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Abstract

Influence systems seek to model how influence, broadly defined, spreads across
a dynamic network. We build a general analytical framework which we then use
to prove that, while Turing-complete, influence dynamics of the diffusive type is
almost surely asymptotically periodic. Besides resolving the dynamics of a widely
used family of multiagent systems, we introduce a general renormalization method
for the bifurcation analysis of multiagent systems.

1 Introduction

Consider a set of “agents” on a line, each one represented by a point. Starting out
at an arbitrary position on the line, every agent moves to the mass center of the
agents within unit distance. The agents move simultaneously and repeat this pro-
cedure indefinitely. Does the system eventually come to a halt? This multiagent
model, known as a Hegselmann-Krause (HK ) system [28] is by now reasonably well-
understood [30, 37, 42, 51]: in particular, the motion is known to converge in polyno-
mial time [5, 11, 19]. This remains true if the agents are modeled as points in higher-
dimensional Euclidean space. The model lends itself to natural extensions. For example,
the agents might have different distance thresholds. These so-called heterogeneous HK
systems break the symmetry of the neighbor relations and imply a directed communica-
tion graph. Naturally, the dynamics becomes more complicated. Experiments suggest
that the system still converges but a proof has remained elusive; in fact, even chaos
cannot be ruled out.

Further extensions of the model seek to enrich the communication dynamics. For
instance, instead of claiming as a neighbor any agent lying within a certain distance, ie,
satisfying a single inequality, one could require the satisfaction of several constraints:
in the HK system, a neighbor could be defined as any agent at distance between 0.5
and 1. Climbing up the expressivity ladder, one could allow any sentence in first-order
logic over the reals. This level of generalization might seem far-fetched but it is actually
quite common. A popular choice of communication graph in rendezvous problems in

∗This work was supported in part by NSF grants CCF-0832797, CCF-0963825, and CCF-1016250.
A preliminary version of this work appeared in Proc. 53rd FOCS 2012.
†Department of Computer Science, Princeton University, chazelle@cs.princeton.edu

1



robotics is the constrained Delaunay graph [11]: to specify an edge in this case requires
a first-order sentence with two levels of quantification.1 Dozens of systems of this kind
have been studied in fields as diverse as biology, zoology, economics, and sociology. We
introduce a model of multiagent dynamics, called influence systems, to bring all of these
special cases under a common umbrella. As long as the dynamic rule involves moving
each agent to the mass center of its neighbors in the communication graph, the system
is called diffusive. Not all multiagent dynamics follow this pattern, however: flocking
and swarming models are classical examples of nondiffusive influence systems.

With rare exceptions, the precise dynamics of specific influence systems remains a
mystery. We prove the surprising result that, under random perturbations, diffusive
influence systems are almost always asymptotically periodic. Furthermore, if the com-
munication stays bidirectional at all times then the system converges to a fixed-point
attractor.2 What makes this unexpected is that, with proper finetuning, a diffusive
influence system with even just a few agents can be chaotic or even simulate a Turing
machine. The challenge is to show that this behavior is extremely rare. The broad sweep
of our result suggests the value of a more general, abstract approach to multiagent dy-
namics. The proof introduces a broadly applicable recursive technique for bifurcation
analysis, somewhat reminiscent of the renormalization group in statistical physics.

Next, we define the model formally and state our main result. We then bring this in-
troduction to an end with a brief discussion of the significance and historical background
of our contribution.

The model. An influence system consists of n agents labeled 1, . . . , n. Agent i is
modeled by a point xi ∈ Rd (d > 0). We denote the state of the system by x =
(x1, . . . , xn). By convention, each xi is a row vector with d coordinates, so that x ∈ Rn×d
can be thought of as an n-by-d matrix whose rows indicate the positions of the agents.
The dynamics of the system is specified by a function f : if x is the system’s state at
time t, then f(x) indicates its state at time t+ 1. To understand an influence system is
to understand the geometry of the orbit x, f(x), f2(x), f3(x), . . . , for any initial state
x in Rn×d. The defining feature of an influence system is that the map f relies on an
intermediate function G specifying the communication channels:

• The function G maps a state x to a communication graph whose nodes are in
bijection with the agents. The existence of an edge (i, j) is determined by the
truth condition of a first-order sentence over the reals:

Φi,j(x) := (� y1) · · · (�yk) Li,j(x, y1, . . . , yk), (1)

where � ∈ {∃,∀ } and Li,j is a quantifier-free logical proposition whose clauses
are (strict and nonstrict) algebraic inequalities with rational coefficients. The free

1Given a boundary B, an edge from p to q is expressed as: “ (∃c ∈ Rd) (∀x ∈ B) ‖cx‖2 ≥ ‖cp‖2 =
‖cq‖2 & ‖cr‖2 ≥ ‖cp‖2 (for each agent r).”

2The result suggests (at least in theory) that bidirectional influence systems like FaceBook lead
to stable communities while adding one-way communication (eg, talk shows, newscasts) may create
oscillations.
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variables are given by the entries of x and the bound variables consist of y1, . . . , yk.
The pair (i, j) is an edge of G(x) if and only if Φi,j(x) is true.

• For i = 1, . . . , n, the i-th row of the n-by-d matrix f(x) depends only on the pairs
(j, xj) for all edges (i, j) of G(x). In other words, the next position of an agent
can be computed if we know both the label and the position of each one of its
neighbors.

• The influence system is called diffusive if the next position of any agent i is a convex
combination of its neighbors’ positions. Stated formally, f(x) = P (x)x for any
state x ∈ Rn×d, where P (x) is a stochastic matrix such that P (x)ij > 0 if and only
if (i, j) is an edge of G(x). We assume that the diagonal entries of P (x) are positive
and that the i-th row of P (x) is uniquely determined by { j | (i, j) ∈ G(x) }.3 The
system is called bidirectional if the graph G(x) is undirected for all x.

We illustrate these definitions with a few examples. The classical HK system is bidirec-
tional: d = 1 and G(x) is the n-node graph linking any two agents at distance one or
less. The graph is undirected and the “transition” matrix P (x) is the adjacency matrix
of G(x), with each row scaled down so it sums up to 1. The truth-seeking systems [29,35]
from social epistemology add to the HK model a fixed agent to which a subset of the
agents are always connected. This adds one row (1, 0, . . . , 0) to the adjacency matrix as
well as one column of mixed zeroes and ones; the system is not bidirectional. While the
HK model captures the mode of social interaction among agents engaged in two-way
communication, the truth-seeking variant adds a one-way source of information such as
TV or radio.

For a simple example of a nondiffusive influence system, we can pick a standard
flocking model [18, 23, 31, 58].4 Each bird i has position pi = (pxi , p

y
i , p

z
i ) and velocity

vi = (vxi , v
y
i , v

z
i ). At the next step, pi ← pi + vi and vi ← (1/Ni)

∑
j vj , where the

sum extends over the Ni birds j within a fixed distance of bird i. The state x is of the
form (x1, . . . , xn), where xi is the row vector (pxi , p

y
i , p

z
i , v

x
i , v

y
i , v

z
i ). It is obvious that

the map of the dynamical system cannot be expressed by a stochastic matrix. If we
rearrange the n-by-6 matrix x by stacking the leftmost half on top of the rightmost half,
then x becomes the 2n-by-3 matrix whose first (resp. last) n rows are (pxi , p

y
i , p

z
i ) (resp

3The positivity assumption, the same one found in lazy random walks, adds self-loops to the com-
munication graphs. It is a minor technicality whose motivation is to avoid trivial periodicity, such as
two agents switching positions endlessly. The second assumption is mostly for notational convenience
and can be relaxed in several ways.

4Examples abound. The states of an influence system can be: opinions [5,7,8,25,28,29,33,35–39,41],
Bayesian beliefs [1], neuronal spiking sequences [17], animal herd locations [22], consensus values [14,42],
chemotactic responses [47] swarming trajectories [27], cell populations [49], schooling fish veloci-
ties [45, 47], sensor networks data [11], synchronization phases [13, 26, 48, 52], heart pacemaker cell
signals [56,60], cricket chirpings [59], firefly flashings [40], yeast cell suspensions [49], microwave oscilla-
tor frequencies [56], or flocking headings [4, 18,23,30,31,50,58].
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(vxi , v
y
i , v

z
i )), for i = 1, . . . , n, and

P (x) =

(
In In
0 Qx

)
,

where Qx is a stochastic matrix and In is the n-by-n identity matrix. It follows that
the velocity part of the system is itself diffusive. To express the graph on the basis of
velocities alone, however, would require integration over the past, which would produce
a non-Markovian system.

The results. Our main theorem requires a notion of perturbation. To perturb an HK
system, we replace the distance threshold of 1 by 1 + δ, where δ is picked randomly
between 0 and an arbitrarily small constant δ0 > 0. More generally, we perturb an
arbitrary influence system similarly by subjecting its constraints to a tiny random shift.
To explain how to do this, it is useful to rephrase the formulation in (1) in terms of
semi-algebraic sets. By a celebrated result of Collins [21], the quantifiers of any first-
order sentence over the reals can be eliminated. In particular, there exists a finite set of
dn-variate polynomials P1, . . . ,PN such that whether Φi,j(x) is true or false is entirely
a function of the N -tuple of signs of P1(x), . . . ,PN (x), ie, the sign-conditions of x. We
call the Pi’s the constraint polynomials. This process is best explained with a simple
example. Consider a two-agent influence system in one dimension: n = 2 and d = 1.
An edge joins the two agents 1 and 2 at positions x1 and x2, respectively, if and only if
the sentence Φ(x1, x2) is true, where Φ(X,Y ) is defined as

(∃u)(∃v) (u > 0) & (v > 0)

&
(
X3 +XY 2 + uX2 + uY 2 − (v + 1)X − u(v + 1) = 0

)
.

The polynomial factorizes into (X + u)(X2 + Y 2 − v − 1), so we easily verify that the
sentence is logically equivalent to the quantifier-free proposition:

X < 0 or X2 + Y 2 − 1 > 0. (2)

It follows that N = 2, P1 = X, and P2 = X2+Y 2−1. Quantifier elimination decomposes
the phase space into regions (semi-algebraic sets) with the same sign-conditions. Each
such region c is associated with a communication graph and a stochastic transition
matrix: in other words, G(x) and P (x) remain the same for all x ∈ c. Perturbing the
system means picking a random δ in an arbitrarily small interval near 0 and replacing
the semi-algebraic set (2) by

X + δ < 0 or X2 + Y 2 − 1 + δ > 0.

In general, one would take all the polynomials P1, . . . ,PN from Collins’s quantifier elim-
ination and replace them by P1 + δ, . . . ,PN + δ. A separate perturbation is needed for
each initial state since no single value of δ is likely to work over the entire phase space;
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Figure 1: The existence of the edge (1, 2) is determined by the location of the point (x1, x2).

note that there is no need to perturb the initial state x of the system. The proba-
bilistic language below refers to the random perturbation of the constraint polynomials
described above. We now state our main result:

Theorem 1.1. Given any initial state, the orbit of a perturbed influence system is
asymptotically periodic almost surely. Without perturbation, the model can be chaotic
and even Turing-complete. In the bidirectional case, the system is always attracted to a
fixed point: if ρ is the lowest positive entry of any P (x) then, with probability arbitrarily
close to 1, any initial state x in the unit cube evolves to within distance ε of its fixed-point
attractor in ρ−O(n)|log ε| steps, for any ε > 0.

The theorem should be understood in the spirit of smoothed analysis [55]: it says
that, while an influence system can be arbitrarily complex in the worst case, the tiniest
perturbation will nudge it into a limit cycle. We do not investigate the precise geometric
nature of the critical region (ie, the values of δ for which the system becomes chaotic)
but we show how to cover it by a fractal structure (a type of Cantor set). To prove that
perturbation is indeed required, we design influence systems that can produce chaos
and simulate Turing machines even in dimension d = 1, using constraint polynomials
Pi of degree 1. A significant difference with standard smooth analysis is that even
small influence systems can be extremely hard to analyze. This makes it all the more
surprising that a dynamic classification of influence systems can be carried out for all n.

In addition to shifting each constraint randomly by δ, we also apply a perturbation
rule: (i) the status of an edge (i, j) cannot change while agents i, j stay infinitesimally
close to each other; and (ii) no edge that disappears indefinitely can return. This last
rule (which is not needed in the bidirectional case) prevents an edge from reappearing
after an absence exceeding an arbitrarily large threshold. This does not keep agents
from shedding edges whenever the function G calls for it, so it is not a roundabout way

5



to enforce connectivity. Nor is it a heuristic assumption about the behavior of the sys-
tem: the perturbation rule can be enforced by the agents themselves. We show in the
next section that some form of perturbation rule is required for Theorem 1.1 to hold.
Our formulation can probably be weakened but it cannot be removed altogether. (We’re
currently in the process of pinning down the minimum set of conditions required.) In
the bidirectional case, the convergence time is a function of the perturbation probabil-
ity; the bound, which matches the performance of bidirectional multiagent agreement
dynamics [19], is provably false without perturbation.

We assume that all the relevant parameters (matrix entries, number and coefficients
of polynomials) can be encoded as rationals over O(log n) bits and that the dimension
d and the degrees of the polynomials are bounded by constants: we do this mostly for
notational convenience and some of these assumptions can be relaxed if necessary.

Background and previous results. An overarching ambition of social dynamics
is to understand and predict the collective behavior of agents influencing one another
across an endogenously changing network [11, 13, 15, 45, 47]. Influence diffusive systems
provide a versatile platform for such investigations and unify into a common framework
many variants found in the literature (eg, bounded-confidence, bounded-influence, truth-
seeking, Friedkin-Johnsen type, deliberative exchange) [6, 20,37,42].

The fixed-point attraction of bidirectional diffusive influence systems follows from
known results [19,25,30,37,42] but convergence times are known only in a few cases [11,
19]. Without bidirectionality, known convergence results are conditional [14, 16, 17, 31,
41–43,46,57].5 The standard assumption is that some form of joint connectivity property
should hold in perpetuity; as we show below, however, to check such a property is usually
undecidable. Our main result allows us to remove all such assumptions. It can be
seen as an extension of Bruin and Deane’s unconditional resolution of planar piecewise
contractions [10], which are special kinds of influence systems with a single mobile agent.

In the context of social dynamics, our results might be disconcerting. Influence
systems can be used to model how people change opinions over time as a result of
human interaction and knowledge acquisition. Strangely, unless people keep varying the
modalities of their interactions, as mediated by trust levels, self-confidence, etc, they
will be caught forever recycling the same opinions in the same order.

A technical remark. Following their introduction by Sontag [54], piecewise-linear
systems have become the subject of an abundant literature, which we do not attempt to
review here. They are known to be Turing-complete [2, 9, 32, 53]. A typical simulation
relies on the existence of Lyapunov exponents of both signs, negative ones to move the
head of the Turing machine in one direction and positive ones to move it the other way.
Diffusive influence systems have no positive exponents, so the same construction cannot
work. Chaos is equally problematic, being typically associated with positive topological

5As they should be, since convergence is not assured. An exception is truth-seeking HK systems,
which have been shown to converge unconditionally [19,29,35].
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entropy, hence positive Lyapunov exponents. Piecewise linearity blurs the picture. With
only null exponents (over any ergodic invariant measure), piecewise isometries actually
have zero topological entropy [12]. Oddly, contractions can be chaotic [34], even though
they have only negative exponents. Diffusive influence systems sit in the middle, having
null and negative exponents but no positive ones. Yet they can be chaotic. Plainly, the
spectral lens breaks down in the face of piecewise linearity. To resolve this confusion
requires a different approach. We provide one in the form of an algorithmic brand of
bifurcation analysis.

2 Chaos, Turing, and Perturbation

We show that diffusive influence systems can have periodic orbits of length exponential
in the number of agents and that such long orbits are resistant to perturbation; next,
we build a conjugation with the baker’s map to exhibit chaos; finally, we show how to
simulate a Turing machine. All three constructions use linear constraints. This section
gives us a chance to discuss simple examples of diffusive influence systems and give the
reader a feel for some of the issues ahead including the necessity of perturbations.

Exponential periods. Periodic orbits can be made arbitrarily long by increasing the
bit-length of the encoding. More interesting is the fact that exponential periods can be
achieved with only constant bit-length per agent. This is noteworthy because complex
behavior in dynamical systems usually requires infinite precision. We simulate a counter
in binary notation. The system uses n agents and has periodic points of period 2n−2.
Initially, x1 = −1, x2 = 2, and x3 = · · · = xn = 0. Agents 1 and 2 are fixed; for
k = 3, . . . , n,

xk ←


1
2(x1 + xk) if xi > 0.5 (2 < i ≤ k)
1
2(x2 + xk) if xk ≤ 0.5 and xi > 0.5 (2 < i < k)

xk else.

Agent 3 oscillates between 0 and 1 at each step. Agent 4 does likewise but switches
only with x3 = 1. Likewise, agent 5 switches between 0 and 1 only when x3 = x4 = 1;
etc. This produces an (n − 2)-bit binary counter. The only constraints are given by
the polynomials xi − 0.5: replacing them by xi − 0.5 + δ perturbs the system but has
no effect on the counter as long as δ is not too large. The exponentially long period
requires only a constant number of bits per agent and is resistant to perturbation. The
system is not bidirectional. We summarize our result:

A diffusive influence system with n agents can have periodic points of period
exponential in n, while using only a constant number of bits per agent. The
long periodic orbit is robust under perturbation.
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Chaos. We describe a four-agent diffusive influence system in one dimension that
exhibits chaotic behavior robust even under perturbation. This is caused by the micro-
scopic dynamics of infinitesimally close agents, which points to the necessity of “per-
turbation rules” to avoid this pathological kind of chaos. The first two agents stay on
opposite sides of the origin (assuming they start that way) with agent 1 to the left and
agent 2 to the right. The rule is that the agent further from the origin moves toward it
while the other one stays put:

(x1, x2) ← 1
2

{
( 2x1, x1 + x2 ) if x1 + x2 ≥ 0

(x1 + x2, 2x2 ) else.
(3)

The two agents converge toward 0 but the order in which they proceed (ie, their symbolic
dynamics) is chaotic. To see why, let xi(t) be the position of agent i at time t. Assume
that x1(0) < 0 < x2(0) and consider the trajectory of a line L: X2 = uX1, for u < 0.
If the point (x1(t), x2(t)) is on the line, then x1(t) + x2(t) ≥ 0 implies that u ≤ −1 and
L is mapped to X2 = 1

2(u + 1)X1; if x1(t) + x2(t) < 0, then u > −1 and L becomes
X2 = 2u

u+1 X1. The parameter u obeys the dynamics:

u←

{
1
2(u+ 1) if u ≤ −1
2u
u+1 if −1 < u ≤ 0.

Writing u = (v + 1)/(v − 1) gives v ← 2v + 1 if v < 0, and v ← 2v − 1 otherwise. The
system v escapes for |v(0)| > 1 and otherwise conjugates with the baker’s map [24]. To
turn this into actual chaos, we fix agent 4 at x4 = 1 and we initialize agents 1 and 2
close enough to 0. We let agent 3 oscillate in [x1, x4] ≈ [0, 1], depending on the order in
which the first two agents move:

x3 ←

{
1
3(x3 + 2x1) if x1 + x2 ≥ 0
1
3(x3 + 2x4) else.

Agent 3, initially at 0, stays either lower than 0.4 or higher than 0.6 depending on which
of agent 1 or 2 moves. This implies that the system has positive topological entropy: to
know where agent 3 is at time t requires on the order of t bits of accuracy in the initial
state. The system is not bidirectional but the subsystem formed by the first two agents
is.

A diffusive influence system with only four agents can have chaotic behavior
that is robust under perturbation.

Turing completeness. Given an n-by-n real-valued matrix A, let A+ (resp. A−)
be the matrix obtained by zeroing out the negative entries of A (resp. −A), so that
A = A+ −A−. Define the matrices

B = r

(
A+ A−

A− A+

)
and C =

B (I2n −B)1 0
0 1 0
0 1− r r

 ,
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where r = mini{1, 1/
∑

j |Aij |}. It is immediate that C is stochastic and semiconjugates
with the dynamics of A (up to scaling). Indeed, given x ∈ Rn, if x denotes the (2n +
2)-dimensional column vector (x,−x, 0, 1), then C x = rAx; hence the commutative
diagram:

x −−−−→ Axy y
x −−−−→ r−1C x .

Imagine now a piecewise-linear system consisting of a number of matrices {Ak} and a
hyperplane arrangement with a matrix Ak associated with each cell.6 We add n negated
clones to the existing set of n agents, plus a stochasticity agent permanently positioned
at x−1 = 0 as well as a projectivity agent initialized at x0. This allows us to form the
vector x = (x,−x, x−1, x0). To cope with scaling, we rewrite any hyperplane aTx = a0

(projectively) as aTx = a0x0. We can use the same value of r throughout by picking
the smallest one among all the matrices Ak used in the piecewise-linear system. The
purpose of this construction is to show that, up to scaling, a piecewise-linear system
with hyperplane constraints can be simulated by a diffusive influence system with linear
constraints. Because the conjugated system is scaled down by r ≤ 1 at each step, the
absence of any affine term from these constraints is crucial. The reduction fails if we
apply a random shift to them; hence it is not robust under perturbation.

Koiran et al [32] have shown how to simulate a Turing machine with a single agent
in two dimensions using piecewise-affine maps. We can turn the construction into a
one-dimensional piecewise-linear system with a number of agents proportional to the
number of states. We then use the previous construction to turn it into a diffusive
influence system. We only sketch the idea, which is a minor modification of Koiran et
al [32]. One agent is positioned at the value given by the contents of the tape (interpreted
as a number in binary or some other radix notation) to the left of the head. The other
agent models the tape’s contents to the right of the head, while saving the higher-order
bits to encode the current state. A transition of the Turing machine translates into
affine transformations z 7→ az + b applied to the two agents’ positions. We linearize
them by writing b as bx0 and creating an agent 0 permanently stationed at x0 = 1.
If instead of using a single agent for all the affine terms, we introduce a distinct one,
always positioned at 1, for each affine transformation in the system, we thus satisfy
our assumption that the row of each transition matrix be uniquely specified by the
corresponding node labels in the communication graph. We omit the details, which are
routine. Predicting nontrivial state properties of a diffusive influence system (such as
basic connectivity properties of the communication graph) is therefore undecidable.

A diffusive influence system can be Turing-complete. The construction is not
robust under perturbation.

6A cell is the solution set of any collection (finite or infinite) of linear (strict or nonstrict) inequalities.
If it lies in an affine subspace of dimension k but not k − 1, it is called a k-cell.
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The role of perturbation. The fragility of the Turing machine simulation by a
diffusive influence system echoes the main message of Theorem 1.1, which is that the
slightest perturbation will nudge any orbit into a limit cycle. The chaotic four-agent
system we designed earlier belies that fact, however. Replacing x1 + x2 ≥ 0 in (3) by
x1 + x2 + δ ≥ 0 does not alter the chaotic behavior of the system. Chaos survives large
perturbations. To prevent it therefore requires the perturbation rule discussed in §1 or
some variant of it. Once x1 and x2 differ by less than an arbitrarily small amount ε0 > 0,
the current edge joining them stays in place as long as the agents remain within ε0 of
each other (in this case, ever after): the evolution of x1 + x2 becomes predictable and
chaos is broken.

We briefly mention two additional reasons for perturbing the system. The first is
that the convergence time bound of Theorem 1.1 is provably false without perturbation.
To see why, consider this three-agent system in one dimension. The first two agents
move toward each other according to the rule:(

x1

x2

)
← 1

3

(
2 1
1 2

)(
x1

x2

)
. (4)

Starting at positions −1 and 1, agents 1 and 2 move to ±3−t at time t. Imagine now
a third agent starting at position 0.9 < x3 < 1 and set to join with agent 1 when their
distance is no more than one: this happens after on the order of |log(1−x3)| steps. The
convergence time goes to infinity as x3 approaches 1, indicating the impossibility of a
uniform bound. The system is bidirectional so this particular feature does not help in
this case.

Another reason for perturbing the constraint polynomials is that, without it, a system
can converge physically but not combinatorially. This is the case with heterogeneous
HK systems [28,29], as we show now: the agents converge toward a fixed point but their
communication graph keeps switching forever without perturbation. Heterogeneous HK
systems are diffusive influence systems where each agent i is associated with a threshold
distance ri and the communication graph links i to any agent j such that |xi−xj | ≤ ri.
We design a periodic five-agent system with period 2. We start with a two-agent system
with r1 = r2 = 2. When the two agents are linked, they move toward each other as
follows: (

x1

x2

)
← 1

3

(
1 2
2 1

)(
x1

x2

)
. (5)

If agents 1 and 2 are initially positioned at −1 and 1, respectively, they oscillate around
0 with xi = (−1)i+t 3−t at time t. Now place a copy of this system with its center at
X = 4 and a copy at X = −4; finally, place a fifth agent at 0 and set r5 = 4. By
symmetry, agent 5 never moves, while agents 1 and 2 (resp. 3 and 4) converge to a fixed
point. Because agents 1 and 2 oscillate around their common fixed point (at X = −4),
agent 5 joins to a different one at each step (same with agents 3 and 4). The agents
converge but their communication graph does not. Of course, the tiniest perturbation
resolves this pathology: replacing r5 = 4 by r5 = 4 + δ implies convergence of the
communication graph in O(|log δ|) steps.
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To prevent chaos, randomly shifting the constraint polynomials is necessary
but not sufficient: an additional perturbation rule is needed. Perturbation is
also necessary for any uniform bound on the relaxation time.

3 Linearization

We show how to linearize the constraints of an influence system. We begin with the
one-dimensional case d = 1. Let d be the maximum total degree of the constraint
polynomials.7 We can always assume the existence of an agent confined to position 1
with no in/out-link, which we use to homogeneize the polynomials and in the process
make every monomial of degree d. For any 1 ≤ k1, . . . , kd ≤ n, we define the monomial
zk1,...,kd =

∏d
i=1 xki and, listing them in lexicographic order, we form z = (zk1,...,kd) ∈ Rm,

where m = nd; note that the point z lies on a (real) algebraic variety V smoothly
parametrized injectively by x = (x1, . . . , xn) ∈ Rn. The map x 7→ f(x) = P (x)x
induces the lifted map z 7→ g(z), where g(z) = P (x)⊗ d z and

P (x)⊗ d =

d︷ ︸︸ ︷
P (x)⊗ · · · ⊗ P (x) .

Being the Kronecker product of stochastic matrices, P (x)⊗ d is stochastic: its diagonal
is positive and its nonzero entries all exceed ρd, where ρ < 1 is a uniform lower bound
on the positive entries of P (x). Its associated graph, whose edges track its nonzero
entries, is the tensor graph product G(x)⊗ d. We use the term ground agents to refer to
the n agents positioned at the rows of x. The constraint polynomials for the ground
agents, being homogeneous, can be expressed as linear forms in variables taken from the
coordinates of z; for example, x1x

3
2 − 5x2

1x
2
3 becomes z1,2,2,2 − 5z1,1,3,3. This produces

hyperplanes which form an arrangement in Rm. The cells c that intersect the variety V
are thus assigned a unique matrix Qc of the form P (x)⊗ d; the matrix is unique since
P (x) depends only on the sign-conditions for the constraint polynomials P1, . . . ,PN
evaluated at x. The other cells can be assigned the identity matrix Im. Whereas a
random shift produces constraint hyperplanes of the form

δ +
∑

k1,...,kd

ak1,...,kd zk1,...,kd = 0,

the perturbation rule acts in a more subtle way. While the whole point of the lifting
is to forget about the variety V, the tensor structure of the matrices Qc brings benefits
we will sometimes want to exploit. Given K ⊆ {1, . . . , n}, the cluster CK refers to the
subset of |K|d (lifted) agents with labels in Kd. If all the agents of a cluster fit within
a tiny interval then so do their ground agents; to see why, just expand (xi − xj)d and
use the fact that the monomials almost cancel out. By the perturbation rule, therefore,
the induced subgraph of the cluster cannot change until it is pulled apart by outside

7Not to be confused with the dimension d.
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agents. We revisit this point below in greater detail. The general case d > 1 can be
easily reduced to the one-dimensional case. We express the matrix x as a single vector
(x1,1, . . . , x1,d, . . . , xn,1, . . . , xn,d) and we replace P (x) by P (x)⊗Id. We omit the details,
which are straightforward.

4 An Algorithmic Calculus

Dynamical systems differ from standard algorithms in the way they are analyzed. State-
ments regarding periodicity or chaos are global in nature and require looking at all the
inputs at once. Unlike the worst-case analysis of, say, quicksort, the search for period-
icity cannot focus on a hypothetical initial state and then track its orbit in the hope of
finding it intersecting itself at some point. The issue is not that the periodicity is asymp-
totic anyway so that perfect self-intersection might never occur: the difficulty is that two
orbits might come very close only to veer off from each other much later. Theorem 1.1
states that this can indeed happen. The challenge is to show that such occurrences are
rare. Unlike the execution of a standard algorithm, the orbit of a dynamical system is
typically infinite. In fact, the number of combinatorially distinct orbits is itself infinite,
so that any probabilistic statement about them involves infinite sums.

Individual orbits are not the place to look. Instead, one must investigate how f
transforms the whole of phase space at once. As we saw in §2, diffusive influence systems
can already be chaotic for four agents, so obviously one will need powerful tools to
handle the case of a thousand agents. What we need is an algorithmic language that
allows us to decompose systems recursively into subsystems while keeping track of their
space-transforming features. Unfortunately, even the simplest part of Theorem 1.1, the
convergence bound for bidirectional systems, requires this infrastructure, so this is where
we begin. By linearization, we can assume that all constraint polynomials are of degree 1
and the dimension d is also equal to 1. By adding an extra stationary agent if necessary,
we can further assume without loss of generality that the constraints are of the form

aTx = 1.

The switching partition (SP) refers to the set of these hyperplanes or, equivalently, the
arrangement they form in Rn. To perturb the system, we define the margin

Mδ =
⋃
SP

{
x ∈ Rn |aTx = 1 + δ

}
. (6)

The shift δ is a small real number; the presence of the affine term 1 is convenient to
make the perturbation additive and not multiplicative. The SP and the margin are
combinatorially equivalent (all cells have the same sign-conditions) if we assume that
δ > −1. In this way, the function f , which is defined by assigning a stochastic matrix
Pc to each cell of the SP, extends naturally to the margin since the cells are in bijection.
As we shall see, the focus will be on the atoms of the margin, which refer to the open
n-cells.
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4.1 The intuition

The main difficulty of the analysis can be articulated in a few words, so a short digression
might help. Figure 2 shows the margin for a two-dimensional system. Its atoms are each
assigned a stochastic matrix, which together form the piecewise-linear map f . Consider
the iterates of a small ball b taken inside one of the atoms: b, f(b), f2(b), etc. Suppose
that it never intersects the margin (unlike in the figure). If the ball does not decrease
in volume too much as it bounces around (more on this below), it must self-intersect at
some point, ie, f t(b) ∩ fu(b) 6= ∅, for some t < u. This is an easy consequence of the
pigeonhole principle and the boundedness of the orbits. Since f t(b) ∪ fu(b) lies in the
same cell, so will its iterates: this follows from the continuity of a linear map and the
assumed lack of intersection between the margin and any fs(b). This shows that, for
any k = 0, 1, 2, etc, f t+k(b) visits the same sequence of atoms in cyclical fashion. This
in turn implies that the sequence of stochastic matrices corresponding to the iterates of
b is periodic, from which it is easy to infer the evolution of the orbits from b into limit
cycles.

This rosy scenario may fail for two reasons: one is that the ball b might shrink so
fast as to avoid self-intersection; the other is that it might bump against the margin.
In Fig.2, for example, f3(b) overlaps with the margin and splits into two (or more)
smaller bodies: the map f is locally discontinuous, with a distinct stochastic matrix
sending each smaller body to a different place. This phenomenon is illustrated in the
figure by showing the image of an atom c being split into two and mapped to different
locations. This sort of splitting could recur indefinitely, creating fragmentation obeying
the exponential growth of a branching process. Although the process is deterministic,
we can show that it can behave in a quasi-random fashion. This is the sign of chaos.
Working against this is the fact that the splitting fragments might shrink exponentially
fast, so that the total volume of all the fragments at any given time might actually
decrease. If so, periodicity might be in the cards.

It follows from this discussion that the key to the dynamics resides in the shape of
b and its iterates. These are ellipsoids whose dimensions can only decrease with time,
if at all. Because the matrices are stochastic, the ellipsoids shrink along the axes cor-
responding to the nondominant eigenvectors and stay unchanged along the dominant
eigenvector axes (since the eigenvalue is 1). The difficulty is that the matrices change
constantly and so does their dominant eigenspace. To make sense of this, we go back to
the dynamic network underpinning the influence system and design a recursive method
for breaking it into subsystems and update the decomposition dynamically. This can be
viewed as a grand generalization of renormalization-group techniques to highly irregular
structures. Indeed, the physical analogy is deep and compelling. The tension we find
here between a branching process and a shrinking “force” has its counterpart in statis-
tical mechanics. In the Ising model, for example, a phase transition corresponds to a
balanced tension between the entropy of the system (the “branching process”) and its
energy (the “shrinking force”). In our case, the former originates in the discontinuities
of the system and the latter in its consensus-seeking nature.
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Figure 2: The atom c maps via f = Pc to a cell intersecting two atoms. The third iterate of
the ball b intersects the margin and splits into two or more fragments.

4.2 Phase space refinement

The open unit box Ω = (0, 1)n maps to itself via f , so obviously we may confine the
phase space to it. It is useful to classify the initial states by how long it takes their
orbits to hit the margin Mδ, if ever. With f0 = In and min ∅ =∞, we define the label
`(x) of x ∈ Ω as the minimum integer t such that f t(x) ∈ Mδ. The point x is said to
vanish at time `(x) if its label is finite. The points that do not vanish before time t form
the set St: we have S0 = Ω; and, for t > 0,

St = Ω \
t−1⋃
k=0

f−k(Mδ) .

Our assumption δ > −1 keeps the preimages of the hyperplanes of Mδ via any of the
linear restrictions of f either empty or of codimension 1: this implies that the volume
of St is always 1. Each of St’s connected components is specified by a set of strict linear
inequalities in Rn, so St is a union of disjoint open n-cells, whose number we denote
by #St. Each cell of St+1 lies within a cell of St. The limit set S∞ =

⋂
t≥0 St collects

the points that never vanish. We say that the system is nesting at t if St = St+1. The
minimum value of t (or ∞) is called the nesting time ν of the system. Observe that
labels cannot be skipped: if k is a feasible label, then obviously so is k−1. The following
facts follow easily from that simple but crucial observation.

Lemma 4.1. The nesting time ν is the minimum t such that, for each cell c of St, f t(c)
lies within an atom. If c is a cell of Sν , then f(c) intersects at most one cell of Sν and
Sν = S∞.

We define the directed graph F with one node per cell c of Sν , with the edge (c, c′),
where c′ is the unique cell of Sν , if it exists, that intersects f(c). The edge (c, c′) is labeled
by the linear map f|c defined by the matrix Pa, where a is the unique atom a ⊇ c. The
graph defines a sofic shift (ie, a regular language) of the functional kind, meaning that
each node has exactly one outgoing edge, possibly a self-loop, so any infinite path leads
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to a cycle. Periodicity follows immediately. The trajectory of any point x in Ω is the
string s(x) = c0c1 · · · of atoms that its orbit visits: f t(x) ∈ ct for all 0 ≤ t < `(x).
It is infinite if and only if x does not vanish, so all infinite trajectories are eventually
periodic.

A serious obstacle to this approach is that diffusive influence systems are rarely
nesting. Here is an example: this three-agent system is initialized with x1 = 0 and
x2 = 1; the agent 1 is fixed and the map f is defined by{

x2 ← 1
2(x1 + x2)

x3 ← 1
2(x1 + x3) if x3 − x2 ≥ 1 else x3 ← x3.

The marginMδ consisting of the line x3−x2 = 1+δ. When initialized at x3 = 1+δ+2−t,
for any t > 0, agent 3 takes time t to reach the margin. The cell decomposition S∞ is
infinite, and this holds for any δ, so perturbing the constraint seems to be of no help.
There are two solutions: one is to thicken the margin by a tiny amount; the other, the
one we choose, is to identify the “good” perturbations for a given initial state. This
leads us to add δ as a variable to the system itself.

4.3 The coding tree

The previous discussion hints at the tree structure of the space of orbits. We explore
this idea further. The coding tree T encodes into one geometric object the set of all
orbits and the full symbolic dynamics. It is the system’s “Rosetta stone,” from which
everything of interest can be read off. Intuitively, the tree divides up the phase space
into maximal regions over which the iterated map is linear. It is embedded in Ω × N,
with the last dimension representing time. The root is associated with Ω = Uroot, and
each child v of the root with an atom Uv. The phase tube (Uv, Vv) of v is the “time
cylinder” whose cross-sections at times 0 and 1 are Uv and Vv = f(Uv), respectively. In
general, a phase tube is a discontinuity-avoiding sequence of iterated images of a given
cell in phase space.

Figure 3: A phase tube (Uw, Vw) of length two: Vw = f(c) = f tw(Uw).
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The infinite tree T is built recursively by subdividing Vv into the cells c formed by
its intersection with the atoms, and attaching a new child w for each c: we set Vw = f(c)
and Uw = Uv∩f−tv(c), where tv is the depth of v (Fig.3). Whereas Uv is always an open
n-cell, Vv and c can be of lower dimension. By δ > −1 and simple linear algebra, the
cell Vv cannot lie inside the margin, so at least one cell c exists and the coding tree has
no leaves. We denote by Pw the transition matrix of the restriction to c of the map f .
The phase tube (Uv, Vv) consists of all the cylinders whose cross-sections at t = 0, . . . , tv
are, respectively, Uv, f(Uv), . . . , f

tv(Uv) = Vv. We note that all these iterates of f are
linear over Uv.

Building T

[1] The root v has depth tv = 0; set Uv ← Vv ← Ω.

[2] Repeat forever:

[2.1] For each newly created node v:

• For each cell c of Vv \Mδ, create a child w of v and
set Pw ← f|c ; Vw ← Pw c ; Uw ← Uv ∩ f−tv (c).

Let ww′w′′ · · · denote the upward, tw-node path from w to the root (but excluding
the root). Using the notation P≤w = PwPw′Pw′′ · · · , we have the identities Vw = P≤w Uw
and Sk =

⋃
w{Uw | tw = k }, with Sk ⊇ Sk+1. Labeling each node w by the atom that

contains the cell c allows us to interpret any path as the prefix of a trajectory and define
the language L(T ) of all such words. Each infinite path v0, v1, v2, . . . down the tree
has its own limit cell

⋂
t≥0 Uvt which, unlike those of St, might not always be open:

collectively, they form the cells of S∞.

• The nesting time ν = ν(T ) is the minimum depth at which all nodes have a single
child (Lemma 4.1); the number can be infinite. A node v is deep if tv > ν and
shallow otherwise.

• The word-entropy h(T ) expresses the growth rate of the language L(T ): it is
defined as the logarithm of the number of shallow nodes;8 #Sν ≤ 2h(T ).

Later, we will randomize δ within a small interval ∆, so it is useful to define the global
coding tree T ∆ as the coding tree derived from the system (x, δ) 7→ (f(x), δ), with the
phase space Ω×∆. The sets Mδ, Uv and Vv are now polyhedra in Rn+1.

8All logarithms are to the base 2.
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4.4 The arborator

We assemble the coding tree by glueing together smaller coding trees defined recursively.
We entrust this task to the arborator, a recursive algorithm expressed in a language for
“lego-like” assembly. The arborator needs two (infinite) sets of parameters to do its
job, the coupling times and the renormalization scales. To produce these numbers, we
use the flow tracker, which is a form of breadth-first search for dynamic graphs. The
arborator relies on a few primitives that we now describe. The direct sum and direct
product are tensor-like operations that we use to assemble the coding tree from smaller
pieces. We can also compile a dictionary to keep track of the tree’s parameters (nesting
time, word-entropy, etc) as we build it up one piece at a time.

Direct sum. The coding tree T = T1 ⊕ T2 models two independent systems of size
n1 and n2. The phase space of the direct sum is of dimension n = n1 + n2. A path
w0, w1, . . . of T is a pairing of paths in the constituent trees: the node wt is of the form
(ut, vt), where ut (resp. vt) is a node of T1 (resp. T2) at depth t. All paths are infinite,
so matching lengths is not an issue. The direct sum is commutative and associative;
furthermore, Uw = Uu × Uv, Vw = Vu × Vv, and Pw = Pu ⊕ Pv, where w = (u, v) and
A⊕B is the matrix obtained by placing A and B as blocks along the diagonal.

Figure 4: The two tensor operations.

Direct product. We begin with a few words of intuition. Consider two diffusive
influence systems S1 and S2 with the same margin but possibly different maps f1 and
f2, respectively. Let Λ denote an atom of the margin. We define the hybrid system S
by requiring that a point should follow the orbit defined by f1 until it first lands in Λ at
which point it switches to f2 and sticks to it from then on. Suppose we had complete
knowledge of the coding tree Ti of each Si (i = 1, 2). Could we then combine them
in some ways in cut-and-paste style to assemble the coding tree T of S? The direct
product T1 ⊗ T2 provides the answer.
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The operation, being chronological, is not commutative. It begins by identifying
each node v of T1 such that Vv ∩ Λ 6= ∅ and marking as absorbed its child w such that
Vw = f1(Vv ∩ Λ). For each such v and w, the subtree of T1 below w is removed and w
is turned into a leaf. This operation is called absorption by analogy with the absorbing
states of a Markov chain: any orbit reaching an absorbed leaf comes (conceptually) to a
halt, broken only after we attach a copy of T2 to that leaf. The copy must be properly
cropped: after we redefine Vw as f2(Vv ∩ Λ), we clip Uroot(T2) to match Vw (Fig.4),
which, in turn, might involve pruning T2.

Renormalization. Direct sums model independent subsystems through parallel com-
position. Direct products model sequential composition. What are the benefits? In
pursuit of some form of contractivity, the flow tracker (discussed below) classifies the
communication graphs by their connectivity properties and breaks up orbits into sequen-
tial segments accordingly. It partitions the set of stochastic matrices into classes and
decompose the coding tree T into maximal subtrees consisting of nodes v with matrices
Pv from the same class. The power of this “renormalization” procedure is that it can be
repeated recursively. We classify the communication graphs by their block-directionality
type: G(x) is of type m→ n−m if the agents can be partitioned into A,B (|A| = m)
so that no B-agent ever links to an A-agent; if in addition, no A-agent links to any
B-agent, G(x) is of type m ‖n−m.

4.5 The flow tracker

A little imagery might help. Suppose that m < n. Pour water on the n − m B-
agents while keeping the m A-agents dry. Whenever an edge of the (time-varying)
communication graph links a dry agent to a wet one, the former agent gets wet; note
how the water flows in the reverse direction of the edges. As soon as all the agents
become wet (if ever), dry them but leave the B-agents wet; repeat forever. The case
m = n is identical, with one agent (any one will do) designated wet once and for all.
The sequence of times at which water spreads or drying occurs plays a central role in
the arborator’s construction of the coding tree.

Assume that n > 1 and 0 < m ≤ n from now on. Let Tm→n−m denote the coding
tree of a block-directional system of type m→ n−m. Note that it can also be written,
albeit less informatively, as Tn. Likewise, Tm ⊕ Tn−m can be expressed as Tm ‖n−m but
the converse is not true.9 When the initial state x is understood, we use the shorthand
Gt = G(f t(x)) to designate the communication graph at time t and we denote by Wt

the set of wet agents at that time. The flow tracker monitors communication among the
agents.10

9The lack of edges between two subgraphs does not imply that the two subsystems are decoupled:
the function G can depend on all the agents.

10All references are to the ground agents: information exchanges among the lifted agents are implied.
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Flow tracker

[1] t0 ← 0.

[2] Repeat:

[2.1] If m < n then Wt0 ← {m+ 1, . . . , n} else Wt0 ← {1}.
[2.2] For t = t0, t0 + 1, . . . ,∞

Wt+1 ←Wt ∪ { i | ∃ j ∈Wt : (i, j) ∈ Gt }.
[2.3] If |W∞| = n then t0 ← min{ t > t0 : |Wt| = n } else stop.

The set Wt of wet agents is never empty. It is implicit in the infinite loop of step [2.2]
that we break out of it as soon |Wt+1| = n, if ever; same with the repeat statement of
[2], out of which “stop” breaks. The assignments of t0 in step [2.3] divide the timeline
into epochs, time intervals during which either all agents become wet or, failing that,
the flow tracker comes to a halt. Each epoch is itself divided into subintervals by the
coupling times t1 < · · · < t`, such that Wtk ⊂ Wtk+1. The last coupling time t` marks
either the end of the flow tracking (if not all A-agents become wet) or one less than the
next value of t0 in the loop.

Example 4.5: The third column below lists a graph sequence G0, . . . , G11 in chrono-
logical order, with the superscript w indicating the edges through which water prop-
agates to dry nodes. The system is block-directional with three A-agents labeled
a, b, c and one B-agent labeled d. For clarity, we spell out the agents as subscripts.

Flow tracking

W0 = {d } d a→ b→ c
W1 = {d } d a← b→ c Td ‖ abc
W2 = {d } d a→ b← c

t1 = 3 W3 = {d } d
w← a← b← c Tabcd

W4 = {a, d } d← a→ b→ c Ta→ bcd

W5 = {a, d } d a→ b→ c

t2 = 6 W6 = {a, d } d← a
w← b← c Tabcd

W7 = {a, b, d } d← a→ b→ c
W8 = {a, b, d } d← a← b c Tab→ cd

W9 = {a, b, d } d← a→ b→ c

t3 = 10 W10 = {a, b, d } d← a→ b
w← c Tabcd

W11 = {a, b, c, d } d a← b c Td ‖ abc
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Note that in row 3 (t = 4, 5) we write Ta→ bcd and not Tad→ bc. Likewise, in row 5
(t = 7, 8, 9), we write Tab→ cd and not Tabd→ c. The reason is inductive soundness.
The original system is of the form 3→ 1: it would be absurd to use Tabd→ c in
row 5, since it is the same type 3→ 1 as the original system. Renormalization,
which is denoted by underlining, compresses into single time units all the time
intervals during which wetness does not spread to dry agents. With the subscripts
indicating the time compression rates, the 11-node path of Tabc→ d matching the
graph sequence above can be expressed as

Td ‖ abc |3 ⊗ Tabcd |1 ⊗ Ta→ bcd |2 ⊗ Tabcd |1 ⊗ Tab→ cd |3 ⊗ Tabcd |1 .

If we define the renormalization scale wk = |Wtk+1| −n+m for k = 1, . . . , `− 1, and let
superscripts denote tree height, then any path of the coding tree can be expressed as

Tm→n−m =⇒

Tm ‖n−m | t1
⊗ Tn |1 ⊗

{ `−1⊗
k=1

(
Twk→n−wk | tk+1−tk−1

⊗ Tn |1
)}
⊗ Tm→n−m .

(7)

Note that the factors are optional: for example, Tm ‖n−m is empty if the first step
shows an edge linking an A-agent to a B-agent. The case m = n (no B-agent) gets
started by designating as wet any one of the A-agents. Recall that we cannot write
these factors as direct sums because the communication rules for the various subgraphs
are not decoupled—only the action rules are. The rewriting rule for Tm ‖n−m is similar
to (7), with the factors Twk→n−wk becoming

T(wk→m−wk) ‖ (w′k→n−m−w′k).

Proceeding in this vein, the general factor takes on the more complicated form

T(wk,1→ zk,1) ‖ (wk,2→ zk,2) ‖···‖ (wk,l→ zk,l),

where
∑l

i=1(wk,i + zk,i) = n. Expression (7) describes a single path of the coding tree.
The coupling times tk and renormalization scales wk must be understood as variables
since their values depend on the paths with which they are associated. The recursive
derivations extend easily to the global coding trees and we need not elaborate on the
details.

4.6 A linguistic analogy

Consider the infinite set of all English sentences. By sorting it alphanumerically, we
can represent the set by an infinite tree, with each edge denoting a letter, number,
or punctuation mark. Each path of the tree, representing a correct sentence, can be
itself parsed into a tree. This induces a recursive representation of any path, similar to
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the expression given in (7). All the parse trees are heavily correlated, with overlapping
paths, for example, expected to contribute similar features to their respective trees. The
nodes of the parse trees are naturally labeled by their linguistic functions: noun phrase,
verb phrase, determiner, etc. Removing all the nodes of the parse tree below any node
with a given label “renormalizes” the sentence to a coarseness level determined by the
chosen label.

If we carry over this same operation to all the paths in the coding tree, we similarly
renormalize the whole tree to the level of that chosen label. This enables the use of
recursive analytical tools. The recursion operates in a fundamentally different way from
the norm. Usually, recursion in a tree identifies a level of nodes and submits the subtrees
rooted at them to a recursive treatment. Here the node identification takes place among
the parse trees of the paths themselves; renormalization thus is akin to recursively
applied contractions of graph minors.

5 Bidirectional Systems

We prove Theorem 1.1 for the case of bidirectional systems. Recall from §3 that d-
dimensional systems of degree d are modeled as one-dimensional systems with linear
constraints by transforming the n ground agents into (dn)d lifted agents. For this reason,
we may as well assume that d = 1. Running the flow tracker with respect to the ground
agents and their communication graphs induces wetness among the lifted agents in the
obvious way: if Wt is the set of ground agents that are wet at time t, the wet lifted
agents consists of the cluster CWt of size |Wt|d: no other lifted agent is wet. The crux of
the argument resides with the ground agents, so this is where we confine our discussion.
We set the perturbation space to ∆ = (0, n−b), where b is a suitably large constant
(the higher b the smaller the perturbation). We need only part (i) of the perturbation
rule, which consists of adding the constraints xi − xj = ±n−b to the set P1, . . . ,PN
and keeping Φi,j(x) constant between the two hyperplanes. In other words, whenever
|xi−xj | ≤ n−b, we need no further positioning information to infer the status of (i, j) as
an edge of the communication graph. This is to keep infinitesimally close agents from
changing their mode of interaction endlessly.11

The contraction property. It has been shown that the diameter of Wtk+1 is bounded
by 1− ρO(k) (see (14) in [19]), where ρ is the smallest nonzero entry among the ground
matrices. Since the system is one-dimensional, this is merely the length of the small-
est enclosing interval. It follows that water propagation to all the agents entails the
shrinking of the system’s diameter by at least a factor of 1 − ρO(n). Let diam (s) be
the diameter of the set of ground agents right after the s-th epoch, ie, as soon as all
the agents have been made wet s times. Since an epoch witnesses the wetting of all the
agents, repeated applications of this principle yields the contractivity bound:

diam (s) ≤ e−sρO(n)
. (8)

11There is no relation in the two uses of the constant b; we reuse symbols to minimize their number.
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It being a diffusive system, the smallest interval enclosing the agents evolves in downward
inclusion. If, for large enough c, ρ−cn epochs elapse, then the agents end up lying within
a fixed interval of length n−b. By the perturbation rule (i), the communication subgraph
is now frozen and can no longer change. Consider the global coding tree with ∆ as the
perturbation space. We fix the initial (ground) state x ∈ Ω = (0, 1)n once and for
all. For simplicity, we let T ∆

n refer not to the whole global coding tree, but just to
the “portion” corresponding to this fixed x, with the rest of the tree pruned out of the
way.12 This implies that Uroot is equal to the line segment x×∆, as opposed to Ω×∆.
More generally, the set Uv and Vv are segments of the form x × Iv and f tv(x) × Iv,
respectively, where Iv is an interval in ∆.

Why renormalizing? We show why a naive approach to perturbation fails. We can
conclude on the basis of (8) alone that the system is always attracted to a fixed point. As
we saw in (4), however, this will not allow us to bound the convergence time uniformly.
To do this requires perturbation and the use of the coding tree. Before we delve into the
details, it is helpful to develop some intuition and, in particular, explain why a simple
argument does not work.

We could try to argue that, by (8), the uncertainty ε about the position of the agents
decreases at a certain exponential rate with time, ie, ε(t) = C−t, for C barely above 1.
(This is not quite true but let’s pretend that it is for the moment.) To prevent long waits
of the kind discussed in (4), one will want to exclude from ∆ “risky” intervals of length
commensurate with the uncertainty. If the coding tree has average degree D, this would
imply an exclusion zone from ∆ of a length roughly Dtε(t) at time t. Unfortunately,
a node v can have a number of children polynomial in n, so we must expect D to be
much larger than C: the tree branches out faster than the system contracts. As a result,∑

tD
tε(t) does not converge and the exclusion zone is unbounded. The solution is to

look more closely at the degree distribution in the tree in order to bound the size of the
exclusion zone. Renormalization thus proves essential even for the bidirectional case.
We rewrite (7) as

T ∆
n =⇒

{ E⊗
s=1

`s−1⊗
k=1

(
T ∆
wk ‖n−wk | tk+1−tk−1

⊗ Tn |1
)}
⊗ T ∗n , (9)

where the outer product enumerates the epochs leading to the combinatorial “freezing”
of the system. The tree T ∗n models a system whose communication graph is fixed.
Without restriction on ∆, the number E of epochs cannot be bounded. We get around
this difficulty by defining an exclusion zone for ∆, which we bound by deriving recurrence
relations on the word-entropy. This leads to a relaxation time of ρ−O(n2)|log ε|. Rather
than going over the technical details of this result, we describe a slight variant of the
proof based on the s-energy which allows us to derive a better bound.

12The full coding tree will be needed for the nonbidirectional case.
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The renormalization equations. We call a node v of T ∆
n heavy if its graph contains

one or more edges of length at least n−2b (and light otherwise). For fixed δ, the number
of times the communication graph has at least one edge of length greater than λ is
called the communication count Cλ: we have shown elsewhere, by appealing to a certain
generating function called the s-energy [19], that Cλ ≤ λ−1ρ−O(n). It follows that, along
any path of T ∆

n , the number of heavy nodes is ρ−O(n). Light nodes have an interesting
structure, which we explore next.

Consider the agents at any light node of T ∆
n . The connected components of their

communication graph have diameter at most n1−2b < n−b. By convexity, the smallest
enclosing interval of any component encloses the one at the next step; therefore, by the
perturbation rule, the induced subgraph of the component remains unchanged. This
also shows that agents move by less than n1−2b in one step. If a new edge (i, j) appears,
by the perturbation rule, the two agents must have been more than n−b apart during
at least one of these two steps. Whichever one it is, the agents are at a distance greater
than n−b − 2n1−2b > n−2b in the second step, so the newly appearing edge makes
the corresponding node of the coding tree heavy. In other words, along downward
paths of light nodes, the communication graph stays the same and so does the matrix
P = P1⊕ · · · ⊕Pr corresponding to f : the n agents appear in clusters formed by their r
connected components, each one enclosed in an interval of length less than n−b. These
intervals evolve in descending nested fashion (downward inclusion). By (8) and basic
Markov chain theory, there exists a matrix Π = Π(P ) whose rank is the number of
summands in ⊕iPi, such that, for any k ≥ 0,

‖P k −Π‖max = e−kρ
−O(n)

. (10)

Fix a small positive ε0. A light node is called ethereal if each one of its connected
components has diameter at most ε0. By (10) and our previous discussion, in any
downward path of light nodes, all the non-ethereal light nodes appear in a prefix of
length ρ−O(n)|log ε0|. LetH∆, E∆, and L∆ denote any maximal subtree of T ∆

n consisting
of heavy, ethereal, and non-ethereal light nodes, respectively. It follows that

T ∆
n =⇒

⊗{
H∆, L∆, E∆

}
. (11)

The analysis rests on three simple observations:

[1] The height of any subtree H∆ and the number of times it appears in a direct
product (11) are both bounded by ρ−O(n).

[2] The height of any subtree L∆ is at most ρ−O(n)|log ε0|. The intervals Iv cor-
responding to a single level of the tree are disjoint; because the map f is the
same linear function across the level, the number of intervals can vary by at most
nO(1) between levels. This proves that the size of any L∆ is itself bounded by
ρ−O(n)|log ε0|.

[3] Given any node v of any E∆, Vv is a segment f tv(x)× Iv, where Iv is an interval in
∆. Furthermore, there is an n-cube of side-length ε0 that contains the points f tv(x)
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for all v ∈ E∆. This shows that in any of the margin equations (6), aTx = 1 + δ,
the left-hand side can vary by at most ε0n

O(1). As a result, the intervals Iv only
differ at the ends over a length of the same bound; so, one can remove from ∆
some intervals of total length ε0n

O(1) to make Iv constant for all v in E∆. We
carry out this removal for all trees of ethereal nodes and denote by ∆ what is left
from ∆ after all the interval removals. All of the trees E∆ are now path-like and
absorption-free, so we can rewrite (11) as

T ∆
n =⇒

⊗{
H∆, L∆

}
⊗ E∆ .

From observations [1,2], it follows readily that the nesting time for T ∆
n is at most

ρ−O(n)|log ε0|. By (10), the system evolves within distance ε of its fixed-point attrac-
tor after ρ−O(n)|log ε| steps, for any ε < ε0, which establishes the desired convergence
bound. We now show that ∆ differs from ∆ by an arbitrarily small amount. The trick is
to renormalize the non-ethereal light nodes by contracting their trees into single nodes,
as in

T ∆
n =⇒

ρ−O(n)⊗
k=1

{
H∆, L∆

}
⊗ E∆ .

By observation [2], the contracted tree L∆ is a node of degree ρ−O(n)|log ε0|. Recall that
the word-entropy is the logarithm of the number of shallow nodes. From the inequalities{

h(T ⊗ T ′) ≤ h(T ) + h(T ′) + log max-degree (T )

h(T ) ≤ ν(T )× log max-degree (T ),
(12)

it is immediate that

h(T ∆
n ) ≤ ρ−O(n)

(
h(H∆) + log(ρ−O(n)|log ε0|)

)
≤ ρ−O(n) log |log ε0|.

We can now bound the Lebesgue measure of the exclusion zone of “bad” perturbations:

Leb (∆ \∆ ) ≤ ε0n
O(1) 2h(T ∆) ≤ ε0|log ε0|ρ

−O(n)
<
√
ε0,

for ε0 small enough, which allows us to set a probability of success as high as we want.
This concludes the proof of the bidirectional case of Theorem 1.1, as we have proven
that, given any initial state x in the unit n-cube and a random perturbation δ of the
constraints, with probability arbitrarily close to 1, the system evolves to within distance
ε of its fixed-point attractor in ρ−O(n)|log ε| steps, for any positive ε small enough. 2

6 Nonbidirectional Systems

We prove the general case of Theorem 1.1, beginning with the case d = d = 1, which
removes the distinction between ground and lifted agents. We first consider a simpler
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persistent system and show later how to reduce any influence system to the persistent
case. Let to be the timing threshold of the perturbation rule (ii) and let H be a directed
n-node graph.13 Given x ∈ Ω, as soon as G(f t(x)) contains an edge not in H or some
edge of H fails to appear within a time interval of length to, the system comes to a
halt. The coding tree Tn is still well defined. The difference is that some nodes are
now absorbed (and their subtree pruned) because the corresponding orbits are entering
a “wrong” atom. We show that, with high probability over the margin’s perturbation,
either the orbit of any point is attracted to a limit cycle or its path in the coding tree
reaches an absorbed leaf. To relate this special system to the original one, we should
think of H as our guess for the persistent graph, which is defined as the graph consisting
of the edges that appear infinitely often in the communication graph.

Consider the directed graph derived from H by contracting every strongly connected
component into a single node. Let B1, . . . , Br be the strongly connected components of
H whose corresponding nodes in the contracted graph are sinks (ie, with no outgoing
edges) and let ni denote the number of agents in the group Bi; write n = m+n1+· · ·+nr.
The system is block-directional system with m (resp. n−m) A-agents (resp. B-agents)
and, for fixed δ, the coding tree is of the form Tm→n−m. Because no communication
between two A-agents can transit through a B-agent (and conversely),

P≤v =

(
A≤v Cv
0 B≤v

)
. (13)

We break down the bifurcation analysis in four stages: in §6.1 we bound the rate at which
phase tubes thin out; in §6.2 we argue that, deep enough in the coding tree, perturbations
keep the expected (mean) degree below one; in §6.3, we show how perturbed phase tubes
avoid being split by the margin at high depths; finally, in §6.4, we show to reduce any
influence system to the “persistent” case. Our assumption that ρ is a positive rational
encoded over O(log n) bits is not necessary but, by implying that ρ > n−O(1), it simplifies
the calculations and the notation.

6.1 The thinning rate

As the depth of a node v of the global coding tree grows, A≤v and B≤v tend to matrices
of ranks 0 and r, respectively, at a “thinning” rate that we can bound.

Lemma 6.1. Given a node v of Tm→n−m, there exist vectors zi ∈ Rni (i = 1, . . . , r),
such that, for any tv ≥ tc := ncnto and a large enough constant c,

(i) ‖A≤v1m‖∞ ≤ e−γtv and (ii)
∥∥∥B≤v − diag (1n1z

T
1 , . . . ,1nrz

T
r )
∥∥∥

max
≤ e−γ′tv ,

where γ := 1/tc and γ′ := n−cn.

13We can pick to as large as we want.
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Proof. We note the faster convergence rate in (ii). Beginning with (i), we consider the
initial state x = (1m,0n−m), with all the A-agents at 1 and the B-agents at 0, and let
y = P≤vx; obviously, ‖A≤v1m‖∞ = ‖y‖∞. To bound the `∞-norm of y, we apply to x
the sequence of maps specified along the path of Tm→n−m from the root to v. (Note
that the path need not track the orbit of x.) Referring to the arborator (7), let’s analyze
the factor

Twk→n−wk | tk+1−tk−1
⊗ Tn |1 .

The wait period tk+1 − tk before wetness propagates again at time tk+1 is at most to:
indeed, by definition, any A-agent can reach some B-agent in H via a directed path, so
all of them will eventually get wet. It follows that the set Wk cannot fail to grow in t0
steps unless it already contains all n nodes or the trajectory reaches an absorbing leaf.
Assume that the agents of Wtk+1, which consists of the wet agents at time tk + 1, lie in
(0, 1 − σ]. Because their distance to 1 can decrease by at most a polynomial factor at
each step, they all lie in (0, 1− σn−O(to)] between times tk and tk+1. The agents newly
wet at time tk+1 + 1, ie, those in Wtk+1+1 \Wtk+1

, move to a weighted average of up to

n numbers in (0, 1), at least one of which is in (0, 1 − σn−O(to)]. This implies that the
agents of Wtk+1+1 lie in (0, 1 − σn−O(to)]. Since σ ≤ 1, when all the A-agents are wet,

which happens within nto steps, their positions are confined within (0, 1 − n−O(nto)].
Every nt0 steps, the agents thus find themselves confined to an increasingly smaller
interval; hence,

‖y‖∞ ≤ e−btv/(nto)cn
−O(nto)

,

which proves (i). We establish (ii) along similar lines. The subgraph H|Bi of H induced
by the agents of any given Bi is strongly connected, so viewed as a separate subsystem,
the B-agents are newly wetted at least once every nto steps. By repeating the following
argument for each Bi, we can assume, for the purposes of this proof, that B = B1,
n1 = n−m and r = 1.

Initially, place B-agent j at 1 and all the others at 0; then apply to it the sequence
of maps leading to B≤v (again, this may not be the actual trajectory of that initial
state). The previous argument shows that the entries of the j-th column of B≤v, which
denote the locations of the agents at time tv, are confined to an interval of length
e−btv/(nto)cn

−O(nto)
. By the perturbation rule (i), as stated in §5, this implies that the

communication subgraph among the B-agents must freeze at some time tc = ncnto for
a constant c large enough, hence become H|B. The margin is defined by a polynomial
number of hyperplanes in an n-dimensional phase space, so any node of the coding tree
has only nO(n) children. Let {ui} be the nO(ntc) nodes of the coding tree at depth
tc. Any deeper node v is such that B≤v = Qtv−tcB≤ui for some i, where Q is the
stochastic matrix associated with H|B. Since that graph is strongly connected, the

previous argument shows that the entries in column j of Qk lies in an interval of length
e−kn

−O(n)
. (Note that we save the delay to.) Since Qk+1 is derived from Qk by taking

convex combinations of the rows of Qk, as k grows, these intervals are nested downwards
and hence converge to a number zj . It follows that Qk tends to 1n1z

T , with

‖Qk − 1n1z
T ‖max ≤ e−kn

−O(n)
.
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Since tv = k + tc, it suffices to double the constant c to derive part (ii) of the lemma
and complete the proof. 2

The lemma points to Cv as the key to the dynamics and the necessary focus of our
attention. We restate the previous lemma (in slightly weaker form) in terms of the
nodes ui at which the communication graph among the B-agents freezes. This freezing
is immune to the choice of perturbation so it applies to the global coding tree as well.
We enlarge the perturbation space to I = (−1, 1).

Lemma 6.2. Any node v of T I
m→n−m of depth tv ≥ tc has an ancestor u of depth tc

such that ∥∥∥P≤v − (0 Cv
0 Du

)∥∥∥
max
≤ e−γtv ,

where Du is a stochastic matrix of the form Du = diag (1n1z1(u)T , . . . ,1nrzr(u)T ).

6.2 Sparse branching

Bruin and Deane [10] used a simple, elegant argument to show that generic planar
(single-agent) contractions do not branch out nearly as often as one could fear. We
prove, likewise, that branching tapers off deep enough in the coding tree. Our argument
is inspired by theirs but the lack of contractivity of stochastic matrices creates serious
difficulties: this conceptual obstacle, in fact, is the reason for the use of renormalization.
The main source of complication is easy to grasp. Recall from Figure 2 that the ball b is
mapped to an ellipsoid whose possible intersection with the margin causes branching in
the coding tree. Whereas in the case of contractions, the ball shrinks at each step, the
use of stochastic matrices entails contractions only along certain privileged directions,
which themselves might change with time. Along the principal eigenvectors, distances
remain unchanged. Analyzing the branching structure involves keeping track of the
geometry of the modes, which is much more challenging and, in fact, the main reason
for using renormalization.

Let Lin [x1, . . . , xn] denote any real linear form over x1, . . . , xn, with Aff [x1, . . . , xn]
designating the affine version; in neither case may the coefficients depend on δ or on the
agent positions.14 With y1, . . . , yr understood, a gap of width ω ∈ R denotes an interval
of the form a+ ω I, where a = Aff [y1, . . . , yr]. We define the set

C[y1, . . . , yr] =
{(

ξ ,

n1︷ ︸︸ ︷
y1, . . . , y1 , . . . ,

nr︷ ︸︸ ︷
yr, . . . , yr

)
| ξ ∈ (0, 1)m

}
.

The variables y1, . . . , yr denote the limit positions of the B-agents: they are linear
combinations of their initial positions xm+1, . . . , xn. Let v be a node of the global coding
tree T I

m→n−m. The matrix P≤v is a product Ptv · · ·P0, with P0 = In and P0, . . . , Ptv

14For example, we can express y = δ + x1 − 2x2 as y = δ + Lin [x1, x2] and y = δ + x1 − 2x2 + 1 as
y = δ + Aff [x1, x2].
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form what we call a valid matrix sequence. Fix a parameter % > 0 (not to be confused
with the matrix bound ρ used earlier) and a point x in Rn. The phase tube formed
by the n-cube B = x + % In and the matrix sequence P0, . . . , Ptv consists of the cells
P0 B, . . . , (Ptv · · ·P0)B. Note that it might not track an actual orbit from B. We say
that the phase tube splits at node v if (Pk · · ·P0 B) \Mδ is disconnected. The following
lemma is the key to sparse branching. It states that suitably chosen phase tubes split
rarely and independently of x; only (y1, . . . , yr) needs to be fixed. The uniformity over
x is crucial. In the following, recall that γ = 1/tc = n−cnto .

Lemma 6.3. Fix % > 0, D0 ≥ 2(1/γ)n+1
, and (y1, . . . , yr) ∈ Rr, where γ = n−cnto.

There exists a union W of nO(nD0) gaps of width %nO(n5D0) such that, for any interval
∆ ⊆ I \ W of length % and any x ∈ C[y1, . . . , yr], the phase tube formed by the box
x + % In along any path of T ∆

m→n−m of length at most D0 cannot split at more than

D1−γn+1

0 nodes.

Proof. We begin with a technical lemma. For an integer D > 0 and k = 0, . . . , D,
let ak be a row vector in Rm with O(log n)-bit rational coordinates and Ak be an m-
by-m nonnegative matrix whose entries are rationals over O(logN) bits, for N > n.
(No relation with the number N of constraint polynomials.) Write vk = akAk · · ·A0,
with A0 = Im, and assume that the maximum row-sum α = max k>0 ‖Ak1‖∞ satisfies
0 < α < 1. Given I ⊆ {0, . . . , D}, denote by V|I the matrix whose rows are, from top
to bottom, the row vectors vk with the indices k ∈ I sorted in increasing order. The
following result is an elimination device meant to factor out the role of the A-agents and
achieve the uniformity claimed above. This is the key condition for eliminating x from
the phase tube splitting equations.

Lemma 6.4. Given any integer D ≥ 2(1/β)m+1
and any I ⊆ {0, . . . , D} of size |I| ≥

D1−βm+1
, where β = |logα|/(cm3 logN) for a constant c large enough, there exists a

unit vector u ∈ R|I| such that

uTV|I = 0 and uT1|I| ≥ N−cm
3D.

The lemma implies that 1|I| is not in the column space of V|I . Why should we care?
Branching in the tree reflects the splitting of the phase tube, which in turn signifies that
the orbit comes crashing into the margin. We can express this by a linear equation:∑

i cixi+
∑

j c
′
jyj = 1+ δ. In this way, the many splittings present along any given path

of the global coding tree can be expressed by a single linear system of the form

Mx +M ′y = (1 + δ)1. (14)

To eliminate x from the system above, we need to find a vector u such that uTM = 0, so
that we are left with conditions on the perturbation alone: uTM ′y = (1 + δ)uT1. Since
M is typically much higher than it is wide, such a vector is certain to exist. The danger
is that they might all be orthogonal to 1, in which case premultiplying each side of (14)
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by u yields uTM ′y = 0, which renders perturbation ineffectual. For this to happen, the
matrix M must be heavily constrained: geometrically, its rows must all lie in the same
affine subspace. To show this is impossible, we must rely on the structure of M , about
which unfortunately we know rather little: the rows decay quickly and the number of
bits does not grow too fast. Although roughly accurate, this explanation fails to capture
a number of subtleties. For example, the collisions into the margin need not correspond
to the same x and the same δ, so we must add slack variables to (14).

Proof. We give a rough sketch of the argument here and refer the reader to the Appendix
for the full proof. Suppose that m = 3 and I is very large. In this way the rows of V|I
form a long sequence of points p1, . . . , p|I| in R3. Because α < 1, the points get close to
the origin exponentially fast. Assume that p1 and p2 are distinct. If the line L through
p1, p2 passes through the origin, then the lemma follows easily: L is parametrized as
p = u1p1 + u2p2, with u1 + u2 = 1, so that setting p to the origin provides the desired
vector u consisting of u1, u2 with the other coordinates set to 0. Otherwise, enumerate
the points p3, p4, . . . until we find one, pi, that is not on the line. The key observation is
that we do not need to wait long for this to happen: indeed, the line L, whose coefficients
require only “few” bits (determined by p1 and p2), cannot approach the origin too closely.
This is the gap argument we exploit to infer the existence of pi. Next, we consider the
plane π formed by p1, p2, pi and note that, for the same reasons discussed earlier, the
proof is complete if π passes through the origin. If it does not then the distance from the
plane to the origin is bounded from below by a function of the number of bits required
to encode p1, p2, pi. Although this number grows with i, there must be some j such that
pj is too close to the origin to be on the plane π. The proof iterates in this fashion until
the affine subspace spanned by the current prefix of points pk contains the origin, at
which point the vector u of the lemma can be identified. See the complete proof in the
Appendix. 2

Although unrelated, we can pick the same constant c as the one used in Lemma 6.1.
Since α ≥ N−O(1), β can be assumed much less than 1. To prove Lemma 6.3, we first
consider the case where the splitting nodes are well separated along their path, which
allows for Lemma 6.1 to be used; then we extend this result to all cases. Given a valid
matrix sequence P0, . . . , PD0 , pick a sequence of D+ 1 integers 0 = s0 < · · · < sD ≤ D0

such that
D ≥ 2(1/β)m+1

and 1/γ ≤ sk − sk−1 ≤ 3/γ, (15)

for k = 1, . . . , D: we identify the matrix Ak of Lemma 6.4 with the m-by-m upper left
principal submatrix of PskPsk−1 · · ·Psk−1+1; using the notation of (13), Ak = A≤w, for
some node w (not necessarily an ancestor of v) of depth tw = sk − sk−1 ≥ 1/γ.15 Thus,
by Lemma 6.1, for k > 0, the maximum row-sum of any Ak satisfies

α ≤ 1

e
. (16)

15This relies on the Markovian nature of the dynamics: any subsequence of a valid matrix sequence
is itself a prefix of a valid matrix sequence.
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Each Ak is a submatrix of a product of at most 3/γ transition matrices, so each entry is
an O(logN)-bit rational, with N = nn

2/γ . What is the row vector ak? For k = 0, . . . , D,
pick any one of the nO(1) margin hyperplanes and denote by ak the m-dimensional vector
consisting of the O(log n)-bit rational coefficients indexed by the A-agents.16 Fix δ ∈ I
and pick I in Lemma 6.4 to be of size dD1−βm+1e. Assume that, given x ∈ C[y1, . . . , yr],
the phase tube formed by the box x+ % In and Ps0 , . . . , Psk splits at every node indexed
by sk (k ∈ I) along the chosen hyperplane (Fig.5). In other words, for each k ∈ I, there
exist a node zk of depth tzk = sk and %i = %i(k), for i = 1, . . . , n, such that |%i| < % and

(ak, bk)

(
A≤zk Czk
0 B≤zk

)
(x1 + %1, . . . , xn + %n)T = 1 + δ,

where the selected margin hyperplane is of the form

ak(x1, . . . , xm)T + bk(xm+1, . . . , xn)T = 1 + δ,

with bk ∈ Qn−m. Since vk = akA≤zk (by definition) and x ∈ C[y1, . . . , yr] (by assump-
tion), it follows that

vk(x1 + %1, . . . , xm + %m)T + Lin [ y1, . . . , yr, %m+1, . . . , %n ] = 1 + δ , (17)

where the coefficients in the linear form are of magnitude nO(1).

Figure 5: The phase tube splits at the nodes indexed by I = {2, 4, 6}. The nodes of depth sk
for k 6∈ I are represented as black dots: s0, s1, s3, s5, s7 (D = 7). The other nodes in the paths
are the white dots.

Lemma 6.4 allows us to eliminate the variables x1, . . . , xm: we premultiply V|I by

16With m = 3, x1 − x3 = 1 + δ gives ak = (1, 0,−1) and 2x2 − x4 = 1 + δ produces ak = (0, 2, 0).
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the unit vector u to find that

|I|∑
i=1

ui Lini [ y1, . . . , yr, %m+1, . . . , %n ] = (1 + δ)uT1|I| ≥ (1 + δ)N−cm
3D.

Since the coefficients of Lini are nO(1), ‖u‖2 = 1, |%i| < %, it follows that

Lin [ y1, . . . , yr ] + χ = (1 + δ)ξ,

where |χ| ≤ %DnO(1), ξ ≥ N−cm
3D, and the coefficients of the linear form are bounded

by DnO(1); hence,
| δ + Aff [ y1, . . . , yr ] | ≤ %NO(cm3D), (18)

where the coefficients of the affine form are bounded by NO(cm3D). (We leave the
constant c in the exponent to highlight its influence.) The whole point of the exercise is
that the variable δ does not vanish during the elimination. Thus, as long as it remains
outside a gap of width %NO(cm3D), the phase tube formed by x + % In and P0, . . . , PD
cannot split at every index of I. Counting the number of possible choices of hyperplanes
per node raises the number of gaps to nO(|I|). The argument assumes that δ has the
same value in each of |I| inequalities. But, in the global coding tree, the splitting can
occur for different values of δ. We note, however, that each δ in (17) can be replaced
by δ + νk (k ∈ I), for |νk| ≤ %, and the new system of inequalities will still imply (18);
this will be crucial for the randomization. We summarize our results, using the bound
derived from (16): |logα| ≥ log e > 1.

Lemma 6.5. Let N = nn
2/γ and β = 1/(cm3 logN), where c is the constant used in

Lemma 6.4. Fix (y1, . . . , yr) ∈ Rr and a path in T I
m→n−m from the root. Pick D + 1

nodes of the path of depth 0 = s0 < · · · < sD satisfying (15); out of these nodes, choose
a subset I of size dD1−βm+1e. There exists an exclusion zone W consisting of the union
of at most nO(|I|) gaps of width %NO(cm3D), such that, for any interval ∆ ⊆ I \W of
length % and any x ∈ C[y1, . . . , yr], the phase tube formed by x + % In cannot split at all
the nodes of I in T ∆

m→n−m (assuming they exist).17

To prove Lemma 6.3, we need to extend the previous lemma to all the paths of the
coding tree of the prescribed length and remove from (15) the lower bound of 1/γ on
the distance between consecutive splitting nodes. Fix D0 ≥ 2(1/γ)n+1

, and let v be a
node of T I

m→n−m of depth tv = D0. Since the path is fixed, we can uniquely identify the
node v and its ancestors by their depths and denote by Pt the transition matrix of the
node at depth t. Define the node set J = {1/γ, 2/γ, . . . , D0}, with |J | = dγD0e; recall
that 1/γ = tc is an integer. Let K be the set of ancestors of v at which the phase tube
formed by x + % In and P0, . . . , PD0 splits (with respect to T I

m→n−m); assume that

|K| ≥ D1−γn+1

0 . (19)

17The issue is that a path in T I
m→n−m might no longer exist once we replace I by the small interval ∆.
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We define I to be the largest subset of K with no two elements of I ∪ {0} at a distance
less than 1/γ; obviously, |I| ≥ bγ|K|c − 1. To define s1, . . . , sD, we add all of J to I (to
keep distances between consecutive nodes small enough) and then clean up the set to
avoid distances lower than allowed: we define J ′ to be the smallest subset of J such that
L = I ∪ (J \J ′) contains no two elements at a distance less than 1/γ. Each element of I
can cause the disappearance of at most two elements in J for the addition of one element
into L, hence |J |/2 ≤ |L| ≤ γD0 + 1. By construction, consecutive elements of L are at
most 3/γ away from each other, so we can identify L with the sequence s1 < · · · < sD.
By m < n and the specifications of γ in Lemma 6.1 and N, β in Lemma 6.5, we can
verify that

(i) D0 ≥ 2(1/γ)n+1 ≥ γ−12(1/β)m+1+1 and (ii) D1−γn+1

0 ≥ 2
γ (γD0 + 1)1−βm+1

. (20)

Part (i) ensures (15). By Lemma 6.5, keeping δ outside the union W of at most nO(|I|)

gaps of width %NO(m3D) prevents I from witnessing a phase tube split at each of its
nodes, and hence keeps K ⊇ I from being, as claimed, made entirely of “splitting”
nodes. For this, we need to ensure that |I| ≥ D1−βm+1

, which follows from: (19);
|I| ≥ bγ|K|c − 1; D = |L| ≤ γD0 + 1; and part (ii) of (20).

We conclude that, as long as we choose an interval ∆ ⊆ I \ W of length %, the
coding tree T ∆

m→n−m cannot witness splits at all of the nodes of K (if they exist: their
existence is ensured only in T I

m→n−m) for the phase tube formed by any box x + % In,
where y1, . . . , yr are fixed and x ∈ C[y1, . . . , yr]. Note the order of the quantifiers: first,
we fix the coordinates yk and the target length D0, and we pick a large enough candidate
splitting node set K in T I

m→n−m; these choices determine the exclusion zone W ; next,
we pick a suitable ∆ and then claim an impossibility result for any x in C[y1, . . . , yr].
To complete the proof of Lemma 6.3, we bound, by 2D0 and nO(nD0) respectively, the
number of ways of choosing K (hence I, L) and the number of nodes v in T I

m→n−m of
depth tv = D0. 2

6.3 The degree structure

We decompose the global coding tree into three layers: the top one has no degree
constraints; the second has mean degree less than two; and the third has no branching.
Consider an initial placement of the B-agents such that the diameter of each Bi is less
than n−b. By the perturbation rule (i), the communication subgraph induced by the
B-agents is frozen and its transition matrix Q is fixed and independent of the future
placement of the B-agents.18 By the proof of Lemma 6.1, we derive the existence of a
rank-r stochastic matrix

Q̃ = diag (1n1z
T
1 , . . . ,1nrz

T
r )

such that zi ∈ Rni and
‖Qk − Q̃‖max ≤ e−kn

−O(n)
. (21)

18We return to the rule used in §5 for convenience; we could use an arbitrarily small threshold instead.
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The B-agents find themselves attracted to the fixed point y = Q̃ξ, where ξ ∈ Rn−m is
their initial state vector and

y = (

n1︷ ︸︸ ︷
y1, . . . , y1, . . . ,

nr︷ ︸︸ ︷
yr, . . . , yr ).

Define Υ = (0, 1)m × ((0, 1)n−m ∩ΥB), where

ΥB = y + (n−2b In−m) ∩ ker Q̃.

If x ∈ Υ, the diameter of any group Bi is at most 2n−2b < n−b so the communication
graph induced by their agents is frozen and remains so. The B-agents are attracted to
y.19 This follows easily, as does the next lemma, from the stochasticity of Q and the
identities: Q̃Q = QQ̃ = Q̃2 = Q̃ and Q̃y = y.

Lemma 6.6. The set Υ is forward-invariant. Furthermore, any ξ̄ ∈ y + n−2b In−m
belongs to ΥB if and only if Q̃ξ̄ = y.

Proof. If x ∈ Υ, the diameter of any group Bi is below n−b so the communication graph
induced by their agents remains forever frozen. The B-agents are attracted to the fixed
point y. Indeed, we note that, by stochasticity, Qy = Q̃y = y. To prove that Υ is
forward-invariant, it then suffices to show (by convexity) that if ξ̄ lies in ΥB then so
does Qξ̄. We can write ξ̄ as y + w, where w ∈ ker Q̃ and ‖w‖∞ ≤ n−2b. Because Q is
stochastic, this implies that

‖Qξ̄ − y‖∞ = ‖Qw‖∞ ≤ ‖w‖∞ ≤ n−2b,

henceQξ̄ ∈ y+n−2b In−m. It now suffices to show thatQξ̄ ∈ y+ker Q̃, which follows from
the fact that Q̃Q = Q̃, hence Q̃Qw = Q̃w = 0. The second part of the lemma follows
from two simple observations. First, if w = ξ̄−y ∈ ker Q̃, then Qkw = Q̃w+(Qk−Q̃)w =
(Qk − Q̃)w → 0, as k → ∞; hence Qkξ̄ → y. Second, if ξ̄ is arbitrary but Qkξ̄ → y,
then w = ξ̄ − y satisfies Qkw → 0, hence w ∈ ker Q̃. 2

We set %,D0 as in Lemma 6.3 and call an interval ∆ free if it does not intersect
the exclusion zone W = W (y). For counting purposes, it is convenient to partition the
perturbation space n−b I into so-called canonical intervals of length % (with an extra,
smaller one if need be). A gap of W can keep only nO(n5D0) canonical intervals from
being free, so the Lebesgue measure of the free ones satisfies:

Leb
{⋃

free canonical intervals
}
≥ 2n−b − %nO(n5D0). (22)

19Although the B-agents in ΥB have been essentially immobilized around y, they are not decoupled
from the rest. Indeed, while the increasingly microscopic movements of the B-agents can no longer affect
their own communication graph, they can still influence the communication among the A-agents, even
if none of the latter link to any B-agent. This is because the communication function G is global.
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Fixing the B-agent attractor. With y = Q̃ξ fixed, we pick a free canonical interval

∆ and focus on the global coding tree T ∆|Υ
m→n−m, with the superscripts indicating the

perturbation and phase spaces, respectively. (Note how Lemma 6.6 allows us this choice
of phase space.) For any node v of depth tv ≥ tc, the limit matrix Du in Lemma 6.2 is
the same for all nodes u of depth tc. Indeed,∥∥∥P≤v − (0 Cv

0 Q̃

)∥∥∥
max
≤ e−γtv .

Pick v of depth tv ≥ 3tc and let w be its ancestor at depth tw = btv/2c. Given
x ∈ Uv ⊆ Υ, the orbit from x leads to w (resp. v) at time tw (resp. tv) and

x′ := f tw(x) = P≤w x ∈
(
Cw
Q̃

)
(xm+1, . . . , xn)T + ne−γtw In

∈
(
Cw(xm+1, . . . , xn)T

y

)
+ ne−γtw In.

By the Markovian nature of the system, there exists a node v′ of depth tv′ = tv− tw ≥ tc
such that,

f tv(x) = f tv′ (x′) = P≤v′ x
′

∈
(
Cv′

Q̃

)
(y + ne−γtw In−m) + ne−γtv′ In ⊆

(
Cv′y
y

)
+ 2ne−γtv/3 In.

It is important to note that v′ depends only on v and not on x ∈ Uv: indeed, the phase
tube from Uv between time tw and tv does not split; therefore f tw(Uv) ⊆ Uv′ . It follows
that, for tv ≥ 3tc and v′ = v′(v),

Vv ⊆
(
Cv′y
y

)
+ 2ne−γtv/3 In. (23)

The A-agents evolve toward convex combinations of the B-agents, which themselves
become static. The weights of these combinations (ie, the barycentric coordinates of
the A-agents), however, might change at every node, so there is no assurance that the
orbit is always attracted to a limit cycle. The layer decomposition of the coding tree,
which we describe next, allows us to bound the nesting time while exhibiting weak yet
sufficient conditions for periodicity.

To stratify the coding tree T ∆|Υ
m→n−m into layers, we set up three parameters D0, D1, and

D2: the first targets the topological entropy; the second specifies the height of the first
layer; the third indicates the nesting time. We examine each one in turn and indicate
their purpose and requirements.

34



Figure 6: The global coding tree is stratified into three layers, with decreasing branching rates.

First layer. By (23), the phase tubes get thinner over time at a rate of roughly
e−γ/3, while the tree is branching at a rate of nO(n). To ensure that the topological
entropy is zero, the product of these two rates should be less than 1: with γ < 1, this is
far from being the case, so we need a sparsification mechanism. This is where Lemma 6.3

comes in. Indeed, deep enough in T ∆|Υ
m→n−m, the size of a subtree of height D0 will be

shown to be at most

D0(nO(n))D
1−γn+1

0 ,

while the tubes get thinner at a rate of 2ne−γD0/3 for every consecutive D0 nodes: the
choice of D0 below ensures that the product is less than 1, as desired. We justify this
choice formally below. We enlarge D0 slightly from its lower bound of Lemma 6.3.

D0 ≥ 2(1/γ)n+2
[ D0 big enough for thinning to outpace branching ]. (24)

Second layer. Technically, Lemma 6.3 addresses only the splitting of a phase tube
originating from the root, whereas we are concerned here with phase tubes originating

at some cell Vv of T ∆|Υ
m→n−m. To make Vv thin enough, we choose a node v deep in the

tree.20 By (23), for any node v of depth tv ≥ D1, there exists x(v) ∈ C[y1, . . . , yr] such
that Vv ⊆ x(v) + % In, provided that

D1 ≥
3

γ
log

2n

%
[ D1 big enough for tree branches to be thinner than % ]. (25)

Note that the requirement in (23) that tv ≥ 3tc = 3/γ is implied by tv ≥ D1. The
inclusion Vv ⊆ x(v) + % In implies that Lemma 6.3 holds with respect to the subtree of

T ∆|Υ
m→n−m rooted at any node v of depth tv ≥ D1. We apply it to every D0-th level in

the tree below depth D1 and find that the number of nodes in T ∆|Υ
m→n−m of depth at

most t ≥ D1 is bounded by

20Factoring out the B-agents gives us the sort of fixed-point attraction that is required by Lemma 6.3:
it is a dimension reduction device in attractor space.
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nO(nD1)︸ ︷︷ ︸
depth D1

× nO(nD1−γn+1

0 b(t−D1)/D0c)︸ ︷︷ ︸
from D1 to t in chunks of D0

× nO(nD0)︸ ︷︷ ︸
truncated chunk

× D0︸︷︷︸
single paths

.

To see why, treat each path of single-child nodes as a single edge (hence the factor of
D0). Thus, for any t ≥ D1,∣∣∣ { v ∈ T ∆|Υ

m→n−m | tv ≤ t }
∣∣∣ ≤ nO(nD0+nD1+ntD−γ

n+1

0 ) . (26)

The strength of this bound is that the exclusion zone W needed to make it true can
be inferred from a single subtree of height D0: this is why the uniformity over x in
Lemma 6.3 is so crucial. The whole argument would, indeed, collapse if we had to
include a different exclusion zone for each such subtree.

Third layer. The bottom layer of the stratified global coding tree begins at a depth
D2 ≥ D0 + D1. If the node v of depth tv ≥ D2 has more than one child, then, by
continuity, Vv contains a point right on the boundary of the margin. By (23), this
implies the existence of ζ ∈ Rn such that ‖ζ‖∞ ≤ 2ne−γ D2/3 and Lin [y + ζ] = 1 + δ,
where the coefficients of the linear form are of magnitude nO(1) and depend only on

the node v and a margin’s hyperplane. It then follows from (26) that T ∆′|Υ
m→n−m has no

branching at depth D2, provided that ∆′ = ∆ \W ′, where W ′ consists of gaps of width
nO(1)e−γ D2/3 numbering at most

nO(nD0+nD1+nD2D
−γn+1

0 )︸ ︷︷ ︸
# nodes at depth D2

× nO(1)︸ ︷︷ ︸
# margin hyperplanes

.

This will set a bound of D2 on the nesting time. It follows that

Leb (W ′) ≤ e−γ D2/3nO(nD0+nD1+nD2D
−γn+1

0 ). (27)

Pick a large enough constant κ = κ(b, c); recall that γ = n−cnto . We set the parameters
% = n−κn

5D0 , where, rounding up to the nearest integer,
D0 = 2κ(1/γ)n+2

D1 = κ2n6D0/γ

D2 = κn2D1/γ.

(28)

We verify that conditions (24, 25) are both satisfied and that

D1 ≥ D2D
−γn+1

0 . (29)

Thus the measure bound (27) becomes Leb (W ′) ≤ % 2−D0 . Since, as a free canonical
interval, ∆ has length %, we find that, with probability at least 1− 2−D0 , subjecting the
system’s margin to a perturbation δ chosen randomly in ∆ makes phase tube splitting

36



impossible at time D2: we call this success. In these conditions, the nesting time is at
most D2 and asymptotic periodicity ensues (details below). The full perturbation space
is not ∆ but n−b I, so we apply the previous result to each free canonical interval and
argue as follows. If Λ is the measure of the union of all the free canonical intervals, then
the perturbations that do not guarantee success have measure at most (2n−b − Λ) +
2−D0Λ. Dividing by 2n−b and applying (22) shows that

Probδ [ failure in T n−b I |Υ
m→n−m ] ≤ 1− (1− 2−D0)( 1− %nO(n5D0) ) ≤ 21−D0 . (30)

Let Is denote the set of successful perturbations within n−b I. The nesting time is at
most D2, which, by (26, 29), implies this upper bound on the word-entropy:

h(T Is |Υ
m→n−m) ≤ O(D1n log n) ≤ γ−1nO(1)D0 . (31)

Below depth D2, the coding tree can no longer branch but its paths can still end in
absorbing leaves. The period, preperiod, number of absorbing leaves, and maximum
depth of an absorbing leaf are all bounded by21

2h(T Is |Υ
m→n−m) + to . (32)

Asymptotic periodicity. We fill in some of the details of the periodicity claim made
earlier. We show that the limit cycles converge exponentially fast with a characteristic
time proportional to the period. By Lemma 4.1 (and the discussion that followed), we
know that following a path of the tree below depth D2 will produce a periodic sequence
of transition matrices (infinite or stopping at an absorbed node). For any tv > D2 with
a fixed residue modulo the period, we have P≤v = QsQ0, where s is roughly tv − D2

divided by the period. Taking multiples of the period if need be, we can ensure that Q
covers at least c/γ steps, so that writing

Q =

(
A C
0 B

)
, (33)

we can adapt Lemma 6.1 to see to it that ‖A1‖∞ ≤ 1
2 and ‖Bs − B̃‖max ≤ 2−s.

Expressing Qs as (
As Cs
0 Bs

)
,

we use standard properties of a Markov chain’s fundamental matrix to derive

Cs − (I −As)(I −A)−1CB̃ =
s−1∑
k=0

As−k−1CBk −
s−1∑
k=0

AkCB̃ =
s−1∑
k=0

As−k−1CDk,

21The additive term to is only needed for the depth bound.
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for s > 0, where Dk = Bk − B̃ and
∑

k≥0A
k = (I − A)−1. Since C is substochastic,

‖CDk‖max ≤ ‖Dk‖max ≤ 2−k. From ‖Ak 1‖∞ ≤ 2−k, we find that

‖As−k−1CDk‖max ≤ 21−s;

hence
‖Cs − (I −As)(I −A)−1CB̃‖max ≤ s21−s.

It follows that, if we write

Q̃ =

(
0 (I −A)−1CB̃

0 B̃

)
,

then, by ‖As‖max ≤ 2−s and ‖(I −A)−1‖max ≤ 2, we find the approximation bound

‖Qs − Q̃‖max = O(sn2−s).

This implies an exponential convergence rate with a characteristic time proportional to
the period.

Freeing the B-agents. Set D3 = d3bγ−1 log ne and fix x in Ω = (0, 1)n. Let ξ denote
the projection of fD3(x) onto the last n−m coordinate axes. By Lemma 6.2, the coding

tree T n−b I
m→n−m has nO(ntc) nodes u such that tu = tc and

ξ ∈ y + ne−γD3 In−m ⊆ y + n−2b In−m,

where y = Du(xm+1, . . . , xn)T . The state vector for the B-agents is ξ at time D3

and Qt−D3ξ at t > D3, where Q is the transition matrix of the frozen communication
subgraph joining the B-agents at time D3. By taking t to infinity, it follows that y = Q̃ξ
(note that Q̃ is not the same as Du) and, by Lemma 6.6, ξ ∈ ΥB hence fD3(x) ∈ Υ.
We can then apply the previous result. Since x is fixed, only the choice of random
perturbation δ can change which path in T n−b I

m→n−m the orbit will follow. The failure
probability of (30) needs to be multiplied by the number of nodes u, which yields an
upper bound of nO(ntc)21−D0 ; hence

Probδ [ failure in T n−b I
m→n−m ] ≤ 2−D0/2. (34)

If T ∗ denotes the part of the global coding tree extending to depth D3 and I′s the new
“success” perturbation set, then

T I′s
m→n−m = T ∗ ⊗ T I′s |Υ

m→n−m .

The upper bound on the number of absorbing leaves given in (32) still holds with Is
replaced by I′s. The tree T ∗ has at most nO(nD3) nodes; therefore, by (31),{

ν(T I′s
m→n−m) ≤ D2 +D3

h(T I′s
m→n−m) ≤ h(T I′s |Υ

m→n−m) +O(D3 n log n) ≤ γ−1nO(1)D0 .
(35)
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6.4 Removing persistence

The perturbation rule (ii) stipulates that any edge that fails to appear in the commu-
nication graph during to consecutive steps is to remain permanently absent.22 This is
modeled by an absorption in the coding tree. Since we do not know the persistent graph
H ahead of time, we initialize it to the complete directed graph and update it at each
absorbing node by removing the edge(s) whose missing presence causes the absorption.
This yields the rewriting rule,23

T =⇒
k0⊗
k=1

Tmk→n−mk , (36)

where k0 ≤ n(n − 1). To keep the failure probability from being amplified by each
product, we reset D0 in (28) at every iteration: to do so, we define Ck as its suitable
value for a persistent graph consisting of k (nonloop) directed edges and let φk denote
the maximum failure probability for such a graph: Cn(n−1) ≥ D0 and φ0 = 0. By (34,
35) and a union bound, for k > 0,

φk ≤ 2−Ck/2 + 2γ
−1naCkφk−1,

for some large enough constant a > 0. Setting Cn(n−1)−j = γ−jn2ajD0, for j =

0, . . . , n(n − 1), we verify by induction that φk ≤ 21−Ck/2, for k = 0, . . . , n(n − 1);
hence,

Probδ [ failure ] ≤ φn(n−1) ≤ 21−D0/2.

The period and preperiod are bounded by

n(n−1)∏
k=0

(
2γ
−1naCk + to

)
≤ 2C0γ−1nO(1)

,

which grows polynomially in 2D0 , hence in the reciprocal of the failure probability (which
can be made arbitrarily small); the dependency on n grows much faster, of course. This
completes the proof of the case d = d = 1 of the nonbidirectional case of Theorem 1.1.
2

6.5 Arbitrary dimension and algebraic degree

The analysis readily extends to any dimension d and degree d via the tensor lifting
construction of §3. Recall that the two essential ingredients are: (i) the thinning rate

22Note that the margin does not change. Only its labeling does: having assumed that any row of a
transition matrix is uniquely determined by its distribution of positive entries, the loss of an edge entails
an unambiguous updating of the corresponding row.

23Of course, we cannot require that the actual influence systems should reset to 0 the timeout counts
of their edges at each direct product in (36). There is no need to do that anyway: not resetting them can
only mean earlier absorptions (ie, smaller to) so the analysis can ignore this point and assume resetting.
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(Lemma 6.1); and (ii) sparse branching (Lemma 6.3). We easily check that both condi-
tions still hold (though with different rates). The matrix Qc associated with a cell c of
the margin is of the form (P ⊗ Id)

⊗ d, with P = P (x) whenever z = z(x) for some z on
the variety V. We retain the coding tree type Tm→n−m over the m (resp. n−m) ground
A-agents (resp. B-agents). This induces a block-directional decomposition of the lifted
system. Recall that, given z ∈ V, the (lifted) agent l is at position zl =

∏d
i=1 xki,ji , where

l is the lexicographic rank of (k1, j1, . . . , kd, jd). The lifted agents fall into two groups:
A consists of the agents l with at least one constitutive ground agent ki in A; the others
form the group B. The power graph edge from (k1, j1, . . . , kd, jd) to (k′1, j

′
1, . . . , k

′
d, j
′
d)

requires the presence in the ground graph of the d edges (k1, k
′
1), . . . , (kd, k

′
d). This shows

that the lifted coding tree is of type TA→B. Any transition matrix entry corresponding
to an edge from A to A is of the form pi1j1 · · · pidjd , with at least one factor pikjk such
that ik and jk are both ground A-agents. The wet lifted agents consist of the d-tuples
of wet grounded agents. The extension of Lemma 6.1 to the lifted system, with its
transition matrices of the form (P (x)⊗ Id)

⊗ d, follows immediately.
By lifting the thinning rate argument as we just did, we implicitly assumed that the

agent position z lay on the algebraic variety V, i.e., z = z(x) for some x. This need not
be case. A simple fix is to absorb any orbit that strays from V. Specifically, we turn
into an absorbed leaf any node v whose parent w is such that Vv ∩ f(V ∩ Vw) = ∅. Note
that these absorbed leaves are terminal and not the contact points of direct products.
This completes the proof of Theorem 1.1. 2
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Appendix

Proof of Lemma 6.4. We can make the assumption that I includes 0, since all cases
easily reduce to it. Indeed, let l be the smallest index in I. If l > 0, subtract l from the
indices of I to define I ′ 3 0. Form the matrix V ′|I′ of vectors v′k, where vk+l = v′kAl · · ·A0.

Rewriting V|I as V ′|I′Al · · ·A0 takes us to the desired case (padding V ′ to bring the size

up back D): we observe that if uTV ′|I′ = 0 then so does uTV|I . We may also assume that

all vk (k ∈ I) are nonzero since the lemma is trivial otherwise. All the coordinates of vk
can be expressed as O(m2(k + 1) logN)-bit rationals sharing a common denominator;
therefore,

N−O((k+1)m2) ≤ ‖vk‖1 ≤ 2−k|logα|+O(logn). (37)

The affine hull of V|I is the flat defined by { zTV|I : zT1|I| = 1 }: its dimension is called
the affine rank of V|I ; not that if it is equal to m then the affine hull must contain the
origin. Let g(D, r) be the maximum value of |I|, for {0} ⊆ I ⊆ {0, . . . , D}, such that
V|I has affine rank at most r and its affine hull does not contain the origin. Lemma 6.4
follows from this inequality, whose proof we postpone: for r = 0, . . . ,m− 1,

g(D, r) < D1−βm+1
for any D ≥ 2(1/β)m+1

, (38)

where β = |logα|/(cm3 logN), for constant c large enough. Indeed, given any {0} ⊆
I ⊆ {0, . . . , D} of size at least D1−βm+1

, we have |I| > g(D,m− 1), so the affine hull of
V|I contains the origin. If r is its affine rank, then there exists J ⊆ I of size r + 1 such
that the affine rank of V|J is r and its affine hull contains the origin, hence coincides with
the row space of V|J ,24 which is therefore of dimension r. This implies the existence of
r independent columns in V|J spanning its column space: add a column of r+ 1 ones to
the right of them to form the (r + 1)-by-(r + 1) matrix M . Since the affine hull of V|J
contains the origin, there exists z such that zTV|J = 0 and zT1r+1 = 1, which in turn
shows that 1r+1 lies outside the column space of V|J ; therefore M is nonsingular, hence
of rank r + 1. Since each one of its rows consists of O(m2D logN)-bit rationals with a
common denominator,

|detM | ≥ N−O(m3D). (39)

Let ξ be the (r+ 1)-dimensional vector whose k-th coordinate is the cofactor of the k-th
entry in the last column of ones in M . Determinant cofactor expansions yield

ξTM = (

r︷ ︸︸ ︷
0, . . . , 0 ,detM).

Since the first r columns of M span the column space of V|J , it follows that

ξT (V|J ,1r+1 ) = (

m︷ ︸︸ ︷
0, . . . , 0 , detM).

24Because any yTV|J can be written as (y + (1− yT1)z)TV|J , where zTV|J = 0 and zT1 = 1.
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By Hadamard’s inequality and (37), each coordinate of ξ is at most nO(m) in absolute
value; so, by (39), straightforward rescaling and padding with zeroes turns ξ into a
suitable vector u such that uTV|I = 0 and uT1 ≥ N−c1m3D, for an absolute constant c1

that does not depend on c. Replacing c by max{c, c1} establishes Lemma 6.4.
It suffices now to prove (38), which we do by induction on r. If V|I has affine rank

r = 0 and its affine hull does not contain the origin, then all the rows of V|I are equal
and nonzero. Since V|I has the row v0 (because 0 ∈ I), it follows from (37) that

|I| ≤ 1 + max{k ∈ I} = O(|logα|−1m2 logN),

hence
g(D, 0) ≤ β−1. (40)

Figure 7: Why a large value of ki implies that the affine hull of V|I contains the origin.

Assume now that r > 0 and that V|I has affine rank exactly r and its affine hull does
not contain the origin. Put I = {k0, k1, . . . , ki}, with k0 = 0, and consider the smallest
j such that V|J has affine rank r, where J = {k0, k1, . . . , kj} ⊆ I. Since the origin is not
in the affine hull of V|I hence of V|J , we can always pick a subset K ⊆ J consisting of
r + 1 independent rows: let M = V|K∪{ki} denote the (r + 2)-by-m matrix formed by
adding the row vki at the bottom of V|K .25 Since V|I has affine rank r, its rank is r + 1
(using once again the noninclusion of O in the affine hull of V|I), hence so is the rank of
M ; in other words, adding vki does not increase the rank. We show that if ki is large
enough, the system below is feasible in ξ ∈ Rr+2:

ξTM+ = (

m︷ ︸︸ ︷
0, . . . , 0 , 1), (41)

where M+ is the (r + 2)-by-(m+ 1) matrix (M,1r+2), which proves that the affine hull
of M , hence of V|I , contains the origin, leading to a contradiction. This is the crux of
the argument and makes essential use of the rapid decay of the vectors vk. Assume that

ki > ckj |logα|−1m3 logN, (42)

25It may be the case that i = j or ki ∈ K. Since r > 0, we have ki ≥ kj ≥ 1 and j > 0.
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for a large enough constant c. We first show that M+ is of rank r + 2. Pick r + 1
independent columns of V|K , which is possible since the latter has rank r + 1, to form
the full-ranked (r+ 1)-by-(r+ 1) matrix Q. Add a new row to it by fitting the relevant
part of vki (the last row of M) and call R the resulting (r+ 2)-by-(r+ 1) matrix (Fig.7);
consistent with our notation, R+ will denote the square matrix (R,1). A cofactor
expansion of the determinant of R+ along the bottom row shows that

|detR+| ≥ |detQ| −∆‖vki‖1,

where ∆ is an upper bound on the absolute values of the cofactors other than detQ. In
view of (37), the matrix entries involved in these cofactors are all in nO(1); by Hadamard’s
inequality, this shows that we can set ∆ = nO(m). By (37), we also find that

‖vki‖1 ≤ 2−ki|logα|+O(logn).

Since Q is nonsingular, we can adapt (39) to derive |detQ| ≥ N−O(m3kj); hence, by (42),
|detR+| > 0. It follows that the linear system (41) is feasible if we replace M+ by R+

and readjust the right-hand side accordingly. As it happens, there is no need to do so
since every column of M missing from R lies in the column space of the latter: thus
the missing homogeneous equalities are automatically satisfied by the solution ξ. The
feasibility of (41) contradicts our assumption that the origin is outside the affine hull of
V|I ; therefore

kj ≥ βki > 0, (43)

where β = |logα|/(cm3 logN). By definition of j, the affine rank of V|{k0,...,kj−1} is
r − 1 and its affine hull does not contain the origin; therefore j ≤ g(kj−1, r − 1), with
g(0, r − 1) = 1. Let w0 = akj and, for k > 0, wk = akj+kAkj+k · · ·Akj+1, thus ensuring
that, for k ≥ 0, vkj+k = wkAkjAkj−1 · · ·A1A0. Since the affine hull of V|I does not
contain the origin, neither does that of the matrix W with rows w0, wkj+1−kj , . . . , wki−kj .
It follows that the affine rank of W is less than m, so i − j + 1 ≤ g(ki − kj ,m − 1),
hence26 i ≤ g(kj−1, r− 1) + g(ki − kj ,m− 1)− 1. By (43) and i = |I| − 1, we derive, by
monotonicity,

|I| ≤ g(k, r − 1) + g(D − k,m− 1),

where βD ≤ k ≤ D; hence, by (40), given m > 0 and D ≥ 0, for r = 0, . . . ,m− 1,

g(D, r) ≤


1 if D = 0

β−1 if r = 0

g(n1,m− 1) + · · ·+ g(nr,m− 1) + β−1 if 0 < r < m,

(44)

where n1 + · · ·+nr ≤ (1−βs)D, with s = |{ i |ni > 0 }|. Setting η = βm, we check that,
for all D,m > 0,

g(D,m− 1) ≤ β−2(2D1−η − 1). (45)

26It would be nice to bound the affine rank as a function of r and not m, but since we never perturb
the transition matrices it is unclear how to do that.
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The case m = 1 follows from (40). For m > 1, we begin with the case s = 0, where

g(D,m− 1) ≤ m− 1 + β−1 ≤ β−2(2D1−η − 1),

which follows from α ≥ N−O(1). For s = 1, by induction,

g(D,m− 1) ≤ β−2(2(1− β)1−ηD1−η − 1) +m− 2 + β−1

≤ 2β−2D1−η − (2β−1(1− η)−O(1))D1−η − β−2 + β−1 +m− 2

≤ β−2(2D1−η − 1).

Assume that s > 1. Being concave, nonnegative, and passing through the origin, the
function x 7→ x1−η is subadditive for x ≥ 0; therefore,

n1−η
1 + · · ·+ n1−η

r ≤ (1− βs)1−ηD1−η.

Setting r = m− 1 in (44),

g(D,m− 1) ≤ β−2(2(1− βs)1−ηD1−η − s) +m− s− 1 + β−1

≤ 2β−2(1− βm−1)1−ηD1−η − 3
2β
−2 ≤ 2β−2D1−η − β−2,

which proves (45), hence (38) and Lemma 6.4. 2
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