem

has been formulated as an integer linear program
(Althaus et al. 2000, Eriksson et al. 2001), where a
relaxed linear program (LP) is used as a subroutine
to find optimal solutions to the problem, using either
branch and bound or branch and cut.

1.4. Main Contributions
We characterize the complexity of SCP by show-
ing that it is NP-hard to approximate the minimum
energy to within a factor of cn, where n is the total
number of possible rotamers and c is a positive con-
stant; that is, in the worst case, it is hard to find even
an approximate solution with any kind of theoretical
guarantee. This result is given in §5.
The crux of this paper describes a semidefinite pro-

gramming (SDP) heuristic for SCP. In contrast to the
provable hardness of the problem, empirical studies
show that, in practice, our SDP approach finds good
solutions. By relying on SDP, we can take advan-
tage of the extensive research directed at the general
problem, including off-the-shelf solvers. The methods
that use LP have a similar advantage; however, those
methods are typically used in the context of branch
and bound and branch and cut, whereas our approach
runs in polynomial time.
Our method works in three steps: First, relax the

SCP problem into an instance of SDP; next, solve it in
polynomial time by an interior-point method; finally,
convert the solution into 0/1 form by randomized
rounding (Raghavan and Thompson 1987, Rolim and
Trevisan 1998). This general approach for approxima-
tion algorithms was pioneered by Lovász’s ground-
breaking work on the � function (Grötschel et al.
1993, Lovász 1979) and the ingenious Max-Cut algo-
rithm of (Goemans and Williamson 1995), and it
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has been pursued further since (e.g., Frieze and
Jerrum 1997, Alon and Kahale 1998, Feige and Kilian
1998, Karger et al. 1998, Bertsimas and Ye 1998, Zwick
1999).
To convert the fractional SDP solutions into rotamer

choices for the original SCP problem, we introduce
two new techniques for randomized rounding. These
are general techniques that may have applicability
beyond the SCP problem. The first technique, projec-
tion rounding, is based on the geometry of the solution
vectors, and the second, Perron-Frobenius rounding, is
based on spectral properties of the solution matrix.
Our Perron-Frobenius rounding scheme approximates
the solution matrix by the eigenvector corresponding
to its highest eigenvalue. This is, of course, a stan-
dard trick (see, e.g., Donath and Hoffman 1972, Bop-
pana 1987, Benson et al. 1999); however, our Perron-
Frobenius rounding is different in that we decompose
a matrix that does not have a graph-theoretic inter-
pretation, and we rely crucially on the positivity of
the entries of its highest eigenvector.
In light of the inapproximability result, no round-

ing scheme should have good performance on all
instances; however, we provide some theoretical justi-
fication for good performance on some types of input.
We argue that under various assumptions about the
statistical nature of the problem, the expected differ-
ence (the drift) between the total energies given by
the optimal fractional solution and our randomized
rounding integral solutions is small.
We have applied our method to redesign computa-

tionally the cores of two naturally occurring proteins,
the Bacillus caldolyticus cold-shock protein and the
TIM barrel triose phosphate isomerase from chicken.
We have also experimented successfully on general
random graphs as well as a class of random graphs
that better capture the geometry of actual proteins.
Because LP-based approaches for SCP are effective in
practice (Althaus et al. 2000), we compare our method
to LP; this comparison highlights the benefits of SDP’s
additional computational machinery. Our empirical
studies show that, in practice, good solutions to SCP
are found by our two randomized rounding schemes.
Additionally, we note that because SDP provides bet-
ter lower bounds than does LP for the underlying SCP
problem, it is a more effective bounding function for
branch and bound or branch and cut (Eriksson et al.
2001, Althaus et al. 2000) approaches.
Independently, Lau (2002) and Lau and Watanabe

(1996) applied semidefinite programming and ran-
domized rounding to the more restricted problem of
weighted constraint satisfaction; this is a special case
of the SCP problem considered here. They also give
an inapproximability result that is weaker than ours
in the general case.

At present, SDP solvers are limited to solving small
problems. However, as SDP approaches are increas-
ingly being applied to combinatorial-optimization
problems, SDP solvers continue to improve. As larger
proteins and rotamer libraries are considered, exhaus-
tive techniques (such as branch and bound or A∗)
may be limited by their potentially exponential run-
ning time. In contrast, our semidefinite programming
approach runs in polynomial time, so the approaches
developed in this paper, which we show work well
on problems of interest, may have broad applicability.
Finally, as opposed to other heuristic techniques (such
as simulated annealing), as more is discovered about
the nature of SCP applications in practice, our SDP for-
mulation permits the development of other rounding
schemes that better exploit the real-world statistical
properties of the problem.

2. Problem Formulation
The version of the side chain positioning problem
we study is as follows: given a backbone, a protein
sequence, a rotamer library, and a pairwise energy
function, choose a rotamer for each amino acid side
chain such that the overall energy is minimized.
More formally, the SCP problem can be stated as fol-
lows (Desmet et al. 1992). Given a fixed backbone of
length p, each residue position i is associated with a
set of possible candidate rotamers �ir 	. In the design
problem, this set may include rotamers from sev-
eral kinds of amino acids. Once a single rotamer for
each residue position has been chosen, the energy
of a protein system is given by the formula � =
E0+

∑
i E�ir �+

∑
i<j E�ir js�, where E0 is the self-energy

of the backbone, E�ir � is the energy resulting from
the interaction between the backbone and the cho-
sen rotamer ir at position i as well as the intrinsic
energy of rotamer ir , and E�ir js� accounts for the pair-
wise interaction energy between chosen rotamers ir
and js . In this discretized setting, the placement of
each side chain is reduced to assigning a rotamer to
every position so that the overall energy of the sys-
tem is minimized. This assignment is called the global
minimum-energy conformation (GMEC).
It is convenient to reformulate the SCP problem

in graph-theoretic terms. Let G be an undirected
p-partite graph with node set V1 ∪ · · · ∪ Vp, where Vi

includes a node u for each rotamer ir at position i;
the Vi’s may have varying sizes. Each node u of Vi

is assigned a weight Euu = E�ir �; each pair of nodes
u ∈ Vi and v ∈ Vj (i �= j), corresponding to rotamers ir
and js respectively, is joined by an edge with a weight
of Euv = E�ir js�. Zero-weight edges can be thought
of as equivalent to the absence of an edge, and the
node weights can be modeled as self-loop edges. The
GMEC is achieved by picking one node per Vi to min-
imize the weight of the induced subgraph.
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3. A Semidefinite Programming
Heuristic

In this section we present a formulation of the SCP
problem as a semidefinite program.
Given a graph G with node set V = V1� � � � �Vp,

assign to each u ∈ V a 0/1 variable xu. The intu-
ition is that xu will be 1 if rotamer u is selected, and
0 otherwise. Computing the GMEC is equivalent to
solving the following integer-quadratic-programming
problem:

Minimize
∑

�u�v�∈G
Euvxuxv (1)

subject to
∑
u∈Vi

xu = 1 for i= 1� � � � � p (1a)

xu ∈ �0�1	�
We rewrite the program (1) into a form that will be
more convenient to relax into a semidefinite program
with as few constraints as possible. Add a new posi-
tion with an isolated vertex u0 to G and define its
singleton vertex set V0 = �u0	. The constraints (1a)
applied to this position imply xu0 = 1. We square both
sides of (1a) and, using the fact that xu ∈ �0�1	, we add
two new sets of constraints to obtain the equivalent
program

Minimize
∑

�u�v�∈G
Euvxuxv (2)

subject to
∑

u�v∈Vi
xuxv=1 for i=0�����p

∑
u∈Vi

xu0xu=1 for i=0�����p

xuxu=xu0xu and xu∈�0�1	 for all u�

The relaxation step lifts each xu to �n, where n is the
number of nodes in G (including the dummy node),
scalar multiplication is replaced by the dot product,
and the requirement xu ∈ �0�1	 is replaced by 0 ≤
xTu xv ≤ 1, for all u and v. Quadratic programming
is NP-hard in general, but this relaxed system is an
instance of positive semidefinite programming, and
it can be solved efficiently. To see that, we linearize
all the constraints by introducing the variable xuv to
denote xTu xv. To ensure that this linearization is not a
relaxation, we require that the n× n matrix X = �xuv�
be positive semidefinite (PSD). We also note that the
constraints xTu xv ≤ 1 are redundant because X is PSD
and the diagonal elements are ≤1. Thus, we get
Minimize

∑
�u�v�∈G

Euvxuv (3)

subject to xuu = xu0u and xuv ≥ 0 for all u�v∑
u∈Vi

xu0u =
∑

u�v∈Vi
xuv = 1 for i= 0� � � � � p

X is PSD�

We can solve the SDP system (3) in polynomial time
to within any level of accuracy by using the ellipsoid
algorithm (see e.g., Grötschel et al. 1993) or, prefer-
ably, an interior-point method (see e.g., Alizadeh 1995,
Nesterov and Nemirovskii 1993, Vandenberghe and
Boyd 1996).
Next, we must map each vector xu to x̂u ∈ �0�1	

so that
∑

u∈Vi x̂u = 1 and so that, ideally, the expected
increase in the value of the objective function, the
drift, is small. We discuss two rounding schemes, both
of which fit the basic format of randomized rounding
(Raghavan and Thompson 1987). The idea is to specify
a probability distribution for each position and home
in on a solution by sampling from it. We describe two
distributions, one based on projection, the other on
spectral approximation. The first one is very simple
and easy to implement; the second one requires only
slightly more work. See §4 for some empirical com-
parisons of the two rounding methods. The follow-
ing characterization of the geometry of the solution
vectors will be useful when we discuss the rounding
schemes.

Lemma 3.1. If X = �xuv� is a solution to (3) where
xuv = xTu xv for vectors xu�xv, then all the vectors

∑
u∈Vi xu

are equal to xu0 , and each xu belongs to the unit-diameter
sphere with antipodes O (the origin) and xu0 .

Proof. Fix i ≥ 0 and let y = ∑
u∈Vi xu. The con-

straints imply that 
y
22 = ∑
u�v∈Vi xuv = 1. Mean-

while, the inner product of y and xu0 is equal to∑
u∈Vi xu0u = 1. We also have xTu0xu0 = 1. Because their

lengths are the same and equal to the projections onto
one another, it follows that y = xu0 for all i. Now, take
any node u ∈ Vi. Observe that

∥∥∥∥xu− xu0
2

∥∥∥∥
2

2

= xuu− xu0u+
1
4
= 1
4
�

where xuu = xu0u follows directly from the constraints.
Therefore, xu belongs to the sphere centered at xu0/2 of
radius 1/2. This sphere passes through the two points
O and xu0 , which are antipodal. �

We will compare our semidefinite program to the
LP relaxation of the following integer program (IP):

Minimize
∑

�u�v�∈G
Euvxuv (4)

subject to
∑
u∈Vi

xuu=1 for i=1�����p
∑
u∈Vi

xuv=xvv for i=1�����p and any v

xuv∈�0�1	�
This LP formulation of SCP is similar to those pro-
posed by (Eriksson et al. 2001) and (Althaus et al.
2000). The benefit of our SDP formulation over the
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LP formulation is twofold. First, our relaxation is
more constrained so its solution is closer to that of
the integer program. The SDP formulation generates
second moments between the nodes (Bertsimas and
Ye 1998), and our Perron-Frobenius rounding scheme
will implicitly make use of them. Second, the solu-
tions are vectors and not scalars. This gives us much
more freedom in the rounding phase of the algorithm
and allows for effective use of the geometry of the
problem. We will compare our semidefinite program
to this LP and the optimal solution in §4.

3.1. Projection Rounding
This scheme is based on the fact that the constraints
guarantee that

∑
u∈Vi 
xu
22 = 1 for any 1 ≤ i ≤ p, so

that the quantities qu = 
xu
22 associated with the
nodes u of Vi form a valid probability distribution
from which we can sample effectively.
• The rounding rule: For each 1 ≤ i ≤ p, choose

u ∈ Vi at random with probability qu.
Note that only one u is chosen per Vi. This is called

projection rounding because the probability of choos-
ing u is equal to xuu = xu0u, which is the length of the
projection of xu onto xu0 . By looking at the geometry
of the SDP formulation in a manner similar to (Alon
and Kahale 1998, Feige and Kilian 1998, Karger et al.
1998), we can provide a measure of theoretical justifi-
cation for our rounding strategy.
We first provide some intuition behind this round-

ing scheme. The solution vectors are constrained to
lie on a sphere and the projection-rounding rule
favors choosing long vectors. If a single vector xu
is dominant within its Vi—a common occurrence—
then simple geometry (Figure 1a) shows that the dot
products of these vectors should also be big. Because
the solution matrix is positive semidefinite, an off-
diagonal element xuv is the dot product of the two
vectors xu and xv, and for long vectors xu, xv we can
expect xuv to be large as well. We can thus hope to
avoid the most damaging situation: where the round-
ing scheme chooses nodes u and v but the fractional
solution has put low or zero weight on the edge

xu0

xu

xv

yu
O yv

x⊥
u0

yu

r

xu
xu0

(a) (b)

Figure 1 The Geometry of the Solution Vectors

between them. The intuition holds in the opposite
case as well: Two low-probability vectors (that is,
short vectors), are likely to have a small dot prod-
uct, and we would like to avoid choosing the edge
that corresponds to that dot product. We develop
this argument more formally below when we give an
upper bound on the drift, defined as the expected dif-
ference between the post and prerounding objective-
function value.
Let x̂u be 1 if u is chosen in the rounding stage

and 0 otherwise. As usual, �xu	 denotes the solution
of the (relaxed) SDP system. The expected value of
the objective function, postrounding, is equal to

E
{ ∑
�u�v�∈G

Euvx̂ux̂v

}
=∑

u

Euu
xu
22 +
∑

�u�v�∈Go

Euv
xu
22
xv
22�

where Go denotes the set of nonloop edges in G. Thus,
the drift � is

�= ∑
�u�v�∈Go

Euv
(
xu
22
xv
22− xTu xv

)
�

Observe that the drift originates exclusively from the
off-diagonal entries. Let yu denote the projection of xu
on the orthogonal complement x⊥u0 of xu0 . We rewrite
the drift in terms of these yu. Because xu0 is of unit
length, we have

xTu xv = ��xTu xu0�xu0 + yu�
T ��xTv xu0�xu0 + yv�

= �xTu xu0��x
T
v xu0�+ yTu yv = 
xu
22
xv
22+ yTu yv�

therefore,
�=− ∑

�u�v�∈Go

Euvy
T
u yv� (5)

In the special case where all the energies are non-
negative, it is also possible to relate the drift directly
to the lengths of the xu’s. (While this is not true
for all energy functions, the popular side chain posi-
tioning package SCWRL (Bower et al. 1997) has
only nonnegative energies.) By Lemma 3.1 and the
Pythagorean theorem applied to the right triangle in
Figure 1b,


yu
22+
(
xu
22− 1

2

)2 = 
yu
22+
(
xTu xu0 − 1

2

)2 = 1
4 �

It follows that 
yu
2 = 
xu
2
√
1−
xu
22. Assuming

nonnegative energies, by Cauchy-Schwarz,

� ≤ ∑
�u�v�∈Go

Euv�yTu yv�

≤ ∑
�u�v�∈Go

Euv
xu
2
xv
2
√
�1−
xu
22��1−
xv
22�� (6)

Our algorithm is expected to do very well when,
within each Vi, the probability distribution is sharply
concentrated. In other words, if the probability 
xu
22
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of picking u greatly exceeds that of selecting the other
vertices v ∈ Vi, then projection rounding does the right
thing. Indeed, if within each Vi one 
xu
2 is near 1,
then the other 
xv
2’s (v ∈ Vi) must be small. This
implies that the product 
xu
2

√
�1−
xu
22� is always

small and, by (6), so is the drift.

3.2. Perron-Frobenius Rounding
Algebraically, projection rounding entails approxi-
mating X = WTW by the rank-one matrix �X =
WT xu0x

T
u0
W . Are there better low-rank approximation

matrices? To answer this question, we return to the
SDP formulation (3), which ensures that the matrix X
is nonnegative. Because X is also positive semidefi-
nite, a spectral approach suggests an alternative way:
approximate X by a rank-one matrix so that the dif-
ference has minimum L2 norm.
To simplify the notation, we move all the energies

over to the edges by defining Fuv = Euv + �p − 1�−1 ·
�Euu + Evv� if u < v, and 0 otherwise. The objective
function of the SDP system can now be expressed
as � = tr�FX�, where F = �Fuv� is upper-diagonal. A
vector q = �qu� ∈�n is called G-stochastic if it is non-
negative and forms a valid probability distribution
over each Vi (i.e.,

∑
u∈Vi qu = 1). Randomized round-

ing with respect to q produces an expected energy of
tr�FqqT �, so the drift is � = tr F �qqT − X�. The prob-
lem, of course, is to find a suitable vector q. The next
lemma provides a convenient criterion to test whether
a given q provides a valid distribution.

Lemma 3.2. Any nonnegative vector with L1-norm p in
the image space of X is G-stochastic.

Proof. Recall that X = WTW , where W is the
matrix of column vectors �xu�. Let 1i be the 0/1 charac-
teristic vector of Vi. Assuming that q =Xy for some y,
then

∑
u∈Vi

qu = 1Ti q = 1Ti �W
TW�y = �W1i�

TWy = xTu0Wy�

where W1i = xu0 by Lemma 3.1. x
T
u0
Wy is independent

of i and because by assumption 
q
1 = p,
∑

u∈Vi qu = 1
for any i. �

By the Perron-Frobenius theorem for nonnegative
matrices (Seneta 1981), the unit eigenvector z1 corre-
sponding to the largest eigenvalue #1 of X is nonneg-
ative. We approximate X by

�X = #1z1z
T
1 � (7)

Let s = �p/
z1
1� be the factor needed to scale z1
to length p in the L1 norm. Because z1 is in the
image space of X, the vector q = sz1 is G-stochastic
by Lemma 3.2. Perron-Frobenius rounding refers to the

standard rounding rule applied now with respect to
the distribution q. That is,
• Perron-Frobenius rounding rule: For each

1 ≤ i ≤ p, choose u ∈ Vi at random with probability
given by the uth entry of z1 scaled by s.
We can express the drift under this rounding

scheme as

� = tr F �qqT −X�= tr F �s2z1zT1 −X�

= s2

#1
tr F �#1z1z

T
1 −X�+

(
s2

#1
− 1

)
tr FX� (8)

and upper bound it as follows:

Lemma 3.3. Let 1 denote the column vector of n ones
and U the n×n matrix of ones, and let �zk	 be an orthonor-
mal eigenbasis of X with #k ≥ 0 the eigenvalue associated
with zk. Then,

�≤ �1+ &�
F 
2
√
trX2−#21+ & tr FX�

where F = �Fuv� is the energy matrix and X is the solution
matrix returned by the SDP system and

&= trUX

trU �X − 1=
∑

k>1 #k�1
T zk�

2

p2−∑
k>1�1T zk�2

�

Proof. We have &= �s2/#1− 1� because
trUX = ∑

xTu xv=
(∑

xu
)T (∑

xv
)=p2
xu0
22=p2� and

trU �X = #1�1
T z1�

2=#1
z1
21�
where the first follows because

∑
u∈Vi xu = xu0 and

there are p such positions i, and the second follows
from the construction of �X. Substituting & into (8) and
applying Cauchy-Schwarz, gives

�≤ �1+ &�
F 
2
X− �X
2+ & tr FX�

Note the dependence on the L2 distance between X
and its approximation �X. We can express this distance
in terms of the spectral weight placed on eigenvectors
zk for k > 1. The diagonalization of the matrix X gives
the decomposition X = ∑

k #kzkz
T
k ; therefore, because

X− �X is symmetric and the zk’s are orthonormal,


X− �X
22 = tr�X− �X�2 = tr
(∑
k>1

#kzkz
T
k

)2

= ∑
k>1

#2k tr�zkz
T
k �
2+ 2 ∑

k>l>1

#k#l tr�zkz
T
k ��zlz

T
l �

= ∑
k>1

#2k = trX2−#21�

Finally, using p2− trUX = 0, we have

&≡ trUX
trU �X −1= trU�X− �X�

p2−trU�X− �X�=
∑

k>1#k�1
T zk�

2

p2−∑
k>1�1T zk�2

� �
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Note that & is quite small if the largest eigenvalue #1
carries most of the spectrum or z1 is close to the vec-
tor 1, which makes the terms 1T zk small for k > 1. The
empirical results in §4 suggest that #1 may be much
larger than the other eigenvalues in realistic situations.

The Uniform Case. Projection rounding is expected
to do well when the solution concentrates weight on
a single node per position. What if the weights are
nearly uniformly distributed? We can use Lemma 3.3
to argue that in this case even the strategy of uniform
guessing has low drift.
Assume that (i) xuu = 1/�Vi� for all u, (ii) xuv =

1/�Vi��Vj � for any �u�v� ∈ Vi×Vj (i < j), and (iii) xuv = 0
for u�v ∈ Vi. (Note that although these assumptions
are themselves unrealistic, the robustness of our argu-
ments below makes them representative of the uni-
form end of the spectrum.) It is easy to construct an
orthogonal eigenbasis for X:

Lemma 3.4. The largest eigenvalue #1 of X is equal to∑p
i=1 �Vi�−1 and corresponds to the eigenvector

z1 =
1√∑
i �Vi�−1

p∑
i=1

�Vi�−11i�

where 1i is the 0/1 characteristic vector of Vi. None of the
n−1 other eigenvectors are nonnegative: p−1 of them are
of the form 11−1i and span the kernel of X, while, for each
i, �Vi�−1 of them are associated with the eigenvalue �Vi�−1.
We defer the proof of Lemma 3.4 to the appendix.
Assume now that all the Vi’s are of equal size

n/p. Then z1 = �1/
√
n�1 and Perron-Frobenius round-

ing degenerates into choosing solutions uniformly at
random. Because all other eigenvectors are normal
to z1, by Lemma 3.3, we know that & = 0. Also, by
Lemma 3.4,

trX2−#21 =
∑
k>1

#2k = �n− p�p2/n2�

If each Fuv is 0/1 and each node is connected to 2d
neighbors, then 
F 
2 =

√
nd and, by Lemma 3.3, �≤

p
√
d. This shows that, measured against the energy of

�p/n�2 dn= dp2/n of the random solution, the relative
drift is at most �n/p�/

√
d, which is typically much less

than 1 because each rotamer typically interacts with
many rotamers in several positions.
Hence, if the solution matrix is sharply concen-

trated, we have shown that projection rounding is
expected to work well, at least under the assumption
that the edge weights are nonnegative. In the oppo-
site situation of a uniform solution matrix we have
shown that for an unweighted, regular graph the drift
is small if solutions are chosen uniformly at random.

4. Computational Results
We used the SDP formulation to design computation-
ally the cores (i.e., the solvent inaccessible portions)
of two proteins. Both proteins have a core *-barrel, a
region where the backbone wraps around to form a
structure reminiscent of the slats of a wooden barrel.
Our computational work focuses on protein cores

because (1) the energetics most important to the core
residues are easier to model than are those of solvent-
exposed residues, and (2) the cores are small, mak-
ing them tractable for SDP. In particular, because
we are focusing on hydrophobic core interactions,
we use an energy function that focuses on obtaining
well-packed structures. More specifically, the inter-
action energies between rotamers (that is, the edge
weights of our graph) are calculated using the 6–12
Lennard-Jones approximation to the van der Waals’
force. Self-energies are calculated as the sum of the
van der Waals’ interaction between the rotamer and
the backbone, plus a statistical term derived from the
empirical probabilities listed in the rotamer library
(Dunbrack and Karplus 1993). Interactions between
the side chain and the backbone of flanking positions
are ignored to account for some backbone flexibility.
The statistical energy term for rotamer u is computed
as − ln�pu/p0�, where pu is the probability of seeing
rotamer u and p0 is the probability of seeing the most
common rotamer for that amino acid (Bower et al.
1997). For all calculations, atom radii and interaction
parameters are taken from AMBER96 (Cornell et al.
1995), a commonly used package for evaluating the
energy of protein conformations, with the radii of
hydrogens reduced by 50% because of their uncer-
tain position. The BALL C++ library (Kohlbacher and
Lenhof 2000) was used to manipulate the rotamers.
The ultimate test of protein design is to make the

protein and confirm the predicted structure. Obvi-
ously, experimental work is beyond the scope of this
paper, but the solutions to the design problems can be
at least initially evaluated in several ways. First, we
may expect the designed sequence to be similar to the
native sequence because evolution has likely chosen
a favorable sequence. Note, however, that novel pro-
tein sequences that are considerably more stable than
native protein sequences have been designed using
fixed backbone approaches (Malakauskas and Mayo
1998). Second, because we are using an energy func-
tion that focuses on packing, we expect the designed
structure to avoid clashes between atoms and to
pack the available space tightly. Third, we want the
rounded solution to have energy near the optimum
solution. We show below that our computationally
designed cores generally fulfill these criteria.
To investigate the performance of the rounding

schemes in a more controlled setting, we also exper-
imented with two types of random graphs. We first
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consider uniform random graphs and then consider
a family of randomly generated graphs that better
model the interaction graphs observed in proteins.
The semidefinite programs were solved using ver-

sion 6.0 of the SDPA (Fujisawa et al. 1997) package, an
implementation of an infeasible primal-dual interior-
point method. The linear programs were solved using
the dual simplex method with AMPL (Fourer et al.
2002) and CPLEX 7.1 (ILOG CPLEX 2000). The SDP
solutions were rounded using the projection and
Perron-Frobenius methods described above.
We compare our SDP with the LP obtained by

relaxing the integrality constraints from (4). The LP
solutions were rounded by choosing node u with
probability xuu. For problems of this size, optimal
integral solutions (denoted by OPT) can be found
using formulation (4) and the integer-programming
option of CPLEX. This allows us to compute the rel-
ative gap of each rounded solution, as computed by
��x−OPT�/OPT�, where x is the value of the solution.
For both the protein-design problems and the simu-
lated data, the SDP rounding schemes perform well,
with significantly better average relative gaps.

4.1. Cold-Shock Protein
We applied the SDP method to the problem of
redesigning the core of the Bacillus caldolyticus cold-
shock protein (Mueller et al. 2000) (PDB code: 1c9o).
Core residues were defined as having less than 1% of
their surface area exposed to solvent, and determined
by the program Surfv (Nicholls et al. 1991). The fol-
lowing eight residues were found: Val6, Gly16, Ile18,
Val28, Leu41, Val47, Phe49, and Val63. The hydropho-
bic core positions (i.e., all positions listed above except
position 16 with Gly) were varied, and allowed to
assume any rotamer of the hydrophobic amino acids
Ala, Val, Ile, Leu, Met, and Phe that occurred in
the backbone-dependent rotamer library (Dunbrack
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     Side Chains in Nature
(b) Positioning of the(a) Full Protein (c) Solution Returned by the SDP

     Rounding Schemes (the Optimal)

Figure 2 Cold-Shock Protein (1c9o)

and Karplus 1993). This yields 55 rotamers per posi-
tion. The protein is shown in Figure 2a, with vari-
able atoms shown as black spheres and the axis of
the *-barrel vertical. The native positions of the side
chains are shown in Figure 2b, where the protein
is rotated so that we are looking down the axis of
the barrel.
The resulting problem had 385 nodes, seven posi-

tions, and 63,313 nonzero cost-matrix entries. Simple
pairwise DEE of Goldstein (1994), a polynomial-time
rule for throwing out rotamers that cannot possibly
be in the optimal solution, was applied to the prob-
lem until no more nodes could be eliminated. This
reduced the problem to 137 nodes, seven positions,
and 7,865 nonzero cost-matrix entries.
The LP solution was rounded 1,000 times using

the simple LP-rounding scheme. The SDP solution
was rounded 1,000 times with both the projection and
Perron-Frobenius-rounding schemes. The minimum-
energy solution found is a good measure of how
well one would do in practice, but this minimum
energy may be influenced by the moderate search-
space size. The average energy of a rounded solution
is a better indicator of the distribution obtained from
rounding the relaxations. The best value over 1,000
roundings and the empirical average objective value
in the limit are:

Method Best Average

LP −217�2880 4058�6651
Projection −238�4218 −102�2822
Perron-Frobenius −238�4218 −209�3617

The optimum solution (determined by the integer-
programming option of CPLEX) is −238�4218. Both
SDP rounding schemes find the optimum solution;
this appears to correspond to a well-packed and plau-
sible structure, as shown in Figure 2c. The aver-
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Figure 3 Triose Phosphate Isomerase (1tim)

age energy of the rounded solutions suggest that,
as expected, the LP-rounding scheme is a poor one.
In fact, the average relative gap of the solutions
found by the LP-rounding scheme is 18.02, versus an
average relative gap of 0.57 for projection rounding
and 0.12 for Perron-Frobenius rounding. We expected
the Perron-Frobenius-rounding scheme to perform
well, as the solution returned by the SDP has most
of its spectral weight placed on the largest eigen-
value (7.725 versus less than 0.05 for all the other
eigenvalues).
The optimal choice has 57% sequence identity with

the native sequence. Additionally, Figures 2b and 2c
show that the designed sequence packs more atoms
into the core of the protein than the native structure.
This is one indication that this sequence might be
a good fit for this backbone as more tightly packed
cores tend to be favored.

4.2. Triose Phosphate Isomerase
We applied the same procedure to the protein triose
phosphate isomerase from chicken muscle (Banner
et al. 1976) (PDB code: 1tim). This protein is an
+/*-barrel, where the *-barrel core is surrounded by
+-helical structures. We focused on the computational
redesign of residues in the core of the *-barrel, as iden-
tified by Lesk et al. (1989), and shown in Figure 3a
as black spheres. The 9 nonglycine core residues
are: Val40, Ala62, Trp90, Ile92, Ile124, Val161, Ala163,
Ile207, and Leu230. The native positions of these side
chains are shown in Figure 3b. Trp90 was allowed to
assume any rotamer of the aromatic amino acids Phe,
His, Trp, and Tyr. The other residues were allowed to
assume any rotamer of the hydrophobic amino acids
Ala, Val, Ile, Leu, Met, and Phe. The same energy func-
tion was used as above. This resulted in 467 nodes and
91,737 nonzero edges. As with the cold-shock protein,

DEE was performed to throw out rotamers that can-
not possibly be in the optimal solution; this reduced
the problem to 141 nodes and 8,264 edges.
The optimal solution has objective value −208�5702.

In this case, all methods find the optimal solution
(shown in Figure 3c) within 1,000 roundings. The
average objective values are:

Method Average

LP 251�0156
Projection 93�1529
Perron-Frobenius −36�9177

The average energy of the rounded solutions demon-
strates that the Perron-Frobenius rounding again per-
forms best for this problem. In fact, the SDP solution
returned is close to a rank-one matrix: The largest
eigenvalue is 8�7563 out of a total spectral weight
of 10; the second largest is 0�375. The average rela-
tive gap of the solutions found by Perron-Frobenius
rounding is 0.82, versus 1.44 for projection rounding
and 2.20 for the LP rounding scheme.
The optimal solution avoids clashes, and, as can be

seen from Figures 3a and 3b, packs the available space
well. It has only 33% sequence identity with the native
solution. This is not necessarily unexpected. Dahiyat
and Mayo (1997) designed a sequence with only 21%
identity to the native sequence that folds to the same
shape.

4.3. Uniform Random Graphs
We consider the random graphs GU�n�p� r� param-
eterized by the number of nodes n, number of
positions p, and edge probability r . Each position con-
tains n/p nodes. Two nodes in different positions are
connected by an edge with probability r . Each chosen
edge is weighted by drawing a weight uniformly
from ,0�1-. There are no self edges.
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We solved 30 instances of uniform random graphs
with 60 nodes, 15 positions, and edge probability 0.5
using SDP. Figure 4a compares the fractional objec-
tive of the semidefinite program with that of the
linear program. The SDP provides a tighter lower
bound on the minimum energy, typically within 10%
of the optimum. In contrast, the fractional LP solution
is never within 60% of the optimum. As expected
then, as a side benefit, SDP provides a more effec-
tive bounding function than does LP for branch-and-
bound frameworks.
Figure 4b shows the best rounded solution found

over 10,000 roundings. For these 30 graphs, both
semidefinite rounding schemes outperform LP in all
cases, generally finding a solution within 10% of
the optimum and only once finding a solution more
than 20% above the optimum. This means, in a
practical sense, that SDP allows us to find lower-
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energy conformations. The two semidefinite round-
ing schemes are comparable, though Perron-Froben-
ius finds a lower-energy solution in 11 out of 30
instances. In one case, projection rounding finds a bet-
ter solution. The average rounded energy is shown
in Figure 4c. Perron-Frobenius gives a slightly better
distribution than does projection rounding. Both SDP-
rounding schemes again outperform the LP one.
Figure 5 shows the 25 largest eigenvalues in de-

scending order for each of the uniform random
graphs shown in Figure 4. The eigenvalues sum to 16
because trX = p and there are 16 positions including
the dummy position V0 in (3). Most of the spectrum is
concentrated in the first few eigenvalues, and so one
would expect the �X in (7) to approximate closely the
solution X and thus that Perron-Frobenius rounding
would perform well.
These results remain qualitatively the same for

other values of p≥ 10 and edge probabilities ≥ 0�3. For
very sparse graphs, the SDP and LP methods yield
similar results.

4.4. Neighborhood Random Graphs
The uniform random graphs fail to capture sev-
eral properties of real protein-interaction graphs. Side
chains that are far apart in the folded protein structure
typically do not interact. On the other hand, if two
residues are near each other in the folded structure,
most of their rotamers will interact.
We consider neighborhood random graphs GN�n�

p�d� that capture some of these properties. They are
again parameterized by the number of nodes n and
number of positions p, where each position has n/p
nodes. Given the parameter d, edges are defined
as follows: For each position j , a point bj is cho-
sen uniformly at random in the 3D unit cube. If
the Euclidean distance between bi and bj is ≤d, then
the rotamers in positions i and j are connected by the
complete bipartite graph; if the distance is >d, there
are no edges between i and j . Edges are weighted by
choosing a number uniformly from ,0�1-.
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Connection Distances d

Figure 6 shows the results for neighborhood ran-
dom graphs with various values for d. For sparse
graphs (small d), the SDP and LP approaches yield
similar results. Figure 6a shows the fractional objec-
tive values and Figure 6b shows the best rounded
objective values. As d increases, positions are more
likely to be connected, the optimum objective grows,
and the SDP’s advantage in lower bounding the
optimum solution increases. Both projection round-
ing and Perron-Frobenius rounding can find the opti-
mum solutions for most of these graphs within 10,000
roundings, whereas this is not the case for the LP
rounding. The average rounded energy is shown in
Figure 6c, and again Perron-Frobenius gives a slightly
better distribution than does projection rounding.
The spectra for neighborhood random graphs of
low connection distance are also very concentrated

in the highest eigenvalue. As the connection dis-
tance increases, the spectrum generally becomes more
spread out.

5. Inapproximability
While some NP-complete problems permit approxi-
mation algorithms (i.e., algorithms that guarantee that
all their solutions are within some factor of optimal),
here we show that this is not the case for the side
chain positioning problem. That is, it is even hard to
compute any reasonable approximation of the mini-
mum energy with a theoretical guarantee.
The SCP problem is an optimization problem, not

a language-membership problem. It is turned into the
latter by providing as input both an instance of a side
chain positioning problem and an integer k, and ask-
ing whether the GMEC has energy less than k. The
statements below are to be understood in that context.

Theorem 5.1. It is NP-complete to approximate the
minimum energy of the GMEC within a factor of cn, where
c is a positive constant and n is the number of rotamers.

If the minimum energy is close to 0, of course it
might not be too surprising to hear that a good mul-
tiplicative approximation is hard to find. The strength
of our result is that it is still very hard to find even
if the minimum energy is bounded away from 0 by a
constant.
Proof. A 3-CNF formula is a conjunction of

clauses, each one consisting of the disjunction of three
literals (not necessarily distinct). The PCP theorem
(Arora et al. 1998, Arora and Safra 1998) asserts that,
given any 3-CNF formula 0 on n variables, there
exists another one, denoted by 1 , which contains nO�1�

variables and is satisfiable if and only if 0 is. Further-
more, if 1 is not satisfiable, then it is strongly unsat-
isfiable, meaning that no truth assignment can satisfy
more than a fraction + of its clauses, for some con-
stant 0 < + < 1. Finally, 1 can be derived from 0 in
polynomial time. This implies that it is NP-hard to
distinguish between formulas that are satisfiable and
those that are strongly unsatisfiable.
Given a 3-CNF formula with p clauses, we create

an SCP problem such that if the formula is satisfiable
then GMEC = 0, but if the formula is not satisfiable
then the GMEC will tell us how many clauses can
be satisfied. Thus, the discussion above will imply
that there cannot be a polynomial-time algorithm that
always computes even a reasonable approximation to
the GMEC (unless P=NP).
We build a p-partite graph G as follows. Each clause

i corresponds to a set Vi of 4 vertices. In each Vi three
vertices are associated with the literals of clause i.
Two vertices in Vi and Vj are joined in G if and only
if the literal of one is the negation of the other. Each
edge is assigned weight 3. The fourth vertex in each
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Vi is an extra vertex with no adjacent edges and ver-
tex weight 1.
If the CNF formula is satisfiable, then for each Vi

we select as the GMEC vertex a literal that was set to
true. Obviously, these p vertices form an independent
set (because one cannot set both a variable and its
negation to true) and the energy of the system is zero.
If the CNF formula is not satisfiable then the GMEC

is formed by picking the largest independent set
among the vertices that correspond to clauses, includ-
ing at most one vertex per Vi, and completing the
selection with extra vertices. (Picking any pair of
adjacent vertices would be a mistake because that
choice could be locally improved.) We can set to true
the literals corresponding to the vertices of the inde-
pendent set. Therefore, the energy of the GMEC is
p− c, where c is the maximum number of satisfi-
able clauses in the CNF formula. Thus, it is NP-hard
to tell apart a side chain positioning problem with
minimum energy 0 and one with minimum energy
�1−+�p= �1−+�n/4.
For a more realistic scenario where the minimum

energy is bounded away from 0, we can add an extra
Vi consisting of a single unit-weight vertex; then, we
still cannot hope to find an approximation that is bet-
ter than a factor 2�n� of the minimum energy. �

6. Conclusions
We formulate the side chain positioning problem as
an instance of semidefinite programming and intro-
duce two new rounding schemes for converting frac-
tional solutions into integral ones. Our rounding
schemes appear quite general and we hope they can
be used elsewhere.
We have applied our method to the problem of

computationally redesigning the cores of two natu-
rally occurring proteins. In addition, we have investi-
gated how the rounding formulations behave on two
classes of random graphs. While the hardness of the
SCP problem argues that no method will do well in
general, our computational experiments confirm the
effectiveness of our methods. We provide a measure
of theoretical justification for this.
We have shown that semidefinite programming can

be applied to biological problems of realistic, albeit
small, size. Though nonpolynomial search heuristics
are more practical at present for larger biological
problems, as semidefinite programming algorithms
and solvers improve, our approach will become
more attractive. Interesting directions for future work
include finding a faster SDP algorithm specialized to
our system of constraints, as well as developing better
rounding schemes that better exploit the underlying
real-world statistical properties of the problem.
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Appendix

Lemma 3.4. The largest eigenvalue #1 of X is equal to∑p
i=1 �Vi�−1 and corresponds to the eigenvector

z1 =
1√∑
i �Vi�−1

p∑
i=1

�Vi�−11i�

where 1i is the 0/1 characteristic vector of Vi. None of the n− 1
other eigenvectors are nonnegative: p− 1 of them are of the form
11 − 1i and span the kernel of X, while, for each i, �Vi� − 1 of
them are associated with the eigenvalue �Vi�−1.

Proof. If �X = #1z1z
T
1 , then X− �X is the n×n matrix made

of blocks B1� � � � �Bp along the diagonals and 0 everywhere:
each Bi is a �Vi� × �Vi� circulant matrix with �Vi�−1 − �Vi�−2
along the diagonal and −�Vi�−2 elsewhere. The eigenvectors
of an m×m circulant matrix consist of the rows of the matrix
of the Fourier transform over the additive group Z/mZ: For
k > 0, this gives us an eigenvector �1� e26ik/m� � � � � e26ik�m−1�/m�
for each 0< k < m. The corresponding eigenvalue for Bi is
�Vi�−1 (hence, both its algebraic and geometric multiplici-
ties are �Vi� − 1). The corresponding eigenvectors of X are
derived trivially by padding with zeroes at the appropri-
ate places. Note that we must skip the case k = 0, because
the eigenvector of Bi that gets padded into 1i is not an
eigenvector of X. To complete the diagonalization of X, we
must resolve its kernel. Going back to the relations xuu =∑

v∈Vj xuv, we easily verify that KerX is spanned by the p−1
vectors 11− 1i, for 1< i≤ p. �
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