Approximate Range Searching in Higher Dimension

Bernard Chazellet

Abstract

Applying standard dimensionality reduction techniques,
we show how to perform approximate range searching
in higher dimension while avoiding the curse of dimen-
sionality. Given n points in a unit ball in R?, an ap-
proximate halfspace range query counts (or reports) the
points in a query halfspace; the qualifier “approximate”
indicates that points within distance ¢ of the bound-
ary of the halfspace might be misclassified. Allowing
errors near the boundary has a dramatic effect on the
complexity of the problem. We give a solution with
O(d/e)? query time and dn®E~") storage. For an exact
solution with comparable query time, one needs roughly
Q(n?) storage. In other words, an approximate answer
to a range query lowers the storage requirement from
exponential to polynomial. We generalize our solution
to polytope/ball range searching.

1 Introduction

A staple of computational geometry [1, 2], range search-
ing is the problem of preprocessing a set P of n points
in R? so that, given a region R (the range) chosen
from a predetermined class (eg, all d-dimensional boxes,
simplices, or halfspaces), the points of P N R can be
counted or reported quickly. The case of halfspaces
is noteworthy because many range searching problems
with “algebraic” ranges can be reduced to it through
linearization-via-lifting. The counting version can be
solved in O(logn) query time and O(n?/log® n) storage,
while the reporting case can be handled in O(logn + k)
query time and O(nl%2Ipolylog(n)) storage, where k is
the number of points to be reported [1]. In both cases,
the exponential dependency on d—the so-called curse
of dimensionality—is a show-stopper for large d. Lower
bound work in a variety of highly reasonable models sug-
gests that the curse of dimensionality is inevitable [4, 5].

Inspired by recent work on approximate nearest
neighbor searching [8, 9, 7], we seek the mildest relax-
ation of the problem that will break the curse of dimen-
sionality. Without loss of generality we assume that all

*This work was supported in part by NSF grants CCR-998817,
0306283, ARO Grant DAAHO04-96-1-0181.

fDepartment of Computer Science, Princeton University, {
chazelle, dingliu }@cs.princeton.edu

iDepartment of Computer Science, University of Toronto,
avner@Qcs.toronto.edu

Ding Liuf

*

Avner Magen?

the points of P lie in a unit ball of £3. Let Sy, be a half-
space, with h denoting its bounding hyperplane. Given
€ > 0, the fuzzy boundary of Sy is the slab formed by
all points within distance ¢ of h (Fig. 1). Approximate
halfspace range searching refers to counting (or report-
ing) the points of P N Sp, making allowance for errors
regarding the points in the fuzzy boundary; in other
words, the output should be the size of a set whose sym-
metric difference with P N Sy, lies entirely in the fuzzy
boundary.

Approximate range searching is relevant in situations
where the data is inherently imprecise and points near
the boundary cannot be classified as being inside or out-
side with any certainty. In the case of reporting, of
course, one can always move the boundary by € to en-
sure that the output contains every point of P N Sy,
which then allows us to retrieve the right points by fil-
tering out the outsiders.

Theorem 1 Approximate halfspace range searching
can be solved using dn®C™") storage and O(d/e)? query
time.! Any given query is answered correctly with arbi-
trarily high probability.

Our algorithm beats the lower bound for the exact
version of the problem. Indeed, it is known that in the
arithmetic model Q(n'=0(1/4)) query time is required,
if only dnOE"?) storage is available [4]. Our algorithm
generalizes to ranges formed by polytopes bounded by
a fixed number of hyperplanes and to (Euclidean) ball
range searching.

We also propose an alternative algorithm for ap-
proximate halfspace range searching with a query time
of O(d?e~2 + dn'/(1+9)¢=2) and storage O(dne=2 +
n'*T1/(+2)) —and a slightly different definition of ap-
proximation. Again, the query time is better than the
solution for the exact problem, since by [4] Q(n!~©(1)/4)
query time is necessary when we have close to O(n?)
space.

Approximate range searching does not originate with
this paper. Arya and Mount [3] gave an algorithm for
the problem that uses optimal O(dn) storage but pro-
vides a query time of O(logn +&¢~¢), which is exponen-
tial in d. There are other differences as well. For exam-
ple, range queries are assumed to be bounded regions,
which rules out halfspaces. The underlying technique is

1The notation O(f) stands for O(f polylog (f)).

based on space partitions, which is quite orthogonal to
our dimension reduction approach.

2 Approximate Halfspace Range Searching

We show how to reduce approximate halfspace range
searching to an approximate variant of ball range
searching in the Hamming cube. Initially, we make
the “homogeneous” assumption that the hyperplanes
bounding the query halfspaces pass through the origin
and that all of the n points lie in the Euclidean ball
[|[z|]2 < 1. We relax the homogeneous condition later by
lifting to one dimension higher.

2.1 The Homogeneous Case

Let vy be the unit vector normal to h pointing inside
Sp. Any point p; in Sp, outside the fuzzy boundary is
at a distance from h at least ¢ (Fig. 1). It follows that
the angle between Op; and vy, is less than 7/2 —e. (We
assume throughout this paper that € is small enough.)
Similarly, for a point p; not in Sy and outside the fuzzy
boundary, the angle between Opy and vy, is greater than
m/2 + €. This provides a separation criterion to distin-
guish between points we must include and those we must
not.

query halfspace S,

Figure 1: Approximate halfspace range searching.

Let S?! denote the unit (d — 1)-sphere in R? and
let sign(t) be 1 if ¢ > 0 and —1 otherwise. Let x and
y be two vectors in R? and let 0 < 6,, < 7 be the
angle between them. We use &, to denote the event:
sign(x - u) = sign(y - u). If u is uniformly distributed
over S%71, then it is well known that Prob[&, ,] =1—
0z,y/m. It follows that Prob[Eop, v, | > 1/2 + €/ and
Prob[Eops,un | < 1/2—¢/7.

Following Kleinberg’s approach [8] to nearest neigh-
bor searching, we invoke VC-dimension theory [5, 10]
to show the existence of a small number of unit vec-
tors that can be used to distinguish between p; and
p2. Let W, , denote the subset of S9=! for which

Ez,y happens. Let R be the collection of W, ,, for
all z,y € R¢. We consider the range space (S?~!,R).
Each range W, is a Boolean combination of four half-
spaces; therefore the exponent of its (primal) shatter
function is 2d + 2. A finite subset A of S?! is said
to be a y-approximation for the range space (S?~!,R)
if, for all R € R, |[|[RNA|/|A| — u(R)] < v. It fol-
lows from VC dimension theory [5] that the range space
(891, R) admits of an (¢/(2))-approximation A of size
O(de~2log(de~1')). Moreover, a randomly chosen set A
of that size is good with high probability.

TS, Wy op, 0 AI/IA] > 5(Weyop,) — £/(27) >
1/2+¢/(2x). Similarly, [W,, .op.NA|/|A| < 1/2—¢/(2).
For any vector z let Z € {41, —1}/4] be defined as fol-
lows: the i-th coordinate of T is sign(x - u;), where u; is
the i-th vector in A according to a fixed ordering. Recall
that [W, ,NA| is the number of vectors u € A such that
sign(z-u) = sign(y-u). So Wy, NA| = |A| —du(Z,7)
where dg(-,-) is the Hamming distance. We thus have
du(m,0P) < (1/2 — ¢/(2m)|A| and di(5h,0p2) >
(1/2+ ¢/ 2m) Al

It immediately follows that approximate halfspace
range searching (under the homogeneous condition) re-
duces to approzimate ball range searching in the Ham-
ming cube: Preprocess n points in {+1, —1}|A| so that,
given any vy, the points in the Hamming ball centered
at vy, with diameter |A|/2 can be approximately counted
(or reported) quickly. The term “approximately” means
that all points within distance (1/2—e¢/(27))|A| must be
included while all points further than (1/2+¢/(27))|A]
must be excluded.

2.2 The General Case

To remove the homogeneous condition, we lift the prob-
lem into R¥*!. Map each point p = (p1,...,pq) to
p' = (p1,...,p4,1) € R¥*!. Note that the new point set
in R4 lies in a ball of radius v/2. Given a query halfs-
pace: 11+ ---+q4Tqd > qq+1, first we compute the dis-
tance from O to its bounding hyperplane. If it exceeds
V2, then all of the n points are on one side of the hy-
perplane and we return the exact answer (either 0 or n).
Otherwise, ¢5,, <23, ¢;. We map the query to a new
halfspace in RAtH1. @11+ +qiTq—qa+1q4+1 > 0. Note
that the new query passes through the origin. More-
over, (i) all point-halfspace incidence relations are pre-
served by the map; and (ii) point-hyperplane distances
are preserved to within a factor of V2 because of the
upper bound on g3 11- The problem is now reduced to
the homogeneous case after suitable rescaling.

3 Approximate Ball Range Searching in the Ham-
ming Cube

We give two solutions for approximate ball range search-
ing in the k-dimensional Hamming cube H*, where

k = |A| = O(de 2 log(de')). Recall that the problem
is to preprocess a set S of n points so that, given any
q € H*, we can quickly count (or report) approximately
the points of S within distance k/2 to g.

3.1 A High-Storage Solution

We adapt to the problem at hand Kushilevitz et al.’s
solution to approximate nearest neighbor searching in
the Hamming cube [9]. Fix two parameters m and ¢ to
be determined later. The search structure S consists of
m substructures T, ..., Tm, all of them constructed in
the same way but independently of one another. Fix
i € {1,...,m}. The substructure 7; is built by pick-
ing t coordinates of H* at random (out of k). Project
each point z € H* onto the subspace spanned by these
t coordinates. The resulting vector t;(z) € {0,1}* is
called the trace of . Each 7T; consists of a table of 2
entries, one for each trace. Each entry stores a number
(for range counting) or a pointer to a list of points (for
range reporting), to be specified below. The intuition is
that, as long as t is large enough, say t = O(e~2logn),
by a discrete analogue of Johnson and Lindenstrauss’s
theorem, the random projections preserve inter-point
distances in appropriate range within a relative error of
€.
We say that a substructure 7; fails at query ¢ € H*
if there exists p € S such that either of the following
holds:

* du(p,q) < (1/2 —¢/(2m))k but du(t(p),t(q)) >
(1/2 —¢/(3m))t;

e du(p,q) > (1/2 + ¢/(2m))k but du(t(p),t(q)) <
(1/2 +¢/(3m))t.

Lem1r12a 2 The probability that T; fails at q is at most
—Q(e%t)

ne .

Let 0 < ¢ < 1 be a constant to be specified later.
We say that the structure S fails at ¢ if more than cm
sub-structures 7; fail at q.

Lemma 3 For anyy > 0, if we setm = (k+logy 1) /c
and t = O(e21In(2en/c)), then S fails nowhere with
probability at least 1 — 7.

The proofs of Lemma 2 and Lemma 3 follow from
standard applications of the Chernoff bounds and can
be found in [9]. We thus omit them here.

Lemma 3 implies that, with high probability, for any
query ¢ € H* and any p € S, there are at least (1 —c)m
substructures 7; that provide the following guarantees:
(i) if du(p,q) < (1/2—¢/(2m))k then dy(t(p),t(q)) <
(1/2 —¢/(3m))t; (ii) if dg(p,q) > (1/2 +¢/(27))k then
du(t(p),t(q)) > (1/2 + ¢/(37w))t. In the preprocess-
ing stage, for each entry t¢;(x) in the table associated
with 7;, we store the number of points p € S such that

du (ti(z),t:(p)) < (1/2 —€/(37))t (for range reporting,
we store a pointer to a list of such points). To answer
a query g, we pick one substructure 7; € S uniformly
at random. We compute t;(¢) and use it to index the
table of 7;. We output the answer stored at that entry.
By Lemma 3, with probability at least 1 — ¢, the sub-
structure 7; does not fail at ¢, and so we get a correct
answer for approximate ball range queries. It is easy
to see that the storage requirement is O(nk +m2?) (for
reporting, the last term is m2’n), and the query time
O(k) (+ output size for reporting). In view of Lemma 3
and the reduction shown in the last section, this proves
Theorem 1.

We remark that the above algorithm, after some suit-
able modification, also works when each query is the
intersection of a set of halfspaces. The definition for
fuzzy boundary is then generalized in the obvious way.
As long as the number of halfspaces is constant, the
time and space bounds of Theorem 1 remain the same.

Another problem we can solve is approximate ball
range searching in Euclidean space. Given a ball B(g,r)
in R with center ¢ and radius r, approximate ball
range searching includes all points inside the smaller ball
B(g,r — se) while excludes all points outside the larger
ball B(q,r + se), for some parameter s = s(r). Points
in the annulus B(g,r + s€)\B(g,r — s¢) may be misclas-
sified. In the Hamming cube, the technique described
in this section solves approximate ball range searching
for s = ©(r). On the other hand, in such a solution
the width of the annulus (the fuzzy region) grows with
r. When r is large, it might be too big to provide an
estimation of the true answer. We give another solution
in which s is bounded even when r is large. Moreover, it
works in Euclidean space. The idea is to reduce approx-
imate ball range searching in R¢ to approximate halfs-
pace range searching in R*t! via linearization. In this
solution s = (r +1)/r. Thus s = O(1) when r = Q(1).
The time and space bounds are essentially the same as
those of approximate halfspace range searching, and in
particular, the bounds of Theorem 1 apply to approxi-
mate ball range searching as well. We omit the details
in this version.

3.2 A Low-Storage Solution

The storage achieved in the previous section is polyno-
mial in n but with an exponent of O(¢~2). We proposed
another solution that uses roughly quadratic space and
still provides sublinear query time. For this purpose,
however, we need to relax the meaning of approxima-
tion further. If N,(q) denotes the number of points of S
in the Hamming ball centered at ¢ of radius r, then we
output a number N such that (1 —a)Nn_o))r/2(q) <
N < (14 a)N@uyo(e)k/2(q), for any fixed o > 0. In
section 3.6 of [6], it is shown that computing such a
number N can be reduced to the (1 + £)-PLEB prob-

lem (stands for “Point Location in Equal Balls”) with a
multiplicative overhead of a3 log® n in both query time
and storage. The (1 + ¢)-PLEB problem is defined as
follows [6, 7]: given a set P of n points in the Hamming
cube H* and a fixed r < k, preprocess P such that,
given any query q € H,

e if there exists a point p € P such that dg(p,q) <7,
then answer “yes” and return a point p’ € P such
that dg(p',q) < (1 +¢€)r.

e if dg(p,q) > (1 + ¢)r for any p € P then answer
“nO”‘

e otherwise answer anything (either “yes” or “no”).

It is shown in [7] that (1 +¢)-PLEB in the Hamming
cube H* can be solved with query time O(kn'/(1+9))
and storage (kn + n'T1/(1+2)). Therefore approximate
ball range searching can be solved with query time
O(dn!/1+2)¢=2) and storage O (dne 2 +n!*1/(1+9) fol-
lowing the above reduction and k = O(de 2 log(de1)).
This leads to an algorithm for approximate halfs-
pace range searching with query time O(d2c~2 +
dn'/(+2)e=2) and storage O(dne=2 + n!*+1/(1+) a5
claimed in the introduction.

References

[1] Agarwal, P.K., Erickson, J. Geometric range searching
and its relatives, Advances in Discrete and Computa-
tional Geometry (B. Chazelle, J.E.Goodman, and R.
Pollack, eds.), 1-56, AMS Press, 1999.

[2] Agarwal, P.K. Range searching, in “Handbook of Dis-
crete and Computational Geometry,” eds. J.E. Good-
man and J. O’'Rourke, 2n ed., Chapman and Hall, CRC,
2004.

[3] Arya, S., Mount, D.M. Approzimate range searching,
Computational Geometry: Theory and Applications,
17 (2000), 135-163.

[4] Bronnimann, H., Chazelle, B., Pach, J. How hard is
halfspace range searching, Discrete Comput. Geom. 10
(1993), 143-155.

[5] Chazelle, B. The Discrepancy Method: Randomness
and Complezity, Cambridge University Press, 2000; pa-
perback version 2001.

[6] Indyk, P. High-dimensional Computational Geom-
etry, Ph.D. Thesis, Stanford University, 2000.
http://theory.lcs.mit.edu/~indyk/thesis.ps

[7] Indyk, P., Motwani, R. Approzimate nearest neighbors:
Towards removing the curse of dimensionality, Proc.
ACM STOC (1998), 604-613.

[8] Kleinberg, J.M. Two algorithms for nearest-neighbor
search in high dimensions, Proc. ACM STOC (1997),
599-608.

[9] Kushilevitz, E., Ostrovsky, R., Rabani, Y. Efficient

search for approrimate nearest neighbor in high dimen-
sional spaces, SIAM J. COMPUT. 30 (2000), 457-474.

[10] Vapnmik, V.N., Chervonenkis, A.Y. On the uniform con-
vergence of relative frequencies of events to their prob-
abilities, Theory of Prob. App. 16 (1971), 264-280.

