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Preface

iscrepancy theory grew out of a question posed by van der Corput
in 1935: How uniform can an infinite sequence of numbers in
[0,1] be? To give meaning to this question, we may ask how fast
the function

D(n) = sup |[|S,N[0,z]|— nz
0<z<1
grows with n, where S,, consists of the first n elements in the sequence. If
the sequence were uniform—whatever we really mean by this—we would
expect D(n) to grow rather slowly, if at all. Indeed, there are known
sequences for which D(n) = O(logn). Surprisingly, a theorem of Schmidt
says that this is essentially optimal: D(n) can never be in o(logn).

Schmidt’s result can be viewed as a limitation on how well a certain dis-
crete distribution, z — |S, N[0, 2] |, can simulate a continuous one, x — nz.
In other words, a certain amount of discrepancy between the two distribu-
tions is unavoidable. Naturally, countless variants of this problem can be
formulated. Their collective body forms the subject matter of discrepancy
theory.

Intellectual curiosity aside, why should a computer scientist care? For an
answer, go back to the first sentence of the previous paragraph, and replace
the words “discrete” by “polynomial” and “continuous” by “exponential.”
The resulting sentence talks about efficiently computable distributions sim-
ulating intractable ones. By a wonderful coincidence this is the driving issue
behind a central complexity theory question: Is randomization necessary?
There is plenty of evidence to suggest that it is. Probabilistic algorithms
are usually shorter, simpler, faster than their deterministic counterparts.

xi
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But outside of specialized problem models' there is no proof that prob-
abilistic algorithms are computationally more powerful. For example, ran-
domization allows us to test whether a number is prime in polynomial time.
That we cannot replicate the feat deterministically now does not mean that
we won't be able to some day. Whether random bits are truly needed or
not is one of the major open problems in complexity theory today.

To understand why discrepancy theory addresses this question head-on,
we must go back to the characteristic feature of a probabilistic algorithm:
access to a sequence of perfectly random bits. What would happen if,
instead, the algorithm were presented with merely a pseudorandom string of
bits or, to take the idea to its limit, one that is computed deterministically?
Should performance necessarily suffer? Intuitively, it would seem that if
the perfectly random sequence could be approximated well enough by one
that was only pseudorandom, the algorithm might be fooled into behaving
the same. Indeed, unless P =NP, polynomial algorithms—the only ones
practitioners care about—are not expected to be too good at telling apart
random and pseudorandom.

In particular, suppose that one could replace an exponential-size prob-
ability space (common ones are typically that large) by one of polynomial
size, without the algorithm realizing the subterfuge. Then, obviously, no
loss of efficiency could occur. Not surprisingly, simulating a complicated
(read: intractable) probabilistic distribution by a simple (read: polyno-
mial) one is grist for discrepancy theory’s mill; any student of Monte Carlo
techniques for numerical integration knows that.

Complexity theory adds a new twist, however. Discrepancy no longer has
to do with the accuracy of the output—as it does in numerical integration—
but only with the time it takes to produce it exactly. (What would be the
meaning of an approximate answer to the question: Is n prime?) This
different outlook has given rise to the Discrepancy Method.> Discrep-
ancy theory is blessed with many powerful tools and techniques developed
since the nineteenth century. The discrepancy method bridges these tools
with the new, vibrant field of complexity theory and algorithm design. It
has been the force behind major recent developments in areas as diverse
as probabilistic algorithms, derandomization, communication complexity,

LFor example, secret key selection in a public-key cryptosystem, Byzantine agreement,
oracle-based convex-body volume estimation, or primality testing without the extended
Riemann hypothesis.

2The word “method” is to be understood here less as a particular proof technique
(cf. the probabilistic method) than as a spotlight on the common core of a large and
varied set of problems.
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searching, machine learning, pseudorandomness, computational geometry,
optimization, computer graphics, and mathematical finance.

The story of the discrepancy method is rich and far-reaching. This book
tells fragments of it by means of specific examples, including both upper
bounds (algorithm design) and lower bounds (complexity theory). The
discrepancy method counts as one of the great achievements of theoretical
computer science and one of its most compelling stories. But there is an
added pleasure: Much of the math in the story is of great beauty. How
can one resist such gems as the Alexander-Stolarsky formula or Roth’s
method of orthogonal functions or the Fourier transform method of Beck
and Montgomery? That, in addition, such techniques can be used to prove
lower bounds in complexity theory is nothing short of wondrous.

The fundamentals of discrepancy theory are presented in the first three
chapters. The presentation privileges techniques over results: The aim is
to introduce the main tools of the trade and use specific problems merely
as a vehicle for reaching that objective. This is not a book on discrepancy
theory. The reason we address the subject in the first place is to build a
pool of techniques for us to tap into in subsequent chapters. There, we
address a variety of topics, such as communication complexity, pseudoran-
domness, rapidly mixing Markov chains, sampling, linear programming,
circuit complexity, geometry, searching, linear selection, and matroid op-
timization. All subjects are presented as reasonably short, independent
vignettes. Three exceptions to this rule: Points on a sphere, convex hulls,
and minimum spanning trees (Chapters 2, 7, 11, respectively) require a
longer, technically more demanding treatment.

This book, like most, has a finite number of pages; a fact that did not
always strike the author as self-evident. The main casualty is a plethora of
serious omissions. Truly, what sort of book can call itself “the discrepancy
method” while overlooking such perennial users of the method as computa-
tional learning theory, approximate counting, volume estimation, one-way
functions, bin packing, computational finance, etc? Fortunately, excellent
texts on some of these topics already exist, eg, Biggs and Anthony [46], Gol-
dreich [143], Luby [204], Motwani and Raghavan [236], Sinclair [289], Traub
and Werschulz [309]. Since Aardenne-Ehrenfest’s proof [1] of van der Cor-
put’s conjecture in 1945, discrepancy theory has grown into a rich, mature
subject. For a thorough, expert treatment of the field, the reader hun-
gry for more will turn to Beck and Chen [37], Drmota and Tichy [111], or
Matousek [219]. None of these references address the discrepancy method,
however.

Derandomization figures prominently in this book. Soberer minds might
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smell a whiff of perversion. Random bits help to make algorithms sim-
ple, practical, and (virtually) infallible. Why would anyone want to de-
randomize them? There are two good reasons: One is that deterministic
low-discrepancy constructions are often better than randomized ones. The
other reason is, very simply, to understand. For all its wonders, random-
ness sometimes is the tree that hides the forest. For example, expanders,
convex hulls, and minimum spanning trees all lend themselves to simple,
elegant probabilistic treatments. The randomized approach is, in fact, so
powerful that, left to its own devices, it sheds scant light on these problems.
In particular, it barely hints at their stunningly rich and beautiful struc-
tures. Forgoing randomization forces us to “look under the hood.” T hope
the reader will find the sight impressive and the exploration rewarding.

‘Who Should Read this Book?

To anyone who is curious about algorithms, complexity, and their relation
to classical mathematics, this book has a story to tell. Complexity theory
is one of the genuinely modern sciences to emerge in the twentieth century.
While structural questions such as P vs. NP remain the tall mountains to
climb, the art of designing polynomial-time algorithms and analyzing them
mathematically has achieved an impressive level of maturity, resulting in a
number of truly astonishing results. In its own modest way, this book tries
to document this statement.

This book is for everyone with a taste for theoretical computer science.
Let it be said, however, that college-level knowledge of mathematics and
algorithms will make for smoother reading. Theoretical computer scientists
are said to be mathematicians in a hurry. Regardless of the stereotypes,
this book should please both camps, beginning at the senior undergradu-
ate level. Some chapters can be read quickly while others simply cannot.
(Which is which is for the reader to decide.) Ample background material
has been supplied as needed. A fine thought, I know... I remember a
textbook going to great lengths to explain that a compact surface of genus
one really is like a donut, and then moving on to quote the Riemann-Roch
theorem without a word of explanation. I tried to avoid this misordering
of priorities, but to try does not always mean to succeed.

Judging from its table of contents, this book promises all the cohesion of
a rummage sale. What could possibly justify putting under the same roof
modular forms, minimum spanning trees, Voronoi diagrams, expanders,
and linear circuits? Whether we are playing with the symmetries of the
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hyperbolic plane to draw dots on a beach ball, or designing error-prone
priority queues to find minimum spanning trees, or calling on VC-dimension
theory to compute Voronoi diagrams, or strolling down Cayley graphs to
recycle random bits, or surfing wavelets to build high-spectrum matrices,
we are always trying to achieve the same effect, albeit for different purposes:
It is either to coax a representative sample out of a complex structure or, as
in the last example, to show that this can’t be done well. The discrepancy
method encapsulates this idea and builds the tools to make it happen.

A few sections are marked with an asterisk; this indicates that they
provide the broader mathematical context within which the material is
to be understood. Reading them can be illuminating, even a lot of fun
(T hope), but it is not essential. Keep in mind, however, that much of
the added value of a book over, say, a collection of research articles often
resides in those less than indispensable passages. To make this volume as
self-contained as possible and at the same time enable different levels of
reading, copious amounts of background material have been included in
footnotes and appendices.

There is a natural temptation for any book on advanced topics to handle
complicated arguments with quick brushstrokes and let the readers figure
out the messy details by themselves. I have resisted this temptation. My
rule has been to provide complete proofs for pretty much everything dis-
cussed in this book outside of appendices. (Of course, like any good rule,
this one has exceptions, too.)

Notation and Terminology

All logarithms are to the base two, unless indicated otherwise. The expres-
sions f = O(g), f = Oulg), f < g, f <a g, 9=9(f), 9 =Qa(f), 9> f,
and g >4 f all mean the same thing, ie,> f < Cg + C’, for two positive
constants C,C' and all values of the variables. The subscript d indicates
that the constant C' depends on a parameter d. So, for example, one might
write O(z)%= Oq(x9). If both f < g and g < f, we use the notation f ~ g
or f = 0(g); if f(x)/g(z) tends to 0 as x — oo, then we write f = o(g).
The expression, “for n sufficiently large,”
should exceed a constant large enough to satisfy the various inequalities in
which n appears.

is a handy way of saying that n

3The reader wondering what happened to the dots should blame no one (eg, the copy
editor) but the author (ie, me) for his inability to appreciate the wisdom of unabbrevi-
ating abbreviations with extra dots. Exampli gratia, why e.g. and not eg?
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The repeated use of expressions such as “it is easy to” or “obviously”
can be exasperating. It should not. Think of them as punctuation with
meaning. For instance, to the uninitiated, hearing that Voronoi diagrams
are convex hulls in disguise, or that rational elliptic curves are modular,
are two equally intimidating statements. All four concepts have rigorously
nothing to do with one another. Each one is deep and central. Therefore,
to prove these statements must be very hard. Wrong. In this book, the
first statement might open with “It is easy to show that...,” while the
words “exceedingly difficult” might accompany the second: a useful thing
to know. The word “obviously” means that the reader should be able to
supply a proof within seconds. If he cannot, then obviously he is fully
entitled to... feel very bad about himself.
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Combinatorial Discrepancy

’ et (V,S) be a set system, where V' = {vy,...,v,} is the ground
set and S = {S1,...,Sn}, with S; C V. (Such a combinatorial
structure is often called a hypergraph.) We wish to color the
elements of V' red and blue so that, within each S;, no color outnumbers
the other one by too much. To make this notion precise, we introduce a
function x mapping each v; € V to a “color” in {—1,1}, and we define the
discrepancy of the set S; to be

X(Si) = > x(;).

v; €S;

The maximum value of |x(S;)|, over all S; € S, is called the discrepancy of
the set system (under the given coloring). When no particular coloring is
understood, the discrepancy of the set system, denoted by Do, (S), refers
to its minimum discrepancy over all possible colorings.*

This type of discrepancy is called combinatorial or, more evocatively, red-
blue. By contrast with some of the discrepancies discussed in subsequent
chapters, which involve both continuous and discrete distributions, the
red-blue discrepancy compares two discrete distributions. Both types are
intimately linked, however, and techniques for red-blue discrepancy often
extend effortlessly to the continuous case.

Discrepancy has been defined in the worst-case sense, ie, in the L> norm.
This is intuitively appealing but difficult to manipulate algebraically. The
L? norm provides a friendlier environment, so we define

Dy(8) & min /X(S)% -+ x(Sm)?,

LFor technical convenience, we use absolute values for the discrepancy of set systems
but not when referring to the discrepancy of a particular subset.



2 COMBINATORIAL DISCREPANCY

over all colorings x : V +— {—1,1}. This suggests an algebraic characteri-
zation of the discrepancy using matrices. Let A be the incidence matriz of
the set system (V,S); this is the matrix whose n columns are indexed by
the elements of V' and whose m rows are the characteristic vectors of the
sets Sj, so that A;; is 1 if v; € S; and 0 otherwise. The discrepancy of the
set system, also denoted by Dy, (A), can be expressed as the L*> norm of
a column vector:

Doo(A) = mi Azl -
(4) s | Az|

Similarly,

Da(4) = _min |dr]].

Here is an overview of this chapter:

e In §1.1 we show that, in the absence of any special assumptions on
the set system, a random coloring is nearly optimal. It ensures a
discrepancy on the order of y/nlog(2m). We give several methods
for computing such a coloring deterministically and, in the process,
introduce a general derandomization technique.

e We show in §1.2 that if the number of sets in S is small enough, eg,
O(n), then the discrepancy can be kept in O(y/n). (The bound
is proven to be optimal in §1.5.) This gives us the opportunity to
introduce the powerful entropy method of discrepancy theory.

e In §1.3 we establish the classical Beck-Fiala theorem, which says
that if no element belongs to more than a constant number of sets,
then the discrepancy can be kept constant.

e We discuss the case of range spaces in §1.4. These are well-struc-
tured set systems of central importance in discrete and computa-
tional geometry. We derive several results that form the foundation
of our treatment of geometric sampling in Chapter 4.

e In §1.5 we describe several methods for deriving lower bounds on
the discrepancy of set systems. All of them have to do with the
spectrum of ATA. The simplest one relates the discrepancy to
the smallest eigenvalue. We apply this eigenvalue bound to de-
rive a classical theorem of Roth on the discrepancy of arithmetic
progressions. This result is optimal, but in general the eigenvalue
bound is weak because it does not exploit the fact that the color-
ing x is a vector with £1 coordinates. To do that, we introduce
the notion of hereditary discrepancy and show how determinants
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can be used to prove lower bounds. We give an application to set
systems formed by points and halfplanes. Finally, we derive the
powerful trace bound, which allows us to avoid determinants and
eigenvalues altogether and prove tight lower bounds in a surpris-
ingly simple manner. We give two examples: points in lines, and
points in higher-dimensional boxes.

1.1 Greedy Methods

Given a set system (V,S), with |V| = n and |S| = m, pick a random

coloring , meaning that for each v;, the “color” x(v;) is chosen randomly,

uniformly, and independently, in {—1,1}. We say that S; is bad if |x(S;)| >
2|S;|In(2m). By Chernoff’s bound,”> we immediately derive

1
Prob[S; isbad | < —;
m

therefore, with nonzero probability, no S; is bad.

Theorem 1.1 The discrepancy of a set system (V,S) does not exceed
2n1n(2m), where |[V| = n and |S| = m. This is achieved by a random
coloring.

Let us slightly relax the bound and say that S; is bad if

IX(Si)[ > /3]Si| In(2m).

Then, by Chernoff’s bound, the probability that no S; is bad exceeds 1 —
1/y/m. Note that if the first coloring we try fails, we should keep on

trying. The probability of being still unsuccessful after k£ attempts is only
O(1/mk*/?).

The Method of Conditional Expectations

We now describe a general technique for derandomizing the probabilistic
coloring algorithm, ie, transforming it into one that does the same thing
without using random bits.

The idea is to assign x(v1), x(v2), etc, in that order, without ever back-
tracking. Let B = ZZZI B;, where B; is the indicator variable equal to 1

2See Lemma A.5.
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if S; is bad and 0 otherwise. We know that

m m ‘ 1
EB = ;EBi = ;Prob[Si is bad ] < - (1.1)
Let ¢ = 1 be such that
E[B|x(v1) =e1] < E[B|x(v1) = —e1].
We have
EB =By, E[B|x(11)] > E[B| x(1) =1 ] (1.2)

In general, let e, € {—1, 1} minimize the function of z,

E[B|x(v1) =e€1,.-.,x(0g-1) = €g—1, x(vg) = z].
Note that
E[B|x(vi) =1, x(0k—1) = €k-1]
=Ey(u) E[B|x(v1) =¢€1,...,x(0k—1) = -1, x(vr) ]
>E[B|x(vi) =¢€1,...,x(vx) =]
It follows from (1.2) that
EB > E[B|x(v1) =€1,...,Xx(vk) =&k ]-

At k = n, no randomness is left, so from (1.1),
1
ﬁ >EB Z E[B|X(’l}1) = 515---7X(Un) = Sn]'

The right-hand side denotes the number of bad S;’s in the final color-
ing, which, being less than one, is therefore zero. Thus, the assignment
x(v;) = €; (1 <14 < n) guarantees that each S; satisfies

IX(Si)| < +/3|Si| In(2m).

The entire procedure can be carried out in polynomial time. Indeed, there
are n basic coloring steps, and each of them involves the calculation of two
conditional expectations of the form

E[B|x(v1) =€1,...,x(vr) = €x ].
Each such conditional expectation is a sum of m terms of the form

Prob[|x(S:)| > v/3|Si| In(2m) | x(v1) =e1,...,x(vg) =€r],

each of which is a sum of at most 2n probabilities from the binomial distri-
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bution® B(|S; N {vk+1,---,vn}],1/2). Note that the difficulty of comput-
ing huge binomial coefficients is easily circumvented. Using the bound of
1/4/m in (1.1) provides some slack that allows us to perform calculations
with relative error 1/(nm)°W
of O(log(n + m)) sufficient.
The algorithm we just described is an instance of a very general de-

. This, in turn, makes a computer word size

randomization technique. We will encounter it again in Chapter 7. It is
greedy in that it follows a locally optimal strategy, but the cost function
encodes information about the future. Intuitively, the idea is to keep, at
all times, the relative density of good events reachable from the current
state bounded from below. As long as these densities—or good enough
approximations thereof—can be computed effectively, the method yields a
polynomial algorithm for reaching a good event.

A steep trail might be followed by

a flat portion. So, to ensure a fast

descent, at each fork the skier opts
for the trail whose average slope

over all descents from that trail is /
maximum in absolute value. The

decision is not a local one.

The Hyperbolic Cosine Algorithm

A somewhat simpler approach is to choose a cost function based on the
partial discrepancies incurred up to the current point in time. Suppose
that x(v1),...,x(vx) have already been assigned. For each S;, let p;
(resp. m;) be the number of v; € S; (j < k), such that x(v;) = 1 (resp.
x(v;) = —1). For 1 < k < n, we define H(k) =Y, ,.,, H(i, k), where*

H(i, k) = cosh(a(pir —mi))

and a = y/21n(2m)/n. Note that p; ;, —m; , is precisely the “current” dis-
crepancy x(S;). The strategy is to choose the assignment of x(vy411) = + 1
that produces the smaller value of H(k + 1). If vgy; & S;, then obviously
H(i,k + 1) = H(i,k). Otherwise, by elementary properties of the hy-
perbolic cosine, the two possible values of H(i,k + 1) average to exactly
H{(i, k) cosh(c). It follows that the two values of H(k + 1) corresponding

3See Appendix A.
4Recall that coshz = (e® +e~%)/2.
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to x(vg+1) = =1 average to at most H (k) cosh(a), which, by taking Taylor
expansions, is easily shown to be less than H(k)e® /2. This remains true
if we extend H (k) to the case k = 0 by setting H(0) = m. It follows that
H(k) < me*®®/2 for k > 0, and hence,

1 e maxi XSO < cosh(amax |x(S;)|) < H(n) < men’/2,
(2

Thus, the discrepancy of the set system is at most y/2n In(2m).

Remark: The weight function H (k) takes into account only the discrepan-
cies of the prefixes of sets in S examined so far, and not the respective sizes
of these prefixes. So, a small prefix may end with a discrepancy similar to
that of a large prefix. For example, if all of the sets have linear size except
for one of them that is very small and is spread evenly among vy, ..., v,,
then H (k) will not be influenced much by the small set, and an adversary
can easily drive up its discrepancy as high as linear in its actual size. Our
next discussion corrects this undesirable feature.

The Unbiased Greedy Algorithm

In the event that some sets of S might be small, it is desirable to have
the stronger inequality, |x(S;)| < +/2|Si|In(2m), for each S; € S, as was
provided by the derandomization method. A simple modification of the cost
function achieves just that. We follow the same approach as the one used
in the hyperbolic cosine algorithm. Only the definition of the cost function,
renamed G(k), is different. Given S; € S, we fix a parameter ¢; € (0, 1),
to be specified later, and define, for 1 < k < n, G(k) = Y ;c,, G(i,k),
where

G(’L, k‘) = (1 + Si)pi‘k (1 — Sl)mlk + (1 + Sl)mlk (1 — Si)pi‘k .

We can verify that the two possible values of G(k + 1) average out to G(k)
(hence the term unbiased). Thus, always picking the assignment of x(vkt1)
that minimizes G(k + 1) implies that G(k + 1) < G(k). It is natural to
define G(0) = 2m. Obviously, G(i,n) < G(n) < 2m, for any 1 < i < m.
Now, observe that

Gli,n) = (1—3) 50 (1 XS (1= gk (1.3)
It follows that

1S5 1=1x(S:)]

(1—e) "8 (L)) < o, (L4)
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and hence

1+¢;
S In(1 = &) + (Sl In (1=

) < 21n(2m).
Let A(z) = L In((1+2)/(1—2)) and f(z) = AM(z)? +In(1—2?). For any z €
[0,1), f(z) > 0. (This follows trivially from the fact that f(0) = f'(0) =0
and that the derlvative of (1 —z?)f'(z) is positive over (0,1).) We derive

21x(S0)A(er) — |SiA(e)? < 21n(2m).

Since A(g;) varies continuously from 0 to infinity as e; goes from 0 to 1, we
can choose

Aei) = v/21n(2m) /]Sy,

which gives us |x(S;)| < 1/2|S;|In(2m), as desired.

Theorem 1.2 In O(nm) time, it is possible to color the elements of
a set system (V,S) such that the discrepancy of any S; € S is at most

V/2|Si|In(2m) in absolute value, where n = |V| and m = |S|.

Remark: The unbiased greedy approach entails nothing more than replac-
ing the multiplicative factor e*® of the hyperbolic cosine algorithm by the
first two terms of its Taylor expansion, that is, 1 + «. This modification
implies that the assignment of the next x(v) corresponds to a fair game, ie,
a random choice multiplies G(k) by 1 on average, as opposed to cosh(a) in
the case of the hyperbolic cosine algorithm. By setting a fixed upper bound
on G(k), we thus prevent big sets from overinfluencing the assignment pro-
cess. Indeed, observe that in the expression for G(i,n) given in (1.3), both
the discrepancy and the size of S; are taken into account.

1.2 The Entropy Method

We consider the particular case of a set system (V,S), where |V|=|S|=n
(which is easily generalized to the nonsquare case). The method is based
on the use of partial colorings and the pigeonhole principle. The entropy
function is used to simplify an otherwise complicated counting argument.
The idea is to argue that many colorings have almost the same discrepancy
vectors (ie, each x(S;) differs little among the various colorings). Thus,
subtracting two such colorings and dividing by two gives a partial coloring,
ie, a coloring in {—1,0,1}, with low discrepancy. If we can show that the
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new coloring uses few zeros, then an appropriate recursion “completes” the
coloring without increasing the discrepancy by too much.

Theorem 1.3 Any set system (V,S) such that |[V| =|S| =n has O(/n)
discrepancy. Some set systems have a matching lower bound.

The lower bound part of the proof is given in §1.5. Note that the upper
bound of O(y/n) represents a constant number of standard deviations from
the random coloring of a given set of size ©(n). For this reason, this is often
referred to as the standard deviation bound. We begin by defining a partial
coloring of V as amap x : V — {—1,0,1}. As usual, the discrepancy of
S; € S is defined as

vES;

Theorem 1.3 is a simple corollary of the following;:

Lemma 1.4 Let (V,S) be a set system, where |V| =n and |S| = m > n.
There exists a partial coloring x of V', such that at most 0.9n elements of
V' are colored zero and, for each S; € S,

2
(S| < ey/nin =,

Apply the lemma to (V,S), and let Z be the subset of 0-colored elements
in V. Unless Z is empty, apply the lemma to the subsystem (Z, S|z), where
S|z is the collection of subsets of Z of the form S N Z, for any S € S.
Then, iterate in this fashion until every element of V' is +1-colored. The
discrepancy of each S; € § will be at most

for some constant ¢ > 0.

S (O.Q)knln(oz% — 0(n),

k>0

which establishes Theorem 1.3. O

It is easy to generalize the theorem to the case where m > n. We find
that it is possible to two-color the set system (V,S) so that its discrepancy
is in O(y/nIn(2m/n)). This represents an improvement over the random
coloring provided that m = n!*+o(1),
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It now remains to prove Lemma 1.4. Let yo be a random two-coloring
of V. Given S; € S, let

cy/nin(2m/n)

for some large enough constant c¢. By Chernoff’s bound,® the probability py
that x§(S;) = k is less than (2m/n)*0k2. Since the function f(z) = —zlogx
increases as x goes from 0 to 1/e, the entropy of x¢(S;) satisfies:

Xo(S:) = { Xo(Si) J ’

< def 1 1 2m\ —ck? 2m
H(x5(S:) = E i log — < polog —+ E ck? (7) log -
—oo<k<+oo Pk 0 [k|>0

For ¢ large enough, we easily verify that

and therefore —pglogpy < n/10m. It follows that

H(G(S:) < 7

Let x5 be the vector

Because of the subadditivity of entropy (Appendix A.3),

. n
H(xp) < 5

Thus, by Lemma A.8, there exists a vector (di,...,dy) such that
Prob[x; = (di,...,dp)] > 27"/5.

In other words, the set C of two-colorings producing the vector (di, ..., dy,)
is of size greater than 2*%/%. Pick one coloring x; in C' and for each x € C
form the partial coloring x’ = £(x — x1). Note that

2
X/(S0] < 54/nin ==, (15)

for each S; € S. The number of partial colorings with at most n/10 nonze-

ros is equal to
> (p)2 <2<l
0<k<n/10

5See Lemma A.5.
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Therefore, there exists a partial coloring with more than n/10 nonzeros
that satisfies (1.5), which proves Lemma 1.4. O

1.3 The Beck-Fiala Theorem

We briefly discuss a result commonly known as the Beck-Fiala theorem:
It states that efficient colorings are always possible as long as no element
of the ground set appears in too many S;’s. Let ¢t be the degree of the
set system, ie, the maximum number of sets S; to which any given v € V
belongs. Initialize each x(vg) to 0 and call vy undecided. The algorithm
will make the v;’s decided as it goes. A set .S; is said to be stable if it
contains at most ¢t undecided elements. Because of the degree condition,
the number of nonstable sets is strictly less than the number of undecided
elements. Thus, if we regard the sequence (x(v1),...,x(vn)) as a vector
in R™, by simple linear algebra we can move the vector along (at least) a
line while both changing only undecided coordinates and maintaining the
discrepancy x(S;) of each nonstable set S; equal to 0.

Let us stop our continuous motion as soon as one (or several) of the
X(vk)’s becomes equal to £1. At that stage, we pull all such vg’s out of
the game by declaring them no longer undecided. Note that this might
cause new sets S; to become stable. Obviously, it is still the case that the
undecided elements outnumber the nonstable sets, so we can repeat the
same process and move the vector of undecided colors accordingly. Iterating
in this fashion as long as some v, remains undecided will eventually make
every S; stable.

Note that the discrepancy of any S; is 0 until it becomes stable, and from
that point on at most ¢ of its elements can have color updates; none of those
x(vk) was equal to £1 to begin with (else they would not be undecided).
So each was in (—1,1), and therefore the total change on x(S;) amounts to
strictly less than 2¢. Since the final value must be integral, |x(S;)| < 2t—1
for all i < m. We have proven the Beck-Fiala theorem.

Theorem 1.5 The discrepancy of a set system of degree t is less than 2t.

1.4 Discrepancy and the VC-Dimension

Range spaces denote particular (finite or infinite) set systems that arise
naturally in geometry. Despite their strong geometric connection, range
spaces are defined purely in combinatorial terms. In keeping with common
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usage, we use the notation ¥ = (X, R), instead of (V,S), to refer to a range
space. For example, X might be a set of n points in R?, while R is the
collection of sets of the form X N D, where D is a disk. Note that ¥ is a
subsystem of the infinite geometric set system (R2,R°), where R° denotes
the set of all disks.

The range space consists of
three subsets: A = {1},
B ={1,2}, and C = {1, 2,3}.

C

It is common to consider infinite range spaces of the form (R, R°), where
R° is obtained by letting a group of transformations act on a fixed subset
of R%; the elements of X are called points and the subsets in R are called
ranges. In practice, the set systems considered in a geometric context are
often subsystems of infinite range spaces. A single parameter, called the
Vapnik-Chervonenkis dimension (VC-dimension), characterizes the ability
of sampling effectively from such range spaces. In any reference to a “range
space” it is usually implicit that the VC-dimension is finite. We shall show
that the discrepancy of range spaces is smaller than that of more general
set systems. If | X'| = n, then the discrepancy is within O(n'/2=%), for some
small constant & > 0, which beats the standard deviation bound of O(y/n).

Primal and Dual Shatter Functions

Let ¥ = (X,R) be a (finite or infinite) set system. Given ¥ C X, let
(Y,R|y) denote the set system induced by Y, ie, { Y N R|R € R}. Note
that although the same set YN R may be obtained for several R’s, only one
copy appears in R|y; in other words, R|y is not a multiset. A subset ¥ of
X is said to be shattered (by R) if R|y = 2¥, meaning that every subset
of Y (including the empty set) is of the form Y N R, for some R € R. The
supremum of all sizes of finite shattered subsets of X is called the Vapnik-
Chervonenkis dimension of X, or VC-dimension for short. For example, it
is easy to see that d + 1 is the VC-dimension of the range space formed
by points and halfspaces in d-space (Fig. 1.1). One should not be fooled,
however; in general, evaluating the VC-dimension is no simple matter.
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Fig. 1.1. The VC-dimension of halfplanes and points is three, not four.

If X contains arbitrarily large shattered subsets, then we say that the
VC-dimension is infinite. In a Euclidean space of fixed dimension, a rule
of thumb is that if ¥ is a range space defined by some shape of constant
description size (eg, a simplex, an ellipsoid, but not, say, an arbitrary
convex set), then the VC-dimension is bounded. We define the shatter
function g of a range space ¥ as follows: mg(m) is the maximum number
of subsets in any subsystem (Y, R|y) induced by some Y C X of size m.

Lemma 1.6 If the shatter function of an infinite range space is bounded by
a fired-degree polynomial, then its VC-dimension is bounded by a constant.
Conversely, if the VC-dimension is d > 1 then, for any m > d,

rr(m) < (’g) n (“;) fot (7;) < ()",

Proof: The first part of the lemma is obvious. We prove the inequality
on 7r(m) by induction on d and m. Let f(d,m) be the maximum value
at m of the shatter function of any range space of VC-dimension at most
d. Trivially, f(0,m) and f(d,0) are at most 1, so assume that d,m > 0.
Fix Y C X of size m and let y € Y. Let C' be the number of distinct sets
of the form Y N R, where R € R. It might be tempting to say that C is
equal to the number A of sets of the form (Y \ {y}) N R. But this might
fall slightly short of the count, because two distinct R and R’ can produce
the same set (Y \ {y}) N R. For this to happen their restriction to ¥ must
differ by exactly y. Thus, if we define B to be the number of sets Y N R
that can be expressed as the disjoint union of Y N R’ (R’ € R) and {y},
we can then safely write C = A + B.

Note that in the definition of B the sets ¥ N R’ cannot shatter any
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subset of Y\ {y} of size d; otherwise, we could form a subset of X of size
d + 1 that is shattered by R, which would give a contradiction. Therefore,
B < f(d —1,m — 1). Since, obviously A < f(d,m — 1), we have the
recurrence

f(d,m) < fldym—-1)+ f(d—1,m—1).

Checking that f(d,m) satisfies the inequality of the lemma is routine.
We can also solve the recurrence visually by counting the number of paths
connecting an integral point on the z-axis between 0 and d to the point
(d,m), using only vertical edges and edges oriented at 45 degrees. O

The estimate given by the lemma is optimal. It is not too hard to see
that infinite range spaces cannot have sublinear shatter functions. In other
words, if 7g(m) = o(m), then R is finite, and hence mx (m) = O(1). Also,
by keeping track of the growth of shatter functions, it is quite easy to
show that the class of range spaces of bounded VC-dimension is closed
under union, intersection, and complementation. More precisely, if (X, R)
is of bounded VC-dimension, then so is (X,S), where any S is a finite
combination of unions, intersections, and complementations of subsets of R.

If we represent a (finite) set system by its incidence matrix, transposition
has an obvious interpretation: We no longer look at which elements lie in
a given set but at which sets contain a given element. In other words,
we switch the roles of elements and subsets (or points and ranges). Of
course, we can do the same even when the set system is an infinite range
space. Given a range space ¥ = (X, R), this suggests introducing the set
R* = {Ry|x € X}, where R, = {R € R|z € R}. The range space
¥ = (X*,R*), where X* =R, is called the dual of X.

If ¥ is separable, meaning that for every x,y € X there exists R € R that
contains = but not y (ie, no column appears twice), then duality is invo-
lutory; in other words, the dual of (X*,R*) is isomorphic to (X, R). The
shatter function of ¥*, denoted by 7%, is called the dual shatter function of
(X, R). Although the VC-dimension of a range space might be sometimes
quite difficult to evaluate, its dual shatter function is often easier to esti-
mate. For example, in the case of the range space defined by points and
balls in d-space, the dual shatter function corresponds to the number of re-
gions into which m balls cut up R?, which can be shown without difficulty
to be O(m?). To distinguish (X, R) from its dual, we sometimes refer to it
as the primal range space and we call 7 the primal shatter function.
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Lemma 1.7 If a range space has VC-dimension d, then its dual has VC-
dimension less than 29+,

Proof: Arguing by contradiction, suppose that the dual range space has
VC-dimension at least 2¢+!'. This implies the existence of 2¢*! ranges
of R that are shattered in the dual range space. In other words, there
exist 22°"" points of X such that the 2¢+1-by-22""" incidence matrix A
contains all possible column patterns (this is the matrix whose rows are
the characteristic vectors of the chosen ranges with respect to the 22!
points). Let uog, - .., use+1_; denote the (d + 1)-bit binary representations
of 0,1,...,2%1 — 1, respectively. Form a 2%*'-by-(d + 1) matrix B by
making ug the first row, u; the second row, etc. Each column of B must
appear somewhere as a column of A. This shows that the subset of X
associated with the columns of A corresponding to those of B is indeed
shattered in the primal range space. This subset is of size d+ 1, so we have
a contradiction. O

Beating the Standard Deviation Bound

As usual, let (X, R) be a range space of VC-dimension d, with |[X|=mn. A
random two-coloring of X ensures that, with reasonably high probability,
no color outnumbers the other by more than O(y/nlogn ). By using struc-
tural properties of range spaces, it is possible to reduce this upper bound
to o(y/n). Specifically, we show that the discrepancy of (X, R) is within a
polylogarithmic factor of O(n'/2~1/2?), for d > 1. Unfortunately, the proof
is inherently existential (using the pigeonhole principle in a manner simi-
lar to the treatment of square matrices in §1.2), and it does not yield an
efficient coloring algorithm. Recall that by Lemma 1.6 the primal shatter
function of the range space is in O(m?). We prove the stronger result:

Theorem 1.8 The discrepancy of a range space whose primal shatter
function is bounded by cm?, for some constants ¢ > 0,d > 1, is

O(n)1/271/2d(10g n)1+1/2d‘

Note that the “big-oh” notation hides a constant that depends only on ¢
and d. We begin with a simple technical lemma demonstrating once again
the usefulness of partial colorings. Recall that a partial coloring is a map
x:X+—{-1,0,1}.
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Lemma 1.9 Let (X, Ro) and (X,R1) be two set systems defined on the
same ground set X of size n. Assume that

IT (Bl +1) <207,
ReRy
and that |R| < r, for each R € Ry. Then there exists a partial coloring
x:X = {-1,0,1} such that
(i) x is nonzero over at least one-tenth of X;
(i) x(R) =0, for each R € Ry;
(iii) |x(R)| < 4/2rln(4|R4|), for each R € R;.

Proof: Let C be the set of two-colorings of X such that (iii) holds. The
argument leading to Theorem 1.1 also shows that |C] > 2"~!. Order Ry in
arbitrary fashion and, given a two-coloring x of X, consider the sequence
(x(R) : R€Rp). If x € C, then there are at most

IT (RI+1) <2007
RERy

distinct sequences. (The factor is not 2| R|+ 1 because |R| and x(R) always
have the same parity.) By the pigeonhole principle, there must be a collec-
tion Cy of at least 271 /2("~1/5 colorings of C' with the same sequence.
Choose some xg € C, and for each x € C; define the partial coloring

N x(x) 2XO(w)_
Notice that each y' satisfies (ii) and (iii). It remains to show that one
of them is nonzero over at least one-tenth of X. The number of partial
colorings with at most n/10 nonzeros is equal to

Z (Z) 9k < 94(n—1)/5 < 104

0<k<n/10

Therefore, there exists a partial coloring of C satisfying (i).

The reader will appreciate the family resemblance between this proof and
the entropy method: two different ways of counting essentially the same
things. O

We are now ready to prove Theorem 1.8. As we noticed earlier, the class
of range spaces of bounded VC-dimension is closed under union, intersec-
tion, and complementation. In particular, the range space (X,S), where
S consists of the sets of the form R\ R', for R, R’ € R, has bounded VC-
dimension. This is best seen by the fact that its primal shatter function is
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in O(m2?). We need to use a result about range spaces that is proven in
Chapter 4. Given some parameter 0 < € < 1 to be determined later, a set
N C X that intersects every S € S of size greater than ¢|X]| is called an
e-net for (X,S). By Theorem 4.3 (page 172), there exists such a set N of
size O(e'logn). (Better bounds can be found, but they are not needed
here.)

We “factor” the range space (X,R) by grouping into the same equiva-
lence class all the sets of R that have the same restriction to N: Two sets
R, R’ are in the same class if and only if NN R = NN R'. Let Ry be
the subset of R obtained by taking one representative from each class. For
each R € R, form the sets R\ Ry and Ry \ R, where Ry is the representative
in the class of R. Let R; denote the collection of all such sets (for each
R € R). Note that no Ry € R; intersects N. Because N is an e-net for
(X,S), it follows that the size of R; cannot exceed en. We verify that by
choosing

_ c(logn)t+i/d

- nl/d ?
for a large enough constant ¢ and setting r = en, the conditions of Lemma 1.9
are satisfied. Given any range R € R, let Ry be its representative in Ry.
Because RN Ry = Ry \ (Ro \ R), we can express R as the disjoint union:

R=(R\ Ro)U(Ro\ (Ro\ R)).
Noting that if B C A,

IX(A\ B)| = [x(4) — x(B)| < [x(A)| + [x(B)],
it follows that
IX(R)] < Ix(R\ Ro)|+ [x(Ro)l + [x(Ro \ R)|
< 24/2rin(4|R4))

0(77‘1/271/211)(10g n)1+1/2d‘

Let Y C X be the set of 0-colored points. If Y is nonempty, we re-
peat the same argument with respect to (Y, R|y) and iterate in this fash-
ion until all the points of X are colored. In the end, the discrepancy
of any subset follows (at worst) a geometric progression summing up to
O(n'/2-1/24)(log n)'+1/2?, This completes the proof of Theorem 1.8. O

The bound can be reduced to O(n'/?~1/24) by a more complicated argu-
ment. It cannot be improved further. Indeed, by Theorem 3.9 (page 156),
the red-blue discrepancy of the range space (R, R), where R is the set
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of halfspaces, is Q(n'/2=1/24)_ Tt is easy to see that the primal shatter

function of that range space is in O(m?).

By using a spanning path argument quite similar to the one given in the
next chapter (§2.8), one can prove the theorem below. Again, we must
mention that the big-oh notation hides a constant that depends on only ¢
and d. Surprisingly, the upper bound is known to be optimal for all d > 1.
We omit the proof, which is simply a combinatorial version of the geometric
proof of Theorem 2.19 (page 124).

Theorem 1.10 The discrepancy of a range space whose dual shatter
function is bounded by cm?, for arbitrary constants ¢ > 0,d > 1, is

O(n'/?=1/24\/logn).

1.5 Lower Bounds

We discuss spectral techniques for deriving lower bounds on the discrep-
ancy of set systems. This common algebraic thread will persist in our
treatment of geometric discrepancy in Chapter 3. There, of course, addi-
tional tools, mostly geometric and analytical, will be brought to bear. Al-
though discrepancy questions can be stated purely combinatorially, we are
faced here with a situation—unfortunately all too frequent—where count-
ing arguments alone are by and large useless; one notable exception is
the matching lower bound of Theorem 1.3 (page 8), which can be derived
probabilistically.

All of our techniques rely on asymptotic estimations of the eigenvalues
AL > - > A\, of ATA, where A is the incidence matrix of the set system.
We show successively how the discrepancy can be bounded from below
in terms of (i) the smallest eigenvalue A, (ii) the determinant [] A;, and
(iii) the traces Y A; and Y A?. We begin our discussion with a rare case:
a set system whose discrepancy can be bounded directly. This warmup
exercise nevertheless brings out the spectral flavor that permeates most of
this section.

The Hadamard Matrix Bound

It is not hard to exhibit a set system whose discrepancy is Q(y/n). As we
just said, this can be established by an elementary, but tedious, counting
argument. A more elegant, algebraic proof is given next. Let H = (h;;)
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be a Hadamard matrix® of order n. The matrix H is orthogonal, and its
elements are all £1. Here is a Hadamard matrix of order 8:

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

The matrix A = $(H + J), where J denotes the matrix full of ones, is
the incidence matrix of a set system (V,S), ie, each row of A is the n-
bit characteristic vector of a distinct set of the system. We show that its
discrepancy in the L> norm is at least v/n/2. Let H; (resp. J;) be the i-th
column of H (resp. J). Given a coloring = € {—1,1}",

1
|4z)3 = (42)" (Az) = 1 > wiwi(Hi+ Ji) " (Hj + J;).
ij

Expanding the sum, we find that:

1. By orthogonality, the term ), ; zix;HI' Hj is equal to Y, 2? HI H;,
which is ", z7n.

e i e HT .
2. Because J; = H;, we can write ), ;x;2;H; J; as

J
By orthogonality, this is (3_; z;)z1n. Obviously, we find the same
value for )7, - xix;J; Hj as well.

3. The term }, ; z;z;J] J; is equal to (Y, z;)*n.

Putting everything together, we obtain a lower bound on the L2 norm of
Ax.

6See Appendix B.
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4| A3 = n Z T3 +2n (Z mi)ml + n(z mi)z
13 (2 (2
= n(a:l + le)2 +n2m3
i i>1
> anf =n(n —1).
i>1

It follows that at least one coordinate of Az must exceed /n —1/2 in
absolute value. This establishes the lower bound of Theorem 1.3 (page 8),
for the case where n is a power of 2. The other cases are handled by a
standard padding argument.

Although the proof may seem too ad hoc to lend itself to grand state-
ments about lower bounds, it does point the way to the spectral route
which we are about to explore now. To minimize ||Az|| for a fixed-length
x is a straightforward eigenvalue problem. We formalize this idea below
and apply it to the discrepancy of arithmetic progressions.

The Eigenvalue Bound

Let A be the incidence matrix of a set system on n elements; we do not

assume that the matrix is square. We consider the mean-square discrepancy
D5 (A)?, defined as

Imn{nAx@ :mE{—lJ}"}

The matrix AT A is positive semidefinite, and therefore it is diagonalizable
and its eigenvalues A\; > --- > )\, are nonnegative reals. Suppose that
T = x1v; + -+ + Tpvp, where {v;} is an orthonormal eigenbasis, with v;
associated with \;. We have

|Az||2 = 2T AT Az = (Z mivi)T(Z )\ixivi)

n
> dia > Aallells,
i=1

and thus
Dy(A) > /nA,. (L.7)

The set {—1,1}™ of all “colorings” is contained in the Euclidean sphere
of radius v/n centered at the origin. Geometrically, AT A transforms the
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corresponding ball into an ellipsoid. Indeed, expressed over the eigenbasis,
the image of a coloring  under the linear transformation AT A is a vector

whose coordinates in the eigenbasis are (y1, ..., y,), where
Y1 )2 (yn )2 5
7= + .4 (= = ||z =n.
(% o) = lleli

Note that by (1.7) the minimum distance from the origin to the ellipsoid’s
boundary, which is A\,+/n, is a lower bound (up to a factor of \/n) on the
mean-square discrepancy. To derive a high lower bound on the discrepancy,
we therefore must be able to show that the ellipsoid in question is not too
“flat.”

What we have just done is to relax the constraints z; = 1 into 2”7z = n.
This gives rise to the standard quadratic programming problem:

minimize T AT Az,

subject to 272 = n. This leads to minimizing the Rayleigh quotient
||Az||3/]|z]|3, which by the Courant-Fischer characterization of eigenvalues
gives precisely the smallest eigenvalue A,,. This shows that in the relaxation
problem the inequality (1.6) cannot be improved.

Roth’s %-Theorem

We use (1.7) to prove a beautiful result on the discrepancy of arithmetic
progressions. Van der Waerden’s theorem is a classical result in Ramsey
theory, which says that any two-coloring of the integers contains an ar-
bitrarily long monochromatic arithmetic progression. Roth established a
complementary result by proving that not all arithmetic progressions can
be evenly bicolored. This is known as Roth’s i—theorem. It is easily derived
from the spectral bound of (1.7).

Theorem 1.11 Any two-coloring of the integers {1,...,n} contains an
arithmetic progression whose discrepancy is Q(n1/4).

Put differently, there is a constant ¢ > 0 such that, no matter how we
color the first n integers red or blue, there exists an arithmetic progression
over which the numbers of red and blue integers differ by at least cn!/*
(Fig. 1.2). The bound of Q(n'/*) is tight.

Note that, to prove any meaningful lower bound, it is crucial to con-
sider arithmetic progressions of different step sizes (ie, distinct differences
between consecutive elements). Indeed, any arithmetic progression of step
size 10 can be made of low discrepancy by coloring the first 10 elements
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I

Fig. 1.2. The discrepancy of this arithmetic progression is one.

red, the next 10 elements blue, the following 10 red, etc. The theorem says
that neither this coloring scheme nor, for that matter, any other one can
be made to handle all step sizes at once.

Why n!/4? We know that we need to consider many step sizes. But, of
course, we must also deal with long arithmetic progressions, since sparse
sets have low discrepancy. We shall occupy the middle ground in trading
off step sizes and lengths by choosing progressions of lengths and step sizes
roughly /n. Notice then that a random coloring guarantees discrepancy
in O(n'/*\/logn ) for those progressions (Theorem 1.1), which is about the
bound of the theorem.

We now prove Theorem 1.11. We consider only arithmetic progressions
in {1,...,n} of length s = L\/n_/GJ Such a progression, denoted by S(p, q),
is characterized by a starting point p (1 < p < n) and a step size ¢ (1 <
q < 6s). We construct S(p,q) as follows: Starting at p, we jump by steps
of length ¢ and iterate s — 1 times; so

Sp,9) ={p,p+a,p+2q,....,p+(s—1)g}.

If we should land past n, we simply wrap around (by performing the jumps
modulo n). Note that because 6s(s — 1) < n, there is no risk of reaching
p again. This means that S(p,q) is the disjoint union of two “standard”
arithmetic progressions.

Given 1 < ¢ < 6s, let A; be the n-by-n matrix whose p-th row is the
characteristic vector of the set S(p,q). The matrix A, is a circulant ma-
trix” obtained by permuting cyclically the characteristic vector of S(1,q).
Because it is circulant, the inner product of two column vectors Agi) and
A,(Ij) is equal to the inner product of AgiH) and Ang) (superscripts are
understood to be modulo n). Therefore, AL A, is also circulant.

"Recall that an n-by-n matrix M = (m;;) is called circulant if each row past the first
one derives from the previous row by shifting each element to the right by one position,
ie, mi41,j41 = m; ; (indices modulo n).
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We form the incidence matrix A of our set system by stacking up the

matrices Ay, ..., Ags vertically, one on top of the other:
Ay
A
A=
Aﬁs

Note that although A is not circulant, the matrix M = AT A is equal to
228:1 AgAq and therefore is itself circulant.

Let ¢ = e>™/" be an arbitrary n-th root of unity. It is easily verified
that z = (1,¢,...,¢" 17 is an eigenvector of M. Indeed, observe that the
second coordinate of M z is equal to the first one multiplied by ¢, the third
one is the second coordinate multiplied by ¢, and so on. Thus, the vector
Mz is obtained by multiplying (1,(,...,(" 1) by the first coordinate of
Mz. So, clearly z is an eigenvector for M. Let A(z) denote its associated
eigenvalue. There are n roots of unity, and the corresponding vectors are
orthogonal to each other (see Appendix B); therefore, we have a complete
basis of eigenvectors. Also,

"Mz = A2)z"z = n)\(2),

where x denotes the Hermitian transpose. On the other hand,
n ) 9
"Mz = (Az)*Az = Z ‘ZAq(i,j)Cﬁl ‘ .

Note that because |(| =1,

for any k; therefore, all the rows of A, for a fixed ¢, have the same contri-
bution. This yields
6s s—1

n\(z) = Zn ‘ Zﬁqk
k=0

q=1

‘ 2

By the pigeonhole principle, for at least two distinct 1 < ¢ < ¢2 < 6s,
the angles arg(¢”) and arg(¢?) fall in an interval of length 27 /6s (around
the unit circle in the complex plane). If this interval contains the angle
zero, then for one of the ¢;’s we have 0 <arg(¢(?) < 7/3s; otherwise, we
have |arg(¢(%?)| < 7/3s, for go = g2 — q1. Thus, in general, there exists
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1 < gg < 65 such that
km
qGoky| « 20
|arg(c™)] < 57
for each 0 < k < s. This shows that the real part of each arg(¢%*) is at
least 1/2. Thus,

= 2 ps?
nA(z) Zn‘chok‘ > o
k=0

Since this is true for any eigenvalue of M, it follows from (1.7) that®

2
Do (A)? > Da(4)” > Vn.
6sn
Because of the wrap-around it can be argued that A is not the incidence
matrix of a set of arithmetic progressions. As we remarked earlier, however,
each set represented by A can be partitioned into two valid arithmetic
progressions. If the set has high discrepancy, then so must at least one
of its two constituent progressions. Thus, the lower bound on D (A)

completes the proof of Theorem 1.11. O

The View from Harmonic Analysis

We give another proof of Theorem 1.11 (page 20), this time using Fourier
transforms as our main tool. As it turns out, the proof is really the same
as the previous one, even though it looks quite different on the surface.
It is instructive to see why, because it brings together two key tools in
discrepancy theory, eigenvalues and Fourier transforms, and their common
link, the convolution operator. We will discuss this connection in depth in
the next two chapters. Our discussion here is to serve as a kinder, gentler
introduction to this material.

Recall that our aim is to show that any two-coloring of the integers
{1,...,n} contains an arithmetic progression whose discrepancy is Q(n'/4).
Fix a coloring y:

1 ifmisred and 1 <m <n,
x(m)=<¢ —1 if misblueand 1 <m <mn,
0 else.

8Recall that = >> y means = = Q(y).



24 COMBINATORIAL DISCREPANCY

As in the previous proof, we are interested in only arithmetic progressions
of length within /n; put s = [/n]. Given a step size ¢, we define the
characteristic function ¢, of the corresponding arithmetic progression of
length 2s + 1:

co(m) = 1 if m is a multiple of ¢ and |m| < sq,
! Tl 0 else.

Regard c,(m) as a “comb” centered at 0. Slide it over so that its center
coincides with p. The portion of the comb within [1, n] defines an arithmetic
progression whose discrepancy we denote by Ay (p). It is immediate that

Ag(p) =Y x(k)eq(k —p).
k=1

Since x(k) is 0 outside [1,7n] and ¢, is even, we have

Ay(p) = Z x(k)eq(p = k);

keZ

in other words, Ay, = x x ¢,. Taking Fourier transforms on the group Z
(see Appendix B), we find that

/c\q(t) — Z cq(m)e—27rimt — Z e—27rik:qt_
meZ [k|<s

By the same pigeonhole argument used in the previous proof, there ex-
ists some 1 < ¢(t) < bs for some fixed b large enough, such that in the
sum 3, o e 2D the real part of each summand exceeds some fixed
positive constant. Therefore,

|Eq(t) (t) | > s.

By the Parseval-Plancherel identity and the convolution theorem,

bs bs 1
DD IEVCEE O (G
=1 pcZ ¢=1 70

bs 1 1
= Z/ Ii(t)IQIEq(t)thZ/ XA [E4e (1)) dt
q=1 0 0

1
S / ROPdt =35> 3 () = ns?.

pEZ

So, for some step size gy < by/n, we have
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S A4 (p)? > s,

pPEZ

Since Ay, (p) is zero for all values of z outside an interval of length O(n),
we find that A, (po)? > v/n for some pg, which proves Theorem 1.11. O

DiscuUSsSION

Why are the two proofs of Theorem 1.11 (page 20) really the same in
disguise? Recall that the matrix M = AT A (in the first proof) is circulant.
Let F be the Fourier matrix® of order n. Because M is circulant, given any
coloring = (21,...,2,)T € {=1,1}", the vector Mz is the convolution
of z with a certain vector v. Its Fourier transform F Mz is therefore the
coordinate-wise product of Fv and Fz. If Fo = (A,..., )7, it then
follows that FMx = AFx, where

A0 ... 0
0 A ... 0
A= . . :
0 0 ... A

By premultiplying by the inverse matrix F~!, we find that M = F~!AF.
Taking the Fourier transform diagonalizes our matrix. This is no big sur-
prise since it is a “convolution” matrix.

The moral of the story is this: The eigenvalue method is the most general
and direct line of attack on the L2 norm of the discrepancy. In practice,
however, getting a handle on the eigenvalues is no simple matter. But
whenever the set system is defined by some form of convolution (a “comb”
in the case of arithmetic progressions), the Fourier transform method brings
those eigenvalues to the fore (via diagonalization). Geometric discrepancy
with respect to boxes or disks is defined by translating (and sometimes
rotating or scaling) some fixed object across space and defining one subset
of the set system for each position: Translating is just like sliding a comb
and acts as a convolution operator in defining the set system. Thus, it is
little surprise that Fourier transforms should play a major role.

9See the discussion of the discrete Fourier transform in Appendix B.
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Hereditary Discrepancy and Determinants

The eigenvalue bound is often too weak to be useful because it makes no
attempt to exploit the fact that the coloring is a vector with £1 coordinates.
By introducing the notion of hereditary discrepancy, we are able to use that
fact and relate the discrepancy, not only to the minimum eigenvalue, but
to the entire spectrum of the incidence matrix.

Let (V,S) be a set system. Given W C V, recall that S|y is the collection
of subsets of W of the form SNW, where S € S§. The hereditary discrepancy
of (V,S8), denoted by herdisc (S), is defined to be the maximum value of
Do (S|w) over all W C V. The motivation behind this notion is that
even though some subsystem might have a huge discrepancy, D (S) itself
might be very small by some “fluke.” Indeed, by adding only O(Du(S))
new elements to V' and the sets of S, we can easily make the discrepancy
vanish entirely. Besides its built-in robustness, the hereditary view has an
unintended benefit: It allows us to bound the discrepancy in terms of the
full spectrum of eigenvalues and not only the smallest one. We consider
the product of the eigenvalues (the determinant) in this section and their
sum (the trace) later in this chapter.

How much are we giving up by adopting the hereditary viewpoint? In
geometry, not much. Indeed, the hereditary discrepancy is particularly well
suited for geometric applications, because geometric set systems typically
are hereditary themselves: remove points from a set system of points and
disks, and you still get a set system of points and disks. And so, in geometry
at least, adding the adjective hereditary before the word discrepancy does
not narrow the view.

Theorem 1.12 (THE DETERMINANT BOUND) If A is an n-by-n inci-
dence matriz of a set system, then

herdisc (4) > 1| det A|'/™.

Corollary 1.13 herdisc (4) >
all k-by-k submatrices of A.

%maXhB | det B |'/*, where B ranges over

To minimize the quadratic form ||Az||3 is the stuff of linear algebra text-
books. The hereditary discrepancy adds three twists: The vector z has £1
coordinates; the norm is not Euclidean; and, if that were not bad enough,
all submatrices of A come into play. Our first objective is to find our way
back to linear algebra. Once we have done that, we will see that all three
twists in fact help produce stronger results than the eigenvalue bound. To
prove Theorem 1.12 we introduce a weighted version of the discrepancy.
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Recall that
Doo(A) = min{ |Az||oo : z €U }

where U = {—1,1}". A more general definition might allow the range of =
to vary, as in

DC(4) = min{ |Az||loo : @ € c+ U }

where ¢ € R™. To establish a lower bound on herdisc (4), a reasonable
approach is to bound

intdisc (4) % max{ DS (A) : ce{-1,0,1}" }
in view of the fact that
herdisc (A) > intdisc (A4). (1.8)

This inequality is quite obvious. Think of the hereditary discrepancy in the
context of a game: First, your adversary sets any number of x;’s to 0; then
you complete the coloring x so as to minimize the (regular) discrepancy. To
see the connection with D¢ (A), consider any ¢ € {—1,0,1}". Form a +1-
coloring by setting x; = —¢; for each ¢; # 0 and completing the assignment
of z by minimizing the (regular) discrepancy. By definition, the resulting
discrepancy A is at least DS (A). On the other hand, pursuing the game
analogy, the assignments x; = —¢; correspond to the adversary’s annulling
some of the columns. This shows that A < herdisc (A) and establishes
(1.8). Note that this reasoning should give no reason to think that the
inequality is actually an equality; for example, with the set system {a},
{a,b}, {b,c}, {a,c,d}, DS, is at most 1 while the hereditary discrepancy
is 2.

Relaxing ¢ in the definition of intdisc leads to the linear discrepancy of A:

lindisc (A) def max{ DS (A) - ce[-1,1]" }

As one might expect, the benefit of such a relaxation is to make it amenable
to linear algebra. Fortunately, relaxing ¢ does not have drastic effects on
the discrepancy.

Lemma 1.14
lindisc (A) < 2intdisc (A4).

We can now finish the proof of the theorem. Given any ¢ € [—1,1]",
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there exists some z, € U such that
[|A(z: + ¢)||oo < lindisc (A).

Thus, if Y denotes the set of points y € R" satisfying || Ay||eo < lindisc (A4),
the set Y + U covers the entire cube [—1,1]" (Fig. 1.3). But the pieces
Y + 2 (z € U) can be obtained by cutting up a single copy of Y. Formally
speaking, Y encloses [—1,1]" in (R/2Z)". (Topologically, we are identifying
the opposite facets of U.) It follows that the volume of Y is at least
that of U, ie, 2. Obviously, we can assume without loss of generality
that A is nonsingular (else, det A = 0 and the theorem is trivial). Then,
Y = A ![-lindisc (A), lindisc (A4)]", from which we derive that vol(Y) =
(2lindisc (4))™| det A~ |, and hence lindisc (4) > |det A|'/". In view of
(1.8) and Lemma 1.14, the proof of Theorem 1.12 is now complete. O

Fig. 1.3. The set Y + {—1,1}" covers the cube [-1, 1]".

It remains for us to prove Lemma 1.14. Put

— Cc
P= By Do)
It suffices to show that, given any point ¢ € [—1, 1]™, there exists g € U+c
such that ||Azg||s < 2intdisc (A). This is obviously true if the coordinates
of ¢ are integers (ie, —1,0,1). Let us say that ¢ is k-good if its coordinates
are rationals in [—1, 1] whose binary expansions do not extend beyond the
k-th bit (ie, all of the lower order bits are 0 past position k). Proceeding
by induction, assume that the proposition is true for any k-good point.
Now suppose that ¢ is (k + 1)-good. It is elementary to see that there
always exists a translation vector a € U such that b = 2¢ + a falls in
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the box [—1,1]". Tt follows that b is k-good. By induction, there exists
x1 € U + b such that [|Az]|e < 2intdisc (A). Thus, for some z» € U, we
have (dividing by 2)

1A(c +7)loo < intdisc (4),

where v = (v2+a)/2. Since y € {—1,0,1}", we have D"I(4) < intdisc (A),
and therefore || A(z3+7) || < intdisc (A), for some 23 € U. Subtracting the
last two inequalities yields ||A(c — #3)||co < 2intdisc (4), which completes
the induction. A standard compactness argument finishes the proof of
Lemma 1.14. O

Application: Points and Halfplanes

We show how the notion of hereditary discrepancy can be used to prove a
tight lower bound for the standard L*° (red-blue) discrepancy formed by
points and halfplanes. The discrepancy of a square matrix like Hadamard
was easily bounded, but in general specific matrices are hopelessly difficult
to tackle. Chapter 3 treats the case of several geometric incidence matri-
ces, but these are not square. The determinant bound for the hereditary
discrepancy allows us to derive a tight bound on the discrepancy of an
important class of square matrices.

Let A = (ai;) be the n-by-n incidence matrix of a set system formed by
n points in the plane and n closed halfplanes: a;; = 1 if the -th halfplane
contains the j-th point, else a;; = 0. We prove the following bound, which
is optimal:

Theorem 1.15 There exist n points and n halfplanes in R2, such that
the n-by-n incidence matriz A = (a;;) has discrepancy Do (A) = Q(n'/*).

The point set {p;} consists of the n integer points in [1,/n]?; we assume
that n is a large square. The discrepancy vector z is formed by associat-
ing its i-th coordinate z; with the +1-color of point p;. Let us relax the
assumption that z; = +1 and instead regard z as any vector in R"™. Given
a closed halfplane h bounded above by a nonvertical line, let f(h) denote
the sum Eme nTi- We define w to be the unique motion-invariant mea-
sure for lines that provides a probability measure for the lines crossing the
square [1,1/n]?; see [265] for details.'® Alexander [10] has proven that if

0]ntuitively, the probability that a random line hits an object should not depend on
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1 +---+x, =0, then

[ s dswy > 2. 19)

This bound is an easy consequence of the finite differencing method devel-
oped in Chapter 3, so we do not reproduce it here.

We subdivide the space of lines crossing [1,1/n]? into N +O(n?) regions,
within which f(h) remains invariant. By choosing N large enough, say,
N = 2™ we can ensure that the w-area o of N of these regions is exactly
the same, say around 1/N, while the other O(n?) regions have smaller
areas. Computing [ f(h)? dw(h) by integrating f? over only the equal-area
regions produces an absolute error of O(n?/N)sup f2. Obviously, |f(h)]
cannot exceed

|za] + - 2] < V]l

by Cauchy-Schwarz, so the error is bounded by O(n?||z||3/N). We define
B to be the N-by-n matrix whose rows are indexed by the N equal-area
regions o and are the characteristic vectors of the set of z;’s appearing in
(the unique linear form) f(h), given h € 7. It follows that

1Bl ~ > [ £2 doti) | = 0w

Because 0 = 1/N + O(n?/N?), we have

1Bl = N [ 10 do(h| = 00?1l

Lemma 1.16
det BB = Q(N/\/ﬁ)n_l.

Proof: Let p; > -+ > p, > 0 be the eigenvalues of BT B, and let {v;} be
an orthonormal eigenbasis, with u; corresponding to v;. Let (&1,...,&,) be
the coordinates of z in the basis {v;}. The rank of the linear system

{w1+---+xn:0
&=0 (j<n-1)

is at most n — 1. Feasible solutions lie in the (&,_1,&,)-plane, so they
intersect the cylinder £2_; + &2 = 1. A solution z at the intersection is of

its particular placement but only on its shape. In the plane, the measure for a line
h :ax +by = 1 has density dw(h) = c(a? + b2)~3/2 da db, for some normalizing constant
¢ > 0 adjusted to make the probabilities sum up to one.
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unit length, so

IBl3 =Y i€} = pin 1821 + pin&y < i1
=1
and
e 2 N [ 07 do(h) = O alB) > AN/ V) = O(n):
hence,

pn—1 > QN/v/n). (1.10)

Next, we derive a lower bound on the smallest eigenvalue. With N large
enough, we can easily assume that, for each point p;, there exist two lines
(adding them on, if necessary, and updating N accordingly), each repre-
sented by a distinct row of B, that pass right above and below p;. The
contribution of these two rows to ||Bz||3 is of the form &% + (® + x;)?2,
which is always at least z7/2. We conclude that ||Bz||3 > 1||z||3, and so
pn > 1/2. Since det BT B is the product of the eigenvalues, the lemma
follows from (1.10). O

The Binet-Cauchy formula says that'!

detBTB= Y detB( 70 72 oo I
1 2 ... n

1< 1< <jn <N

2

This implies the existence of an n-by-n submatrix A of B such that
2

det ATA = ‘detB(h 2 J")
1 2 ... n
N\ F r L/ s N yn-1
2 (n> det BB = ()" () (ﬁ) ’
hence,
det AT A = Q(n)™/2. (1.11)

Bringing in the hereditary discrepancy herdisc (A), it follows from Theo-
rem 1.12 (page 26) that

herdisc (4) = Q(n'/*).

Let A’ be the (or any) submatrix of A whose discrepancy is this hereditary

11 The notation following det B refers to the matrix obtained by picking the rows
indexed j1,...,Jn in B.
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discrepancy. The matrix M derived from A by zeroing out the columns not
in the submatrix A’ is the incidence matrix of a set system of n halfplanes
and at most n points. We can make it n-by-n by adding artificial points
outside all of the halfplanes (which is possible since they all face down).
This completes the proof of Theorem 1.15. O

The Trace Bound

The determinant bound of Theorem 1.12 has two weaknesses: One is that
the matrix might have high discrepancy and null determinant (say, one
row is duplicated); the other one is that determinants for set systems can
be very difficult to estimate asymptotically.!> We establish a connection
between the hereditary discrepancy and the traces of AT A and its square.

Theorem 1.17 (THE TrRACE BounD) If A is an n-by-n incidence
matriz and M = AT A, then

herdisc (A) > Lenwaryu ar [T M ,
—4 n
for some constant 0 < ¢ < 1.

How does this compare with the determinant bound? The latter can be
rewritten as roughly /(det M )1/, and so inside the square roots we find
the arithmetic mean of the eigenvalues of M being compared against the
(never bigger) geometric mean: a sign of progress. There is a correction
factor, however. Note that it is inevitable since \/tr M/n alone cannot
bound the discrepancy: Try the matrix A full of ones to see why. For
the trace bound to be of any use, however, it is crucial that the exponent
ntr M2 /tr? M in the correction factor be essentially constant. One easily
verifies that if € is the angle between the vectors (1,...,1) and (Ar,..., Ay)
then, by projection,

ntr M? 1

tr2 M cos?f’

I2For example, the Riemann hypothesis can be expressed as an upper bound on a
very simple determinant. The Redheffer matrix [28] has 1’s in the leftmost column and
at entry (¢,7) if ¢ divides j, and 0’s elsewhere. Its determinant is the Mertens function
S%_, k), where p(n) is the Mébius function. It is O(n!/2+=), for any € > 0, if and
only if the Riemann hypothesis is true.
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So, to say that the exponent should not be large is another way of re-
quiring that the eigenvalue distribution be fairly uniform. Fortunately, the
correction factor is constant in many applications.

Be that as it may, what gives the trace bound its power is that both
tr M and tr M? have simple combinatorial meanings. For example, the
trace of M is the number of ones in A, ie, the number of incidences in the
set system. Similarly, the trace of M? is the number of rectangles of ones
in A or, equivalently, the number of closed paths (simple and non simple)
of length 4 in the bipartite graph corresponding to A. The trace bound
follows easily from the lemma below.

Lemma 1.18 For any 1 <k <mn,
lindisc (A) > 187"/k/ X,

where A\; > -+ > X\, > 0 are the eigenvalues of M = AT A.

To see why the lemma implies Theorem 1.17, we use a second-moment
probabilistic argument. For z > 0, let £, be the event, A > EX — z, and
let p be its probability. The sequence of derivations,
EXE]p+ENE](1-p) - EA
(E[A|&] - EX) p + (B[A|E.] - EN) (1 - p)

(EN&] —ENp—z(l-p),

0

IN

leads to
EM &) >EX+z(1/p—1).

Counsider the random variable E[A|Y]. Let Y be the event &, with proba-
bility p and €, with probability 1 — p. The conditional variance var[\|Y],
defined as the variance of the random variable E[A|Y], cannot exceed the
(unconditional) variance and therefore,

varA\ > varE[A|Y]=E(E[\A|Y]-E))?
> (B [&] = ENp + (EA ] — EA*(1 - p)
> 2*(1/p=1)°p+a’(1-p) 2 2*(1/p-1),

which shows that

> 1.12
p= 1+ z—2var) ( )

By setting * = 3EA/4 and k to be about n/(2varA/E?X + 1), we find that
A > EX/4. Since EX = tr M/n and var\ = tr M?/n — (tr M)?/n?, it
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follows from (1.8) and Lemmas 1.14 and 1.18 that

1 1 1 tr M
herdisc (4) > 3 lindisc (4) > 3 1877k /X > 1 18—2ntr M?/tr® M [T ,
n

which proves Theorem 1.17. O

Another interesting expression for the tail of the eigenvalue distribution
is obtained by setting © = ey/tr M2 /n in (1.12). Then,

Prob{)\ZtrM/n—E\/trMQ/n} > ! 1

>
14+ ne2varA/tr M2 — 1+e 2’

which is independent of n. We conclude:

Lemma 1.19 Let A be an n-by-n 0/1 matriz, and let \y > --- > A\, be
the eigenvalues of M = AT A. Then, for any fized € > 0,

A > trM/n —e/tr M?/n,

for some k = Q.(n).

We now prove Lemma, 1.18. A singular-value decomposition of the matrix
A allows us to rewrite it as UDVT, where U (resp. V) is the orthogonal
matrix whose columns are the eigenvectors of AAT (resp. ATA) and D is
the n-by-n diagonal matrix whose only nonzero entries are v/A1, vz, ...
(the singular values of A, which are the square roots of the eigenvalues
of AT A or, equivalently, AAT). Let L be the subspace spanned by the k
eigenvectors of AT A corresponding to Aq,. .., Ax. The projection of a unit
cube in R™ to a k-dimensional subspace is a convex polytope of volume
between ¢~" and ¢", for some constant ¢ > 0. A simple argument that
adds the contribution of each of the (2) 27—k k-faces of the cube shows that
c < 3. It follows that

vol (Aproj;[—1,1]") = v/ A1 - - Ag vol (proj [—1,1]") > 2’“3*”)\2/2.
(1.13)
Given any x € L and y € L+, AT Az lies in L and so (Az)T(Ay) =
(AT Az)Ty = 0. In fact, not only are AL and A(L') orthogonal, but they
span all of AR™ and therefore (AL)t = A(L1). Tt easily follows that

Aproj;[—-1,1]" = proj4 A[-1,1]"

and by (1.13)
vol (proj,, A[—1,1]") > 2¥3 7\k/2,
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By definition (page 27), for any ¢ € [—1, 1]™, there exists some z € {—1,1}"
such that Ac = Az + y, where y € [—lindisc (4), lindisc (4)]™. The image
of the cube [—1,1]™ under the transformation given by A is a polyhedron
in R™ whose vertices belong to A{—1,1}". It follows that the polyhe-
dron A[—1,1]™ is covered by the < 2" n-dimensional cubes of side length
2lindisc (A) centered at the vertices of A[—1,1]". Projecting onto AL and
accounting for the dilation factor of 3", we find that

vol (proj 47 A[—1,1]") < 6"(2lindisc (A4))¥,

which proves Lemma 1.18, and hence the trace bound. O

Application I: Points and Lines

In Chapter 6, we prove the existence of n points and n lines in the plane,
all of them distinct, such that each point belongs to ©(n'/?) lines and
each line contains ©(n'/?) points (Lemma 6.25, page 263). The trace of
M is the number of incidences, ie, ©(n*/?). The trace of M? is equal
to the number of rectangles of ones in A. Since no proper rectangle can
occur (two lines intersect in at most one point), we are left with degenerate
rectangles formed by two ones along the same row (or the same column).
There are ©(n(n'/?)?) = ©(n®/3) of those. It follows that the trace of
M? is O(n5/3). By the trace bound, the hereditary discrepancy of the set
system is at least ¢t M?[tr* M M which is Q(n!/%). Notice how the

exponent miraculously reduces to a constant!

Theorem 1.20 There exist n points and n lines in R?, such that the
n-by-n incidence matriz A = (a;;) has discrepancy Do (A) = Q(n!/9).

One can use the method of partial colorings (page 15) to show that the
lower bound is optimal up to within a logarithmic factor. It is interesting
to contrast the exponent of 1/6 for points and lines vs. 1/4 for points and
halfplanes.

Application II: Boxes in Higher Dimension

In fixed dimension, it is a rule of thumb that discrepancies for boxes are
(logn)®W if the orientation is fixed and n®") if rotations are allowed. If we
let the dimension increase, however, we expect this gap to be eventually
bridged since in dimension high enough any 0/1 matrix is an incidence
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matrix for points and boxes. An interesting question thus is: At which
dimension do we switch from logarithmic to polynomial? The trace bound
indicates that the transition to polynomial discrepancy occurs at dimension
as low as O(logn).

Theorem 1.21 There exist n points and n axis-parallel boxes in R?, for
any d = O(logn), such that the n-by-n incidence matric A = (a;j) has
discrepancy Do (A) = 244,

The lower bound is actually more general than stated, as it holds for
points and boxes in the Hamming cube {0,1}¢. Theorem 1.21 follows
easily from the lemma below.

Lemma 1.22 For any n large enough, there exists a set system of n points
and n bozes in {0,1}?, where d = ©(logn), such that the n-by-n incidence
matriz A = (a;;) has discrepancy Do (A) = Q(n®0477).

The theorem is essentially a restatement of Lemma 1.22 if d > blogn,
for some constant b > 0. So, assume that d < blogn. Set ng to be about
24/ 50 that we can apply the lemma with respect to ng and d. Now, pad
the set system to be n-by-n by adding n —ny points and boxes with no new
incidences. The lower bound of Q(n8°477) is also Q(2*®), which proves
Theorem 1.21. O

In view of the trace bound (page 32), Lemma 1.22 follows directly from
the existence of m points and n boxes in RP(°6") guch that: for some
constant ¢ &~ 1.0955,

(i) m =06(n) and tr M = O(n°) with probability at least 1/2;
(i) E tr M2 =0(n2"1).

For convenience, we introduce a few parameters:

_ 9
w = 172p71(12+’;)€p210g6,Wherep:0.153,
¢ = 2-(1-pw,
g — ncfl_

The dimension d is defined as wlogn. The m points are chosen by picking
each element of the Hamming cube {0, 1}? independently with probability
n'=%. (Note that w ~ 1.067867, so n' =% < 1.) The expected number of
points is n and, by Chebyshev’s inequality,

Lemma 1.23 With probability > 1/2, the number m of points is ©(n).
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A box is specified by a word of length d, over the alphabet {0,1,x},
containing exactly pd stars. For example, in dimension 5, the word 0% 1 %
denotes the three-dimensional box z; = 0, z3 = 1. We construct the n
boxes by specifying g groups of parallel boxes.!® Each group is defined by
selecting the location of the stars first and then taking all the corresponding
boxes. To select the stars, we pick pd coordinates uniformly at random
(without replacement) and make them stars. In our previous example,
the group of parallel boxes consists of 0% 0 % %, 0% 1% %, 1 %0 % %, and
1x1x%. We have precisely 21 ?)4g = n, boxes. Each point in the set system
belongs to exactly one box in each of the g groups, so that tr M = mg. By
Lemma 1.23, we have the following:

Lemma 1.24 With probability > 1/2, the trace of M is ©(n®) and (i)
holds.

To find an upper bound on the trace of M2, we express it as a sum of
four terms:

tr M? =O(011 + 019+ 021 +022),

where o; ; is the number of pairs (I,J) such that I O J, where I is the
intersection of ¢ distinct boxes and J is a set of j distinct points. To bound
these numbers is easy. Any one of the 2?4 Hamming cube vertices lying in
a given box belongs to the set system with probability n'~%. There are n
boxes, so

E o1 = 0(n(2nl ")?) = On? 20-7),

Regarding 05,1, note that boxes within the same group are disjoint, so
only pairs in distinct groups can contribute to o3 ;. Fix two such groups.
Any one of the 2% points of the Hamming cube belongs to exactly one
pair of boxes. Since such a point is picked with probability n'~*, we have
Eoy1 = 0(g?2%n!~%) = O(n?**~1). To summarize,

Eoi 1 =Etr M =n°, Eois=00n*"), Eoyy =0n*7"). (1.14)

Finally, we turn to the expectation of g2 ,: Again, fix two groups of
parallel boxes, and let x be the number of stars common to both star
patterns. As we just saw, any point of the Hamming cube belongs to
exactly one pair of boxes, and this point can be paired with exactly 2% — 1

13By rounding off, if necessary, we can assume that g, d, and pd are all integral.
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other points. Each point being picked with probability n'~%, it follows
that

O99 = O(g22d+zn2—2w)
and, hence,
EO’2’2 = O(n%*w) E 2°.

What about the expectation of 2°? Writing

Ne Y NN-1)--(N—k+1),

we use the lower bound k! > (k/e)* to derive
pd pd k
d\ (d—pd d 2" (pd)1,(d — pd)pa—r. /( d
E 2.t == 2k p = p
kZ:O <k> (pd—k>/<pd> kZ:O El(pd — k)! / pd

pd pd k
(2ep?d?®)*(d — pd)pa d o\ 2ep’d
> GG - wreat/ Q)SZ(I P) ((1—2p>k>

k=0 k=0

The function (A/z)* reaches its maximum value at x = A/e, and so
E 27 = O(n(lo8 e)p*w(1+2p)/(1—2p) logn),

which implies that

_ 142p 2
E oy, = O(n* W=, P wloBe oy,

In view of (1.14),

1+2p 2

EtrM? = O(nc +n2l e wt i pwloge logn)

p9
= O(nzc*1 +n* T logn) =O0(n* 1),

which satisfies condition (ii). Lemma 1.22 and Theorem 1.21 follow. O

1.6 Bibliographical Notes

Section 1.1: The method of conditional expectations was developed by
Raghavan [254] and Spencer [294]. A similar idea is implicit in an earlier
work of Erdés and Selfridge [124]. The hyperbolic cosine algorithm is due
to Spencer [292, 294]. The unbiased greedy algorithm was first proposed by
Beck and Fiala [38] and Beck [32]; it was rediscovered by the author [68].
Not surprisingly, a similar technique can be used to rederive Chernoff-type
bounds and prove tail estimates for martingales.
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Section 1.2: The fact that n-by-n matrices have discrepancy O(y/n) (The-
orem 1.3, page 8) was established by Spencer [293]. Using the pigeonhole
principle on the discrepancy vector is an idea going back to Beck [31].
The use of entropy in the proof follows a suggestion of Boppana (see Alon
and Spencer [20]). Spencer’s original proof shows that the constant hiding
behind the bound O(y/n) is less than 6.

Section 1.3:  Theorem 1.5 (page 10) is due to Beck and Fiala [38].
The bound was (ever so slightly) improved to 2t — 3 by Bednarchak and
Helm [40]. It is conjectured that O(y/t) is the correct bound. A bound
of O(v/tlogn) was established by Srinivasan [295], where n is the num-
ber of elements in the set system; an earlier bound of O(y/tlogtlogn) was
obtained by Beck and Spencer; see also [294].

Section 1.4: The notion of VC-dimension was introduced by Vapnik and
Chervonenkis [317]. We chose to open the section with it because of its
sheer elegance and its historical importance. In most applications, however,
bounds on the primal and shatter functions seem more important than the
VC-dimension (which, typically, is difficult to compute). The bound on
the primal shatter function (Lemma 1.6) was established independently by
Sauer [269], Shelah [284], and Vapnik and Chervonenkis [317]—see also [51].
The fact that infinite range spaces cannot have sublinear primal shatter
functions appears in Assouad [25].

Dudley [112] observed that any finite number of set-theoretical opera-
tions on range spaces keep the VC-dimension bounded. This is useful to
prove that certain geometric range spaces are of bounded VC-dimension.
The bound on the dual VC-dimension in Lemma 1.7 comes from As-
souad [25]. The discrepancy estimates in Theorem 1.8 (page 14) and
Theorem 1.10 (page 17) are due to Matousek, Welzl, and Wernisch [222].
Lemma 1.9 is adapted from Beck [31]. The bound in Theorem 1.8 has been
improved to O(n'/2=1/2?) by Matousek [215]. The optimality of the “dual”
bound in Theorem 1.10, for d = 2,3, was established by Matousek [218]
and extended to any dimension by Alon, Rényai, and Szabé [19].

Section 1.5: The lower bound on the discrepancy of the Hadamard ma-
trix comes from Spencer [293]. The case of arithmetic progressions (Theo-
rem 1.11, page 20) was solved by Roth [262], who used the Fourier trans-
form method. The proof based on eigenvalues is due to Lovasz and Sés and
appears in Beck and S6s’ survey [39]. A matching upper bound of O(n'/*)
was proven by Matousek and Spencer [221]. An earlier, breakthrough re-
sult (weaker by only a polylogarithmic factor) was obtained by Beck [31],
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who also introduced the partial coloring technique. For an excellent intro-
duction to Ramsey theory, see [149].

The notion of hereditary discrepancy and the determinant bound (The-
orem 1.12, page 26) were introduced by Lovész, Spencer, and Veszter-
gombi [199]. The lower bound for halfplane discrepancy (Theorem 1.15,
page 29) was established by Chazelle [75]. A proof of optimality was pro-
vided by Matousek [215]. The lower bound (1.9) was proven by Alexan-
der [10].

The trace bound (Theorem 1.17, page 32) is due to Chazelle and Lvov [79],
as are the applications to set systems of lines and boxes in higher dimen-
sion [80] (Theorems 1.20 and 1.21).
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Upper Bound Techniques

e examine several methods for constructing low-discrepancy
point sets. To motivate our discussion, in §2.1 we briefly men-
tion a classical application of discrepancy theory to numerical
integration. We introduce the Halton-Hammersley point sets in §2.2 and
derive upper bounds on the L norm of the discrepancy of axis-parallel
boxes. We tackle the L? norm of the two-dimensional case in §2.3, which
leads us to studying the low-discrepancy properties of certain arithmetic
progressions modulo 1. This is related to the infinite motion of a billiard
ball in a square pool table.

In §2.4 we examine the discrepancy of boxes that are free to be both
translated and rotated. We give a simple probabilistic construction, called
jittered sampling, which comes close to being optimal. This construction
and some close variants of it are popular in computer graphics for solving
antialiasing problems.

In §2.5 we consider the problem of placing points on a sphere as “uni-
formly” as possible. This is a classical problem arising in quadrature, cod-
ing theory, tomography, etc. We describe a group-theoretic construction
that produces low-discrepancy point sets (especially for integration and, to
a lesser extent, for spherical caps). The generation of points is as extraordi-
narily simple as its analysis is mathematically deep and far-reaching. If you
ever harbored any doubt about the unity of mathematics, this is required
reading. You will witness all branches of mathematics coming together
in spectacular fashion. We also mention in passing the relevance of this
material to recent problems in quantum computing.

We include digressions on two important topics related to our construc-
tion. We begin with modular forms. These are essential ingredients in our
discussion and we felt the need to mention, ever so briefly, their fundamen-
tal connection to elliptic curves via their L-functions: This is a pillar of

41
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modern mathematics that plays a central role in the recent proof of Fer-
mat’s Last Theorem. Another key concept in our discussion is the ubiq-
uitous Laplacian. Combinatorialists often think of it as a function with
interesting spectral properties related to graph connectivity. The origins
of the concept are a little different. They have to do with least-square op-
timization via the Dirichlet principle. We discuss how the main concepts
in linear and quadratic programming can be rederived from the Laplacian;
this is the ideal introduction to Chapter 8.

In §2.8 we discuss the problem of coloring n points in R? red and blue,
so that within any halfspace no color greatly outnumbers the other. We
give quasi-optimal bounds for this case of red-blue discrepancy.

2.1 Numerical Integration and Koksma’s Bound

In quasi-Monte Carlo methods, it is common to evaluate an integral of the

I= d
[, fa

by selecting a sample of points py,...,p, and computing the sum

form

Since we naturally estimate the integral I by S, /n, it is desirable to keep
the error

S
——/ f(q) dg
n [0,1]¢

as small as possible. Consider the simpler case where d = 1 and f : [0, 1] —
R is a differentiable function of bounded variation V(f), where

(2.1)

1
def
v [ if@)d.
0
To approximate the integral of f over [0, 1] we take a sample of n points,
0<z <+ <ap <1,

and sum f over the points 1,...,z,. Interestingly, the error (2.1) is
directly related to the discrepancy ||D]|eo of the sequence {z;}, defined
as the supremum of

{i:z; <z} —nz|,
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over 0 <z < 1.

Theorem 2.1
V(f)

< ——[|Dlleo-
n

o> fe) = [ fa)ds

Proof: Using summation by parts we have

n

S ) = fnn) = S i ) = S@)

i=1

where z,41 = 1. Similarly, integration by parts gives

/0 f@)de = f(ras) - / Cedi(a).

Putting xp = 0, we have

LY i)~ [ f@ds

n

JRECE S CMENEY

T

10l 5
ALl

from which the theorem follows. O

IN

o= 2| o)

IN

The inequality can be extended to the multidimensional case, but the
notion of bounded variation becomes more complex.

2.2 Halton-Hammersley Points

We consider the problem of placing a set P of n points in the unit cube
[0,1]? to minimize the discrepancy with respect to axis-parallel boxes. The
dimension d is arbitrary but fixed once and for all, ie, it is independent of
n. As usual, the discrepancy of a box B = szl [Pk, gr) is defined as

D(B) ® n-vol(B)—|PNB.
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To distinguish it from the combinatorial (ie, red-blue) discrepancy, we call
D(B) the volume discrepancy.

Theorem 2.2 There is a set of n points in [0,1]¢ such that the discrepancy
of any box in [0,1]% is O(logn)?~1 in absolute value.

We prove the theorem only for boxes of the form B, = szl [0, qx),
where ¢ = (q1,...,q4) € [0,1]%. This is clearly sufficient because, on the
one hand, |[D(A\ B)| < |D(A)| + |D(B)|, while on the other hand any
axis-parallel box can be expressed as a constant-size arithmetic expression
involving only boxes of the form B, and the set-difference operation. (The
constant depends on d.)

Given a nonnegative integer m, let Y, b1 (i) 2° be its binary decompo-
sition, and let -

b (i)
xz1(m) = Z 2it1 € [0,1).
i>0
The numbers z1(m), for 0 < m < n, form the classical van der Corput
sequence. We can use it to define the bit-reversal point set:

{ (z1(m),m/n) ‘0 <m< n}

An example (n = 8,16) is shown in Figure 2.1. Edges have been added to
suggest the vertex set of a hypercube in dimension logn projected onto a
plane.

To generalize the construction to d dimensions, we choose d — 1 rel-
atively prime numbers, say, for simplicity, the first d — 1 primes: 2 =
P1,P2,...,P4—1- The integer m has a unique decomposition in base py,
m =Y ,5bk(i)p, so we can define

i>0 P

The point set

P = {(ml(m),...,md_l(m),%) : 0§m<n}

11t is sometimes called continuous discrepancy, which is not an entirely felicitous
choice of words since the discrepancy is not a continuous function.
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Fig. 2.1. Halton-Hammersley point sets of sizes 8 and 16.

is called Halton-Hammersley. There exist a large number of “special”
boxes, each of which contains just about the right number of points with
respect to volume. Any interval of the form [A/pi, (A+ 1)/pf;), where A
and j are nonnegative integers, is called a special interval of type (k,j). A
box B =1; x --- x I is called special if

(i) it lies in [0,1)7,
(ii) for each k < d, Iy is a (k, ji)-interval, for some ji, and
(iii) I4 =10,z), for some z < 1.

Lemma 2.3 The discrepancy of any special box is less than 1 in absolute
value.

Proof: Given i,k fixed, the interval [0,1) is naturally partitioned into
intervals of the form [j/pt, (j + 1)/pL). It is immediate that the sequence
b (0), ..., bk (jx — 1) uniquely determines which (k, ji)-interval contains a
given xr(m). The sequence itself is entirely specified by the residue class
of m mod p,{’“ By the Chinese remainder theorem, exactly one integer
0<m< Hk<dp,7;’“ is in a given residue class modulo each pi" It follows
that any special box B such that [Is|n = [],,p;* contains exactly one
point (note that because |I4| < 1, we have [T, _,p;* < n and such a point is
thus defined for a valid m < n). By cutting the box up if necessary, we now
can see that any special box B such that |I4|n is a multiple of Hk<dp§;’“,
say, by a factor of p, contains exactly p points; its volume is p/n, so its
discrepancy is zero. If B is not so lucky, then we clip it by the largest such



46 UPPER BOUND TECHNIQUES

box and notice that the only discrepancy comes from the leftover: This
is a box with at most one point inside and volume less than 1/n, so its
discrepancy (in absolute value) is less than one. O

We are now in a position to prove that any box By = [, ;<4 [0, qx),
where ¢ = (q1,...,q4) € [0,1]%, has low discrepancy. Any g; can be ex-
pressed in base p;, as

b (i)
qr = Z i1

i>0 Yk

where the infinite sequence by (7), for i > 0, does not have a suffix of p; —1’s.
Let h = [logn] and let

=Y 20
0<i<h Yk
for k < d, and ¢} = gq. By writing the by (¢)’s in unary it is immediate
that, for k < d, [0,¢;) is the disjoint union of O(h) special intervals. It
follows that [T, .40, ¢}) is a disjoint union of O(h?~1) special boxes and
so, by Lemma 2.3, its discrepancy is O(h?!). The leftover

B‘I\ H [07QZ)

1<k<d

is enclosed in the union (J, ;4 Ck, where

Cr=10,1) x --+ x [0,1) x [gy,qx) x [0,1) x -+ x [0, 1).

Each Cj has volume at most 1/p! < 1/n. Since each interval [gf,qy,) is
enclosed in a special interval of type (k,h), the box C} is itself enclosed
in a special box, and hence its discrepancy is bounded by a constant, and
so is that of any subset of it. The leftover can be partitioned into O(1)
boxes each within some C}, and hence of discrepancy O(1). This shows
that |D(B,)| = O(logn)?~!, which concludes the proof of Theorem 2.2
(page 44). O

2.3 Arithmetic Progressions in R/Z

Consider a set P of n points in the unit square. Given a box B, of the
form [0,q1) x [0, g2), where ¢ = (¢1,¢2), the discrepancy of By is

D(B;) =n-area(B;) — |[PNDB,|.
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We define the L?-norm discrepancy of P as

Dy(P) & \/ D(B,)? dg.
[0,1]2

Halton-Hammersley construction yields an O(logn) bound on the L?-norm
discrepancy. By using tools from the theory of diophantine approximation,
it is possible to reduce the bound to O(y/logn). The optimality of the
bound is established in Chapter 3.

Theorem 2.4 It is possible to find a set P of n points in [0,1]* such that

D,(P) = O(v/Iogn).

The set P is particularly simple. For example, one can choose the set of
n = 2k — 1 points of the form

for all j (|j] < k), where {z} ey (mod 1) is the fractional part of z and
p = %(\/5 + 1) is the golden ratio. Before proving this result, we make a
short digression to illustrate the key concept of ergodicity and its relation
to Fourier series.

Weyl’s Ergodicity Criterion

Statistical mechanics operates under the fundamental assumption that the
distribution in phase space mimics the distribution in time. Thus, a single
particle evolving in time is modeled by a cloud of points in space, where at
any given time each point is weighted by the probability that the particle
should be there. The equivalence of phase and time averages is called
the ergodic principle; it underlies much of our discussion of rapidly mixing
Markov chains in Chapter 9.

To take a concrete example, consider a particle moving on the unit in-
terval at discrete intervals (Fig. 2.2). At time n, the particle is at position

{7} € ny (mod 1),

where v is a fixed real. (A similar effect is obtained by kicking a billiard
ball with a slope of 4 and monitoring its hits against the vertical walls.)
Let f be a periodic, continuously differentiable function from R to C of
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period 1. The ergodic principle states that the time average

n—1

LY (k)

k=0

should converge to the phase average fol f(z)dz.

Fig. 2.2. The values of ny (mod 1) are represented by the vertical bars in the
integral lattice. They can also be viewed as the hits of a billiard ball along the
left and right sides of the table.

Theorem 2.5 (Weyl) If vy is irrational, then the sequence {nvy} obeys
the ergodic principle.

Proof: The proof is based on Weyl’s criterion, which characterizes the
uniformity of infinite sequences (uy) in [0,1) in terms of the vanishing of
the exponential sums

N
i § 627rizun
N )
n=1

for all integers z # 0, as N grows to infinity. Let Se = <, f(k)e
be the partial sum of the Fourier series expansion? of f, where

2mikx

Ft) = [ pwye e da,

Let fn(z) = = 7;51 S¢. By Fejér’s theorem, we know that f,, converges
uniformly towards f, ie,’

1f = fmlloo < €(m),

2See Appendix B.
3l9llco = sup,, lg(z)|-
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for some €(m) going to 0 as m — co. This implies that

1 n—1 1 1 n—1 1
=) f{ky) = | f@)de|<|= ) fm({kr})— [ f(z)dr|+e(m).
n kz:% Y /0 " kz:% Y /0 €
Note that
SNl = Y T4
k=0 =0 |j|<¢
where

1 n—1
A= — Qﬂijk’yl
A, > e
k=0
If j =0, then A; = 1/m; otherwise,

1

Al = —
Ajl = —

eZﬂ'ijn’y -1

e2mijy — 1 :

Because v is irrational, the denominator never vanishes; so for any given
Jj >0, |A;| tends to 0 as n goes to infinity. It follows that, for fixed m,

~ ~ 1

tends to f(0)mAy = f(0) =
the theorem follows. O

f(z)dz, as n goes to infinity, from which

Continued Fractions

Let [ao,. .., a,] denote the expression

ap +

a; +
a9 —+

1

ap—1+ —

437

Given any real v > 0, we set ap = |y] and, if y is not an integer, we write
a9 = 1/(y — |7v]). Noticing that v = [ag, ap], we extend this idea and
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consider the general recurrence relations a, = |a,—1] and
1

oUp = ——F— .
" Qp—1 — Lanflj

Again, we stop the recurrence at n if o), is an integer. We easily verify that

’Y = [a07a17"'7a’n7an]-

Letting n run to infinity, we call the infinite sequence [ag, a1, - . .] the contin-
wed fraction expansion of v. The integers a; are called the partial quotients
of the expansion; note that a; > 1 for ¢ > 1. The sequence of convergents,
rn = [ao,ai1,...,ay], for n = 0,1, etc, provides an (excellent) approxi-
mation of v by rationals. Each r, is a rational p,/g,, where the mono-
tonically increasing sequences of p, and g, are defined by the recurrence
po2=q1=0,¢g2=p_1=1,andforn >0

{ Pn = apPpn—1+ Pn-2,
n AnGn—1 + qn—2-

A simple observation is that if 7 is a rational u/v, then the partial quo-
tients are obtained by applying Euclid’s GCD algorithm to u and v. Two
interesting facts follow immediately: (i) The continued fraction expansion
of a rational is finite (though not unique); (ii) the fractions p,/g¢, are irre-
ducible (whether v is rational or not). A theorem of Lagrange says that the
expansion is periodic if and only if v is irrational and algebraic of degree 2.
For example, the golden ratio (/5 + 1) has the expansion [1,1,1,...], and
its convergents are the ratios of consecutive Fibonacci numbers. The con-
vergence rate for continued fractions is provided by the following bounds:
For any n > 0,

1

q

2 S‘_&
2q, 14 In

< (2.2)

Continued fractions provide the best possible approximation by rationals
in the following sense: For any integers 1 < a < gnp4+1 and b > 0,

|a7 - b| > |Qn7 - pn| . (2.3)

As an aside, let us mention an important development in the theory of
diophantine approximation. By tightening the Thue-Siegel inequality, Roth
proved the remarkable fact that, for algebraic numbers, continued fractions
are as good approximants as we can hope for. Let v be an irrational
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algebraic number. By (2.2) it is obvious that the inequality

where ¢(7) is a constant independent of n, has an infinite number of integer
solutions in p, q. Roth’s result says that if we replace the exponent 2 by any
larger number, the number of solutions becomes finite. This result has very
powerful consequences; for example, it immediately shows that the number
Yo 10~3" is transcendental. Indeed, it obviously admits an unbounded
number of approximations of the type |y — p/q| < O(1/¢%).

We close this brief excursion into the world of continued fractions by
stating the main result of use to us later. Let

def .
(0 & mindy = 190, 11— 7}
denote the distance from + to the nearest integer. We now show that if v is
a “nice” irrational number, then n+y stays reasonably far from any integer.

Lemma 2.6 Let v be a positive irrational whose continued fraction expan-
sion has bounded partial quotients. Then, (ny) > c/n, for some constant
c=c(y) > 0.

Proof: We can assume that n is large enough. Since the ¢;’s are monoton-
ically increasing, qr < n < qg+1, for some k > 0. If b is the nearest integer
to nvy, then by (2.3) we have (ny) = |ny — b > |gxy — pk|, and hence, by
(2.2),4

k k 1 )

ny) > > > >
() 2 2031  2(akt1qk + qr-1)? T 2qr(agr +1)? n

The lemma follows from the fact that, for any k, the partial quotient a1
is bounded above by a constant. O

Note that if we are free to choose 7 in the application of the lemma, the
golden ratio %(\/5 +1) is as good a choice as any, since its partial quotients
are all 1. Also, by the pigeonhole principle, it is obvious that the lemma is
the best possible asymptotically.

4Recall that the notation z < y means = = O(y), while £ > y denotes = = Q(y).
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Irrational Lattices

Let v > 0 be an irrational, chosen once and for all, whose continued fraction
expansion has bounded partial quotients. We construct a (2n — 1)-point

p={ (1) - <n).

For technical convenience, we duplicate the point of P at the origin, which
brings the number of points to 2n. Discrepancy with respect to this multiset
differs from the original P by at most one, which is negligible. Fix some
integer 0 < r < n. We are interested in the discrepancy D(B,) of the
semiopen box

B, =10,z) x [0,7/n),
where z > 0, ie,
D(B,) =2n-area(B;) — |P N By|.

We could easily show that |D(B,)| = O(logn), but our purpose here is to
prove something much stronger, ie,

1
/ D(B,)*dx < logr .
0

We have

r—1

D(B,) =2rz = > (o (7)) + xa({=i7}) »

j=0
where x,(z) denotes the characteristic function of [0, x), ie,

1 ifz<u,
0 otherwise.

) ={
We easily verify that for all 0 < z,z < 1,

Xz(2) = 7+ {z =z} — {2},

and therefore
r—1
D(B,) = Y (v} - Uv — o} + {=i7} — {=j7 — 2}).
j=0
By (B.1) in Appendix B.2, at nonintegral z,

2mimz

1 e
{Z}_§_ Z 2mim
m#0
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Since the sum on the right-hand side is an odd function, we derive

—2mwimez 2mima "1

D(Bx) = Z € 27m__me ZOeZWimj“/_
j=

m#0

To have a sine function appear in the first sum is the reason we included
both positive and negative indices 7. Indeed, we can easily compute the
m-th Fourier coefficient of D(B,). By Parseval-Plancherel, it now easily
follows that

/D da:<<z ‘2_: ’”mﬂ‘ (2.4)
mzo 0

We recognize a variant of the Dirichlet kernel,®

r—1 27szrw
5 e | <G | < e
e2mimy — 1 sin wmey | sinw(my)|’

which thus remains bounded unless (m+v) becomes very small. In that case,
a Taylor expansion around 0 shows that it is bounded by 1/{m~). It follows
that

r—1 1
S| < oL,
= (mv)

and by (2.4),

/ D(B 2de < Z —mln{r2 (m%y>2}’

m#0

which we can also write as

D(B,)? dr <« 22k min{rz,;}.
/ Z gk—%:n o (m)?
Divide the interval [0,1] into subintervals, called bins, of width b/2*, for
some constant b > 0. If we choose b small enough, then no more than two
values of m € [2¥71,2F) can be such that each (m~) falls into the same bin.
Indeed, suppose that there are three of them. First, note that for these
three values of m, the number {m~} can lie in only one of two bins. So,
by the pigeonhole principle, at least two values of m have {m~} lie in the

5See Appendix B.2.
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same bin. If my and mo are these integers (m; < ms), then

<(m1 —m2)7> < {(ml —mz)W}S 2%

But since 0 < m; — ma < m, choosing b small enough contradicts Lemma
2.6, which proves our claim. It immediately follows that

/1 D(B,)? dx < i imin{ (;7)2 %} .
0 k=1 p=1 p

Breaking up the sum around k = logr, we find that the first part amounts
to O(logr). To handle the second part, we break the inner sum around
p = 2F/r and find a sum of the form Ek>10grr2*k = O(1). This shows
that

1
/ D(B,)*dx < logr .
0

If we now allow r to be an arbitrary real between 0 and n, we can always
round it to an integer and add only a constant additive error to the dis-
crepancy bound above. This completes the proof of Theorem 2.4 (page 47).
O

2.4 Jittered Sampling

We now give a simple probabilistic construction for keeping the volume
discrepancy of boxes as low as possible. We allow the boxes to be rotated.
All of the main ideas can be explained in two dimensions, so this is where
we confine our discussion. Recall that, given a set P of n points, the
discrepancy of a box B is

D(B) =n-area(B) — |PN B|.
Theorem 2.7 It is possible to place n points in the unit square [0, 1], so
that any (rotated) box has discrepancy O(n'/*\/logn) in absolute value.
Given n points in [0, 1]? and three regions A C R C B C [0, 1], trivially,

|[PNR|—n-area(R) < |PNDB|—n-area(B)+n-area(B\ A),
|[PNR|—n-area(R) > |PNA|—n-area(A) —n-area(B\ A);

hence,

ID(R)| < max { |D(A)], |D(B)| } +n-area (B \ 4). (2.5)
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Lemma 2.8 There exists a collection Q of n® conver quadrilaterals,® for
some constant ¢ > 0, such that the following holds: Given any rectangle
R C [0,1]?, there exist A, B € Q such that A C R C B and area (B \ A) =
O(1/n).

Proof: We can assume that n is large enough. Subdivide the square
[—1,2)? into an n® x n® square grid, and let Q consist of the empty set,
together with the convex hulls of every 4-tuple of grid points. To see why
this construction works, consider a rectangle R C [0,1]%. If both of its
sides are of length at least 1/n, then place eight little squares of side length
1/n? around its four corners as indicated in Figure 2.3. Note that the
inner squares are mutually disjoint and that each of them contains at least
one grid point. Pick one in each inner square and form their convex hull.
Repeat the operation with the outer squares (Fig. 2.3).

e The two convex hulls belong to Q.
e One lies inside R while the other is enclosed in R.

e The difference between the two squares has an area O(1/n?).

Fig. 2.3. Sandwiching a rectangle between two quadrilaterals.

The two convex hulls play the role of A and B in the lemma. Suppose now
that one or both sides of R is shorter than 1/n. Then, we place only the
outer squares and set A to be the empty set. The area of B\ A is O(1/n),
and the proof is complete. O

6By abuse of terminology the set of quadrilaterals might include the empty set.
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We are now ready to establish the desired upper bound. The first step
is to subdivide [0,1]? into n equal-area rectangular cells, in such a way
that no line intersects more than roughly \/n cells. If n = k%, a simple
square grid with (1/n)-area cells does the trick; otherwise, we apply the
construction for k = |\/n|. Finally, we scale down the square into an z x 1
rectangle, where x = k%/n, and we subdivide the (1 — x) x 1 leftover strip
into n — k% equal-area rectangles. It is obvious that all n rectangles have
area 1/n, and that a line can cut only O(k) of them.

Fig. 2.4. Placing a point at random in each grid cell.

Next, we define the point set P by placing one point at random (uni-
formly and independently) in each cell. Figure 2.4 illustrates the case
where n is a perfect square. Let Q be as in Lemma 2.8. Given S € Q,
let Ci,...,C,, be the cells that intersect the boundary of S. Note that
m = O(y/n ). Obviously,

D(S) =) _D(SNC;).
i=1
Introducing the random variable y; = |P NS N 4|, we have D(SNC;) =
Di —Yi, where p; = Ey;. The probability that D(SNC;) is equal to p; (resp.
pi — 1) is 1 — p; (resp. p;). By Lemma A.4, for any A > 0,

Prob[|D(S)| > A] < 2 28%/m,

so, for any constant ¢ > 0, there is a constant b = b(c) such that the proba-
bility that S has low discrepancy, meaning here that |D(S)| < bn'/*y/Iogn,
is at least 1 — 1/2n°. Since |Q| < n¢, with probability at least 1/2 each
quadrilateral of @ has low discrepancy.
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Now, let R be an arbitrary box in [0, 1]>. By Lemma 2.8, it is sandwiched
between two low-discrepancy quadrilaterals (we view the empty set as a
quadrilateral of zero discrepancy) and the area in between is O(1/n). It
follows from (2.5) that |D(R)| = O(n'/*\/Togn), which proves Theorem 2.7.
O

2.5 An Orbital Construction for Points on a Sphere

We examine the problem of placing points on S? (the unit-radius sphere in
three dimensions) to minimize the volume discrepancy” of spherical caps.
We define a spherical cap C as the intersection of S? with a closed halfspace.
Given a set P of n points on S?, the discrepancy of C is defined as
ppc) =" _jpngy,
47

where |C| denotes the area of C' and the normalizing factor 47 is the area
of S%2. The discrepancy for P is D(P) = sup |Dp(C)|.

A probabilistic construction similar to jittered sampling (see §2.4) achieves
a discrepancy within O(n'/*\/logn), which is optimal within a polyloga-
rithmic factor. The basic idea is to partition the sphere into pieces of area
47 /n and diameter O(1/4/n), and throw one point in each piece randomly.
The purpose of this section is to explore a completely different route to
achieve low discrepancy. We place points on the sphere by iterating on a
very straightforward process, somewhat in the spirit of the construction of
§2.3 based on arithmetic progressions modulo 1. It is a rather fundamental
technique, which we will encounter again in Chapter 9 in our discussion of
explicit constructions of expanders. The method is simple but not optimal
in all applications. One reason for discussing it in some detail is that it is a
vehicle for exploring some of the most powerful machinery used in discrep-
ancy theory (and, in fact, in all of mathematics). Our discussion covers a
wide front. As much as we could, we have tried to make the presentation
self-contained by providing sufficient background material.

Let Ry, R», R3 be rotations of angle arccos(—3/5) around the z-, y-, z-
axes, respectively. Form all nontrivial reduced words of length at most s
over the alphabet,

{RI)R;1)R27R;17R3>R§1 }

"In this case, “spherical-area discrepancy” would be more descriptive.
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(A word is said to be reduced if it does not contain any consecutive pair
of the form X X~!.) Given a starting point pp (not on any of the axes
z,y,z), we form the set Py = {p1,...,pn}, which consists of all points of
the form wpg, where w is such a word. Straightforward counting shows
that Py consists of n = 2(5° — 1) points.®

A note of timely relevance. As we discuss below, there is a close rela-
tion between the rotations of the sphere and the 2-by-2 unitary matrices
with unit determinant. This implies a connection between this material
and the generation of universal bases, a problem which arises in quantum
computing.

Theorem 2.9 The mazimum discrepancy D(P,) for spherical caps of the
set Py is O(nlogn)?/3.

Even though this upper bound is far from optimal, the method behind it
is interesting because it is constructive and completely straightforward. Its
analysis is not, however, but it uses several techniques that fit beautifully
into the theory of pseudorandomness and the discrepancy method. The
construction is almost optimal for quadrature (ie, within a logarithmic
factor). Here is what we mean by that: Given any real-valued function
f € L*(5?), we define its operator discrepancy § by’

o) 53100 - 4 [ 1000

where w is the Lebesgue measure on S2.

Theorem 2.10 The operator discrepancy of any function f € L%*(S?)
satisfies

0 logn

161l < g _

1fll: — Vn

This upper bound is optimal within a factor of logn. Both proofs rely

8This is trivially an upper bound. It is also the exact bound because the subgroup
generated is free, ie, it has no nontrivial relations among its generators, but there is no
need to be concerned about this here.

91t is useful to clarify a point of notation: po might look like a point fixed once and for
all, but it is really a variable. The subscript 0 is only there to distinguish the point from
its “descendants,” pi,...,pn. In the definition of 6f(po), the point po is the variable
and p1,...,pn depend on pg.
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on a detailed analysis of the spectrum of the operator

3
Tfp) = Y (F(Rp) + F(R'D)
i=1

and, more specifically, on the fact that the second largest eigenvalue of 7" in
absolute value is at most 2v/5. We will show how this fact can be derived
from the classical Ramanujan Conjectures proven in the mid-seventies by
Deligne. Short of proving the conjectures themselves, we will present the
complete proofs of both theorems in a manner that is mostly self-contained.
We begin our discussion with an introduction to quaternions and spherical
harmonics.

Quaternions and SO(3)

An attractive feature of the set Py is that it can be easily computed (using
real arithmetic). Linear fractional transformations in the complex plane
are maps

az+b

cz+d’

where a,b,c,d € C and ad — be = 1. If, in addition, the matrix

(o)

is unitary, then, by stereographic projection, the linear fractional transfor-

z€C

mation corresponds to a rotation of the sphere, ie, a member of the special
orthogonal group SO(3). In particular, this implies that the points of Py
can be computed by means of the three unitary transformations:

1 /142 0 1 1 2
Ml_ﬁ( 0 1—2¢>’ MZ"E(-Q 1)’

1 (1 2
M= — .
=i 1)

Let us give some background and more details for the sake of the reader
who is not so familiar with these concepts. Quaternions are the set H of
“numbers” of the form

and

a = agp + a1i+ asj + ask,
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where each a; € R, and iZ = j2 = k® = —1, ij = —ji = k, jk = —kj =i,
and ki = —ik = j. The norm N(a) is the sum a3 + a? + a2 + a2. Unit
quaternions are those of norm 1. A nonzero quaternion has an inverse,
which is @/N(a), where @ is the conjugate ag — a1i — asj — ask. The set
H forms a division ring for addition and multiplication. It is not a field (in
the regular sense of the term) because it is not commutative.

There is a natural correspondence between unit quaternions and rota-
tions of the sphere S2. The quaternion « corresponds to the rotation of an-
gle 2 arccosag around the (oriented) axis (a1, as2,a3). If a1 = a2 = a3 =0,
then the rotation becomes the identity. Note that unfortunately the corre-
spondence is not bijective, since o and —« correspond to the same rotation.
This is a minor inconvenience, however, especially in view of the attractive
feature that multiplying two unit quaternions is the same as composing
the corresponding rotations. Nonunit quaternions also correspond to rota-
tions: divide the quaternion by the square root of its norm. To summarize,
the multiplicative group of nonzero quaternions maps homomorphically to
SO(3). If « is a unit quaternion, it is convenient to represent it as the
matrix M (a) with complex entries,

M(a) = (

We easily check that this correspondence commutes with multiplication, ie,
M(aB) = M(a)M(B). Any matrix in the special unitary group SU(2), ie,
any 2-by-2 unitary matrix with determinant 1, can be represented as M («),

ap +ait  as + ast
—as +ast agp—aii /)

so the multiplicative subgroup of unit quaternions is isomorphic to SU(2).
It follows from our discussion that multiplying two elements of SU(2) can be
done by multiplying the corresponding quaternions. Equivalently, this can
be done by composing their associated linear fractional transformations.
Indeed, we easily verify that the map from the matrix of SL(2,C) (e,
complex matrix with determinant 1),

a b
c d )’
to the linear fractional transformation,
az+b

cz+d’

where ad — bc = 1, is an isomorphism. (Actually, switching to —a, —b,
—c, —d gives the same transformation, so the isomorphism is only with the
subgroup PSL(2,C) = SL(2,C)/{+xI}.) To summarize, we have exhibited

zeC
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a correspondence between the rotations of the sphere and (a subset of the)
linear fractional transformations. For the time being, what we should retain
from this discussion is that SO(3) is isomorphic to SU(2)/{=£I}.

Geometrically, transforming a
point of S? by rotating S? is
equivalent to moving its 4\‘\‘
stereographic projection
(centered at the north pole
and aimed toward the tangent
plane passing through the q

south pole) to its image under P

the corresponding linear

fractional transformation.

Spherical Harmonics and the Laplacian
Let T be a linear operator from L?(S?) to itself.!° Think of T" as the infinite-
dimensional analogue of a linear transformation in Euclidean space. The
concept of a symmetric (or Hermitian) matrix has its counterpart in the
world of operators. We say that T is self-adjoint if

(Tf.9)=({f,Tyg),

where
()= [ Folotw) dw),

where, we recall, w is the Lebesgue measure on the sphere. (Conjugacy is
needed for only complex-valued functions, of course.) An important prop-
erty for us is that, because it is self-adjoint, 7' can be diagonalized and all
of its eigenvalues are real. Also, the eigenvectors corresponding to distinct
eigenvalues are orthogonal. (Note that this is the precise counterpart to
real-symmetric or Hermitian matrices.)

In spherical coordinates, a point is represented by

(sin @ cos ¢, sin @ sin @, cos §),

where 8 € [0, 7] is the angle between the point and the north pole (latitude)

10This means that 7" maps a complex-valued function that is square-integrable on the
unit sphere to another function with the same property. Furthermore, 7" obeys the usual
linearity conditions: TAf = AT'f and T(f +g9) =Tf + Tyg.
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and ¢ € [0,2m) is the polar angle of the projection of the point on the
equator plane (longitude). From the simple form of the Laplacian in two-
dimensional Cartesian coordinates,

i
0x2 = Oy?’
we must now deal with the forbidding-looking expression

1 0f 1 6(. af)-

T sinZe p? + sing 96 \""" 99

Simple integration by parts shows that the Laplacian is self-adjoint. In the
plane, the standard harmonic e*(k12+k29) i an eigenfunction of the Lapla-
cian: Its eigenvalue is —(k? +k2). Of course, things are not nearly as simple
on the sphere. To examine the spectrum of A, we begin with a particu-
larly nice family of surface spherical harmonics, as the eigenfunctions of the
Laplacian on the sphere are called. These are the eigenfunctions of A that
are independent of the longitude ¢; they are called the zonal harmonics
and are defined by means of the Legendre polynomial (of the first kind) of
degree n:

1 ar
= 2npl dan
It is immediate from the definition that the Legendre polynomials obey the
recurrence relation:

P,(x) (2 —1)".

(2n+ 1)P,(z) = % w1 () — % 1 (). (2.6)

Historically, these polynomials were obtained by Legendre while expanding
the potential function between two points. Specifically, given two points p
and ¢ in the complex plane forming an angle 6§ between them, consider the

potential
1 1

lp—dl — /Ip]* + |4 — 2[p[la[ cos®

and expand it as a power series in |p/q|,

1 = |p|"
— =| Pp(cosb).
Iqlnz::o‘q‘ nl

The coefficient of |p/q|™ is precisely the Legendre polynomial of degree n
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evaluated at cosf. We have P,(1) =1 and, in general,

[n/2] .
_ IRy (2n —2j)! 2
Fale) = ; R Ty e T Ty R 27)

The orthogonality of the family is expressed by

/1 P,(z) Py (z) dz = { %

-1

if | =m,
else.

It is not difficult to verify that the function

e 2 1
V2(0,9) & ([T Paleos)

is a surface spherical harmonic associated with the eigenvalue n(n+1). It is
independent of the longitude ¢ and, for this reason, is often called a zonal
harmonic. The factor y/(2n + 1)/47 is needed to ensure that the function
has L? norm 1. The space H, of surface spherical harmonics associated
with the eigenvalue n(n + 1) has dimension 2n + 1: We have the zonal
harmonic, which makes one, so we need another 2n eigenfunctions to be
able to form a basis for H,. In particular, it is intuitively clear that we
need harmonics that are not axially symmetric around the polar axis. For
this we define the associated Legendre function (of degree n):

Ly d¥
Pi(z) = (1 —a*)*? dm—kp"(m)’
for 0 < k < n. Note that P, = P?. We have the slightly more complicated
orthogonality relation:

1 2 (R e
[ Pr@Ph@ = § e B (2.9
-1 0 else.

We are now ready to define a complete basis of eigenfunctions for H,. In
addition to Y,2(8,¢), for any 1 < k < n, we have

{er(ﬁ,w) = N, Pk (cos8) cos(ky),

Y, *¥(0,0) = NpiP¥(cosb)sin(kep). (2.9)

To ensure that the basis is orthonormal, we must adjust the normalizing
factors Ny j in accordance with (2.8): For k > 0, we have Ny, = N, _g

and
N \/(2n+1)(n—k)! |

' dr(n + k)!
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Notice that
Npo if k=0,

k _
Yn (Oa 90) - { 0 else, (210)
and

T 27T
/ viy! = / YF(0,0) Y0, ¢)sin dp do
52 / o Jo ’
_ 1 ifi=jand k=1,
o 0 else.

For k = 0, the function Y,* is the zonal harmonic, which is symmetric
around the polar axis and vanishes on n latitude circles. At the opposite
end, the two functions Y;*"(f,¢) are, up to a constant factor, equal to
cos(ny) or sin(ng): They are called the sectorial harmonics. The other
functions Y,* (6, o) are the tesseral harmonics: They vanish along n — |k|
latitude circles and |k| longitude circles, and form a tessellated pattern. As
a whole the functions Y;* are called the ultraspherical harmonics.

By Weierstrass’ theorem, continuous functions in L?(S?) can be uni-
formly approximated by polynomials of the form Y aj;mz*y'2™, with
22 +y? + 22 = 1. Tt is not very difficult to derive from this fact that not
only does {Y,* : |k| < n} form an orthonormal basis for H,, but the
infinite family {YV}¥ : n >0, |k| < n} is a basis for all L2(S?):

L*(S*) = Py : [kl <n}.
n=0

Note that closure is implied and so equality is in the L? sense, meaning
that two functions are said to be equal if and only if the L? norm of their
difference is zero. Thus, the two functions can differ at some places, in
particular at discontinuities.

Spectrum of Self-Adjoint Operators

Suppose that T is a self-adjoint operator that commutes with the Laplacian,
meaning that the two operators TA and AT are equal. Then, T leaves
each H, invariant. To see why is quite easy. By definition, any f € H,
satisfies Af = n(n + 1)f; therefore, (TA)f = n(n + 1)Tf. Since T and
A commute, T'f is thus an eigenfunction of A with eigenvalue n(n + 1),
and thus belongs to H,,. We can use the same line of reasoning to derive
a more general result. This is classical stuff and math-inclined readers can
skip the following proof, which we include only for completeness.
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Lemma 2.11 If K and T are two self-adjoint operators that commute with
A and with each other, then there exists an orthonormal basis for H, that
diagonalizes both K and T.

Proof: Because K and T are both self-adjoint, they can be diagonalized
and their eigenvalues are reals. But why should they have a common
eigenbasis? First, observe that if the eigenvalues of, say, T', were all distinct,
then any eigenbasis for 7" would also be an eigenbasis of K. Indeed, if ¢ were
an eigenfunction for 7" with eigenvalue \, then, by the previous argument,

(KT)$ = \Kp = TK,

so Ky would be an eigenfunction for T" with eigenvalue A. By the dis-
tinctness of eigenvalues, therefore, K¢ would be equal to a multiple of ¢.
So, every eigenfunction of T' would also be an eigenfunction of K, and our
claim would follow readily.

Suppose now that the eigenvalues are not distinct. Then, given an eigen-
value A of T, let 7, be the maximal subspace of H,, consisting of eigen-
functions of T with eigenvalue X. By the previous argument (restricted to
H,,, which is invariant under both 7" and K), K leaves T, invariant, so
we can define an eigenbasis By for K within 7). But, within 7y, T is the
identity (up to a scaling factor); therefore, B) is also an eigenbasis for T'.
The union of all {By} is therefore a common eigenbasis for T' and K that
spans H,. O

The proofs of Theorems 2.9 and 2.10 (page 58) rely on a careful exami-
nation of the spectrum of the operator 7' defined by

3
Tf) =Y (f(Rp) + F(B; D))
i=1
T is called a Hecke operator. (Why Hecke felt the need to invent such things
is explained in §2.6.) It is obviously self-adjoint, and constant functions are
eigenfunctions with eigenvalue 6. A nontrivial result says that, besides 6,
all of the other eigenvalues of T', which are all real, lie in a small interval.

Lemma 2.12 Let d = 6 be the number of rotations involved in the defini-
tion of T'. Besides d, all of the other eigenvalues of T are at most 2v/d — 1
in absolute value.

We use the parameter d because the lemma applies to an infinite number
of values of d, and not just d = 6. The upper bound of 24/d — 1 is known as
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the Ramanujan bound, as its proof is directly connected to the Ramanujan
Conjectures.

Harmonic Analysis on a Tree

Iterating the operator T' can be best understood by considering an infinite
undirected tree 7 of degree d = 6. Think of py as its root; the neighbors
of pg are the points

Ripo, Ry 'po, Ropo, Ry 'po, Rspo, B3 ' po.

From each of these d new points, we obtain d — 1 more neighbors by re-
peating the construction. Iterating on this process produces the infinite
tree 7. Let A be its (infinite) adjacency matrix.'! Our first observation is
that this is the matrix of the Hecke operator T restricted to the nodes of
T. Indeed, the action of T on a function f is to “replace” the value of f
at any node of the tree by the sum of the value at its neighbors. In other
words, if pg, p1, ..., are the nodes of the tree, the operator T" has the effect
of mapping the vector u = [ f(po), f(p1),...]T to Au, which is to say,'?

Au=[Tf(po), Tf(p1),.-.]".

Note that even though the p;’s depend on the particular placement of pg
(as does the whole tree T), the value of T'f(p;) depends only on f and p;.

Fix some integer s > 0; let g; be the sum ) f(p;) over all nodes p; at
a distance from p; (in the tree) positive but at most equal to s, and let
A, denote the operator (on 7) that maps u to the vector [go,g1,...]"
Because understanding Ay is the key to proving the bound on the oper-
ator discrepancy of Theorem 2.10 (page 58), we investigate its spectrum.
Unfortunately, this poses some slight technical difficulties, which we can
overcome by defining the intermediate operator B,. This operator is de-
fined on 7T just like As: The only difference is that for a given p; the sum
is taken only over those nodes p; whose distance to p; is at most s and
has the same parity as s. The advantage of B, over Ay is that it lends
itself naturally to a recurrence relation. Furthermore, we have the obvious
relations: By = I, By = A and, for s > 0,

Ay =By + Bs_y — 1. (2.11)

"' The entry (i,7) is 1 or 0, depending on whether nodes i and j are adjacent in the
tree.

12The reader should be careful not to confuse the Hecke operator with the transpose
symbol.
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To obtain Bs41, make p; the root of 7, and rank the levels of the tree in
ascending order, beginning at level 0 (the root). For concreteness, suppose
without loss of generality that s is even. Apply A to u first. All of the
even-ranked nodes acquire the sum of the values at their neighbors, all of
which are odd-ranked. This effectively “pushes” the values of odd-ranked
nodes into the even-ranked nodes. So, it would seem that summing up all
of the new values at the nodes of even rank < s, ie, computing Bs; A, would
give us Byy1. The only problem is that every node of odd rank less than
s is actually pushed d times, which is d — 1 times too many. Note that
this does not affect the nodes on level s + 1. Indeed, with respect to the
nodes of interest to us, ie, those of rank < s + 1, the nodes of rank s + 1
are pushed only once. Thus, we now must subtract (d — 1)Bs_; to derive
the proper value of Bs.1, ie,

Bsy1 = B,A — (d—1)B,_1.

To solve this equation, let us “pretend” for the time being that A and By
are real numbers and that

|A| < 2vd—1. (2.12)

We will justify all of this later. Meanwhile, we solve the equation by looking
for solutions of the form B, = x°, which yields the quadratic equation
22— Az +d—-1=0,
whose solutions are
A i
— + —/4(d-1) — A2
272 ( )

These two numbers are conjugate with modulus v/d — 1, so we can write
them as v/d — 1e**®, By equating the real parts of both expressions, we
find

A =2vd-1cosa. (2.13)
All solutions of the equation are of the form
B, = Cy(d — 1)%/2e% 4 Cy(d — 1)%/2e 710,

Plugging in the values of By = 1 and B; = A, we find that C; + Cy =1
and

Clvd— lem +Cz\/d— ].6_ia = A.
By (2.13), this implies that C; = e'®/(2isina) and Cy = —e™®/(2isin ),
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and hence
5/2 sin(s + Da
sina

By =(d—1) (2.14)

From (2.11) we now conclude that

A, = (d— 1) <sin(s.+ 1 N sinsoT ) L (2.15)
sin o Vd—1sina
Note that the identity I in (2.11) becomes 1 in the relation above. We now
must justify our assumption that A and Ay are real numbers. Informally,
the answer is this: If we restrict ourselves to eigenfunctions of 7', then
the operator acts as a multiplicative scalar, and, in some sense, A can be
thought of as a real number. We flesh out this intuition in the following.

Operator Discrepancy

It is clear that T commutes with the Laplacian A. So, by the results of
the previous section, there exists an orthonormal basis for H,,, denoted
by { ®m,; : |7l < m}, that diagonalizes T. Let p,, ; be the eigenvalues
of T associated with ®,, ;. Note that ®¢ ¢ is the constant function equal
to 1/v/4m everywhere (so that its L? norm is 1) and Hy is the space of
constant functions. Because L*(S?) = @,-_, Hy,, it follows that

L*(S8*) = @B {®m; : lil <m}, (2.16)
m=0

which means that any function f € L?(S?) can be expanded over the basis
{®m,;}:

=33 Fm. ) ;). (2.17)
m=0 |j|<m

~

To find the Fourier coefficients f(m, j), we form the inner product with the
function ®,, ;. (This is the same as projecting a vector along an axis to
find its coordinate.) By orthonormality of the basis,

~

f(m,j) = . f(@)®m,;(q) dw(q). (2.18)

Now, recall the meaning of A;: Given a vector u whose coordinates are the
values at the nodes of 7, the first coordinate of Asu is equal to the sum
of the values at the nodes (distinct from pg) lying within distance s of pg.
Let us now set s to the earlier value given by n = %(5S —1). Then, the set
of nodes corresponds precisely to Py = {p1,...,Pn}-
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Suppose that m > 0, ie, ®,, ; is nonconstant. By Lemma 2.12 (page 65),
|om,j| < 2v/d — 1; therefore py, ; can be written as 2v/d — 1 cos i, for some
angle a. Since T' acts as a multiplicative scalar with respect to ®, ;,
if we form the vector u = [®,, ;(po), ®m j(p1),-..]7, then by definition
Au = pp ju. In other words, A acts like a real number that, furthermore,
satisfies the bound (2.13). So, as long as we stick to ®,, ;, we can then
apply (2.15). The relation is independent of po, so it appears that ®,, ; is
an eigenfunction for the operator!'?

75 fn) o o> )

()

Its associated eigenvalue p,, ; satisfies
(s) _ 5/2 (sin(s + Da sin sa )
np, .= (d—-1 - + —
P,y = ) sin a Vd - 1sina

Since |sinna/sina| = O(n), we find that |p£,‘;)]| < s(d — 1)*/?/n, for
m > 0. Using the fact that d = 6 and n = 2(5° — 1), it follows that, for
m > 0,

s logn
05 < - (2.19)

Given f € L?(S?), we know from (2.17) that

o)=Y > Fm,5)®m (o).

m=0 |j|<m

It follows from (2.18) that the first term in the sum (which intuitively is
the constant-function “component” of f) satisfies

~

F0.080000) = 1= [ 1) ds(o)

Therefore, going back to the Fourier series expansion, we find that

fon) = 3= [T o) = S X Fom ) a0

m=1_|j|<m

Applying the operator T to the function f, we find that at pg

13We divide by n to make it an averaging operator.
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) = T =5 [ 1))

SN Fm, ) ®m(po)-

m=1_[j|<m

Applying Parseval-Plancherel, ie, taking the L? norm, it follows from (2.19)
that

1B = >0 S 1Fm )P 1)

m=1 [j|<m
(logn)? s
< TZ > 1Fm, )P
m=1 [j|<m

(logn)? | 1o
21118,

which establishes Theorem 2.10 (page 58). O

<

Spherical Cap Discrepancy

We are now equipped with all of the tools needed to prove Theorem 2.9
(page 58). Again, we find that the operators of interest to us commute with
the Laplacian, so we can decompose any function of L?(S?) into common
eigenfunctions. The advantage of doing this is that we have a complete
understanding of the eigenspaces of the Laplacian. Commuting with the
Laplacian is thus the key to being able to exploit harmonic analysis in S2.

Given two points p, g € S2, the spherical distance from p to ¢ (measured
along the great circle passing through the two points) is denoted by d(p, ¢).
It is equal to the angle /(Op, Oq); see Figure 2.5. Fix some small positive
parameter ¢ once and for all. We use the notation C(p,e) to denote the
spherical cap centered at p of (spherical) radius €. Let k(p,q) : S = R be
the function defined as follows:

Trli—sone) if d(p, q) <g,
k(p, l]) — { Qﬂ(lacoss) olse

The denominator 27 (1 — cose) is equal to

/ 27 sin 6 df,
0

which is the area of C'(p,e). The function is used as the kernel of the
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-

Fig. 2.5. The distance between two points.

integral operator
Kf(p) Z/k(p,q)f(Q) dw(q)-

Note that k(p,q) is only a function of p — ¢, so the operator K acts as a
convolution. Fix a spherical cap C' of center ¢ and radius p once and for
all, and let x¢ denote its characteristic function. We are interested in the
convolution K x¢(p), which indicates what fraction of C(p, ) is occupied by
the spherical cap C. Let C; C C' C C5 be two spherical caps sandwiching
C, of radius max{0,p — 2} and p + 2¢, respectively, and centered at c.
Theorem 2.9 follows directly from

Lemma 2.13 For any i = 1,2,

- n|C| n
ZKXCi(pj) Ty | ety 2 logn,
j=1

where, as we recall, |C| denotes the area of C'. Indeed, observe that xc(p) =
0 implies that p is at least 2 away from C;. Thus, C(p, ) does not intersect
C: and Kx¢,(p) = 0. Similarly, x¢(p) = 1 implies that p lies within
C, at least 2e away from the boundary, and therefore C'(p,e) C C> and
Kxc,(p) = 1. It follows that

Kxc,(p) < xc(p) < Kxe,(p),

and therefore

> Exe,(pj) <IPNCI <Y Kxo,(p)).

j=1 j=1
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We derive

C
‘|PHC|—M‘<<5n+\/Elogn.
4 €

Setting ¢ = (logn)?/? /n'/® proves Theorem 2.9. O.

Again we prove Lemma 2.13 by using the bound on the spectrum of T'
given in Lemma 2.12 (page 65). Recall that T is the Hecke operator

3

Tf) =Y (f(Rip) + F(B; D).
i=1

Because T' commutes with A, it leaves each H,, invariant; and so, as before,
it suffices to study the restriction of 7" to each H,,. It is easy to see that
the convolution operator K is self-adjoint and commutes with both A and
T. Therefore, by Lemma 2.11, there exists an orthonormal basis for H,,,
denoted by { ¢m,; @ |j| < m}, that diagonalizes both T' and K. Let py, ;
and A, ; be the eigenvalues of 7" and K, respectively, associated with ¢y, ;.
Recall that Hy is the space of constant functions; therefore, ¢g o =1/ Var.
(Note that, in general, ®,, ; and ¢y, ; need not be the same functions.) We
have

L’(8) = @ {bm, : lil <m}, (2.20)

which means that any function f € L?(S?) can be expanded over the basis

{bm.j}:
Fo) =" 3 Fm,j)ém;(@.

m=0 |j|<m

As usual, the Fourier coefficients are given by
fomd) = [ F@6s(@ dota) (221)

Applying this to f(q) = k(p, q) yields
k(pa q) = Z Z kp(m7])¢m,3(q)>
m=0 |j|<m

where

~

bym.d) = [ k020005 (2) o). (222

Lemma 2.14 If D is the spherical cap C(p,e) centered at p of angular
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radius €, then
1

/ b (2) doo(2) = 206 (p) | Punla) da.
D

cos €

Proof: Let {Y,%} be the family of ultraspherical harmonics defined with p
as the north pole. Since ¢,, ; € Hy,, we can express the function in that
basis as

Om,j(z) = Z Yl (2).

l<m

Suppose that I > 0. From (2.9) it then follows that
/ Yi(2)dw(z) = / Y (8, 0)sin6db do
D D
= Npy / P! (cosB) cos(ly) sin 8 df dep.
D

Because of the rotational symmetry around the (new) polar axis, the ex-
pression above vanishes. The reasoning applied to the case [ < 0 leads to
the same conclusion. On the other hand, the case | = 0 gives

/ YO(2)dw(z) = Nomo / P, (cos ) sin 0 df dp
D D

cos €
—27er70/ Py, (z) dz,
1

so we derive

1
/ Pm,j(2) dw(z) = 27raon,O/ P, (z) dx.
D cos €

Because p is the north pole, # = 0, and so it follows from (2.10) that
®m,j(p) = 9N 0. This proves the lemma. O

The lemma indicates that the right-hand side of (2.22) can be expressed
as

1
27(1 — cose)

/C oy PG d(2) = Im.i(p) / ' b (o) do.

1 —cose Jeose

Because ¢,,,; is an eigenfunction of the operator K, the right-hand side of
(2.22) is also equal to A, j ¢m,;(p), and therefore

1
1
Am,j =An =
1—cose Jepse

P (z)dr (2.23)
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does not depend on j at all. Thus, (2.22) can be rewritten as

Ep(m, ) = A, (0)-

To summarize, the expansion of k& becomes

ZA Y mi(P)bmi(a), (2.24)

m=0 [71<m

and we have the important “eigenvalue” relation,

[ H0.000.0) dla) = A 60 (225)

We are now in a position to prove Lemma 2.13. From (2.24) we know that

Kxc(p / S e 3 by (0 (@ (@) des(a),

m=0 [il<m

which we can rewrite as

ZA > buil0) [ K (e n)tms @ dota).

[7]<m

where ¢ is the center of C' and k'(p,q) is a function identical to k(p,q),
except for constant factors and a different cap radius (p for &' and e for
k). Thus, the same analysis leads to a relation similar to (2.25): ¢y, ; is an
eigenfunction of the integral operator

K50 & [ K00 dota),

whose corresponding eigenvalue A, (C) does not depend on j. It follows
that

kl(ca Q)¢m,j (@) dw(q) = Am (C)¢m,j (c),

5‘2
and hence
Exe®) =Y An(@Am Y ¢m,j(€)dm.;(p)-
m=0 l7]<m

The first term in the sum is

Ao ¢0,0(P) Ao (C) do,0(c).
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Recall from (2.25) that

Ao ¢o,0(p kpa )$0,0(q) dw(q) 2\/— S2kp7 ) dw(q) = 2\1/77-
Similarly,
3(C) dnale) = 3%
It then follows that
Kxc(p Z Am(CAm Y bm.j (©)bm ;(D)-

l71<m

Of course, we have a similar identity if we replace C' by C; or Cs. Since
for any i = 1, 2, the area |C;]| differs from |C| by O(e), Lemma 2.13 will be
established if we can prove the following.

Lemma 2.15 For any i =1, 2,

S A 3 6ms(© S bmslon) | < \/g log n,
m=1

lil<m =1

where ¢ is the common center of C,Cy,Cs.

Proof: Without loss of generality, we assume that ¢ = 1. Let S denote the
left-hand side of the inequality. We know from (2.19) that any eigenvalue
(*) (m > 0) of the operator

pm]
T f) o= )
=1

satisfies |p£2)]| & (logn)/y/n. Since ¢, ; is an eigenfunction for T within
H,,, it is also an eigenfunction for T°. Therefore, by Cauchy-Schwarz,

S < Vnlogn Y [ An(C)Aml Y [6m.i()dm.i(po)]
m=1

lil<m

< Valogn Y Aa(Cidml | D 1oms(@) | Y |ém,i(po)?

l71<m lil<m

It is not difficult to show that
2m +1
. 2 —
> i = T,

l71<m
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for any p € S?. Indeed, since both {¢; ,,} and the ultraspherical functions
{Y,2} form orthonormal bases for H,,, there exists an orthonormal (2m+1)-
by-(2m + 1) matrix to go from one basis to the other. It follows that, for
any point p € S2, the vectors (¢;m(p) : |j| < m) and (Y7 (p) : |j] <m)
have the same L? norm. The claim then follows from the classical bound

. 2m+1
2 _
> WA PP = T

lil<m

which can be derived from the addition law for ultraspherical polynomi-
als [200]. This allows us to simplify the upper bound for S into

S < v/nlogn »  mlAm(Ci)Am|. (2.26)
m=1
From (2.23) we find that
1 1
Am P, (z)dx

1—cose Jeose

and
1

Am(Ci) =27 P, (z)dx.
cos p
In particular, observe that because |P,(z)| < 1 over [-1,1], |Ap| < 1.
With the identity (2.6),

d d
2m + 1) Py (z) = %PmJ,»l(l') _ %mel(a:),
we easily evaluate the desired integrals, which yields
1
Am = (2m + 1)(1 — cose) (Pm—1(cosg) - Pm+1(COSS))

and
2

Am(C) = 5=

(Pm,l (cosp) — Pyt (cos p)) .

From the inequality (see page 167 in [301])

Py i1(cos) — P, 1 (cos8) ‘ < sin b
m

and the above-noted fact that |A,;,,| < 1, we derive

1 -
[Am| < min 1,7\151118 .
1—coseV m3
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Taking Taylor expansions gives
Pon| < min 3 1, [ —
min -— .
m I (m€)3

sin p
A (Gl </ =2F

Similarly, we have

Returning to (2.26), we derive that

S K \/_loganln{ sin p ”smgpg}

logn
<<‘f10g"2 \/_\/_3/2ZW

1<m<l1/e m>1/e

n
< \/jlogn,
€

which completes the proofs of Lemma 2.15 and Theorem 2.9 (page 58). O

Hecke Operators and the Ramanujan Bound

Let H(Z) be the ring of quaternions of the form a = ag + a1i + asj + ask,
for ag,a1,as,as € Z. Recall that the norm of a is N(a) = a +a? + a3 +a3.
Given an integer n, let S, be the set of quaternions in H(Z) whose norm
is equal to n. The set S, has great number-theoretic relevance, since its
size is obviously the number of representations of the number n as a sum
of four squares. A result of Jacobi says this number is precisely

S| =8 d. (2.27)
dln
4/d
For example, if n = 4, then we have all permutations of (+2,0,0,0) and
(£1,£1,+1,+1), which gives 8 + 16 = 24 = 8(1 + 2) combinations. For our
purposes, one interesting consequence of this result is that if n is prime,
then the size of S, is 8(n + 1).

Fix a prime p congruent to 1 modulo 4. It is easy to enumerate the
elements of S,. Let SJ be the subset of those a such that ag is positive and
odd. Note that any element of S, must have exactly one odd coefficient
a; with all of the others even. (To see this, observe that, taken modulo 4,
the norm of « is the sum of the parity of each a;.) Any a of S, can be
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brought into Sg by multiplying it by the appropriate unit. For example,
the number 2 + 2i + j + 2k € S;3 is brought over to S¥; by premultiplying
it by —j. Since |Sp| = 8(p+1) and there are eight units of the form =i, +j,
+k, the set S) consists of p+ 1 elements, more precisely, (p+1)/2 elements
together with their conjugates. Let ay,...,a, denote the elements of Sg.
We define the Hecke operator,

T,: f(z) = ) fla2),
€S9
where f € L?(S?) and oz means the point z € S? “rotated” by the quater-
nion «, as discussed earlier. In the case p = 5, we find that

SO ={142i,14+2j,1+2k}.

Since 2arccos(1/v/5) = arccos(—3/5), we recognize the set of rotations
R, R, ! defined earlier, and the operator coincides with

Tf(z) = fj(f(Riz) + F(R7'2)).

Therefore, to prove Lemma 2.12 (page 65), it suffices to show the following.

Lemma 2.16 The second largest eigenvalue (in absolute value) of T, is
at most 2./p.

To prove the lemma we examine the spectrum of the operator T,, (gener-
alized to any n) as n goes to infinity. This might seem rather paradoxical,
since we did just about the opposite when studying the discrepancy of
Py = {p1,...,pn}. From our previous discussion, it is clear that we can
rewrite T), f(2) as

1
5 Z f(OéZ),

N(a)=p
a=1 (mod 2)
where the residue class of a quaternion is defined as the quaternion whose
coefficients are the relevant residue classes. The factor 1/2 is due to the
fact that we now allow ag to be negative. Fortunately, the two quaternions
ag + a11+ asj + ask and —ap + a1i+ asj + ask produce the same rotation
in SO(3). We generalize the operator to nonprimes n:

Tn: f(z) — 1 Z flaz).
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t

Lemma 2.17 Any integral quaternion @ = 1 (mod 2) such that N(a) =p
can be represented uniquely as

a=+pw,

where w is a reduced word over the alphabet oy, ..., o, and s = 2j + m,
with m the length of w.

Proof: Recall that a word is said to be reduced if it has no consecutive
conjugate pairs. To prove the lemma we begin by recalling some basic
facts about H(Z) [109]. The ring H(Z) is left and right Euclidean.! If
s > 1, then N(«) is odd and not prime. It is shown in [109] that « cannot
then be prime. Thus it can be written as vy, where N(38), N(y) > 1.
Since N(B)N(y) = N(a), it follows that N(8) = p*~! and N(y) = p'
(I > 0). Trivially, this shows by induction on s that « is a product of two
quaternions, one of which has norm exactly p. Thus we can assume that
I = 1. Since N(y) = p, as we saw earlier, there exists a unit g such that

a = BSO(S,
for some § € Sg. Repeating this process with respect to &g and iterating
leads to the factorization

a =cwy,
where € is a unit and wp is a word of length s over the alphabet Sg =

{a0,-..,ap}. If we now reduce the word by replacing every consecutive
conjugate pair by p, we find

a=pew,

where w is of length s — 2j (the factor 2 comes from the fact that every
reduction produces one p but deletes two letters from the word).

We prove the uniqueness of the factorization by a counting argument.
The number of reduced words of length I > 1 is (p + 1)p'~!, so the total
number of factorizations of elements of norm p® (not just those congruent

141n the commutative case, a Fuclidean ring is simply a ring where Euclid’s division
algorithm is possible. Specifically, there is a nonnegative integer function W, called a
valuation, such that, given any two «, 8 # 0 in the ring, there exist a quotient ¢ and a
remainder r, such that r = 0 or W(r) < W(8) and

a=qB+r.

For this definition to make sense in the noncommutative case, such as H(Z), we distin-
guish between left and right, depending on whether a = ¢8 +r or @ = ¢+ r; hence the
terminology left and right Euclidean.
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to 1 mod 2) is

8 Y (p+1)p* ¥t +84(s),
0<j<s/2

where d(s) is 1 (resp. 0) if s is even (resp. odd). This gives a total of
8(p**tt —1)/(p — 1) factorizations, which is precisely the number given by
the Jacobi bound (2.27), for n = p?®, ie, the number of integral quaternions
of norm n. The factorization that we found is therefore unique.

Note that the assumption that a = 1 (mod 2) was not used at all. We
use it now to show that ¢ = +1. Because each «; € SS is such that a; = 1
(mod 2), we have wg = 1 (mod 2). It follows that o = ewp = & (mod 2).
By our assumption that & =1 (mod 2), we find that e = £1. O

The lemma gives us a natural interpretation of the operator Tj:: Given
a function f whose values are stored at the nodes of an infinite (p 4 1)-
regular tree, the value of T f at any given node is equal to the sum of
the values of f at the nodes whose distance to the given node is at most
s and has the same parity as s. But this is precisely the definition of the
operator By, which we used to study the operator discrepancy. We saw
that if { @, ; : |7] < m} is an orthonormal basis for H, that diagonalizes
T, (which was then called T), then, with respect to any given ®,, ;, the
operator Tps acts as a multiplicative scalar B;. We can always write the
eigenvalue associated with ®, ; as p, ; = 2y/pcosf. Assume from now on
that m > 0, ie, ®,, ; is nonconstant. To prove Lemma 2.16 (page 78), it

suffices to show that # is a real number. From (2.14) we know that
in(s +1)0
B, = /2 sin(s .

b sin §

Fix po € S? (this is not to be confused with the prime p) such that
®,, i(po) # 0. We will have reached our goal once we can prove the follow-
ing.

Lemma 2.18 For any fized € > 0,
| Tye @i (po) | < p*0/2F).
Note that the constant factor hiding behind < depends on &,pg, m, j.

The reason why our goal is reached is that the multiplicative scalar B
cannot exceed (in absolute value) the second-largest eigenvalue of Tj: (up
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to a multiplicative factor independent of s). It follows that

sin(s + 1)6

ps/2 i ‘ <<ps(1/2+5)’
sin 6
and so
sin(s + 1)9‘ .
— | < p7.
sin @

But if 8 is not real, the left-hand side of the inequality grows as e*9(?) where
g(#) is positive and does not depend on . By setting ¢ small enough and
letting s tend to infinity, we derive a contradiction. This shows that 8 is
real, and therefore |pp, j| = 2,/p|cosf| < 2,/p, which proves Lemma 2.16,
and hence Lemma 2.12 (page 65). O

The Modular Group

We now prove Lemma 2.18 by appealing to the Ramanujan conjectures. To
give a complete, self-contained proof would take us far beyond the intended
scope of this book. The reader will no doubt bemoan the brevity of our
treatment, or be thankful for it, or both.'® This section introduces the cast
of characters. It includes enough definitions and basic facts to understand
how Lemma 2.18 on page 80 follows from Deligne’s work on the Fourier
coefficients of modular forms. The next section goes deeper into arith-
metic algebraic geometry and attempts to tie together the major threads
of mathematics that make the whole story so compelling. Our emphasis
is on conveying the intuition behind the results rather than providing a
technically complete exposition.

We begin with a quick review of linear fractional maps (also known as
MGobius transformations). As we saw earlier in this chapter, these are maps
from the complex plane to itself of the form

az+b

f(z):m,

where a,b,c,d € C and ad — bc = 1. It is convenient to compactify C by
adding a point at infinity and setting f(oco) = a/e¢, which is equivalent to
working on the Riemann sphere.'® A linear fractional function carries any

15To keep the flow of our presentation, we have demoted many points in the
discussion—TIike this one—to the status of a footnote.

16The concept of a Riemann surface is central to the entire subject. The notion was
introduced to disambiguate functions like y/z (which root are we talking about?). We
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circle in C into a circle (where lines are considered special circles). Fur-
thermore, it respects circle inversion: Given a circle C' with center ¢ and
radius r, the inversion of p with respect to C'is the point ¢ on the ray (¢, p)
such that |ep| - |cg| = r?; it can be shown that f(q) is the inversion of f(p)
with respect to the circle f(C). In fact this property characterizes linear
fractional transformations up to conjugacy (z — Z). A more common char-
acterization is to identify them with the one-to-one conformal mappings of
the complex plane (or rather, to be accurate, of the Riemann sphere).!”
This means that the angle between two crossing curves is preserved under
any linear fractional transformation (Fig. 2.6).

Another property of these transformations has to do with the isometries
of the hyperbolic plane (in the upper halfplane model).'® Here is what we
mean. To begin with, we can check that the transformations preserve the

create two branches, one for each root, carefully ensuring that their analytic properties
are still preserved. So, think of a (compact) Riemann surface as a sphere, a torus, or even
a surface with more handles, in which we can perform complex analysis. This means
that we have a connection between the surface and C. The surface is decomposed into
(overlapping) open patches Uj, each one of which is supplied with a homeomorphism
z; : U; = C. The simplest example is the Riemann sphere (topologically equivalent to
the complex projective line), which can be parameterized by two patches: the comple-
ments of the north and south poles, with the homeomorphisms being provided by the
corresponding stereographic projections.

Riemann surfaces are used as domains of definition of functions to make them single-
valued, eg, f : z — /2. To say that a function f is analytic on the surface means that,
at any point p on any patch U;, the function f o zi_l is analytic at z;(p); of course, the
z;’s must be consistent within the overlaps. In our example, say, the number 4 € C
must map back to at least two points p,q on the surface, ie, z;(p) = z;(¢q) = 4, where

f(p) =2 and f(q) = —2.

Obviously, we can use the same Riemann surface to characterize the points on the
curve  —y? = 0 in the complex plane. Viewing the complex points of an algebraic curve
as a Riemann surface is a crucial idea. A point p on the surface corresponds to a point
p* = (x,y) € C2 on the curve: Given a patch U; enclosing p, it is typical to choose z; as
the map p — x. So, moving locally around z in C corresponds, through the inverse of
some z;, to a local motion around p on the surface. Doing the same thing at the same

x but with a different (U}, 2;) gives a smooth motion elsewhere on the surface.

In our discussion, Riemann surfaces will arise almost exclusively as quotient spaces.
In many ways, this simplifies matters. For example, think of the group G generated by
z+— z 4 w, for a fixed w € C. The quotient space C/wZ is defined by identifying any
two complex numbers whose difference is a multiple of w. This Riemann surface (which
is not compact) has the topology of a cylinder, and its analytic functions coincide with
the analytic functions on C of period w, eg, z — e2miz/w  This means that complex
analysis on the cylinder is nothing more than the analysis of singly-periodic functions
in C: no parameterization into R?*, no differential geometry needed.

17Note that bijectivity is important because a function like z +— e* certainly is
conformal.

18Gee Chapter 4 for a primer in hyperbolic geometry.
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N7

Fig. 2.6. A simple conformal mapping: z +— 1/z.

cross-ratios of four points, z1, 22, 23, 24, i€,

(21 — 23)/ (21 — 24)

(22 — 23) /(22 — 24) ’
Next, let us pick these four points on a circle in clockwise order and observe
that the cross-ratio is a positive number.'® Finally, take two distinct points
21,22 and draw the hyperbolic line connecting them (which is provided by
the circle passing through them and orthogonal to the real line). Now,
consider the cross-ratio formed by z1, 22 and the two intersections a1, as
with the real line.

Z; %

a &

Fig. 2.7. The hyperbolic metric.

With the proper orientation, the cross-ratio is positive and its logarithm
provides the measure of the hyperbolic distance; we need the log to ensure
the natural additive property of distances.

19That we get a real number is obvious: Think of the linear fractional transformation
that sends three of these points to the real line; note that it takes three points to
characterize such a map. Since circles remain circles, the map must send the fourth
point to the real line as well. O
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The correspondence from

az+b
cz+d

(o)

is homomorphic: Composing two transformations is like multiplying their
matrices. For our purposes, we may limit ourselves to the case where
a,b,c,d are reals. So, the linear fractional transformations of interest can
be identified with PSL(2,R); see page 60 for definitions. This provides
the orientation-preserving isometries of the upper halfplane (viewed in the
hyperbolic sense). This short excursion into hyperbolic geometry is not

z€C

to the matrix

just cultural; it will soon help us to understand better why modular forms
are so remarkable.

With this identification, it becomes quite easy to classify the linear frac-
tional transformations with real coefficients. By the theory of Jordan
canonical forms we know that, outside of the scalar case (a = d # 0 and
b= ¢ =0), all matrices are conjugate to

a 1 a 0 .
(0 a) or <0 b),w1th a#b.

The first case is called parabolic; because the determinant is 1, the absolute
value of the trace is 2. On the Riemann sphere, f has only one fixed point
p, and we have

1 1 c

f(z)—p c=p a—a
Besides parabolic transformations, the standard classification includes el-
liptic maps (| trace | < 2) and hyperbolic ones (all of the others).

We are now ready to move to the arithmetic part of the story. The
subgroup I' = SL(2,Z) of 2-by-2 matrices with coefficients in Z and de-
terminant 1 is called the full modular group.?® Of course, we are more
interested in PSL(2,Z) = SL(2,Z)/{£I}, which we refer to as the modular
group T. (We've been through this distinction before, so there is no need
justifying it again.)

Any transformation in I' maps the upper halfplane

H={zeC|S(z) >0}

20Can you see why it is a group? Think unit determinant, Cramer....
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conformally onto itself. The modular group is a discontinuous subgroup.
The adjective is meant to suggest that the group does not act continuously
on H, ie, applying to a given point an infinite sequence of transformations
from the group can produce only a finite number of points within a finite
region. The modular group introduces all sorts of beautiful symmetries
into the upper halfplane. To see this, take the quotient space?! T'\H. This
consists of identifying any pair of points in ‘H that can be mapped to each
other by some transformation in I'.

-1 -2 0 12 1

Fig. 2.8. The dashed area is a fundamental domain of the modular group.

Equivalence classes form orbits, and I'\H is the space of all orbits. Vi-
sually and topologically it corresponds to a fundamental domain (defined
to include exactly one point per orbit), the most famous of which is shown
in Figure 2.8. It is easy to see that the modular group I is generated by

{U: 2 —1/z,

T: z+—2z+4+1,

with the relations 02 = (o7)® = 1. Asis suggested by Figure 2.9, the images

of the fundamental domain by the linear fractional transformations of T
form a triangular tiling of the upper halfplane; note that in the hyperbolic
plane these are bona fide triangles bounded by actual lines.

Each triangle has exactly one vertex (call it v) that lies either on the
real line (in fact in Q) or at oo; for example, v is at oo in Figure 2.8. (To
be rigorous, we should really replace H by H U QU {oo} in our discussion
of the modular group, but in view of what is coming ahead these are truly
cosmetic issues....) The stabilizer of v, ie, the subgroup that leaves it fixed,

21We write T\ and not H/T because the action comes from the left. But do keep in
mind that the set being modded out is H and not I'.
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Ma
2 -1 0 1 2

Fig. 2.9. The quotient space of H by the modular group produces this tiling.
With the fundamental domain labeled 1, one can see how neighboring copies are
derived from it via the generators o and 7.

is an infinite cyclic group. The two edges incident to v share the same
tangent at that point, which thus is given the geometrically suggestive
name of cusp. The set of all cusps, ie, vertices on the boundary R U {oo}
of the tiling in Figure 2.9, is exactly Q U {oco}.

The two other vertices are of the elliptic kind, meaning that they are
fixed points of an elliptic element of I'. They are in the T-orbit?? of e™i/3.

The modular group encapsulates the symmetries of the upper halfplane
relative to isometries in hyperbolic geometry. To understand the group,
and hence the symmetries in question, we must study its subgroups IV C T’
of finite index (ie, with cosets of finite size). A point xy on the real axis is
called a cusp of T" if the stabilizer of zg is a free cyclic group generated by
a parabolic transformation. Again, the cusps are points of the fundamental
domain that lie on the real line or at infinity. They are incident upon an
infinite number of edges bounding reflections of the fundamental domain.

Of particular interest are the principal congruence subgroups. For any

221t is easy to show that the elements of T that fix some point of # form a finite cyclic
group, all nontrivial elements of which are elliptic. If y is an elliptic element in SL(2, R),
we have |trace| < 2, and so its characteristic polynomial has complex conjugate roots
of modulus 1. If v has finite order and belongs to I', these must be roots of unity that
lie in a quadratic field; therefore their order must be 2, 3, 4, or 6. It follows that elliptic
points, ie, points of H with a nontrivial stabilizer in I', are points in the I'-orbits of ¢
and e™/3,
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integer N > 0, the subgroup I'(N) consists of the set of matrices of T" such

that
(14)=(33) wam

Note that I'(V), as the kernel of the homomorphism reducing the matrices
mod N, is actually a normal subgroup.?® It is infinite, but its index is
finite, which is a short way of saying that the quotient group I'/T'(N) is of
finite order.?* To get the proper geometric picture, you must keep in mind
that subgroups miss transformations, and so the “smaller” the subgroup
the “bigger” the fundamental domain (Fig. 2.10).

= e

-2 -1 0 1 2

Fig. 2.10. A fundamental domain for I'(2)\ H. The index of the subgroup is 6,
and that is how many copies of the modular group’s fundamental domain we
need. The cusps are —1,0, co.

Any subgroup I'" of T that contains T'(N) is called a congruence subgroup.
The subgroup I'o(N) C T, albeit not normal, is crucial to the theory. It is
defined by the condition ¢ = 0(mod N). In other words, its elements are

23 A normal subgroup F is one that coincides with all of its conjugacy classes, ie,
F = yF~y~!. Just as ideals are useful for creating new rings, normal subgroups are
useful for creating new subgroups: this is because they form the kernel of the group
homomorphism formed by “modding out.” The abelian case is trivial, of course, because
all subgroups are normal.

**There is a formula for computing it: The index of I'(N) is N3, (1 —p7?).
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of the form

(5 7) moam.

Modular Forms

Having defined the basic symmetries of the upper halfplane, we now con-
sider functions that are invariant under such symmetries. This leads us
to modular functions and then to (holomorphic) modular forms. Strictly
speaking, we need only the latter here, so it makes sense for us to begin
with them. Recall that a function f(z+iy) = u(x +iy) +iv(z +iy) is said
to be holomorphic (or analytic) in an open set D C C if it is differentiable
in the complex sense over D so, in particular, it obeys the Cauchy-Riemann
equations:

Ou/0x = Ov /0y and Ou/dy = —0v /0.

The function f is called a modular form of weight k (for even integral k,
with respect to the full modular group I') if it is holomorphic in H and the
following two conditions are satisfied: First,

f(yz) = (2 + ) f(2), (2.28)

a b
'y—(c d)EF.

Second, f(z) is bounded in the cusp of the fundamental domain for I.
Since f(z + 1) = f(z) by (2.28), f can be expanded as a Fourier series,

flg) = Z anq",

neZ

for any

27z The second condition means that f is holomorphic at the

where ¢ = e
cusp at infinity. For any point z at infinity in the upper halfplane (take
z = 00 X i), we have ¢ = 0, and so, for convergence, a,, must be zero for
all n < 0, which gives us f(co) = ag. Finally, we say that a modular form
f for ' is a cusp form if the Fourier coefficient ag is itself zero. Note that
in the definition it is essential that k be even. This is because by setting
a=d=—1and b= c=0 we find that f(z) = (—=1)¥f(2); so f would be
trivial if & were odd.

Perhaps we should explain how these seemingly arbitrary definitions
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come about. But before we do so, we should reassure the reader that
such functions do exist. Probably the single most important example of a
modular form of weight k& > 2 is the Fisenstein series

(m,n)#(0,0)
to which we shall come back shortly. The reader is encouraged to check

that the modularity condition (2.28) holds, which is both straightforward
and instructive.

To build some intuition about modular forms, three observations might
help: First, note that condition (2.28) is not as scary as it looks. After all,
recall that o and 7 generate I, and so the two identities

{ f(=1/2) = 2*f(2),
flz+1) = f(2)

alone imply (2.28).

Our second observation explains the use of the word “form.” Given
~v € I, differentiating vz yields (forgive the overloaded use of the symbol
)
az+b a(cz+d) —claz +b)
cz+d (cz+d)?

d(vz) =d dz = (cz +d) ? dz.
So, another way of stating the functional equation (2.28) is to say that
the £-fold differential form f(z) (dz)*/? is invariant under the action of the

modular group.

Finally, our third observation pertains to modular functions. These are
just like modular forms, except that £k = 0 and the analyticity condition
is dropped. Setting the weight k£ to 0 makes eminent sense, since we then
have true invariance under the action of the modular group and not the
weaker version expressed by (2.28). In fact, who needs modular forms
when you can have modular functions? There is a catch, however. The
price that we pay for perfect invariance is analyticity: It must go! Indeed,
only trivial modular functions are analytic. So, the Fourier series expansion
of a modular function looks like

E : ane27rznz’

n>—m
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for some finite m. The function is meromorphic but typically not analytic.?3

Modular functions are nicer but harder to construct than modular forms.
On the other hand, by dividing two modular forms of the same weight we
can hope to get a modular function. On a much more pedestrian level, this
is what we do to define functions in projective space (ie, invariant under
scaling of variables). We take two homogeneous polynomials of degree k
(the analogue of modular forms) and divide them to produce a rational
function (the analogue of a modular function).

Modular functions are meromorphic functions invariant under a group
of symmetries of the manifold where they are defined. They are part of
a larger group of functions, defined on more general manifolds, that are
called automorphic functions. The beauty of the concept of automorphic
functions is to blend several ingredients together: the geometry and topol-
ogy of Riemann surfaces; the algebra of their groups of symmetries; and
the analysis of meromorphic functions.

By way of analogy, consider elliptic functions. These are defined as dou-
bly periodic functions, ie, functions on a torus as a Riemann surface. This
means that they are invariant under certain translations; ie, the fundamen-
tal domains associated with their invariance are parallelograms. So, if you
will, elliptic functions are to a certain discrete subgroup of isometries in the
Euclidean plane (translations) what modular functions are to a certain dis-
crete subgroup of isometries in the hyperbolic plane (the modular group).
The hyperbolic plane has a richer structure than its Euclidean counterpart.
For the same reason, modular functions have more to say than elliptic ones.

Certainly the modular group, being noncommutative, is bound to be
more interesting than the abelian group that tiles the Euclidean plane with
parallelograms. What we cannot explain at this point (but we will later)
is why the hyperbolic plane allows an arithmetic perspective on algebraic
curves. What makes hyperbolic geometry more conducive to number theory

25By definition, a meromorphic function may have a discrete set of poles {a} at which
the function f(z) is not analytic but (z — a)™ f(z) is, for some integer m > 0. So,
to express the function locally as a power series requires the use of a finite number of
negative exponents: the so-called Laurent series expansion. Here is some background
on the Fourier series expansion for modular functions. In general, these have the form

Z an (y)627rinz ,

n€ezZ

where y = §(z). The function is holomorphic over # if the a,’s are constants indepen-
dent of y. To be meromorphic at the cusps, however, one needs the additional condition
that only a finite number of an (n < 0) can be nonzero. Plug z = ico and you will
immediately see why!
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than Euclidean geometry is, for example, the magic at the heart of the
Shimura-Taniyama conjecture and, hence, Fermat’s Last Theorem. What
we can explain right away, however, is what makes the hyperbolic plane
geometrically “superior.”

The “problem” with the Euclidean plane is that its symmetries are dread-
fully dull. Remember those platonic solids from high school? Perhaps the
most remarkable thing about them is how few there are: only five! The hy-
perbolic plane, by contrast, has “so much more space” than its Euclidean
counterpart that it can be tiled by using just about any regular convex
shape. Let’s face it, those outer-space aliens with long antennas who live
in hyperbolic geometry have much more fun tiling their kitchen floors than
we do. The intrinsic symmetries of the floors (given by the modular group
and all of its subgroups) are enormously rich and complex. Modular func-
tions give us a vehicle for carrying over all of those symmetries into the
analytic arena.

Our discussion has been limited to I', but it generalizes naturally to
congruence subgroups of I'. A modular form of weight k& and level N
is defined by relaxing (2.28) to v € I", for some congruence subgroup
I D T'(N); the level is defined as the minimum such N. A cusp form f
for IV is defined similarly. Of course, we now require that the modular
form (resp. cusp form) should be holomorphic (resp. vanish) at each of the
cusps.

Here is a classical example of a modular form for a congruence subgroup:

4
(Z q”2> : (2.29)
neZ
where ¢ = €2™%%. This is a modular form of weight 2 for ['q(4). (Unlike the
case of the Eisenstein series, the modularity condition holds for nontrivial
reasons.) Note that its n-th coefficient in the expansion in ¢ is exactly the
number of ways that n can be written as a sum of four squares. This puts
our discussion of Jacobi’s result (page 77) under the bright spotlight of
modular forms. Incidentally, we can replace 4 by k£ and ask about odd k.
So we do need a theory of modular forms of odd weight, after all. Well, this
book does not.... A general philosophy behind the use of modular forms
is that nontrivial identities hide behind the modularity condition. When
expressed in terms of the Fourier coefficients, these identities in turn reveal
deep arithmetical significance.

We cannot close this discussion without mentioning a crucial property of
modular forms: for given weight and level, they form a finite-dimensional
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vector space over C, so we can use linear algebra to explore them. The
dimension can be computed by using a fundamental result from the theory
of algebraic curves: the Riemann-Roch theorem. First, some background.

Recall from basic complex analysis that to be analytic over all C is a
rather strong condition. Cauchy’s theorem implies that specifying an ana-
lytic function along a single contour entirely specifies the function inside.
By Liouville’s corollary, to be analytic and bounded implies to be con-
stant. Adding compactness can only make things worse. Predictably, the
only functions that are holomorphic over a compact Riemann surface are
constant; not much of a theory to be built on these grounds. To be mero-
morphic gives more freedom, but not a great deal more. An immediate
consequence of our previous remark is that the number of poles equals the
number of zeros (counting multiplicities). On the simplest compact Rie-
mann surface, the Riemann sphere, the only meromorphic functions are
the rational functions, ie, fractions of polynomials.

Surfaces of higher genus g are somewhat more interesting.?¢ The Riemann-
Roch theorem counts how many meromorphic functions have a specified
number of poles and zeros. Rather than stating it in full generality, we
illustrate it by an example. Pick two points p,q on a compact Riemann
surface of genus g, and consider the space S(31,62) of meromorphic func-
tions with at worst 31 poles at p and 62 poles at ¢ (and, hence, 93 zeros
elsewhere). The Riemann-Roch theorem says that if, say, g = 40, then
S(31,62) is a vector space of dimension 314+ 62+ 1 — g = 54.

26Recall that the genus is the number of “holes” in the surface. There are many ways
to define this notion. For example, we can triangulate the surface to form a simplicial
cell complex with V' vertices, £ edges, and F' faces. The genus g is defined by the
formula V — E + F = 2 — 2¢g. In the language of homology theory, ¢ is half the first
Betti number, ie, half the number of independent nontrivial cycles. Formally, the i-th
Betti number is the rank of the homology group H; = ker (8;)/im (8;+1), where 8; is
the standard boundary map with 9;_1 o 9; = 0. In the case of interest, ¢ = 1, here is
what it means. Consider any subset of oriented edges and associate a linear form with it
(with integer coefficients). The boundary map ensures that the image is null when the
edges form a closed chain. Geometrically, what is happening is obvious: H; is the space
of closed chains, with the proviso that two chains that differ only by the boundary of a
bunch of faces are considered equal. In the case of an orientable surface, these groups
have no torsion parts and the Betti numbers (ie, the number of copies of Z that they
consist of) tell the whole story—see Appendix B for background on the classification of
finitely generated abelian groups. For completeness, let us also add that, in the language
of homotopy theory, H; is simply the abelianization of the fundamental group.
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Deligne’s Spectral Bounds for Cusp Forms
We are ready to prove Lemma 2.18. Deligne proved that if f is a cusp form
of weight k for a congruence subgroup I/, then?”

|an| <o nth=H/2te, (2.30)

for any fixed € > 0, where the a,’s are the Fourier coefficients of f at any
cusp. (The constant factor in the inequality depends on the function f.)
Here is how we connect this result to Lemma 2.18 (page 80). The crux is
the fact that, given a fixed pg € S? and f € H,,, the function

F(Z) déf Z N(a)mf(ap0)627riN(a)z/16

a€H(Z)
a =2 (mod 4)

is a cusp form?® of weight 2m + 2 for the congruence group I'(4). So, we
can rewrite F'(z) as

F(Z) — Z ane2ﬂinz/16,

where

a, = E n™ f(apo)-
N(a)=n
a=2 (mod 4)

Obviously, a,, is the n-th Fourier coefficient in the expansion of F(162) so,
by (2.30),

|an| & nm+1/2+s’

for any fixed € > 0. Writing n = 4p?®, we derive

‘ > f(apo)‘<<ps(1/2+s)_

N(«a) =4p°
a=2 (mod 4)

The condition @ = 2 (mod 4) implies that « is congruent to 0 mod 2
(all its coefficients are even), so we can write &« = 2. Since  and 24
correspond to the same rotation, we have f(apo) = f(8po) and, therefore,

‘ > f(/BPO)‘<<pS(1/2+5)_

27The proof makes full use of SGA (Grothendieck’s work in algebraic geometry), and
according to Zagier, would run over 2000 pages if written out in full.

28We omit the proof, but we should note that this can be seen as a grand generalization
of the fact that the function in (2.29) is modular; see the similarity in the case m = 0.
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The constant factors in the inequality depend on f, pg, and €. The left-
hand side is precisely 2|T}: f(po)|, so the inequality establishes Lemma 2.18
(page 80). O

2.6 A Review of Arithmetic Algebraic Geometry *

Modular forms can be used to encode the arithmetic aspects of a wide
variety of problems. Why this is useful is that modular forms constitute
vector spaces of finite dimension (thank our good old Hecke operators for
that!). So, as soon as we are faced with a number of modular forms in
excess of the dimension, we know that there must exist linear relations
among them. This yields extra information that we can exploit, typically by
looking at the Fourier coefficients of the modular forms in question. These
coefficients can encode information as diverse as energy levels in physics,
sums over the divisors of integers, the number of solutions of Diophantine
equations, special values of zeta functions, etc.

This section is meant as a grand tour of modular forms, using as our main
vehicle Wiles’ recent proof of Fermat’s Last Theorem (FLT) or, rather, his
proof of the Shimura-Taniyama conjecture.?® In truth, this short intro-
duction, which requires only elementary knowledge of mathematics, barely
scratches the surface of this deep subject.?® Our aim is merely to place
Deligne’s bound in its broader mathematical context, and to shed light on
the role of modular forms in the orbital construction of points on a sphere.
Our discussion covers a large amount of territory. For this reason, all proofs
have been omitted, but references to where they can be found have been
included.?!

The Shimura-Taniyama conjecture says that that all rational elliptic
curves are modular, ie, are modular forms in disguise. The so-called
semistable restriction of the conjecture has been established by Wiles [323],

29There is a debate swirling around the name of the conjecture. Some prefer the
neutral “Modularity conjecture,” others the witty “*** conjecture,” where *** hides
your favorite subsequence of the names Shimura, Taniyama, and Weil. Big conjectures
often raise big issues, not all of them necessarily mathematical.

30This author is hardly an expert on the said subject. But, with apology to Oscar
Wilde, he is always ready to give to those who are more experienced than himself the
full benefits of his inexperience.

31'While writing these pages I remained aware of the “curse of the encyclopedia,” which
is to be trivial to the expert and incomprehensible to the uninitiated. I hope readers
will wish to give it a try, and see for themselves whether I managed to avoid the “curse.”
I can promise them only one thing: The subject matter might be demanding but, as
mathematics goes, it is as beautiful as it gets.
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with the proof completed by Taylor and Wiles [306]. Semistability is a
minor technical restriction that has been completely removed.?? The con-
jecture thus appears now to be a theorem. It is truly an amazing theorem,
defying common sense. To convey this sense of awe, we begin with an
example due to Eichler and Shimura. Consider the product

o(z) =q [ -q")*@—-q"),
n>1
where ¢ = €2™*. We can check that ®(z) is a cusp form of weight 2 for the
congruence subgroup [(11), ie, defined by the condition ¢ = 0 (mod 11).
If a,, is the n-th Fourier coefficient of ®, ie, ®(z) = ), < anq", then for
any prime p # 11, -

w®() = B(p2) + 3 (= +))/p),
0<j<p
for any z € ‘H. Remarkably, these Fourier coefficients lead trivially to the
number of points with coordinates in any Galois field*® F,, on the elliptic
curve

y? = — 42® + 16.

In particular, for any odd prime p # 11, that number is precisely p — a,.
We have many of the ingredients of the stew in this example: a modular
form, an elliptic curve, and a Fourier series counting its zeros in finite
fields. What is missing is just any clue to this nagging question: What in
the world is going on?

The key to the answer is the link between modular forms and elliptic
curves, which is their L-functions. In fact, what the Shimura-Taniyama
conjecture really says is that, viewed through the prism of their L-functions,
rational elliptic curves and (certain) modular forms are one and the same
thing. The two notions are so completely different it is truly remarkable
that they should actually coincide. But this is just one of many wonders.
Since modular forms are still fresh in the minds of the readers (those who
are still with us, that is), our story begins with them.

L-Functions of Modular Forms

Let f(z) be a modular form of weight k& for I'. Recall that the modular
group I = PSL(2,Z) is generated by o(2) = z + 1 and 7(z) = —1/=2.

32Work by Breuil, Conrad, Diamond, and Taylor, building on Wiles’ results.
33 A brief review of finite fields is given in §9.2 on page 319.
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As we already remarked, the invariance condition (2.28) applied to o, ie,
f(z+1) = f(2), implies a Fourier series expansion,

f(z) = Z ane27rinz,
n>0
for z € H and a,, € C. It is known that |a,| = O(n*"!) in general, and
lan| = O(n*/?) for cusp forms.** So, the Dirichlet series
L(f,s) = n
=1
converges absolutely for $(s) > k, in general, and for R(s) > k£/2+1 in the
case of cusp forms. This defines the L-function of f. Applying (2.28) to
7 gives f(—1/z) = 2¥f(2). From this, Hecke derived a functional equation
for L. Conversely, he also showed that Dirichlet series that satisfy a certain
functional equation (together with some analytic conditions) correspond to
modular forms. Weil extended this result to the subgroup I'g(N). Here are
some of the details.
The bridge between Fourier series expansions and Dirichlet series is the
Mellin transform. We define the Mellin transform of a function ¢ on the
positive real axis as

Mo = [ oot

A simple calculation shows that

(2m)*
I(s)
where fi(t) denotes f(it) — ap (obviously ag has to go since, for the sake
of convergence, it cannot appear in the Dirichlet series) and

[(s) :/ et dt
0

is the gamma-function (ie, the Mellin transform of e~?). The function
L(f,s) is defined a priori only for R(s) large enough, but it can be extended
to the whole complex plane by meromorphic continuation. Suppose for
simplicity that ag = 0 and k£ > 2, and define

A(s) = (2m) °T(s)L(f, s).

L(f>s): M(flas))

From the relation f(—1/z) = 2¥f(2), it follows from elementary complex

340f course, as we just saw, tighter bounds follow from Deligne’s work.
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integration that
A(s) = Ak —s). (2.31)

Conversely, one may wonder whether any Dirichlet series with meromor-
phic continuation and a functional equation like (2.31) arises from some
modular function. With the right convergence assumptions, we can essen-
tially reverse our steps and answer yes. This is true if f is modular for the
full modular group I'. In the case where f is modular for only, say, I'g(V),
things are more complicated. Unlike the full modular group, I'o(/N) cannot
be defined by only two generators, which leads to more than one functional
equation. Roughly speaking, Weil showed that if the functional equation
holds for enough “twists”
Z Xk(n)an
nS

n>1

of the standard Dirichlet series (together with some analytic properties),
then the corresponding Fourier series expansion Y a,,q", where ¢ = e>™* is
modular for T'o(N). These twisted series are defined by using multiplicative
characters yx(n). Such characters play an important role in the story, so we
must discuss them at least a little.?> They are the multiplicative versions of
the additive characters used in Fourier analysis (n — e27i"/k
They are periodic functions that map the integers to the complex units.
Their period is &, so it suffices to define them over the integers mod k. We
require that x;, respect multiplication,®® and that xj(n) = 0 if n and k are
not relatively prime. It is interesting to see both additive and multiplicative

, remember?).

characters at work simultaneously. In some way, L-functions express the
subtle interplay between additive and multiplicative Fourier analysis.

Hecke Operators and Euler Products

It is a standard (easy) fact of analytic number theory that, given any multi-
plicative function n — ay, if >, a,n™* converges absolutely for R(s) > o,

then
a
n>1 P

35Gee also our discussion of characters in §9.1.

36Multiplicative functions, ie, such that f(mn) = f(m)f(n) whenever m and n are
relatively prime, abound in number theory: Two famous ones are the Euler totient
function and the Md6bius function.
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for R(s) > o, where the sum runs over all primes p. Note that if a, is
strongly multiplicative, ie, @, = ama, for all m,n, then clearly the Euler
product takes on the standard form:

S =Ty

e ns . 1—app—*
In the context of modular forms, Euler products are to be sought in

intermediate form. Specifically, let ) a,n~° be the L-function of a mod-
ular form for T'o(NN) with Fourier coefficients a,,. We investigate which

conditions ensure that
an 1
nzz:l n’ 1;[ 1-PF(p)’

where each P, is a polynomial of degree 2 vanishing at 0. The answer is,
roughly, those forms whose Fourier coefficients satisfy

(i) the standard (weak) multiplicative property, @mn = Gy, for any
n, m relatively prime, and

(ii) some suitable recurrence relation involving the a,’s indexed by
prime powers n.

To understand why, we need to come back to our old friends, the Hecke
operators; the reader will happily remember them from our points-on-the-
sphere days. Recall how Eisenstein series—our basic example of a modular
form—were defined by summing 1/(m + nz)* over the integer lattice. This
basic relation between modular forms and functions defined on lattices
means that operators on lattices can be used to build operators on modular
forms. In particular, given a lattice A, one can define an operator from the
abelian group of linear sums in A into itself simply by summing over all
sublattices of a certain index. If m and n are relatively prime, it is easy to
see that composing the operators of index n and m gives the operator of
index nm. There we have the desired multiplicative property.

Hecke defined operators that act linearly on the space of cusp forms for
[o(N) of weight 2. These operators satisfy relations remarkably similar to
(i, ii). Furthermore, they commute, so we can find a common eigenbasis
to all of them and decompose cusp forms accordingly. That is essentially
what we did for the points on the sphere. Unsurprisingly, these functions
are called eigenforms. For normalization purposes, set their first Fourier
coefficient to be 1. Then everything falls into place. If we fix an eigenform
and look at the eigenvalues corresponding to all the Hecke operators, what
we see are precisely the Fourier coefficients of the eigenform. In other
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words, an eigenform is completely specified by the “scaling” action of the
Hecke operators on it. Collecting all of those fun facts, we find that:

1. From the viewpoint of an eigenform, Hecke operators act like scalars.

2. These scalars are nothing but the Fourier coefficients of the form,
and hence the coefficients of its Dirichlet series.

3. Hecke operators satisfy relations that are similar to the conditions
required on the coefficients of a Dirichlet series to admit an Euler
product expansion.

The punchline: the Dirichlet series of a normalized eigenform has an Euler
product expansion. So now the formidable problem of finding cusp forms
with Euler product expansions has been reduced to the much tamer task
of finding simultaneous eigenforms for linear operators. Standard linear
algebra®” suggests defining some suitable positive-definite Hermitian form
relative to which the Hecke operators are self-adjoint. (Again, the alert
reader will fondly remember that it is essentially what we did when placing
points on a sphere, with help from the Laplacian.) Here, the Hermitian
form comes from something called the Petersson inner product. If f and g
are modular of weight k for some congruence subgroup I'' and at least one
of them is a cusp form, then their Petersson inner product is defined as

/ F(2)g(z)y" * dw dy,
D

where z = z+iy and D is a fundamental domain (any one for that matter).

The importance of Hecke operators to the theory of modular forms can-
not be overemphasized. To have at our disposal a commutative algebra of
operators acting on the space of modular forms of weight & is a godsend.
It allows us to find a canonical basis of simultaneous eigenvectors. The
Fourier coefficients of these eigenforms are algebraic integers with mul-
tiplicative properties. This leads to Euler product expansions for their
associated Dirichlet series. We also obtain analytic continuations to the
whole complex plane with functional equations reminiscent of the one for
the Riemann zeta function.

Enough said about modular forms. We now turn to the most impor-
tant player in the whole story, the elliptic curve, and show how—rather
improbably—it connects to modularity.

37The funny thing is, according to J. S. Milne (Lecture Notes on Elliptic Curves, 1996,
page 137), Hecke had trouble doing that because the needed linear algebra, ie, a certain
inner product to be defined next, was not available to him....
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Elliptic Curves

An elliptic curve C is defined by the cubic equation in = and y,
y? = 42® — ax — b.

To be nonsingular the curve must have a nonvanishing discriminant, ie,
a®—27b? # 0. This keeps the right-hand side from having multiple roots in
x. As cubic curves go, this definition hardly seems general, but actually it
is as long as we work over a field of characteristic # 2,3. (We can prove this
algebraically by changing coordinates.) Of course, for a projective curve,
the equation must be made homogeneous: Y2Z =4X3 —aXZ? —bZ>3. An
historical aside: The term “elliptic” is a bit of a misnomer; it is derived
from the integral we get by computing the arc length of an ellipse.

We can study the equation over any field, but it makes the most sense
to start with an algebraically closed one like C, especially since this puts
the full power of complex analysis in our hands. Viewed as a function
y = y(x) over C, it is necessary to disambiguate the two different values of
y corresponding to the same x.

The time-honored way to do that, of course, is to transform the domain
of definition into a Riemann surface where the function becomes single-
valued but keeps its fundamental analytic features. Not only does this lift
ambiguities about y, but it also gives the function a topological structure.
In this case, the surface is compact and its genus is 1, so it looks like
a torus. Remarkably, the converse is true. Compact Riemann surfaces of
genus 1 correspond exactly to elliptic curves. This correspondence provides
a parameterization of an elliptic curve as a function from C (where the
parameter z lives) to C x C (where the solutions (z(2),y(z)) live).?® As
we come to expect of a torus, the map is doubly periodic. We explain all
of this in the following.

Take two complex numbers wy,ws, which are not collinear in the complex
plane. They define a lattice A = wiZ + wsZ. The fundamental domain
of C/A is a parallelogram with opposite sides identified. Topologically
it is a torus (Fig. 2.11). Recall that elliptic functions are, by definition,
meromorphic and doubly periodic. The simplest ones relative to A are of

the form
> oz +w),
weEA

38Recall that we have compactified C, so to be fully rigorous we should talk about
the Riemann sphere instead of C. For simplicity we shall be frequently sloppy and hang
on to the notation C when we should not.
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®,

o,

Fig. 2.11. Tiling the plane with parallelograms provides a covering of the torus.

for some meromorphic function ¢. By straightforward application of the
residue theorem of complex analysis, we see that the sum of the residues
over a parallelogram is zero and so, by Liouville’ theorem, to be nonconstant
the function needs to have a multiple pole or several simple poles. Toying
around with this type of requirement, we are quickly led to one of the big
hitters in this ball game: the Weierstrass function,

1 1 1
0=zt T (amopm)
weA\{0}

which can be easily shown to converge absolutely and uniformly over any
compact subset of C — A. Its derivative is

1
/
o) =23
= (z —w)
Obviously, both p(z) and p'(2) are elliptic relative to A. Their relation to
elliptic curves comes from the functional equation that they satisfy:
' (2)? = 4p(2)° — g20(2) — g3,

for constants gs, g3 that depend only on the lattice A. By simple manipu-
lation we find that

1

p(Z) = ; + 3G4Z2 + 5G624 + 7G82’6 + - )

where, for even k > 2,

1
.= GL(A) = -_— .
Gr = Gr(A) m%;Z (mwn + nws)F
(m,n)#(0,0)

This seems to generalize our earlier definition of Eisenstein series. Could
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modular forms be far behind? The constants g; are defined by
gz = 60G4 and gs = 140G6 (232)
Not only does this allow us to parameterize the elliptic curve

2+ (9(2), ' (2)),

but in fact we can characterize the set of all elliptic functions as the rational
functions of p(z) and g'(z), ie, fractions of polynomials in p(z) and E'(2).
We omit the proof of this important theorem (which is actually quite easy).
The reason we even mention it is to draw the reader’s attention to how much
simpler periodic meromorphic functions are than their real counterparts.
Over the reals, (nice) periodic functions admit Fourier series expansions in
terms of sin z and cos z, but these require an infinite number of terms. For
elliptic functions, on the other hand, p(z) and ¢'(z) need only appear with
a finite number of coefficients attached to them!

With the parameterization discussed above, the Weierstrass function es-
tablishes a map from lattices in C to elliptic curves. So, we know how to
go from a Riemann surface of genus one of the form C/A to an elliptic
curve. Can we go the other way around? Our first observation is that
any nonzero, complex-valued scaling of the basis elements of the lattice
yields the same elliptic curve, so we can normalize the lattice into the form
A(z0) = m + nzg, for zp € C. Furthermore, we can easily check that
A(z0) = aA(z]), for some nonzero o € C, if and only if 2y and z{ are
equivalent for the modular group (ie, are in the same orbit). Now, a simple
but important observation is that the Riemann surfaces C/A and C/A’ are
isomorphic if and only if A’ = aA, for some a # 0.3 Therefore, the T-orbit
of a given zg leads to isomorphic elliptic curves via A(zp).

Given an elliptic curve C: y? = 423 —ax —b, there exists zo € H such that
a = a?gs(20) and b = a3g3(20), where the g; are defined as in (2.32) for the
lattice A(29). The curve C is isomorphic?® to y? = 4z® — ga(20)z — g3(20)-
Therefore, as a Riemann surface, C is itself isomorphic to C/A(zp), and the
class of zg in I'\H is uniquely determined by C. In other words, we have
a parameterization of the space of all elliptic curves over C by points in a
fundamental domain of the modular group.

39This is a reminder that Riemann surfaces are more than just topological objects.
These particular Riemann surfaces, being parallelograms, are homeomorphic yet not
necessarily isomorphic.

40This point might dispel the suspicion the reader might have had about one number
zo parameterizing a family of curves that is defined by two parameters a,b. All the
curves specified by a?a and o?b, for a # 0, are actually isomorphic.
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Now a closing note to reconnect our discussion to modular functions. If
we define the discriminant function

Az) ¥ gy(2)® — 27g5(2)2, (2.33)
then it can be shown that the value at zg of the function
(12g2(2))*
= IV 2.34
o) = (234

characterizes the elliptic curve: It is called its j-invariant. It is a modular
function for I with a simple pole at the cusp. In fact, it has an expansion
2miz of the form

. 1

i) = + T4+ > ead”

n>1

ing=e

for integral ¢,,. Moreover, the modular functions for I' are precisely the
rational functions of j. From an arithmetic point of view, the j-function
is particularly powerful. For example, consider a complex elliptic curve
C = C/A(z) defined over some number field*! F. It is isomorphic to the
curve

y? =42° —azx — b,

where a,b € F. Obviously, the function j takes on an algebraic value at z,
since

, (12a)3

1@ = a5

a3 — 27b

Most often, however, j(z) is transcendental. Indeed, by a result of Schnei-
der, it is known that, for any z € H, the numbers z and j(z) are simulta-
neously algebraic if and only if z is a quadratic number.

The Riemann Surface of the Curve X, (V)

In the last section we took a torus and showed that by looking at it the right
way we could view it as an elliptic curve.*? The fundamental domain of

41 A number field is an extension field derived from Q by adjoining to it roots of
polynomials with rational coefficients. It forms a vector space whose dimension is called
its degree. For example, adjoining i = /—1 gives the Gaussian numbers Q +iQ, whose
degree is 2.

42The reader might be forgiven for feeling that the terminology has gone awry. The
problem is that geometers are uneasy about curves being surfaces, while analysts find
nothing more natural. Blame it on the fact that a complex number is a point in the
plane.
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I"\'H, where I" is a congruence subgroup, can have an arbitrarily complex
topology (as a Riemann surface). Can we somehow view it, too, as an
elliptic curve? Obviously not. When the genus is higher than 1 we cannot
hope to get an elliptic curve. But what about an algebraic curve? The
answer is yes. Not only that, but if I is chosen as I'g(IV), then the quotient
Riemann surface I'g(N) \ H, with cusps added, which is denoted by X (N),
is an algebraic curve that can be given with rational coefficients.*®> This is
hard to prove but easy to explain.

We begin with the boring case: X(1). This is simply the fundamental
domain of the modular group shown in Figure 2.8. You can triangulate it
by hand and check for yourself, by using the formula V — E+ F = 2 — 2g,
that its genus is 0. It is just the Riemann sphere. The function j(z)
defined in (2.34), being modular for T', provides a bijection from Xy(1) to
the Riemann sphere. As we saw earlier, the modular functions for T" are
precisely the rational functions of j. We are done.

Before we move on to the more difficult case, N > 1, we should mention
that the discriminant function A(z) of (2.33) is a modular form of weight
12 for I'. It is actually a cusp form and, as it turns out, the lowest possible
one of that weight. A remarkable formula of Jacobi says that

(2m) PA(z) = q [J (1 = ¢™)*.

n>1

If we expand the right-hand side in ¢, we obtain

g [[a-a"* = (0",
n>1 n>1
where 7(n) is called the Ramanujan function. It satisfies all sorts of prop-
erties, in particular, multiplicativity, ie, 7(nm) = 7(m)7(n) whenever n
and m are relatively prime (those multiplicative functions cropping up in
a Dirichlet series again). This was conjectured by Ramanujan and proven
by Mordell.

What about Xo(N), for N > 17 It can be interpreted as an algebraic
curve with rational coefficients. This is derived from the observation that
the functions j(z) and j(Nz) satisfy an algebraic equation with coefficients
in Q. The whole field of modular functions over Xy(N), ie, relative to
[o(N), is in fact generated by j(z) and j(Nz).

We are talking here about isomorphisms between Riemann surfaces Xo(N)
and algebraic curves. Anticipating our discussion ahead, we might change

431ts genus is 1 for N = 11,14, 15,17, 19, 20, 21, 24, 27, 32, 36, 49.
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our viewpoint slightly and consider Xo(N) as the domain of parameteriza-
tion of an algebraic curve. One big difference is that the correspondence
remains onto but not necessarily one-to-one. This means, in particular,
that in the case of an elliptic curve the candidate Xo(N) can be of genus
higher than one. The question we now ask is: Given a,b € Q, does there
exist N and two modular functions fi, fo for I'g(N) parameterizing the
elliptic curve y? = 423 — ax — b through the identity

f2(2)? =4f1(2) —afi(z) —b?

The Shimura-Taniyama conjecture says yes. To put this in perspective,
recall that, via Weierstrass, parallelograms provide parameterizations for
all complex elliptic curves. Via modular functions, the Shimura-Taniyama
conjecture says that any rational elliptic curve can be parameterized from
some suitable Xo(N).4* So, it appears that the “arithmetic” behind the
words, arithmetic geometry, is revealed through the study of hyperbolic
space.

We could end this appendix here but we would be missing an important
chunk of the story, ie, the role played by L-functions. The two modular
functions fi, fo discussed above can be combined to define a modular form
of weight 2 whose L-function is the same as that of the elliptic curve. But,
what exactly is the L-function of an elliptic curve? The definition is quite
different from the one we gave for modular forms, and that the two notions
should be closely related is quite amazing. Our first order of business is
to discuss one of the most beautiful features of an elliptic curve: its group
structure.

The Addition Law of Elliptic Curves

To look at an elliptic curve over a Riemann surface brings analysis and
topology into the picture. But perhaps the most amazing property of an
elliptic curve is algebraic: It has an abelian group embedded in it. The
algebraic structure of an elliptic curve is how we get L-functions into play.

We explain. To define an additive group over the points of an elliptic
curve C, we could simply use the parameterization from C/A to C and carry
over the addition law in the obvious way, ie, to add the points (p(z1), ' (21))

44The reader might be wondering why we seem to have a fixation on Xo(N) and not,
say, X(N). The reason is that the covering of an elliptic curve by Xo(N) is, in some
sense, as tight as possible. Remember that I'(N) C Do(NN) and there are coverings
X(N) — Xo(N), and hence X(N) ~ C. Moreover, X(N) might not in general be
defined over Q but only over a number field containing N-th roots of unity.
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and (p(z2), p'(22)) we take the point (p(z1 + 22), (21 + 22)). This works,
but it misses the whole point, ie, the beauty of the geometry behind it.

Fig. 2.12. The group structure of an elliptic curve.

Adding points a and b is easily visualized over the real projective plane
(Fig. 2.12). If a # b, we draw the line connecting them and look at the
third intersection point. As its name does not indicate, the curve is a cubic;
so if we have two intersections with a line, we expect a third one (z,y) by
Bézout’s theorem. We define a + b to be the point (z, —y). If a = b, we do
the same with the tangent line at a. The identity is the point at infinity.
These definitions are trivial. What is less so is that they do indeed give us
an abelian group (C(C), +).* Commutativity is obvious, but what about
associativity (Fig. 2.13)?

Of course, we can define a similar group structure over all kinds of fields
(not just the reals). The group C(Q) of rational points on the curve C
is striking because, as Mordell showed, it is finitely generated (in fact,
Mordell-Weil’s theorem says that this remains true over any number field).
So, following the standard classification of finitely generated abelian groups,
we know that it must consist of (at most) a torsion subgroup (ie, a direct
sum of finite cyclic groups of the form Z/nZ) and an infinite free group
Z". How to compute the number r, which is called the rank of the group
C(Q), remains a major open problem to this day. Computing the torsion
part is easier, but classifying all possibilities is very difficult. The problem
was solved only in the late 1970’s by Mazur, who showed (among other

45The notation C(S) refers to the set of points of C with coordinates in S.
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-

Fig. 2.13. The beautiful geometry behind associativity: The intersection h of the
segments connecting a to b+ ¢ and ¢ to a + b lies on the curve!

things) that the torsion subgroup of an elliptic curve over Q is one of only
15 possible groups; each one consists of one or two cyclic groups and their
maximum cardinality is 16.

To understand the group of rational points we follow a local approach,
ie, we study its subgroup obtained by reducing modulo primes p. (This
may sound like wishful thinking, but the theory of p-adic numbers is there
to help with this sort of extension from local to global.) Obviously, we
must assume that the denominators in the coefficients of the curve are not
multiples of p. This implies that they have inverses mod p, so we might
as well assume that all of the coefficients are integral, which we take mod
p when reducing at prime p. By requiring a nonvanishing discriminant we
ensured that in the elliptic equation the polynomial in z has no multiple
roots over the complex numbers. But this may no longer be true once we
reduce mod p. We call this a bad reduction at p. Fortunately, such “bad”
primes divide the discriminant, so there are only a finite number of them.

Zeta Functions of Number Fields

The L-function of an elliptic curve is a global object which is a collection
of local pieces: the zeta functions of the curve over finite fields. Instead of
rushing into definitions (which are not so simple) and struggling to explain
their purposes, it is better to follow a more historical path, if only to
appreciate how new concepts often emerge from older ones by mere analogy.
So, we begin our story with the Riemann zeta function. As is well known,
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for R(s) > 1,
def g~ 1 _ !
CED R Ite=2 (235)

where the product is over all primes p. This follows trivially from the
unique factorization of the integers and the expansion,

1 .
l—xzzmz'

i>0

The Riemann zeta function can be extended to a meromorphic function
over the whole complex plane with a simple pole at s = 1. It satisfies the
functional equation

A(s) = A(1 = s),
where
A(s) & 77521 (s/2)¢(s).
It has “obvious” zeros at s = —2n for n > 0, and the famous Riemann

hypothesis says that all the others, of which there are infinitely many, lie on
the line R(s) = 1/2. The importance of this hypothesis—and the difficulty
in settling it—is hard to overestimate. Scores of fundamental mathematical
results would follow directly from it.

Dedekind generalized this idea to any number field by re-interpreting
the term p in the denominator of the Riemann zeta function (2.35) as
the order of the quotient ring formed by the integers of that field modulo
some nonzero prime ideal. We still have equality with the corresponding
Dirichlet series because of the unique factorization of nonzero ideals over
the integers of number fields.

We open a brief parenthesis to explain what this all means. Throughout
our discussion, rings are assumed to be commutative. An ideal of a ring is
a subgroup (for addition) closed under multiplication by any ring element.
Just as normal subgroups are useful for manufacturing new groups, ideals
are useful for creating ring homomorphisms and, hence, subrings. Indeed,
modding out the ring by the ideal (ie, identifying ring elements that differ
only by an ideal element) creates another ring.

Recall that a number field K is a finite-degree extension of the rationals.
It can be viewed either as Q[X] modulo some polynomial or as the adjunc-
tion to Q of the roots of a polynomial in some algebraic closure. Taking
the latter view, consider the numbers that are roots of monic polynomials
(ie, highest degree coefficient = 1) with integral coefficients: they form a
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ring R, called the integers*® of K. If T is a nonzero ideal of R, then the
quotient ring R/Z is actually finite. Its number of elements defines the
norm of the ideal Z and is denoted by N(Z). By direct analogy with Z/pZ,
if the ideal is prime (ie, fg € Z implies that f or g is in Z) then R/Z is a
finite field, and therefore N(Z) = p™, for some prime p (see page 319 for
a review of finite fields). A wonderful property of the ring of integers is
that any nonzero ideal of R can be written uniquely as a product of prime
ideals. This is the generalization in the language of ideals of the unique
factorization®” of integers in Z. So, by analogy with the Riemann zeta
function, the Dedekind zeta function defined below should be expressible
as both an Euler product and an infinite sum:

def 1 1
()= > NI Il N(P)~s’

I#£0 P

where the sum (resp. product) is over all nonzero ideals (resp. prime
ideals). The function (k(s) converges absolutely for $(s) > 1 and has a
meromorphic continuation over the whole complex plane. Obviously, the
case K = Q gives us back the Riemann zeta function. One can formulate
a Riemann hypothesis for number fields by direct analogy. No one has a
clue on how to go about proving it, however, so we turn to function fields,
instead, which are far less mysterious.

Zeta Functions of Curves

Function fields provide the setting for the (proven) Riemann hypothesis
for algebraic curves, which can then be generalized to arbitrary varieties.
Consider the case of an affine elliptic curve C over a finite field of the type
introduced in the previous section. Let f(X,Y) = Y2 — g(X) denote its
defining polynomial, and let

F(C) =F,[X,Y]/(f(X,Y))

46 Unfortunately, to determine which elements of K are integers is usually not so easy.
There are exceptions. For example, consider the cyclotomic field obtained by adjoining
to Q the root of unity ¢ = e27¥/? for some odd prime p. Its integers are the integral
combinations ng +ni¢ + -+ np_2(P~2. Note that we stop at p — 2 because, trivially,
(p—1 is a linear combination of the other roots.

47Unique factorization should not be taken for granted. Of course, some rings enjoy
this property, eg, Q[z1,...,Zn] and Z + Z+/—1. The latter case is an accident. Most
rings of integers do not have unique factorization. For example, in the ring Z + Z/—5,

we have 6 =2 x 3 = (1 +v/—=5)(1 —v/=5).
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be the quotient ring of polynomials in X,Y with coefficients in F, modulo
the ideal generated by f(X,Y"). This is like adjoining /g to the base ring,
so it is a quadratic extension of Fp[X]. Now, consider any nonzero prime
ideal P in F(C) and, as usual, denote by N(P) the order of the finite field
F(C)/P. We define the zeta function of C as the Euler product

def 1
= —_ 2.36
CC(S) 1;[ 1— N(,P),s ) ( )
for R(s) > 1, where the product ranges over all nonzero prime ideals P in
F(C). Since F(C)/P is a finite field, N(P) is a prime power p™; we denote
m by degP. With the change of variables, T' = p~%, this allows us to write
Ce(s) = Z¢(T'), where

Ze(T) = 1;[ I_T;dgp . (2.37)

With our assumption that C is an elliptic curve, we find (well, Artin did)
that the zeta function is rational:

1+ (N, —p)T + pI?
o 1—pT

Ze(T) , (2.38)
where N; is the number of points in C(F;). Dwork generalized this result
to the zeta function of any algebraic set. Note that, for a projective curve,
the function has an extra factor of 1/(1 — T') and N, must be replaced by
Np — 1 to compensate for the extra point at infinity.

An important observation is that the Riemann hypothesis for the curve
(ie, zeros on the line R(s) = 1/2) translates into a deviation bound on the
number of zeros:

N, —p| < 2Vp. (2.39)

This seems to indicate that the number of points varies randomly around
p like a binomial distribution: We discuss this pseudorandom behavior
and its relevance to computer science in our review of quadratic characters
in §9.1.

To see the relation of this upper bound with the Riemann hypothesis,
note that if (¢(s) vanishes for s with $(s) = 1/2, then the roots of the
numerator in (2.38) are of the form 7' = p~'/2~%  This rules out two
distinct real roots and forces the discriminant of the quadratic equation in T’
to be nonpositive, ie, (N, —p)? —4p < 0, and hence (2.39); again, remember
to subtract one for the projective version of the bound, ie, [N, —p—1]| <
2,/p. The Riemann hypothesis for elliptic curves was proven by Hasse in
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the 1930’s and generalized to general curves by Weil in the late 1940’s, and
finally to algebraic varieties by Deligne in the 1970’s.

One closing thought before we do an exercise. By formal manipulation
involving taking derivatives and logarithms defined as power series (see
details below), we derive

InZe(T) =Y Nom pm (2.40)

m>1

Since the expression for Z¢(T') in (2.38) depends only on N, what follows
is particularly nice: Each of the N,=’s can be deduced from N, alone!
To do that, we read the power series in (2.40) as a Taylor expansion and
recover each N,m by the usual formula, ie, setting 7' = 0 in

A Simple Example: To understand these concepts better, it might be good
to work out a few of the calculations, and to prove the rationality of the zeta
function for at least one simple object. We now regard C as an arbitrary
affine plane curve. Again, fix some prime p.

Let F,, denote an algebraic closure of F,. Given any point a € C(Fym),
consider the smallest field F,« C F, containing its coordinates. All the
points

a,af,of o
are also in C and they are all distinct; to raise a point to a power means
to raise its coordinates to that power.*® This set D of d points is called a
prime divisor of C of degree d.

Let us count the number N,~ of points of C(F,=). To do that, for each
subfield F' of Fpm, we count separately how many points lie in C(F) but
not in any smaller subfield. As is well known, any subfield of Fym is of the
form Fa for some d dividing m. So, obviously,

Npm = Z dad,
d|m

48Why should aP (and hence the other points) belong to C? Within the field Fpa,
we have the identities (a + b)? = a? + b? and (if @ € Fp) a? = a. This follows from,
respectively, the characteristic being p and Fermat’s theorem. This shows that ifz € F 4
is a zero of a polynomial in Fj[X], then so is z? (look at what happens to f(z)?), and

i
hence, any 2P .
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where agq is the number of prime divisors of degree d. Elementary algebraic
geometry shows that the Euler product (2.37) can also be written as a
product over all prime divisors, ie,

1 Lo
2e(t) = [ t=gaem = 11 (7=7)
D n>1

Taking the logarithmic derivative®® of Z¢(T') yields

d d 1 W7
TEmZe(T) = =Y a=(1-T") =2 Y ;m_ =
n>1 n>1
- %; " ST = =3 (X da) T
n= >0 m>1 dlm
1
= — N "TLTm-

Integrating term-wise gives us

Ny
Ze(T)=exp | Y 7:; "

m>1

This last expression is actually the standard way of defining the zeta func-
tion.?® We avoided it because it seems to come out of nowhere, unlike the
Euler product form which brings out the analogy with the Riemann zeta
function.

To understand the rationality of the zeta function, we examine a very
simple case. Instead of an elliptic curve, consider the affine line

z+y=1
Trivially, Npm = p™. Using —In(1 —xz) = > z™/m, we find that

InZe(T) =Y Nom pm _ 3y W™ _ 1= 1),

m
m>1 m>1

49Think of this operation algebraically as operating on the power series defining the
logarithm and using term-wise derivation. Don’t think analytically and worry about
convergence.

50Now, one can understand our earlier comment about affine vs. projective. The
difference in N,m is exactly one, so the change in In Z¢(T') is a factor of 3, <, T /m,

which is —In(1 —T'), and the difference in Z¢ (T') is a factor of 1/(1 —T'), just as we said.
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Exponentiating leads to

1

T 1—pT’

Not only we see rationality right before our eyes, but we also recognize
the bottom part of (2.38). This is telling us that this denominator has
really nothing to do with the elliptic curve (or at least with the part that
matters). In the case of an elliptic curve the numerator in (2.38) can be
recovered by appealing to the Riemann-Roch theorem. Not that the reader
really needs to know this, but the numerator has a deeper cohomological
interpretation. The cohomological view was initiated by Weil and then
elaborated greatly by Artin, Grothendieck and others via the notion of
étale topology, leading to [-adic cohomology: These developments were
motivated by the Weil conjectures and were, of course, directly relevant to
Deligne’s upper bound (2.30).

Ze(T)

The Hasse-Weil L-Function

Of course, what we have done so far is very local: only one prime p at a
time. The zeta functions bring into an Euler product form a sum over the
number of points of the curve with coordinates in F,.. We must now try
to combine all of these functions together.

Take a “good” prime p (ie, one not giving a bad reduction). The Riemann
hypothesis bounds the deviation of N, from the number p 4+ 1 of group
elements (counting the point at infinity), so it makes sense to define the
quantity a, = p+ 1 — N,. We define the factor of the Euler product for
prime p as

1
1— appfs + p172s ’

L,(C,s) =

if p is good.?! For the finite number of cases of bad reductions (ie, where p
is bad) we set a, = —1,0, 1, depending on the type of singularity involved
(happily there are only three cases), and we write
1
L,(C,8) = ——.
P( 78) 1— a, p,s

As expected, the L-function of the elliptic curve C is defined as the Euler

51Recall that in the projective case, the numerator of (2.38) is 1+ (N, — 1 —p)T +pT?,
which is precisely the denominator in L,(C,s). Obviously, not a coincidence!
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product
L(C,s) =[] Ly(C,s).
P
Good things happen now: This Euler product converges for Re(s) > 3/2
and is equal to the corresponding Dirichlet series, ie,

LCs)=Y

ns’
n>1

where a,, is extended to nonprimes by the multiplicative character formula
explained earlier. This L-function is intimately related to the group struc-
ture on the curve. In fact, Faltings showed that two elliptic curves are
isogenous (ie, one curve maps homomorphically to the other in a nontrivial
way) if and only if their L-functions agree.

The Shimura-Taniyama Conjecture

Before we discuss the “grand unification” implied by the Shimura-Taniyama
conjecture, we should show how to “read” an elliptic curve into a modular
form. This will also, once again, reassure the reader about the soundness
of the terminology: Modular forms are, indeed, differential forms. Take a
cusp form f of weight 2 for ['o(IN) with Fourier coefficients in Z.>? Given
zp € H, consider the integral

7(z0)
wio(7) & / f(2) dz,

where v € To(IV). It is easy to see why the integral is independent of the
path and the set

fw=(v) [y €To(N) }

is independent of zp. Using the fact that the Fourier coefficients of the
eigenform f are integral, it can be shown that this set forms a lattice A.
As we saw earlier, it therefore defines an elliptic curve parameterized by
the Weierstrass function for A.

Now, let us get on with the Shimura-Taniyama conjecture. Consider
an elliptic curve C over Q, and suppose that it has a parameterization
Xo(N) = C,with N as the conductor of the curve; the conductor is (roughly)
the product of the bad primes for C raised to some powers determined by

52We actually need a few more conditions, such as being an eigenform and a newform,
the latter implying that it does not arise from some lower level properly dividing N.
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the type of singularity they correspond to. (Of all the candidate surfaces
Xo(N), focusing on the one where N is the conductor of the curve was a
deep insight of Weil.) An important case, called semistable, is when the
conductor is square-free. This essentially rules out cusplike singularities
formed by triple roots.

It is known that if C can be parameterized by a pair of modular functions,
then its Hasse-Weil L-function coincides with the L-function of a modular
cusp form f of weight 2 for ['4(N).’® The Shimura-Taniyama conjecture
claims precisely such a parameterization Xo(N) — C, and hence the mod-
ularity of C. Wiles’ proof concerns the semistable case of the conjecture
(which, as we mentioned, is not a terribly serious restriction). Before his
result, the modularity of rational elliptic curves was known for those satis-
fying a property called complez multiplication, and it had been established
by Shimura and others for many special cases.

In the event (of course, unlikely) that all of these technical words have
somehow obscured the magic behind Wiles’ result, let us again summarize
the main point.

The punchline. Take a rational projective elliptic curve with conductor N.
For each prime p not dividing N, define a, to be p + 1 minus the number
of points of the curve with coordinates in the Galois field F,; set a, to
—1,0,1 for the other primes, and extend a,, to nonprimes by applying the
multiplicative recipe discussed earlier. Finally, define the Fourier expansion

f(Z) _ Z ane2ﬁinz‘
n>1
Lo and behold, f(z) is a cusp form of weight 2 for the congruence subgroup
Lo(N).

So, there we started with an object encoding the “arithmetic” part of a
cubic curve, and now we have an analytic object inheriting those beautiful
symmetries of the hyperbolic plane. Moreover, its L-function Y a,/n®
extends to the whole plane by meromorphic continuation and satisfies a
functional equation. It’s like complex analysis and number theory coming
together!5*

Arithmetic algebraic geometry reveals a deep connection between the al-

53 As we discussed earlier, the Fourier series expansion of f can be retrieved directly
from the L-function by the inverse Mellin transform.

54 All right, these are just cubic curves and not arbitrary polynomials. But, still, one
has to recognize magic when one sees it.
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gebraic and analytic properties of curves, which are shown to be the two
sides of the same coin. Modular functions bring in analysis and invariance
under certain discrete isometry groups. Dirichlet series and Euler products
encode the numbers of points on the curve over various finite fields and
attach analytic meaning to them as a whole. Finally, functional equations
and analytic continuations provide the indispensable analytic glue. The
apparent disparity between all of these notions is what makes the proofs so
highly technical. Specific tools must be used to exploit the hidden symme-
tries behind these objects. One of the most powerful is the theory of Galois
representations. This is because the modularity of a curve can be expressed
as properties of certain objects related to Galois theory. We briefly explain.

Take an irreducible polynomial P with coefficients in some field F and
let G denote the extension field that it defines (ie, the smallest field con-
taining F and the roots of P in an algebraic closure of F). We call G a
Galois extension over F. (Note that not all field extensions are Galois; any
finite-degree extension, however, is contained in a Galois extension.) By
looking at the symmetric polynomials we know that there are all sorts of
relationships among the roots of P. We would like an algebraic structure,
in fact, a group, to represent all such algebraic relations. Galois theory tells
us that such a group does indeed exist. Denoted by Gal(G/F), it can be
defined from the set of root permutations that extend to automorphisms
of G that leave F fixed. The reason why this group of automorphisms is
so powerful is that all intermediate fields F C F/ C G are in bijection with
its subgroups H, with the correspondence such that H leaves F' fixed. Not
only that, but if H is normal, then F' is Galois over F and its quotient
group Gal(G/F)/H is in fact the Galois group of F' over F.

To put Galois theory to use with an elliptic curve C, we first must try
to define a Galois group G = Gal(Q/Q), where Q is the algebraic closure
of Q, ie, the infinite field extension obtained by adjoining to Q all roots
of all polynomials with coefficients in finite-degree extensions of Q. Next,
we study how G acts on various subgroups of (C(C),+). In particular,
we consider the elements of order p: This includes all the points A such
that pA = 0. It forms a subgroup isomorphic to (Z/pZ)?. To tackle the
formidable group G, we try our hand at simpler cases. We consider the
Galois group G = Gal(K/Q), where K is a finite-degree Galois extension
of Q. An element of Gk acts linearly on C(K), so it is like a linear trans-
formation of (Z/pZ)?, which in turn gives us a representation of G in the
group GL(2,Z/pZ) of 2-by-2 invertible matrices with elements in Z/pZ.

From what we said earlier about Galois theory, we expect Gk to be a
quotient of G by some normal subgroup. So we can repeat for all numbers
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p™ and in this way create a representation of G’ using 2-by-2 matrices with
elements over the p-adic numbers (ie, numbers expressed as power series
in p with a finite number of negative exponents). The purpose of such
representations is that (i) they encode a lot of information about the curve
and (ii) we can actually work on them.

At this point, I am afraid we enter the exclusive province of the experts.
The picture gets crowded with the cohomology of infinite Galois groups,
Selmer groups, p-adic representations, Frobenius automorphisms, modular
lifting, deformations, and so on. No, this is not an attempt to scare you
away; it is only to guard you, the reader, against the temptation you might
have to reward yourself with the belief that perhaps we are now halfway
through understanding Wiles’ proof. The truth is, we have not even be-
gun. Nevertheless, it is my hope that this brief excursion into arithmetic
algebraic geometry has helped the reader to make better sense of the or-
bital construction for placing points on the sphere by explaining its main
ingredients and putting them in context.

2.7 The Laplacian and Optimum Principles *

As mentioned earlier, the main role played by the Laplacian in the proofs
of Theorems 2.9 and 2.10 (page 58) is that, because it commutes with the
operators of interest, its eigenfunctions can be used to decompose L?(S?)
into spaces that these operators leave invariant. This in turn allows us to
use Fourier analysis over finite-dimensional spaces.

The Laplacian plays a major role in physics and applied mathematics.
More to the point, it is central to the discrepancy method because of its
relevance to expanders and pseudorandomness. It is useful to understand
where the concept comes from. By going back to the Dirichlet principle,
we show how the Laplacian ties together questions of equilibrium and opti-
mization. The material is fairly classical and can be skipped by the reader
with a background in applied mathematics. It is highly recommended to
the others, however, because it attempts to explain the whys and where-
fores of the Laplacian from a computer science perspective.

Consider a fluid in motion (in a two-dimensional environment), and as-
sume that there is no viscosity and that the flow is irrotational (no vorticity,
eg, no stirring with a spoon).?> When the flow achieves its steady state

55The standard way to express the lack of rotation is to say that the circulation of the
velocity is zero, ie, [ ve dz + vy dy = 0.
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(ie, no longer changes over time), it can be shown that at any point the
velocity of the fluid is the gradient of a potential function u(z,y), ie,

v —% and v —%

ox

Furthermore, conservation of fluid (in the absence of sources or sinks) im-
plies that (we’ll see why later)

Ov,  Ouy
— =0.
ox + Jy
Eliminating the velocity vector gives
u  0%u
gru L ou 2.41
0x? + oy? ( )

In other words, the divergence of the gradient of the potential must vanish.
This equation, known as Laplace’s equation, can be rewritten in “operator”
notation,

Au =0,

where A = 9%/02? + 8%/0y? is called the Laplacian. Any function whose
Laplacian vanishes is called harmonic.

Fig. 2.14. Flow on a grid.

An intuitive understanding of this equation can be obtained by looking
at a discrete model, which one might use in a computer simulation. Think
of the medium as a fine square grid of pipes through which the fluid flows.
Because the flow is irrotational, the grid consists of directed edges with no
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cycles. Actually, to simplify matters, assume that each horizontal (resp.
vertical) edge is directed from left to right (resp. upward); see Figure 2.14.
Such a network can be represented by a matrix A, whose n columns
and m rows correspond to the nodes and edges, respectively (Fig. 2.15).
Specifically, if e = (i,7) is an edge of the graph, then the row labeled e
consists of 0’s everywhere, except for —1 in column i and 1 in column j.
Adding up all the columns together gives us a column of 0, so the rank
of the matrix is less than n. It is easy to see that the rank is exactly
n — 1. Indeed, as long as the network is connected, no proper subset of the
columns can have both 1 and —1 in each of its rows, and thus no linear
combination of the columns can cancel those “defective” rows.

P a4 r s

Q. b r a /1 1 0 0
b|lo -1 1 o0

a ¢ c| 0 0 1 -1
L dl1 0o o 1

Fig. 2.15. A graph and its matrix A.

Each node 7 has a potential u;, and the flow along the edge (i, j) is given
by the difference u; —u;. The vector y of flows satisfies Au = y. Since flows
involve only differences, it does not hurt to fix the potential of one node,
say ug, to 0 (thus “grounding” the network). This corresponds to removing
one column from A, thus making it full-ranked. By the conservation of fluid
(the analogue of Kirchhoff’s law), as much flow enters a node as leaves it,
which can be written as A7y = 0. The two equations allow us to eliminate
y and obtain

AT Au = 0. (2.42)

A comment is in order. In the continuous case, to say that the Laplacian
of the potential is zero somewhere is a local statement. In the presence
of sinks and sources, this need not be true everywhere, of course. Un-
fortunately, equation (2.42) makes a global statement and, as such, it is
unrealistic. One should expect to have ATy = f, where the left-hand side
denotes the internal “forces” at work, and f the external ones. Away from
sinks and sources, however, the equilibrium equations in AT Au = 0 are
still meaningful, and the analogy with Laplace’s equation is valid.

The matrix AT A is called the graph Laplacian of the network. At each
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node, the potential is replaced by the sum of potential differences at each
incident edge. It acts as an averaging operator. The clearest indication of
the relevance of this notion to the connectivity structure of the network
is that the quadratic form u”(A" A)u is equal to Y2, ;(u; — uj)®, where
the sum ranges over all directed edges (i,7). Predictably, relation (2.42) is
precisely the discrete version of Laplace’s equation. Indeed, if the grid is
fine enough, any point can be thought of as a node. Its velocity vector is
given by the flows of the outgoing edges. If y; (resp. y;) is the rightward
(resp. upward) flow leaving a node (z,y) internal to the grid, then the

velocity vector (vg,vy) is (¥i,y;).

e The relation Au = y is the discrete analogue of saying that the
velocity is the gradient of a potential function. Indeed, notice
that the 1 entries in A make it akin to the gradient operator
(0/0z,0/0y).

e The fluid conservation law ATy = 0 is the discrete counterpart of
divergence-free flow: dv, /dzx + dv, /0y = 0.

Putting everything together, we see that AT Ay = 0 simply says that the
gradient of the potential has zero divergence or, equivalently, that the po-
tential is a harmonic function.

Our discussion of a fluid in motion can be applied to other physical sys-
tems (bed of springs, electrical networks, heat conduction, etc). Often,
however, a few more bells and whistles are necessary. In the case of electri-
cal networks, for example, u; is the voltage at node i and y; is the intensity
of the current along edge j.

An edge might have a voltage source that affects the potential drop
between its endpoints. Specifically, we assume that, along the directed edge
(i,7), the voltage drop is u; — uj + b;,;, instead of just u; — u;. In matrix
form, this means that we must replace Au by b — Au; note the change of
sign, which reflects the fact that the voltage drops and makes Au a negative
vector. By Ohm’s law, the equation y = Au becomes y = C'(b— Au), where
C' is a diagonal matrix whose elements are the conductances of the edges.
The main point is that it is a positive definite matrix C'. Kirchhoff’s law
is expressed by ATy = g (the coordinate of g is zero if the corresponding
node has no source of current on any incident edge). Thus, in general,
the fundamental equations linking potentials and flows (or voltages and
currents) are

Cly+Au=b and Aly=yg. (2.43)
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Eliminating y gives
ATCAu = ATCb —g. (2.44)

If the matrix C' is a simple scaling matrix (all of its entries are identical),
then we have the discrete analogue of Poisson’s equation, which is Laplace’s
equation with a nonzero right-hand side.

We now turn to the classical relation between equilibrium (Laplace or
Poisson equation) and optimization (of the linear or quadratic sort). We
shall discuss the discrete analogue of the Dirichlet principle, which seeks
the minimum of the functional

/QIVuI2 def //Q ((%)2+(2—Z)2> dx dy, (2.45)

with boundary conditions on 0f), among the functions u whose Laplacian
vanishes inside . Using nonstandard notation to make the intended con-
nections more transparent, a typical linear program is of the form:

e Given a cost vector b and an m-by-n constraint matrix A, minimize
bTy, subject to ATy = g and y > 0.

This can be rewritten as

min max {bTy —uT(ATy - g) }
y>0 u
Indeed, note that the minimizer (which controls y) must set ATy — g to 0;
otherwise, the maximizer (which controls u) is able to drive up the final
cost to infinity. This being so, the maximizer is then rendered powerless
(since it multiplies 0) and the minimizer is back to solving the original
linear program. It is well known that min and max can be reversed in the
expression above, which gives the equivalent formulation

max min {bTy —ul(ATy —g) } (2.46)

u y>0

(This can be shown by using Farkas’ lemma.) Rewriting this as
max min {gTu —yT(Au —D) },
u y>0
it is trivially equal to the maximum (over u € R) of u”g, subject to the

constraints Au < b. This is the duality theorem of linear programming,
which says that the programs

: T, . AT, _
r;lzlg{by.A y—g}
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and
max{gTu : Au < b}

are equivalent. At the optimal (y,u) we have Au—b < 0, and at those con-
straints (Au—b); where the inequality is strict, the corresponding “weight”
of the constraint, y; is equal to 0. So the product y;(Au—b); is always zero.
(This is known as the Kuhn-Tucker optimality condition.) The variables
y and u are dual to each other. In the expression (2.46) it is natural to
interpret u as a vector of Lagrange multipliers, because it is bringing the
constraints and the optimization function together.’® Setting the partial
derivatives in u; and y; to 0, we obtain the two equations:

Au=b and ATy=yg,

which are the two fundamental equilibrium equations (2.43), where C is
the conductance matrix with infinite values (the edges have no resistance).

The analogy is only half complete because the potentials and the flows do
not interact in the same equation. To achieve this we turn to the classical
quadratic programming problem:

e Minimize y" By — bTy, subject to the constraints ATy = g.

We assume that C'is (real) symmetric positive definite. Write B = 1C~'.
Introducing Lagrange multipliers in the form of a vector u, the question is
identical to minimizing (over y) the maximum (over u) of

Llu,y) = 54" C7ly =0Ty +u”(ATy — g).
Setting the partial derivatives of L to 0 gives the system of equations,
Cly+Au=0b and Aly=y,

which are precisely the equations of equilibrium (2.43). Note that y =

56Recall that Lagrange multipliers are used to solve constrained optimization prob-
lems. For example, suppose that we wish to find the shortest distance from the origin in
the plane to the unit-radius circle centered at (1, 1). This can be written as min{ z2+y2 },
subject to (z—1)24+(y—1)2 = 1. We introduce the multiplier X and form the Lagrangian,

Liz,y,\) % 22 42 4+ M(@ — 1)% + (y — 1) - 1).

The answer is ming,y, maxy L(z,y,\). (Indeed, the minimizer must satisfy the circle
equation or else the maximizer can drive the Lagrangian to infinity.) The solution
lies on a saddle point of the surface z = L(z,y,A). We find it by setting the three
partials to 0. This gives 2z + 2X\(z — 1) = 0 and 2y + 2A\(y — 1) = 0, from which
we derive the fact that x = y. The derivative in A gives us back the circle equation,
(z —1)2 + (y — 1)2 = 1. Tt follows that the solution is z = y = 1 — 1/v/2, as expected.

(The solution © =y = 1 + 1/v/2 solves the maximization problem.)
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C(b — Au); so by plugging back in we find that L(u,y) has the value
—1(Au-b)TC(Au—1b) —u'yg.

This suggests the dual problem of maximizing the quadratic form above,
or reversing signs:

o Minimize 1(Au — b)"C(Au — b) + u”'g, subject to no constraints.

Because C' is positive definite, elementary algebra leads to the corre-
sponding duality theorem, which states that the two minima are equal (at
the saddle point of L). Potentials and flows are dual to each other. If
we set C' to be the identity and A to be the gradient matrix, then the
potential vector obeys the discrete version of Poisson’s equation (2.44). If
we set g = 0, the problem becomes minimizing §(Au)T(Au). We recog-
nize the discrete analogue of the Dirichlet problem (2.45), and the relation
between Laplacian and optimization is now transparent. Nature, indeed,
solves least-square problems all of the time! To do the same thing, how-
ever, we mere humans are stuck with having to solve partial differential
equations derived from the Laplacian.

2.8 The Spanning Path Theorem

So far, our treatment of geometric discrepancy has been aimed at resolving
the question: How well can a discrete measure approximate the Lebesgue
measure? Volumes and areas can be regarded as discrete measures in the
limit, so it is natural to ask how well a simple discrete measure can approx-
imate a complicated one. We will show that it is possible to color n points
in R? red or blue, so that within no halfspace one color outnumbers the
other by more than roughly n'/2=1/24,/Iogn. It is possible to remove the
VIogn factor and obtain a tight bound, but this requires a fair amount of
work; so we shall satisfy ourselves with the weaker result.

What does this have to do with approximating discrete measures? If no
color outnumbers the other by too much, then we can use the color with the
fewer points as a good approximating measure. If we repeat this process
k times, we end up with a sample of the original point set of size at most
n/2* that induces a measure fairly similar to the original one. Red-blue
discrepancy is thus a well-suited vehicle for the discrepancy method.

A red-blue coloring of a set P of n points in R? is a partition of P
into two sets, R and B, of “red” and “blue” points, respectively. In this
section, all halfspaces are considered open. The discrepancy of a halfspace
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7 is defined as
|[RN7|—|BNT||.

Theorem 2.19 Any set of n points in R% can be two-colored in such a
way that the mazimum discrepancy of any halfspace is at most proportional

to nt/2=1/24, /logn.

We say that a hyperplane cuts a segment if it intersects the segment but
does not contain either of its endpoints. Theorem 2.19 is a simple corollary
of the following spanning path theorem:

Theorem 2.20 Any set of n points in R% can be ordered as py,...,pn,
in such a way that no hyperplane cuts more than cn'~1/¢
form p;p;+1, for some constant ¢ > 0.

segments of the

Fig. 2.16. Any collection of n points in R? can be joined together by a polygonal
line such that no hyperplane cuts more than cn'~'/¢ edges, for some constant
¢ > 0. This is optimal in the worst case. Can you see why? Hint: take the points
of a square grid.

First, we show why this implies Theorem 2.19. Given a halfspace T,
consider the segments of the form py;_1p2; that are cut by the hyperplane
h bounding 7, for 1 <i < n/2. Let S(r) denote the set of their endpoints
that lie in 7. The set system { S(7) | halfspacer } contains O(n?) distinct
sets. Color the points py; red or blue by applying the unbiased greedy
algorithm of §1.1 to the set system. Each point of the form po; 1 is colored
the opposite of ps; (or any color, if 2i > n).

We thus have formed a perfect matching among the points of P (except
for at most one point). Naturally, we can assume that h avoids all of the
points of P because a small perturbation cannot decrease the number of
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edges that it cuts. Any edge of the matching that lies completely inside 7
contributes zero discrepancy, while the edges straddling across h together
contribute O(y/K logn ), where K is the maximum size of any set S(r). By
the spanning path theorem (Theorem 2.20), K < en'~/%/4 and therefore
Theorem 2.19 holds. O

We now turn to the proof of the spanning path theorem, beginning with
a brief, informal outline. Instead of finding a path spanning all n points, a
simple recursive argument shows that it suffices to match a fraction of the
points in pairs, while ensuring that no hyperplane cuts through too many of
them. To do that, we join pairs of points that are not separated by too many
of the (/}) canonical hyperplanes (passing through d points of P). In the
next section, we show that such “close” pairs always exist. Pairing points
in this fashion implies that the typical canonical hyperplane cuts through
only a few pairs. To strengthen this statement and say that no canonical
hyperplane cuts through many pairs, we use a weighting mechanism that
we describe in a subsequent section.

It is easy to see that the theorem is optimal. Hint for the planar case:
Place points at the vertices of \/n x \/n grid and count how many times
the edges of the spanning path must cut the 2/n horizontal and vertical
grid lines.

A Volume Argument

Let H be a collection of hyperplanes, hy,...,hp,, in R? and let A(H)
denote its arrangement (ie, the cell complex formed by the hyperplanes; see
Appendix C). Given any two points p, g, we define their pseudodistance®”
A(p,q) to be the number of hyperplanes that cut pg. Recall that this
does not count the hyperplanes passing through p or ¢q. As we shall see, A
behaves like the Euclidean metric in several ways. It satisfies the triangular
inequality

Alu,w) < Alu,v) + Ao, w),

provided that v does not lie on any hyperplane of H; otherwise, we must
add the number of such hyperplanes to the right-hand side of the inequality
as a corrective term. Perhaps less obvious is the fact that A shares some
of the same packing properties as its Euclidean counterpart. The volume
of a Euclidean ball of radius r is proportional to r¢. With the appropriate

57We use the term pseudodistance because A(p,q) might be zero even though p # q.
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definition of volume, the same holds true of A (except that “proportional”
becomes “at least proportional.”) Assume for the time being that the
hyperplanes of H are in general position. In this way, every vertex of
A(H) is the intersection of exactly d hyperplanes. We define the ball B(p, )
centered at point p to be the set of vertices v of A(H) such that A(p,v) <r.
The number of vertices in B(p, ) is called the volume of the ball (Fig. 2.17).
In the following we adopt the convention (Z) =0,if a < b.

Fig. 2.17. The volume of B(p,1) is 14.

Lemma 2.21 Given any point p € R? and any nonnegative real r < m =
|H|, the volume of B(p,r) is at least (LSJ)/d! )

Proof: Let Vy(m,r) be the minimum possible volume of B(p,r) (over
all p and H). We prove by induction on d that Vy(m,r) > (LZJ)/d!. By
a perturbation argument, it is clear that placing the center p of the ball
on any hyperplane of H can only increase the volume of B(p,r), so we
assume that it is not the case. The case d = 1 follows from the fact that
Vi(m,r) > r.

Assume that d > 1. Because of general position there exists a line L pass-
ing through p that intersects each hyperplane of H but not more than one
at the same point. Let q1,..., ¢, be the sequence of intersections between
L and the hyperplanes. If we choose the sequence so that the Euclidean
distance between p and ¢, g2, etc, is nondecreasing, then A(p, qi) < k. Let
hy, be the hyperplane associated with ¢, and let A denote the arrange-
ment formed by the (d — 2)-flats h; N hy (j # k). In R, Ay appears as
an arrangement of m — 1 hyperplanes in general position and the restriction
of A to hy, is itself a pseudodistance in R%~! of the same type as A. Since
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r < m, the points qi,...,q|,| are well defined. Every vertex of A(H) lies
on exactly d hyperplanes, so we can use the triangular inequality to derive

7] il
Va(m,r) > é;v“(m— Lr—k41)> ékg (42D a-

We then immediately derive

=45 (£)-3(5)

k=0

A simple corollary of the lemma, is that, similar to the Fuclidean case,
a large collection of points enclosed in a small ball must have close pairs.
We relax the assumption of general position on H.

Lemma 2.22 Given n points p1,...,p, in R, at least two of them, Di, Pj
(i # 7), satisfy A(pi,p;) < b{m/nl/d] , for some constant b > 0.

Proof: A small perturbation of H cannot decrease the A-distance between
two fixed points; therefore, without loss of generality we can assume that
H is in general position. Set r = C'[m/n'/?] —d, for some constant C' large

enough so that
n(ty) Jdi> (j;)

Since A(H) has exactly (") vertices (every d-tuple of hyperplanes provides
one), it follows from Lemma 2.21 that the n balls B(p;,r) cannot be all
disjoint. This implies the existence of a point ¢ such that both A(p;,q) < r
and A(pj,q) < r, for some i,j. Because H is in general position, the
triangular inequality shows that A(p;,p;) < 2r + d, which completes the
proof. O

The Iterative Reweighting Method

We now complete the proof of the spanning path theorem (page 124).
Recall that our goal is to connect n points into a path pi,...,p, in such
a way that no hyperplane cuts too many edges. By definition, we should
recall, a hyperplane cannot cut an edge through its endpoints. So, the
hyperplane cutting the most edges in a path can always be chosen to avoid
each of the n points. But in that case, we can perturb the points to make
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sure that they are in general position before computing a desired path.
Having done so, it now suffices to ensure the low-cutting property for each
of the (7)) canonical hyperplanes defined by d-tuples of points. Indeed,
because the points are in general position, any hyperplane can be moved
to a canonical position without changing the number of edges cut by more
than an additive constant. Let H be the set of canonical hyperplanes; its
size is m = (7).

Let p1,q1 be the two closest points of P (measured with respect to A
and H). Remove both points from P and duplicate each of the hyperplanes
cutting p1qp; thus, from now on, we treat H as a multiset (Fig. 2.18). It-
erate on this process [n/4] times, always selecting the closest pair p;, ¢
among the remaining points of P, and then deleting p; and ¢; and dupli-
cating all of the hyperplanes of H cutting p;q;. Note that if a hyperplane
appears k times in (the multiset) H, then duplicating it means bringing its
multiplicity from & to 2k.

Fig. 2.18. We duplicate the hyperplanes for a repulsive effect.

By Lemma 2.22, at most b[m/n'/] hyperplanes cut piq;; therefore, the
size of the multiset H after the first step is at most (1 + 2b/n'/%)m. By
the same argument, the size of H after the k-th step is at most

%
mogyl_'[<k(1 Ly 2j)1/d)'

Notice that the term —2j in the denominator reflects the removal of pq, q1,
..., Pj,q; from P.
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Since k < [n/4], the size of H always remains at most

b\ [n/4]1

i+ )
for some constant b’ > 0. The pairs (p1,q1), (p2, ¢2), etc, produce a partial
matching in P involving roughly half the points. The most remarkable
fact about this matching is that no hyperplane can cut too many edges.
Indeed, if a canonical hyperplane creates  cuts, then it must be duplicated
2% times. The number of duplications cannot exceed the final size of H, so
v )M/41

2”§m(1+—

ni/d )

and hence x = O(n'~/%); obviously we can assume that d > 1.

Fig. 2.19. Turning a tree into a path.

We can extend the partial matching by proceeding recursively. Choose
one endpoint in each matching edge and remove it from P. Then, apply
the construction recursively on the reduced set P. Each recursive call
involves a set of size decreasing geometrically, so in the end we obtain a
tree connecting all the points of P, with no hyperplane cutting more than

O(Z((3/4)in)171/d) _ O(nlfl/d)

i>0
edges. Finally, we must show how to turn this tree into a single path. Per-
form a depth-first traversal of the tree and connect the points in the order
in which they are first encountered during the traversal (Fig. 2.19). This
gives us the desired spanning path. Because any edge pq of the path that is
not also an edge of the tree creates a cycle, a hyperplane that cuts pg must
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also cut an edge of the tree, which we can charge for that purpose. Since no
tree edge can belong to more than two cycles, the charging scheme does not
undercount by more than a factor of 2. Consequently, any hyperplane cuts
O(n'~'/%) edges of the path and Theorem 2.20 (page 124) is established.
This also completes the proof of Theorem 2.19. O
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58Over the group C(F,), the discrete log problem is to solve the equation zA = B,
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the field F), provides us with a multiplicative group which may or may
not have the property we want (for example, having its order p — 1 be
a product of small primes). But by simply varying the coefficients of an
elliptic curve C, we get a whole family of distinct-looking groups C(F,) for a
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by the excellent text of Strang [299]; see also Biggs [45], Bollobds [53],
Chung [91, 92], or the Handbook of Combinatorics [146] for a discussion of
the Laplacian in graph theory. There is a large literature on the problem
of placing points on a sphere, eg, Guralnik, Zemach, and Warnock [153],
and Sloane [291].

Section 2.8: The idea of coloring a low-cutting spanning path to achieve
small red-blue discrepancy is due to Matougek, Welzl, and Wernisch [222],
who established Theorem 2.19 (page 124). As was mentioned in the text,
a sharp bound of O(n'/?=1/2¢) was proven by Matousek [215]. A weaker
bound was obtained earlier by Beck in two dimensions [36]. The optimal
cutting bound for spanning paths (Theorem 2.20, page 124) was estab-
lished by Chazelle and Welzl [86], which improved on an earlier bound by
Welzl [319].

where z € Z is the unknown and A, B € C(Fy). Over Fy, the problem is given by the
equation a® =b.
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Lower Bound Techniques

roving lower bounds on the discrepancy of geometric set systems
often involves looking at the L? norm of the discrepancy func-

75, tion. This makes sense given the wealth of techniques available
for dealing with quadratic forms. A typical approach is to consider the
incidence matrix A and bound the eigenvalues of AT A from below. Since
the underlying set systems are often defined by “convolving” a shape with
a set of points, one should expect Fourier transforms to be useful: Af-
ter all, a characteristic feature of the Fourier transform is to diagonalize
the convolution operator. Eigenvalue estimation can also be done by other

methods, such as, in this case, wavelet transforms or finite differencing. We
emphasize that the question is not to approximate eigenvalues numerically
but to derive asymptotic bounds on them—a decidedly more difficult task.
This chapter samples the toolkit of available techniques: Haar wavelets,
Riesz products, Fourier transforms and series, Bessel functions, Dirichlet
and Fejér kernels, finite differencing, and so on. The emphasis of our dis-
cussion is on the methods rather than on the results themselves, so do not
expect from this chapter a comprehensive coverage of the vast amount of
knowledge on the subject. Instead, expect a wide assortment of powerful
mathematical techniques for discrepancy lower bounds. In the spirit of the
discrepancy method, it is important to master these techniques because of
their importance in proving complexity bounds in later chapters.
Throughout this chapter we consider n points in the unit cube [0, 1]%.
Implicit in our discussion is the assumption that n is large enough. In §3.1
we consider axis-parallel boxes. The volume discrepancy of a box is the
difference between the number of expected points in the box and the actual
number. Using a general method based on orthogonal functions, we prove
that some box has discrepancy Q(logn)(?~1)/2 in absolute value (Theo-
rem 3.1); the bound is actually stronger since it holds in the L? sense. We

133
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show that it is possible to improve this bound to Q(logn) in two dimen-
sions (Theorem 3.4). The result illustrates the use of Riesz products. This
presents us with an unusual situation: In two dimensions, we have a tight
bound of Q(logn)/? on the L? norm and a tight bound of Q(logn) on the
L* norm!

In §3.2 we examine what happens to the discrepancy when the boxes
are allowed to be rotated. The two-dimensional case contains all of the
ideas, so we confine our discussion to it. Using Fourier transforms as our
main tool, we prove the surprising fact (Theorem 3.6) that the worst-case
volume discrepancy shoots up to Q(n1/4). We also discuss the discrepancy
of disks, for which we derive the same lower bound (Theorem 3.7).

Finally, in §3.3 we introduce a different method, which is based on finite
differencing and certain metric properties of the discrepancy. This yields
tight lower bounds on the red-blue discrepancy of halfspaces (Theorem 3.9).
We prove the two-dimensional case separately to showcase its intuitive
geometric appeal.

3.1 The Method of Orthogonal Functions

We begin with one of the most beautiful proofs in all of discrepancy theory:
without a doubt, a proof from The Book.

Given a point ¢ = (q1,...,q4) in the unit cube [0,1]%, let B, denote
the box [0,¢1) x - x [0,q4). Given a set P of n points in [0,1]?, the
volume discrepancy D(q) at a point ¢ € [0,1]? is the difference between the
expected number of points in the box B, and the actual number (in other
words, D(q) is just the higher dimensional version of D(By) given in §2.3):

D(q) =nq1---qa — |P N Byl

No matter how the points of P are placed, the average value of D(q)?2,
over all ¢ € [0,1]¢, is always Q(logn)?~!. Another way to say this is that!
IID]]2 > (logn)@=1Y/2 The ideas of the proof are best illustrated in the
two-dimensional case, so we prove the following theorem for d = 2. The
case d = 1 is trivial, while the other cases involve an easy generalization of
the two-dimensional result.

IRecall that < and >> are shorthand for O() and (), respectively.
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Theorem 3.1 Given n points in [0,1]%, the mean-square discrepancy for
axis-parallel boxes satisfies

D(q)? dg > c(logn)* !,
[0,1]4

for some constant ¢ = ¢(d) > 0.

We begin with the complete proof and then discuss the method behind
it and try to develop some intuition for it. In particular, we discuss a ubig-
uitous relationship between function orthogonality and probabilistic inde-
pendence. The gist of the method is to choose a function F : [0,1]> = R
whose mean-square [ F? is bounded above by a known quantity and whose
inner product with D, ie, [ FD, can be easily estimated from below. (From
now on, unless specified otherwise, the integration domain is assumed to be
[0,1]? and variables are omitted when there is no ambiguity.) By Cauchy-
Schwarz, we obtain the following lower bound:

/D2Z(/FD)2//F2.

Geometrically, this is all quite trivial: We certify that a vector is long by
showing that its projection on a conveniently chosen vector is long. The
beauty of the technique is in the choice of the projection vector.

Haar Wavelets

The function F' is defined by modifying the standard Rademacher func-
tions, which are simply superpositions of Haar wavelets. Without loss of
generality, we can assume that n is a power of 2, so let n = 2™. (Indeed, we
can always shrink the unit square to a square [0,u]? with the appropriate
number of points inside.) We set

F=fot- -+ fm,

where each f; is defined as follows. For any 0 < i < m + 1, let G; be
the grid obtained by dividing [0, 1]? into 2n axis-parallel rectangles of size
27 x 2imm-1,

Note that to obtain a consistent partition of [0,1)?, we should choose the
grid cells as rectangles of the form [z,y) x [z',y"). There are 2n cells but
only n points; therefore, at least half the cells are empty. The function f;
is defined in terms of the “interaction” between P and each cell R of G;:

e If PN R #0, set f; =0 over the entire cell.
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G, G, G, G,
Fig. 3.1. The grids G;.
e If PNR = (), subdivide R into four equal-size quadrants: set f; = 1

over the northeast and southwest quadrants and f; = —1 over the
other two quadrants. (Figure 3.2 depicts a possible setting of f;.)

+1/-1

+1|-1 +1|-1

Fig. 3.2. The function fi.

It is not hard to prove directly that the family { f;} is orthogonal, meaning

that, for any i < 7,
/fifj =0.

This is a particular consequence of a more general result that we will use
extensively in the next section and which we prove now. Given two integers
0 <a,b<m+1,let G, be the grid obtained by subdividing [0,1]? into
rectangles of size 27 x 27°. So, for example, G; is really a shorthand for
Gim+1—i- A function f:[0,1]*> — R is called (a,b)-checkered if it satisfies
the following conditions. For each cell R of G,

e If PNR #0, then f =0 over R.
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e If PN R = (), there exists ¢(R) € {—1,0, 1} such that f is equal to
¢(R) over the entire northeast and southwest quadrants of R and
—c(R) over the other two quadrants.

Note that f; is (¢, + 1 — i)-checkered. An immediate property of an
(a,b)-checkered function is that its integral over [0, 1] vanishes. Thus, the
orthogonality of the family {f;} follows directly from

Lemma 3.2 If f is (a,b)-checkered and g is (a’,b")-checkered, where o’ < a
and b < b, then fg is (a,b’)-checkered.

Proof: Over an empty cell R of G, », f(g) can be written as ¢(R)(—1)"*"2,
where r; (resp. r2) is 0 or 1, depending on whether ¢ lies in the left or
right (resp. upper or lower) half of R. Let S be a cell of G4/ and assume
that T = RN S # 0. Then, by expressing g(q) in the same manner as f(q),
we find that over T’

fg9 = c(R)c(S)(—1)rtr2tsitsz,

By construction of the grids, the vertical projections of R and S are dyadic
intervals, and thus one lies completely inside the right or left half of the
other; a similar fact holds for horizontal projections. Because a’' < a and
b < b, the vertical (resp. horizontal) projection of R encloses (resp. is
enclosed by) that of S (Fig. 3.3).

S

Fig. 3.3. The interaction between R and S.

It follows that (i) the functions r1 and s are constant over T, while (ii)
ro and s; are equal to 1 on one side of their respective median line and —1
on the other side. This gives fg = ¢(T)(—1)""%2 over T. Observe that the
horizontal (resp. vertical) median line of R (resp. S) is also the median
line of T'. Thus, the functions r; and s alternate between 1 and —1, as
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they should. Obviously, if PN T is nonempty then neither is R nor S, and
so fg=0over T. O

Since the L2 norm of each f; is at most 1 and F = E?ﬂ;l 5, then, by
orthogonality,

/F2 <m+2. (3.1)

The second part of the method is to bound [ F'D from below. To do this
we prove a more general result that will also be useful in the next section.

Lemma 3.3 Given an (a,b)-checkered function f, let S be the set of mass
centers of the northeast quadrants of the cells of G, . Then,

/fD:@f—anf(p)'

PES

Proof: Needless to say, there is nothing particular about mass centers:
We just need a sample point in each northeast quadrant. We evaluate the
integral over each cell R of G,5. If PN R is nonempty, the integral over
the cell is 0. Suppose that P N R is empty. Then, for each point ¢ in
the northeast quadrant of R, let ¢',q?,¢> be the analogous points in the
northwest, southwest, and southeast quadrants, respectively (Fig. 3.4). Let
p be a point in Ry, the northeast quadrant of R. Then,

f@P@wds = [ 1(a)(D@) - Dla") + D(e*) - D)) dg

qeER

= f(p)/ n-arealq,q',¢°, ¢°] dg
g€Ry

- i) (2

from which the lemma follows. O

= nf(p2 e,

Since in each grid G; at least half the cells, ie, n of them, are empty, we

have
1 1
fiD = 267 Zfz(p) Z 5%
peS
and hence
/FD > 2 5logn. (3.2)

The two-dimensional restriction of Theorem 3.1 (page 135) follows imme-
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Fig. 3.4. The four points ¢, ¢*, ¢%, ¢°.

diately from (3.1). As we said earlier, the case d > 2 is entirely similar. O

Riesz Products

Our notation and assumptions are the same as in the previous section.
In particular, unless specified otherwise, the integration domain is still
assumed to be [0,1]%. Our goal is to establish a lower bound of Q(logn) on
the L norm of the discrepancy. Unfortunately, the proof technique does
not seem to generalize to higher dimensions.

Theorem 3.4 Given n points in [0, 1), there exists a point q € [0,1]2, such
that |D(q)| = Q(logn), where D(q) is the discrepancy of the azis-parallel
boz [0,4¢x) x [0, 4y)-

Being in the plane, we prefer to use (¢, gy) rather than (g1, ¢2) to denote
the coordinates of g. As in the previous section, we bring in an auxiliary
function G(q). From the inequality

‘/GD‘ S/IGDI < ||D||oo/|G|,

where ||D|| is the supremum of |D(q)| over [0,1]%, we find that

Dl > | [n|/ [ 161

Let v be a small positive constant; we define the Riesz product

m+1

G(g) = -1+ [] (1 +fi(a)),
=0
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where, as we recall, n = 2™. Intuitively, by expanding G(q) we recognize
the previous function F' scaled by 7, together with all the “higher mo-
ments.” This follows the standard approach of using higher moments for
sharper estimates of a function’s maximum. Obviously, it suffices to prove
that

/IGI <2, (3.3)
and

‘/GD‘ > logn. (3.4)

Note that since
m—+1

[iGi<1+ | I[(1+25,

expanding the product yields (3.3), provided that the following holds:

Lemma 3.5 Given any 1 <j<m+2andany0<i; < - - <i;j <m+1,
/fi1fi2 - fi; = 0.

Proof: We observed in the previous section that f; is (i,m + 1 — 7)-

checkered. Repeated applications of Lemma 3.2 show that the product

fir -+ fi; is (ij,m 4+ 1 — iy)-checkered. Since the integral over [0,1]* of an

(a, b)-checkered function vanishes, the lemma is established. O

All we have to do now is to establish (3.4). By the triangular inequality,
expanding the product in G gives
/ G;D

m—+2
‘/GD‘N‘/GID‘—Z#
j=2
Gj = > fir oo fij

0<iy <+ <ij<m+1

; (3.5)

where

Our first task is to find an upper bound on the second absolute value in the
right-hand side of (3.5). Given 0 <4y < --- <i; < m+1, we just observed
that the product f;, --- fi,; is (ij,m + 1 — iy)-checkered. Since G mi1—4,
consists of 2 F1+4—4 cells, Lemma 3.3 yields

s LR P S B A
‘/fu ijD‘ < (4m+3+ij7i1)2 b= 24 —i1+5 °
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To tackle the integral [ G;D for j > 2, we sum over each possible value of

m+1
(m+1) fw-1
‘/GjD‘S Z Qw+5 j—2 )
w=j—1

Therefore, by inverting the order of summation,

del .
w=ij —i:

m-+2 . m+1 1 w+1 w—1 ]
Zw /GjD‘ < 2*672(m+1)2 Jo=1 Z (__2>712
j=2 w=1 j=2 J
m—+1
1+ w—1
< 299%m+1) Y (—57)
w=1
5 v
< 2 1
< 2T

Note that G; = F (see definition in previous section). So, from (3.2) and
(3.5) we derive

2
‘/GD‘ > 2_6710gn—2_5w.
-7

Setting v small enough ensures that | [ GD | > logn. We now have estab-
lished (3.3, 3.4), which proves Theorem 3.4 (page 139). O

*

Orthogonality and Independence

We provide some intuition for the proof based on Haar wavelets (Theo-
rem 3.1, page 135). This discussion is not necessary, strictly speaking, but
it might help to relieve the reader of the sense of magic created by that
(truly beautiful) proof.

Again, let ¢!, ¢%,¢3, ¢ be the four corners of a rectangle of area 1/8n
inside the box B, (Fig. 3.5). For a fixed fraction of all placements of ¢, the
rectangle is free of points, in which case its “discrepancy” is equal to 1/8.
This can be “picked up” by the inner product [ fD by setting the function
f tobelat qand g%, and —1 at ¢' and ¢>. In this way, the four points
contribute

D(q) — D(¢*) + D(¢*) = D(¢*) > 1

to the integral. By observing that the same reasoning works for all good
placements of ¢ (which is a fixed fraction of all placements) we can set f
as above at the relevant points and 0 elsewhere. With a bit of care, we can
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Fig. 3.5. Picking up a local discrepancy.

then derive a lower bound of the form

/fD>>/ dg> 1.
good ¢

We verify that [ f? < 1, so by Cauchy-Schwarz we have obtained, by
nontrivial means, the trivial bound

/D2>>1.

The next step is to show that local discrepancies can be added together to
amplify the lower bound on [ D?.

The hierarchy of grids G; suggests considering about log n empty rectan-
gles of the form ¢*, ¢%, ¢3, q, each of area 1/8n: Each such rectangle eats up
a disjoint chunk of area at least 1/32n (the—intentionally off-scaled—dark
boxes in Figure 3.6). Repeating the previous argument, we set F' accord-
ingly so as to “pick up” all those local discrepancies, ie, F' = Z?gl i(q)-
Integration is additive, so this yields the stronger lower bound,

/FD > (logn)/ dg > logn.
good ¢

Now the punchline: The orthogonality of the f;’s ensures that the L2
norm of F remains small. If we pick ¢ randomly in [0,1]?, then each
fi(q) becomes a random variable z;. Suppose that the z;’s were indepen-
dent variables, or at least behaved likewise. Specifically, suppose that the
expectation of any mixed product z;z; (i # j) were the product of the
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Fig. 3.6. Adding up local discrepancies.

expectations, ie, 0. It then would follow that

var Zml = Zvarmi > logn.

But since the variance of ) x; is the mean-square of F' = ), f;, Theorem 3.1
follows immediately. The random variables z;, now regarded as f;(q), are
orthogonal functions. The connection between independence of random
variables and orthogonality of functions is a key concept in discrepancy
theory, which we shall encounter again in this chapter.

An intuitive understanding of Theorem 3.1 (page 135) that is helpful,
although not entirely correct, is to view the discrepancy of B, as the sum
of all the local discrepancies in the dark boxes of Figure 3.6. These dis-
crepancies now must be regarded as pairwise independent random variables
uniformly distributed in some range [—c, ¢], for some constant ¢ > 0. Thus,
D(q) appears to be unbiased with a standard deviation of about /Togn.
A random ¢ should then place D(g) within a fixed fraction of the standard
deviation. The placement of the boxes along what is, in effect, a hyper-
bola ensures the sort of independence needed to make the argument carry
through.

One final comment is that the functions f; suggest finite difference oper-
ators. The relevance of finite differencing to discrepancy theory is the main
focus of §3.3.
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3.2 The Fourier Transform Method

Instead of restricting ourselves to axis-parallel boxes, let us now examine
the discrepancy of arbitrary boxes, where rotations and translations are
both allowed. By contrast with the previous scenario, where the discrep-
ancy was polylogarithmic, we now can show that given n points in the unit
cube [0,1]%, there exists a box whose volume discrepancy is Q(n)'/2~1/24,

Again, all of the ideas in the proof are contained in the two-dimensional
case, so this is where we confine our discussion. A box R is now understood
as a rectangle [0, a] x [0, b] transformed by an arbitrary rigid proper motion
(ie, translation/rotation). Given a set of n points in [0, 1]2, the discrepancy
D(R) is the difference between the expected number of points in R and the
actual number points in R, ie,

D(R) =n - area ([0, 1°n R) —|PNR.

Theorem 3.6 Given n points in the unit square [0,1]°, there evists a
rotated box R such that |D(R)| = Q(n'/*).

It is worth mentioning that the high-discrepancy boxes of the theorem
need not have large areas. Actually, one can always be found of area
O(1/+4/n). Rotation plays a critical role in the discrepancy of boxes, for
it allows us to choose the worst possible box slope for a given point set.
Surprisingly, a disk “contains enough slopes around its boundary” to do
the job all by itself.

Theorem 3.7 Given n points in the unit square [0,1]?, there exists a disk
D such that |D(D)| = Q(n'/*).

A small technical point: We prove Theorem 3.7 for disks modulo [0, 1]2,
ie, we “wrap around” the unit square as on a torus. A disk of radius at
most 1/2 might thus produce up to four disk sections in the unit square.
Obviously, high discrepancy in the torus sense implies high discrepancy for
at least one of the disk sections, so the theorem also holds when discrepancy
is defined with respect to the intersection of a disk with the unit square
(no wrap-around).

In both theorems the actual lower bound is even stronger than stated,
since it holds in the L? sense as well. Both proofs appeal to harmonic
analysis in an essential manner.2 We include both proofs because, despite

2We refer the reader to Appendix B for a review of Fourier integrals and series. The
term Fourier transform method is to be understood in a general sense, since on occasion
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their common theme, they differ drastically. The first one illustrates the
technique of discrepancy amplification due to Beck, while the second one,
due to Montgomery, makes interesting use of Bessel functions and the Fejér
kernel. As an introduction to the Fourier transform method we begin with
an informal discussion of Theorem 3.6.

Beck’s Amplification Method

To understand the relevance of the Fourier transform, observe that the
discrepancy is a convolution of two functions. Indeed, let R(q) C [0, 1]* be
an axis-parallel square of side length r centered at g. The discrepancy of
R(q) can be expressed as

D(q) = /R( )u(p) dp,

where pu(p) is n — Y. pd(p — pi) inside [0, 1]*> and 0 outside. We extend
the integration domain to the whole plane by using a “mask” II,., which is
1 inside R(O) and 0 outside. Then,

D(q) = /R2 I (p — q)p(p) dp.

Since II.(p — q) = H,(¢ — p), the discrepancy D(q) is the convolution
(I, x p)(q). Taking Fourier transforms at this point seems a good idea
for at least two reasons: By Parseval-Plancherel, the mean square of D(q)
is equal to the mean square of its Fourier transform lA)(t), where t € R
Moreover, by the convolution theorem, lA)(t) can be expressed quite simply
in a manner where the geometric component I/I\r(t) is separated from the
measure component fi(t):

D@ s = [ TP ROP .

R?2
As long as r is a little smaller than 1/+/n, D(q) is bounded away from zero
and we have the trivial lower bound

D(q)*dgq > 1.
R?2
Suppose that we could show that at any value of ¢, |lf[;(t)|2 grows at least
linearly as a function of 7 (the linear effect). Then, by setting r ~ 1, we

we might choose to make the discrepancy function periodic and use Fourier series instead
of Fourier transforms.
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would immediately amplify the trivial lower bound to Q(y/n). Unfortu-
nately, there is no such linear effect. A simple calculation shows that

|I/I\r(t)|2 _ (sin(ﬂ'txr))2(sin(7rtyr))2’

Tty Tty

where t = (t4,t,). One problem is that the function periodically touches
its “upper” surface z = 1/(w%t,t,)?. At those points, it obviously cannot
grow with r at a fixed point ¢. One remedy is to average [ D(q)? dq over a
small range of r, say, by considering

1 2’)“0
— D(q)*dqdr.
To Jrg R2

This should keep the function |1:[: (t)|? away from both its upper surface and
0. Another problem arises, however: As we will see later, the parameter
r affects the value of |lf[;(t)|2 only inside two narrow bands along the ¢,-
and t,-axes. This means that outside these bands no amplification is to
be expected as r increases. To fix this problem, we introduce rotations
(as, obviously, we should). If Dg(q) denotes the discrepancy of the square
centered at the origin, rotated by € and then translated by ¢, we consider

2 1 2ro
/ —/ Dg(q)* dgdrde .
0 TO ro R2

A rotation in the ¢-plane corresponds to an inverse rotation in the frequency
plane, so the net effect is that the contribution of a given ¢ is now averaged
out over the entire circle of radius® |¢| centered at O. Thus, even though
t might be “bad” because it falls outside the bands, the circle of radius |¢|
intersects the bands in (relatively long) arcs over which the linear effect
takes place, so no frequency can now be entirely bad! This produces the
desired amplification effect. This technique, due to Beck, can be extended
to more complex shapes. In fact, what we present here is perhaps the
simplest case.

In the discussion to come we consider rectangles and not just squares.
This has the benefit of illustrating the fundamental principle that the dis-
crepancy is a function of the boundary length of the body and not of its
area.

3For notational convenience, we use |t| to denote the L? norm of ¢.
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THE PROOF

Let P be a set of n points in the unit square [0, 1]%. We define the rectangle
R(a, 8,6, q) by taking an axis-parallel ax 3 rectangle centered at the origin,
rotating it by an angle 6, and finally translating it by ¢ (Fig. 3.7).

AN

Fig. 3.7. The box R(«, 3,0, q).

Fix two parameters aq, 8o such that
0<fo<ap<1. (3.6)
The discrepancy of the box R(«, 3,80, q) is
D, 5.0(q) =n - area (R(a,ﬂ,ﬁ,q) n o, 1]2) —|PNR(a,,0,q)|.

As explained earlier, to achieve the “linear effect,” we average out Dy, 5,0(q)?

not just over all g, but also over suitable intervals of a, 3, and . We define

1 2&0 260 2 N
(v, fo) = %o / /5 /0 n Da7570(q) dqdfdadp.
ag ) 2

Qg

Any rectangle with side lengths between 1/4+/n and 1/2+/n has discrepancy
bounded away from 0 (since n times its area is a number bounded away
from an integer); therefore,

®(n~Y2 /4,072 /4) > 1. (3.7)

Our goal now is to amplify this trivial bound. Let Il, 5,4 denote the indi-
cator function of R(«, 3,6,0) and put

_ n—Emepé(p—pi) if p € [0,1]?,
Hp) = { 0 else.
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We can express the discrepancy as

Dago(q) = / I, 5,0(p — @)p(p) dp.

Because I, g ¢ is even,
Dago =ape* 1,

and therefore

~

Dao(t) = o s0(t) - At),

from which it follows that

B(a, o) = / s 0 (B2 dt, (3.8)

where

Pao,Bo (t) = /0 CMU,B/a /2BO|H so(t)|? dadp db.

Note that

~

Ha,B,G(t) = /Ha,ﬁﬁ(q)e_%ri(q’t) dq

_ / M, s (p)e—27 P01 g

where p[f] denotes the vector p rotated by #. In view of the fact that

(pl0], 1) = (p,t[-0]),

Mo 5,0(t) = I p0(t[~06]).

~ /2 , B/2 ,
Ha,B,O (t) / e—27rwctz dz / e—2myty dy
—a/2 —-B/2

sin iz sin wty 3
)

We have

Tty Tty

hence ¢q,,3,(t) is equal to

/2“ 1 /2“0 (sin(mwf[—ﬁ]z))2 /w‘) (sin(WBt[—H]y) )2 dodB df.

0o @000 Ja, wt[—0] 5o mt[—6],

Since the integration in 6 is over [0, 27], the only relevant parameter about
t is its L? norm, denoted by ||, and so we can place t along the axis in the
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calculation. This shows that ¢, g, (t) is, in fact,

T a0 sin(malt| cos0)\2 [ /sin(nf|t] sin 8)\ 2
/0 / (mﬂ'a )/BO (11171' in )dadﬂd@.

@050 Ja, |t| cos 6 m|t|sin 6§

Suppose that aglt| x | cosf| remains larger than a small constant. Then,
sin(ma|t| cos #) stays bounded away from 0 for any « over a fixed fraction
of [ap, 2ap], and so?

1 /20‘0 sin(malt| cos 0)\ 2 1

— [ () da s

ao Ja, 7|t| cos |t]? cos? 8

If aplt| - | cos @] is small enough, however, a Taylor expansion shows that

‘sin(na|t| cos 0)
|t| cos 6

Thus, in all cases,

1 % /sin(ralt| cos6) 2 . 5 1
— (—) da%mln{ao,ﬁ}.
@0 J o, 7|t| cos |t]? cos? 6
A similar derivation shows that
1 [P rsin(mp|t]sin §) 2 1
L[ O gy L
Bo /Bo ( m|t|siné ) g Po |t|2 sin” 6
It then follows that

27
1 1
~ H]l 2 - IIl. 2
(poéoﬂo(t) ~ /0 IH{CMO, |t|2 00529} ln{ﬂo, |t|2 sin29} a6

w/2 1 1
. 2 - . 2 -
/0 mln{ao, |t|2cos29}mm{60’ |t]? sin29}d9
A+ B,

X

X

where

w/4 1 1
_ o f o [ 92
A= /0 mln{ao, |t|2c0520} X mln{ﬁo, |t|? sin20}d0
and
7l'/4 1 1
_ [ 2 [ 22
b= /0 min{ o o] sin® g} < min{ g8, tP co? 0 }ae.

If By > 1/|t| cosf, then B > A follows from the fact that g > fp. On the
other hand, if Sy < 1/|t| cosf, then we also have 5y < 1/|t|sin6, and hence

4Recall that the notation &~ means both < and >, ie, equal up to constant factors.
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B > A. Tt follows that

‘Paoﬁo(t) ~ B
o{ito ) | i )
A min — mins og, —5-5
eI o ° Jt|6?
21
R aomin{l,a0|t|}-min{%,w}.

So, for ay > ay > 0,
Par,po(t)  ar-min{l,aqlt]}  ar
Pao,Bo (t) Qo - min{]-: a0|t|} ap’
From (3.8) we derive that

(I)(Oél,ﬁo) > (Z_;)(I)(OéO:BO)‘

If we choose ap = By = 1/4/n, as in (3.7), and oy = 1, we find that
®(a1,By) > /n. Because of our choice of a; the integrand in ¢ in the
definition of ®(ay, fy) is 0 outside a domain of constant area, and so there
is a box R of discrepancy > n'/*, which proves Theorem 3.6 (page 144).
O

Note that by choosing different values of a;, we derive the more gen-
eral result that, for any r < 1, a rectangle of side lengths at most r and
discrepancy Q(,/r n'/*) always exists.

Bessel Functions and the Fejér Kernel

Turning to the case of disks, we prove Theorem 3.7 (page 144). Let P be a
set of n points in the unit square [0, 1]*>. We define the discrepancy of the
disk D(q,r) of radius r centered at g,

def
Dr(q) = n7rr2 - |PﬁD(q,T‘)|
To handle the case where the disk does not fit entirely within the unit
square, we make a copy P+u of P for each point u with integer coordinates.
Equivalently, we operate on the torus obtained by identifying the opposite
sides of the unit square. We wish to show that, for some r < 1/2,

sup D, (g)] > n'/*.
q
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As usual, our first step is to express the discrepancy as a convolution.
To do this, we introduce the indicator function

L) def [ 1 if pliesin D(q,r),
ST 0 else.

Note that because we are on a torus, a point may lie in D(g,r) even though
it is quite far from ¢ in the Euclidean sense. Let

(9) = n—>dg—p).
pEP

Note that

or, if we write I,, = I, o,

D (q) = /[0 . 1(p)Ir (¢ — p) dp = (I x p)(q).
Expanding the discrepancy in Fourier series, we find that
~ £ —omi RPN
Dy(t) = Dr(q)e™>™ 0 dg = I,(t) i(t),
[0,1]
where t = (t;,t3) € Z2. By Parseval-Plancherel,
D3 =" D) = 11:(6)?| it) (3.9)
tez? tez?

Our next step naturally is to derive a lower bound on |f,,(t)|2 Unfortu-
nately, the function vanishes infinitely often and no trivial lower bound
exists. We circumvent this difficulty by considering the sum

|f1/2(t)|2 + |-/f1/4('5)|2

instead. We have

/I\r(t) :/ [r(q)e—27ri<t,‘1> dq :/ e—27ri(t,q) dq
[0.1% lg|<r

Again, we use |g| as shorthand for ||¢||2- In polar coordinates, dg =
dg.dq, = pdpdf. The integrals above depend only on r and |t|, so we
can assume that ¢ = |t| and t2 = 0. It follows that (t,q) = |t|pcosf, and

therefore
r 2w
:/ pdp/ e—2m’\t|pcos€ de.
0 0
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We introduce two Bessel functions of the first kind [2]:

T on

1 o ix cos 0
Jo(x) e de
0

and

It is immediate that
r
() =2 [ p Jo(2rltl) dp
0
and therefore

r

j;(t) |t|

From the classical approximation

Ji(z) = \/gcos(x ~3n/4) + O(a=3/?),

T (27t|r). (3.10)

we derive
"—; (J1 (z)? + J1(29:)2) = cos(z — 31/4) + cos?(2z — 37/4) + O(1/z).

Notice that cos?(x — 37 /4)+cos? (22 — 37 /4) is bounded below by a positive
constant, so for x large enough

% (J1 (z)* + J1(2:v)2) > 1. (3.11)

Actually, by using finer properties of Bessel functions, one can show that
(3.11) holds for all > 1. It follows that

~ ~ 1
1o (67 + [ T1 2 (8)]* > TR

From (3.9) we derive

1D120l3 + 1 D1yallz = Z(Ilh/z(t)l%r|171/4(t)|2)|/7(t)|2
teZ?

> 3 (I ®F + La®P) )

[t]>1
1 .
> Zwma)ﬁ
[t]>1

and, hence,
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1 ~
D1 /215 + 1|1 D1/4ll3 > Ryl Z ().

t#£0
[t1];[t2]<V2n
For t #0,
ﬁ(t) — / ’u(q)e—%i(t,q) dg = — Z e 2mi(t,p) :
(0,12 peP
therefore,

1 o 2
D1 jally + 1Dy all3 >~ D | S ez |

t#0 peEP
t1l,lt21<v2n
The lower bound
|D[|2 > nt/4,

for r = 1/2 or r = 1/4, follows directly from Lemma 3.8 below. Indeed,
setting 71 = T» = |v/2n | in the lemma shows that

1
| D1 /213 + |1 D1 /all3 > meYe) ((\/2n —1)2 — nz) > V/n,

which implies that ||D,||s > n'/* for some r € {1/4,1/2}; hence Theo-
rem 3.7 is proved (page 144). O

Lemma 3.8 For any set P of n points in the plane and any positive integers

Tl: T27
. 2
Z ‘Z 6_27”<t7p>‘ Z TLTlTQ — ’I’L2.

t#0 pEP
[t1|<Ty
|t2| <T2

Proof: The sum

Dn(CU) déf Z eQm’km

|k|<n
is called the Dirichlet kernel. It is easily observed that®

sinw(2n + 1)z
sinrx

D,(z) =

5See Appendix B.
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We also need the Fejér kernel:

Fa@)  (Doe) 4+ Daca(0)

_ _Zs1n7r2k—|—1

SIn wxr

2
1 /sinnnrx
n \ sinmwz

The last derivation follows simply from writing sin 7 (2k + 1)z as

ir(2k+1)z —in(2k+1)z

e —e
2
and reducing the resulting geometric sum. Note that this also handles the
case x = 0, provided that we make the convention sin(Az)/sin(Bz) =
A/B. We now are ready to derive a lower bound on the left-hand side

of the inequality in the lemma. Actually, we temporarily include the case

t = 0. Define
‘Z 6727Ti(t,p) 2

|t1|<Ty peP
|t2| <T2

We have

s % (-F)-Fgef

[t1|<T1
|t2| <T2
|t1] |ta] tp—
> 3 (1_ _) (1_ _) 3 ernilto-a)
ltL|<T g L =y
|t2| <T2

from which it follows that
T1 1 T2 1

S > E: E: E:e%z,pq)
PJJEP [t1|<Ty s1=[t1] s2=|t2|
‘t2|<T2
T,—1 Tr—1
2mi(t,p—q)
p7qu §1=0 s2=0 |¢t1|<s1

|ta|<s2
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Letting p = (pg, py) and g = (¢z,qy), we derive

1 Ty—1 To—1
27it1 (pe—Qa ) 27ita(py —qy)
§ z E 2 2 2 e 2 e
p,qEP s1=0 s2=0 |¢1|<s1 [t2|<s2
1 Ty—1 To—1
> Z T, Z Z Dy, (pe — 42)Ds, (py — ay)
p7qEP s1=0 s2=0

WY
g
3

(pz - Qz)FTz (py - Qy)

. . 2
> Z 1 (Sln Tl"T(pz - q:t) S T27T(py — qy)>

Soch T\ Ty sinm(pe — ¢z) sinw(py — qy)

We obtain a lower bound by keeping only the diagonal terms p = ¢ in the
last sum. This gives us

Z(T1T2)2 =nTT5,

and therefore

> [ e s ant, a2

t#0 pEP
|t1]|<Ty
|t2| <T%

3.3 The Finite Differencing Method

Given n points on a d-dimensional cube grid, we show that no matter
how we color them red and blue, there always exists a halfspace within
which one color outnumbers the other by at least Q(n'/2~1/24). This lower
bound also holds for any distribution where the ratio between the largest
and smallest distances is at least on the order of n'/4.

A red-blue coloring of a set P of n points in R? is a partition of P
into two sets, R and B, of “red” and “blue” points, respectively. Given a
nonvertical® hyperplane h, we define

D(h) = |RN Y| — |BNAY]

to be the (red-blue) discrepancy of the closed halfspace h* above h. Let §

61e, one whose normal is not perpendicular to, say, the z4-axis.
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and ¢’ be, respectively, the largest and smallest distances between any two
distinct points in P. We say that P is well-spread if the ratio /4" is less
than en'/, for some absolute constant ¢ > 0.

Theorem 3.9 Given any two-coloring of a well-spread set of n points in
RY, there exists a hyperplane h such that |D(h)| = Q(n'/?=1/2d),

As mentioned in Chapter 2, the lower bound is tight: Any set of n points
(well-spread or not) can be colored so that the discrepancy of any halfspace
is bounded by O(n'/?~1/24). The proof of Theorem 3.9 uses two different
kinds of tools. One is a remarkable integral-geometric identity that relates
the mean-square discrepancy to metric properties of the point set. The
other one is a finite differencing technique of which we caught a glimpse in
the method of orthogonal functions discussed in §3.1. Finite differencing
is useful because discrepancies are lower order phenomena. There is a
beautiful illustration of this in two dimensions, where the technique reduces
to the classical Buffon’s needle experiment. We begin with this story and
postpone the full saga (which is considerably more technical) for the general
case.

Fig. 3.8. The discrepancy is 2.

Buffon’s Needle as a Discrepancy Tool

As usual, we prove a result stronger than Theorem 3.9 by establishing a
lower bound on the L? norm of the red-blue discrepancy. To do this, our
first task is to define the notion of a random halfplane or, equivalently, a
random line. Consider the invariant measure of lines under rigid motions,



3.3 THE FINITE DIFFERENCING METHOD 157

dw(h) = dpdf. (Up to a scaling factor, such a measure is unique.) By
Cauchy’s integral-geometric formula (also known as Crofton’s formula), the
measure of the set of lines crossing a convex region is equal to its perimeter.
So, it is sensible to define a random line as one picked according to that
measure among those crossing the square I/ = [0,1/4]%. As we shall see, the
proof’s setup bears a striking resemblance to the classical Buffon’s needle
experiment,.

Without loss of generality, assume that n = m? for some integer m > 0.
We define P to be the set of n interior vertices of an (m + 1)-by-(m + 1)
grid covering U, and we fix a red-blue coloring, P = R U B, once and for
all. The case d = 2 of Theorem 3.9 follows from the L2-norm lower bound
on D(h) below. (Well-spreadness is the only assumption on the point set
necessary for the proof, so the result generalizes immediately from grid
points to arbitrary well-spread points.) We use D below as shorthand for
D(h).

Lemma 3.10
E, D> > Vn.

Fig. 3.9. The two slabs around h.

As usual, we expect the discrepancy to be “concentrated” around the
boundary h, so we define the two lines h; and hy parallel to h at a distance
w/2 from h, where w = ¢o/m for a small constant ¢y > 0. The line b is the
medial axis of a slab of width w, denoted by slab(h), which is bounded by
hi and hs, with, say, hy above hs (Fig. 3.9). Define

Do (h) ¥ D(hy) — 2D(h) + D(h,).

This measures the difference in discrepancy between the halfslab between
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h and hs and the one between h and hy. We consider the expectation of
Dy, (h)? for a random h. By Cauchy-Schwarz,

Dy (h)? < 6(D(h1)2 + D(h)? + D(h2)2),

and therefore”
E, D? < E;, D (3.12)

So, it now suffices to establish a lower bound on the L? norm of D,,,
which is an easier task, it turns out. Observe that

Du(h)? = (;1—;1—;1+;1)2,

where R; is the set of red points in the upper halfslab, Bs is the set of blue
points in the lower halfslab, etc. If we expand the right-hand side, we see
that companion pairs (ie, products of + terms with themselves) amount to

|R1| + |B1| + |R2| + |B2| = |P N slab(h)],

while mixed pairs contribute twice the number of segments pg C slab(h)
(p # q) that are either monochromatic noncrossing or bichromatic crossing
minus twice the number of segments that are bichromatic noncrossing or
monochromatic crossing. Put differently,

Dy(h)? = |PNslab(h)| + 2((M N + §BC — BN — tMC),

where $M N denotes the number of positive-length segments pg C slab(h)
that avoid A and have monochromatic endpoints, etc. We can rewrite this
as
Dy(h)® = [P slab(h)| + > IMN + 315 =N 18BN =" 1e,
P#q P#q p#q P#q
where is the indicator function equal to 1 if pg C slab(h) avoids h

and has monochromatic endpoints, and 0 else, etc. By using linearity of
expectation, we find that

E, D2 > 3 Proby[p € slab(h)] - 3 g(p, ),
pEP PF£q

MN
Ipq

"The random variables h, and hs do not come from precisely the same distribution
as h, but this is a minor technicality that we can ignore. Indeed, the width of the slabs
is much smaller than the distance from any point to the boundary of . As a result,
over the domain where h; (or h) does not intersect U, the corresponding h yields the
same discrepancy as hi, and so the expected value of D(hl)2 over that domain does not
exceed Ej, D?; therefore, conservatively, E, D(h1)2 < 2E;, D2.
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where

g(p,q) = |Probp[pg C slab(h) & crosses h]
— Proby[pg C slab(h) & avoids h]‘

By Cauchy’s formula, a random line h is at a distance w/2 or less from any
given point p with probability mw; therefore,3

Ey D}, > mwn — Y| f(w, |p— ql) = 4f (w/2, Ip = q)
p#q

where f(z,y) is the probability that a random slab of width = € {w/2,w}
contains a fixed segment p;p; of length y. (Again, for notational conve-
nience, we use |p — ¢| to denote the L? norm of the vector p — q.)

, (3.13)

Lemma 3.11 For any y > w,

w

Proof: Because z < w < y, the maximum angle a between a segment of
length y and the axis of an enclosing slab of width z is equal to arcsin(z/y);
therefore,

flz,y) = / (x —ysin|f|) df = 2az — 2(1 — cosa)y,

and so

w w
—4 2 = 2 in— —2 n —
flw,y) fw/2,y) w(arcsm ” arcsin 2y)

rafor 1o (&) -0 /- ()}

Because y > 1/4(m + 1) and wm = ¢y can be chosen as small as desired, a
Taylor expansion around w = 0 gives

4

w
16y3

flw,y) —4f(w/2,y) = + 0w’ /y°),

from which the proof follows. O

8Tmplicit to this argument, and the next one, is the fact that, by construction, p is
more than w/2 away from the boundary of the square U.
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Combining (3.13) and Lemma 3.11, we obtain
> mon =Y
E.D,, > mwn — —. 3.14
" lp—ql? (314
p#q
The edge length Ag of the grid is 1/4(m + 1), and there are 8k grid points
at L°-distance Aok from a given grid point. It follows that

1 n 5/2
Z|p_q|3<< > A3k2<<n ’
p#q 1<k<m-1

and hence
E;D? > mwn — O(w*n’/?).

Keeping the constant co = wm small enough yields E, D2 > n'/?, which
in view of (3.12) establishes Lemma 3.10 (page 157). O

*

A Probabilistic Interpretation

The line of reasoning used in the two-dimensional proof provides an in-
tuitive answer to the simple question: Why can’t the discrepancy be 0
everywhere? Let h be a random line and suppose, for the sake of contra-
diction, that D(h) is zero everywhere (of course, it is obvious that it must
be at least =1 somewhere, so we should think of zero as meaning “very
small”). It easily follows that within each of the two halfslabs in slab(h),
the numbers of red and blue points match exactly,

Rf =B} and R, =B,.

Now, let us perform the following experiment: Pick two random integers
1 < i < j < n and assume that both points p;, p; fall in slab(h). Note—this
is crucial—that ¢ # j. If the segment p;p; crosses h, then obviously p; and
p; are equally likely to be bichromatic or monochromatic; we write this as

BC = MC, (3.15)

which reads: “probability of Bichromatic Crossing equals probability of
Monochromatic Crossing.” On the other hand, if p;p; does not cross h,
then

BN > MN, (3.16)

meaning that the probability that p;p; is Bichromatic Noncrossing exceeds
that of being Monochromatic Noncrossing. Indeed, without loss of gener-
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Fig. 3.10. Assume that there is no discrepancy.

ality, suppose that p; is blue and lies in A*. Then, p; is picked randomly
among R; red points and B,T — 1 blue points (minus 1 because i # j).
Because B;{ = R;, the point p; is thus ever so slightly more likely to be
red than blue. Surprisingly, this rather trivial and innocent-looking fact
is the key to the proof. To see this, add together (3.15) and (3.16). This
gives BN + MC > BC + MN, and hence BN > BC or MC > MN.
Suppose that BN > BC (a similar argument applies to the other case as
well). Recall that h is random and so is the choice of p;p; within slab(h).
So, the meaning of the inequality is that a random bichromatic segment
p;p; (ie, with random i, j) that falls inside a random slab(h) is more likely
to avoid h than to cross it. Let 6 > 0 be the difference in probability.

Now, fix p;p; and consider a random slab(h) D p;p;. By changing our
viewpoint, this is easily seen to be equivalent to fixing slab(h) and taking
a random segment s C slab(h) of length |p;p;|- (Note that the meaning
of a random segment s is now with respect to the invariant measure for
segments and not with respect to the indices ¢,j.) Throwing a random
segment in a slab and counting how many times it crosses a line in the
middle is essentially a repeat of the classical Buffon needle experiment. An
elementary calculation shows that if s is “long,” then it is almost as likely
to cross the line & as to avoid it. But the inequality BN > BC says that
the two events must differ in probability by at least . Since p;, p; are grid
points and the pair (4, ) is random, we must expect the segment p;p; to
be quite long, and so we have a contradiction.

At first it might seem doubtful that such a weak argument stands a
chance of producing any kind of meaningful discrepancy, let alone a quasi-
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optimal bound. Indeed, the only reason that |[BC — BN| is nonzero is
that the trivial segment p;p; is forbidden from the randomized experiment.
Obviously, even if we allowed such events, they still would be very unlikely
to come up. Discrepancies are lower order effects, and however remarkable
this might seem, ruling out the choice of p;p; is all that it takes to produce
the cancellations that are necessary to make the true discrepancy “bubble
up to the surface.” Quite an amazing mathematical phenomenon, wouldn’t
you say?

The Alexander-Stolarsky Formula

Let P be a well-spread set® of n points in R?. We fix a red-blue coloring
of P, that is, a function x : P — {—1,1}. The discrepancy of the closed
halfspace h*t bounded below by the (nonvertical) hyperplane h is

pEPN At

We want to show that E,D? > n'~'/? The underlying distribution is
given by the motion-invariant measure w for hyperplanes. To define a
proper probability measure, we assume that a random hyperplane cuts
a cube of unit boundary area. By Cauchy’s formula, the measure of all
such hyperplanes is 1. Furthermore, by appropriate scaling we can always
assume that P lies comfortably within the unit cube. (The points should
stay away from the boundary because we need some wiggling room.) The
trick of using halfslabs is a special case of a general finite differencing
technique, which we now discuss in detail. We begin with the indicator
function

1 if h separates p and ¢,

La ={ §

For convenience we assume that P contains as many red points as blue
ones. If this is not the case, we add new points of the deficient color.
Note that if this requires the addition of too many points, say, more than
bon'/2=1/24 for some small positive constant by, then any halfspace that
contains the cube has high discrepancy and we are done. Otherwise, if
Theorem 3.9 holds for the new set of points, then it does for the old one
as well, provided that by is small enough. Thus, our assumption is not re-
strictive. We derive D(h)? = —D(h)D*(h), where D*(h) is the discrepancy

else.

9This means that the ratio between the largest and smallest distances is O(n'/4).
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Fig. 3.11. I,,(h) = 1.

of the halfspace below h. By pairing each term in D(h) with each one in
D*(h), we obtain*?

D(h)> == Y Ly(h)x(p)x(a)-
p,qEP

By Cauchy’s formula,

/ Ly (h) duo(h) = |p— .

from which the identity known as the Alezander-Stolarsky formula follows:

ExD>=— > x(x(@)lp — |- (3.17)

p,qEP

Note that the fact that y takes on values £1 was never used in establish-
ing (3.17), and so it still holds for any real-valued function y, as long as

> (p)=0.

The Discrepancy of Halfspaces

We now prove the discrepancy lower bound in its full generality (Theo-
rem 3.9, page 156). We define the forward differencing operator A to act
on a real function f as follows:

def

Af(z) = flz+1) = f(z).

10Problems might seem to arise if p or g lies on h, but these events are of measure
zero and can be ignored for integration purposes.
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The t-fold iteration can be expressed as

Alf(z) = Z(—l)t—i @f(x +1). (3.18)
=0

For a function f of class C*(0,t), meaning that it has a continuous ¢-th
derivative in (0,t), there exists a number £ € (0,¢) such that

AtF(0) = FO(9). (3.19)

Let v = (v1,0,...,0) denote a fixed vector in R?, where v; is a small
positive real. We form the union of P with ¢ = [d/2] + 1 copies of it, each
translated by a multiple of v:

t
P, = J(P+jv).
j=0

For convenience, we assume that no two points in P are collinear with the
xp-axis. This way, we can easily extend the coloring of P to P, by writing

\(p+ jv) = (-1 (t.>x(p)-

J
We easily see that the discrepancy D, (h) for the new set P, is given by

t
D (h) = 3 (~1) <t> D(h — jv). (3.20)
=0 J
We should point out the similarity with the previous section. Instead of
making three copies of h and assigning the weights 1, —2, 1, as we did earlier,
we generalize this idea and use a total of t+1 copies of P to which we assign
weights derived from the rows of Pascal’s triangle: These are the signed
coefficients for higher order finite differencing. The only real difference is
that in two dimensions we dealt with slabs of fixed width, whereas now the
slabs are of fixed z; width. By Cauchy-Schwarz,

D <Y (t) S Dl — oy,
=0 M/ %o
and therefore
E,D? <4 E,D. (3.21)
Again, as we did in two dimensions, we choose the width v; small enough so

that the slight difference between the probabilistic space for h and h—jv can
be ignored in our calculations. We have a relation similar to the Alexander-
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Stolarsky formula:

E.D; = — > x(®)x(d)p -4

P9 €EP,
= - > xx(@G®9),
p,qEP
where
Y (DI ) p—g+iv] ifp#g,
G(p,q) =
(Qt 2)|’U| lfp:q

To verify these last two identities is straightforward. For example, in the
case where p # ¢, the length |p — ¢ + jv| is weighted by the factor

1 Z ( ) (z +J> (—1)]:2_; (tl) (ziy) = (tifi)'

We now try to simplify the sum in the expression for p # ¢. For fixed p, g,
the function

fl@)y=lp—qg+zv] =1 — a1 + 201)2 + (P2 — )2 + - + (Pd — 4a)?
is smooth locally around 0. In view of (3.18) and (3.19), we see that
G(p,q) = (A*f)(-1),
so there exists £ € (—t,t) such that

G(p,q) = f*(¢)
from which we easily find that

IG(p,q)| <

s lp—q+&uP=1 ~ |p—q| —tvr’

cov?t cov?t

for some constant cg > 0 (depending on d). We now can repeat the previous
argument. At most O(k%!) points of P lie at distance roughly k/n'/¢ from
any point, so as long as |v| is much smaller than n~'/?, for a fixed p,

1 d—1

k
E - -« E o« p2t—1/d
2t—1 1/d)\2t—1
7;p#q |p q+§v| k>0 k/n )

It follows that
> G, g)] < [o PN

P,q; P#4
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and therefore

EhD?, > _ZG(p’p) _ |U|2tn1+(2t71)/d
p

> n 2t =2 |v| _ |v|2tn1+(2t—1)/d_
t—1

Choosing |v| = v, = ein~ Y4 for a small enough constant ¢; > 0 yields

E,D? > n'~Y? and, by (3.21), E,D? > n'~1/? This establishes Theo-

rem 3.9 (page 156). O

Approximate Diagonalization *

In Chapter 1 we discussed the relation between discrepancy and eigen-
values. In this chapter we have argued that the Fourier transform is the
natural vehicle for diagonalization, as convolution often lurks behind the
construction of the underlying set systems. It would be wrong to think
that the finite differencing method is somehow fundamentally different.
The twist is that, instead of seeking perfect diagonalization, finite differ-

I In a

encing brings the original matrix in diagonally dominant form.
purely eigenvalue-based approach, a set system is represented by an m x n
incidence matrix A, where each of the m rows of A is the characteristic vec-
tor of a distinct set in the set system. Given a coloring z € {—1,1}", we
estimate the L? norm of Az or, equivalently, 7 AT Az. Because B = AT A

is positive semidefinite, it can be diagonalized as
B=MTAM,
where A is the diagonal matrix of eigenvalues. So,
|Az||3 = 2" Bz = y" Ay,

where y = Mx. Knowing the smallest eigenvalue of B immediately leads to
a lower bound on the value of the quadratic form y? Ay, for ||z||» = v/n, and
hence on the L?-norm discrepancy ||Az||2, for any z € {—1,1}". Unlike
its Fourier transform counterpart, the finite differencing method bypasses
A. Instead, it manipulates A to bring B in (almost) diagonally dominant
form. That finite differencing and a little bit of integral geometry added
to the mix should do the trick is quite astonishing]!

11Or, more generally, in a form that for vectors with &1 coordinates has the same
effect as if it were diagonally dominant.
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Going back to our treatment of halfspace discrepancy, we simplify our
discussion by discretizing the problem. We choose a large collection of
representative halfspaces, and we replace the function D(h) by the vector
Ax, where z; is the color of point p; and the j-th row of A is the charac-
teristic vector of the j-th halfspace in the collection. By analogy with D,
and the finite differencing identity (3.20), we form A, by performing linear
combinations on the rows of A. Inequality (3.21) then becomes

[ Az[lz > [|Avz]]2.
Let B, denote AT A,. Obviously,

|A,z||3 = 2" B,z = Z(Z akiakj):ria:j,
ij ok
where A, = (a;;). Now, observe that — )", ar;az; is precisely the quantity
G(p, q) in the proof, where p is the i-th point and ¢ is the j-th point. The
remainder of the proof shows that, up to a constant factor, 7 B,z is at
least T Bz, if » € {—1,1}" and B} is derived from B, by zeroing out
every nondiagonal element. This shows that, for diagonalization purposes,
the full power of harmonic analysis is not always needed in discrepancy
theory; in this case, it is replaced advantageously by finite differencing.

3.4 Bibliographical Notes

Section 3.1:  The elegant proof of Theorem 3.1 (page 135) is due to
Roth [261]. In his paper, Roth proves only the two-dimensional case, but
the generalization to d-space is not difficult. The reader interested in the
connection between Rademacher functions and wavelets will turn to the
classic text by Daubechies [104]. Recall that the Q(logn)(@ /2 lower
bound on the L? norm of the discrepancy is matched by a correspond-
ing upper bound; see Chapter 2. By using Holder’s inequality, instead of
Cauchy-Schwarz, Schmidt [274] was able to strengthen Roth’s result and
show that Q(logn)(?=1/2 is also a lower bound on the LP norm of the
discrepancy of axis-parallel boxes, for any fixed p > 1.

The lower bound of Q(logn) on the L* norm of the discrepancy for
axis-parallel boxes in two dimensions (Theorem 3.4, page 139) is due to
Schmidt [273]. The proof we give, which is based on Riesz products, is
due to Haldsz [155]. As discussed in Chapter 2, this lower bound is tight.
Halész’s paper also gives a lower bound of Q(logn)!/? on the L' norm of
the discrepancy in RZ2.
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Section 3.2: The full power of the Fourier transform method was uncov-
ered by Beck [33, 35] and Montgomery [232]. An earlier glimpse of the
method was provided by Roth in his use of Fourier transforms for the dis-
crepancy of arithmetic progressions (see §1.5). Baker also uses the basic
underlying idea in [27]. Many applications of the method are given in Beck
and Chen [37]. The lower bound of Q(n'/*) on the discrepancy of rotated
boxes (Theorem 3.6, page 144) is by Beck [35]. Schmidt [270] was the
first to obtain a bound!? close to n'/%. Our discussion of the discrepancy
of disks follows Montgomery [233], to whom Theorem 3.7 (page 144) is
due [232]. An earlier bound of Q(n!/2-1/24=2) for any fixed ¢ > 0, was
obtained by Schmidt [270] for the toroidal discrepancy of balls in [0, 1]%.
Schmidt also derived nontrivial results for the case where the ball is con-
tained in the unit cube, but the near-optimal bound of Q(n!/2~1/2d-=)
achieved by Beck [35]. In that article, Beck proves the following, very gen-
eral result: Given a d-dimensional convex body C in [0,1]¢, consider the
family of all bodies obtained by similarity (ie, by translating, rotating, or
homothetically transforming C); then, given any n points in [0,1]%, the
volume discrepancy is Q(n1/2_1/2d_8). For a more comprehensive account
of the history behind all these results, see Beck and Chen [37], Drmota and
Tichy [111], and Matousek [219].

was

Section 3.3: The lower bound of Q(n'/2=/2?) on the red-blue discrepancy
of halfspaces (Theorem 3.9, page 156) is due to Alexander [10]; it builds
on earlier work by Alexander and Stolarsky, from which the Alexander-
Stolarsky formula can be traced [298]. The lower bound is optimal, as
discussed in Chapter 2. The slightly weaker bound of Q(n'/41log™"/? n) was
obtained earlier by Beck [37] for Roth’s disc segment problem, where points
are placed in a disk; the bound was derived for the volume discrepancy,
but it can be easily extended to the red-blue case as well.

The proof that we give in this text contains essential simplifications by
Chazelle, Matousek, and Sharir [82], who introduced the finite differencing
method in discrepancy theory. Their paper also extends the technique to
the volume discrepancy, providing an elementary alternative to Alexander’s
original proof [11]. For background material on integral geometry, the
reader should consult Santalé’s classical text [265].

12There are subtle variations depending on whether the box is taken modulo 1 (toroidal
discrepancy) or not, and whether it is completely contained in the unit square or it may
only overlap.



4

Sampling

@%\% his chapter is about extracting small representative samples from
,‘24"1\\,} N large data sets. In the process we develop a complete compu-
- tational theory of geometric sampling, with an eye toward the

derandomization applications that will be discussed in later chapters. It is
difficult to overestimate the impact that this theory has had in computa-
tional geometry in the 1990’s.

The combinatorial discrepancy of a set system indicates how well, relative
to its constituent subsets, we can sample the ground set by selecting about
half of it. It is natural to ask what happens for different sample sizes.
At one extreme, we might wonder how well we can sample a set if we are
allowed to pick only a constant number of elements. For example, given a
finite collection of points in the plane, is it possible to choose a subset of
constant size, such that any disk that encloses at least one percent of the
points also includes at least one sample point? Surprisingly, the answer is
yes.

In fact, something even stronger and stranger is true: Suppose that we
want to estimate how many people live within 10 miles of a hospital in a
given country. We can do this by sampling the population carefully, answer-
ing the question for the sample, and then scaling up appropriately. What
is amazing is that, for a given relative error, the same sample size works
just as well whether the country is Switzerland or China! Furthermore,
we can change metrics and even lift the problem into higher dimensional
space, and this still remains true. The magic lies in the concept of the
Vapnik-Chervonenkis dimension (see §1.4). Because of its great generality,
the result is best expressed within an abstract framework that unifies all
of these specific cases.

Typically, sampling is used to estimate some parameter defined over a

169
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large population by looking at only a very small subset. We distinguish
between two popular notions of sampling;:

1. THRESHOLD-BASED SAMPLING: The sample should “hit” (ie, inter-
sect) any large enough subset of the set system. This allows us to
perform threshold tests. It is essentially a hypergraph cover prob-
lem, and we use e-nets for that purpose.

2. CounNT-BASED SAMPLING: The relative size of a subset can be
estimated within a small additive error; for this we use e-approzi-
mations.

The chapter is organized as follows. In §4.1 we define e-nets and e-
approximations, and we explore basic structural properties. Sampling al-
gorithms for arbitrary set systems are given in §4.2. The important case
of range spaces of bounded VC-dimension is treated in §4.3. In the same
section, the concept of a product range space is also introduced as a tool
for approximating more complex functions. This will be used extensively in
the design of convex hull algorithms (Chapter 7). Finally, the related no-
tion of weak e-nets is briefly discussed in §4.4. This gives us an opportunity
to take a quick excursion into hyperbolic geometry and show its usefulness
for sampling.

4.1 e-Nets and ¢-Approximations

Let (V,S) be a finite set system, where |V| = n and |S| = m. Given any
0<e<l,aset NCV iscalled an e-net for (V,S) if NN S # 0, for any
S € S with |S]/|[V]| > e. Aset A CV is called an e-approzimation for
(V,S) if, for any S € S,

S| _[ANS|

V] Al |~
An equivalent formulation is that, given a random v uniformly distributed
in V, for each S € S,

‘Prob[vES]—Prob[v€S|veA]‘ <e.

Note that an e-approximation is an e-net but not the other way around.
Whereas an e-approximation can be used to estimate the size of any given
set in S, an e-net is weaker and allows us only to certify sets larger than a
certain threshold. The advantage of e-nets is their smaller size. Like most
threshold structures, however, they are mathematically awkward. On most
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other counts, e-approximations are preferable. They enjoy nicer algebraic
structures with useful compositional properties. Recall from Chapter 1
that, given W C V, the set system induced by W, denoted by (W, S|w ), is
formed by the ground set W and the subsets {WNS|S € S}. The proofs
of the two lemmas below are elementary and we omit them.

Lemma 4.1 Let V1,V5 be disjoint subsets of V' of the same size, and let
A; be an e-approzimation for the subsystem induced by V;. If |A1| = |As|,
then A1 U As is an e-approximation for the subsystem induced by Vi U V5.

Lemma 4.2 If A is an e-approzimation for (V,S), then any €' -approzima-
tion (resp. -net) for (A,S|a) is also an (¢ +€')-approzimation (resp. -net)
for (V,S).

4.2 General Set Systems

Let (V,S) be a set system, with V' = {v,...,v,} and S = {S1,...,Sm}
Theorems 4.3 and 4.4 assert the existence of an e-net of size O(e~! logm)
and an e-approximation of size O(s~2 logm), respectively.

We begin our discussion with e-nets. An equivalent statement of our goal
is, given any integer 1 < r < n, find a subset N C V that intersects every
S; of size greater than n/r. Obviously, we can assume that |S;| > n/r, for
any i, and m > 1. Let p = cr(logm)/n, for some large enough constant
c. Sample the set V according to the binomial distribution B(n,p), ie,
form a set N by including in it each v; with probability p. The probability
that N fails to intersect some S; € S is less than m(1 — p)"/", which
can be made smaller than any constant. Note that the sample IV is of
size O(rlogm) with probability arbitrarily close to 1. Thus, with high
probability, a random sample of size O(r logm) intersects every set of size
> n/r. Checking that a given sample fits the bill takes O(nm) time.

It is possible to derandomize the algorithm by using the method of con-
ditional expectations discussed in Chapter 1. But there is a much simpler
deterministic algorithm, which we describe next.

The Greedy Cover Algorithm

We follow a greedy approach. The idea is to keep selecting the element
that belongs to the most sets. Specifically, initialize N to (). Then, iterate
on the following process until the set S is empty:
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STEP 1. Find the element v; that is contained in the most
sets of S.

STEP 2. Remove v; from V and add it to N. Then, remove
from S every set that contains v;.

When implemented properly, the algorithm takes O(nm) time. It is
simple, practical, and does not require storing large numbers. How big
is N in the worst case? Note that the general problem of computing a
minimum-size cover is NP-hard, so we should not expect N to be always
minimum. But we can show that it is reasonably small. Let my be the
number of sets left in S after k iterations. By definition, mg = m. After
the k-th iteration, we have my sets left, each containing more than n/r
elements. Thus, the next element to be removed belongs to more than

:f’,; -my, > my /7 sets, and so my41 < my (1 —1/r); hence,

1\
mkgm(l——) .
T

For a large enough constant ¢, any k > crlogm is such that my < 1, and
hence my = 0.

Theorem 4.3 Given a set system (V,S), |V| = n and |S| = m, and
1 < r < n, the greedy cover algorithm finds a (1/r)-net for (V,S) of size
O(rlogm) in time O(nm).

The Weighted Greedy Sampling Algorithm

To compute an e-approximation, we use an approach similar in spirit to
the unbiased greedy coloring algorithm of Chapter 1. Instead of mapping
each v; € V to £1, the “color” x(v;) will now take on values in {—q,1— ¢},
for some fixed parameter 0 < ¢ < 1 to be specified later. For technical
convenience, we add the set Sy = V into the set system. Given S; € S, let
Dik (resp. m; ) be the number of v; € S; (j < k) such that x(v;) =1—¢
(resp. x(vj) = —¢q). We fix a parameter 0 < p < 1 and we define H,(i, k)
as follows:

Hy(i, k) = (1+ (1= @) (1 = qu)™* + (L+ qu)™ (1= (1 — q)u)P*+.

We introduce the weight function
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Note that H,(0) = 2(m+1). The strategy is, for each k = 0,1,...,n—1, to
choose the assignment of x(vi4+1) € {—q,1 — ¢} that produces the smaller
value of Hy(k + 1). We define the set A as

A={veV :x(w)=1-q}.

The algorithm takes time O(nm). We easily check that we can afford a
relative error of 1/ nPW for each operation, so all calculations can be carried
out over O(logn)-bit size words.

We now prove that A is a (1/r)-approximation. Given S; € S, let s; =
|Si| and d; = |ANS;| —q|S;|. We easily check that the strategy is unbiased.
What we mean by this is that

Hy(i, k) = qH' =,k + 1) + (1=  H (0, k + 1),
where H,gj] (i,k + 1) is the value of H,(i,k + 1) for the choice x(vgt1) = j.
It follows that H,(i,k + 1) < H,(i,k), and hence H,(k + 1) < H,(k).

Therefore, H,(i,n) < Hy(n) < 2(m + 1), and so, taking the first term in
the sum for H,(i,n),

(L4 (1= @)™ (1= qu) =% (1+ (1= q)u)* (1 = qp) =% < 2(m +1).
Taking logarithms and expanding in power series, we find that
(1= 08 = (1 + 0G*)) a1 = @)s; < In(2m +2).
Setting

In(2m + 2)

F=\ 0 =gm

gives

i < (L4 0(n))v/4q(1 — g)nln(2m + 2).

By repeating this argument with respect to the second term in the sum for
H,(i,n) and reversing the roles of ¢ and 1 — ¢, we find that |d;| has the
same upper bound. Since A = AN Sy, we have

|ANSi| _ s 146i/(gsi) |
|A] n 1+4d/(qn)’

therefore,

|[ANS;| S
A4l n

:O(M+M).

qn qn?
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By setting ¢ = ¢r?(Inm)/n, for some constant ¢ large enough, we find that
‘ [ANSi| si| 1
|4

’
n r

which establishes that A is a (1/r)-approximation for (V,S). Its size is
qn + &y, which is O(r?logm). Recall that to ensure the validity of the
argument, we must ensure that ¢ and p are small enough. This follows from

the obvious fact that, in the theorem stated below, 1/r and r/+/n/logm
can always be assumed to be smaller than any fixed constant.

Theorem 4.4 Given a set system (V,S), |V| = n and |S| = m, and
1 < r < n, the weighted greedy sampling algorithm finds a (1/r)-approwxi-
mation for (V,S) of size O(r?>logm) in time O(nm).

4.3 Sampling in Bounded VC-Dimension

Let (X, R) be a range space of VC-dimension d; see definitions in Chapter 1.
As usual, it is assumed that (X,R) is actually a finite subsystem of an
infinite range space of VC-dimension d. As it turns out, we rarely use the
fact that d is the VC-dimension of (X, R). Instead, we rely on its corollary
(Lemma, 1.6), stating that the (primal) shatter function 7 (m) is in O(m?).
Thus, if 7 (m) = O(m?) is the only fact we know about the range space,
every theorem in this section still remains valid.

We prove the existence of a small e-approximation for (X, R) by describ-
ing a procedure that recursively computes e-approximations for smaller
subsystems and merges them together. The proof is inherently algorith-
mic, and it is quite easy to analyze its complexity. Next, we give three
existence proofs for e-nets. Why three? The first proof is a straightforward
by-product of e-approximations; the second one is an elegant application
of discrepancy theory; finally, the last one—historically the first—uses an
original probabilistic argument that is interesting in its own right. All three
proofs are completely different and provide complementary perspectives on
the problem.

In practice, it is often the case that range spaces are defined implicitly
and are accessible via an oracle: a function that takes any Y C X as input
and returns the list of sets in R|y (each set represented explicitly). We
assume that the time to complete this task is O(]Y|9"!), which is linear
in the maximum possible size of the oracle’s output. As it turns out, the
oracle is fairly realistic in practice. For example, in the case of points and
balls in d-space, this assumes that, given n points, we can enumerate all
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subsets enclosed by a ball in time O(n?t2). To do this, enumerate all k-
tuples of points (k < d+ 1) and, for each tuple, find which points lie inside
the smallest ball enclosing the k points.

The existence of such an oracle is assumed in the following two theorems.
For notational convenience we write r = 1/e. As we indicated earlier,
although stated in terms of VC-dimension, the results below hold just the
same if all we know about the underlying range space is that its shatter
function 7 (m) is in O(m?).

Theorem 4.5 Let (X,R) be a range space of VC-dimension d. Given
any r > 2, a (1/r)-approzimation for (X, R) of size O(dr*logdr) can be
computed in time O(d)3¢(r?logdr)?| X|.

Theorem 4.6 Let (X, R) be a range space of VC-dimension d. Given any
r > 2, a(1/r)-net for (X,R) of size O(drlogdr) can be computed in time
O(d)*¢(r? logdr)?|X|.

The running time for computing a (1/r)-net can be reduced further to
O(d)*¥(rlogdr)?|X|, by using the notion of a sensitive e-approzimation.
We omit this subject, which would take us too far afield, and instead re-
fer the reader to the bibliographical notes at the end of this chapter for
references.

Again, let us not miss the main point about these theorems. Remark-
ably, any bounded-VC dimensional range space (X, R) admits e-approxi-
mations and e-nets of size independent of | X|. A superior sampling theory
is where the notion of Vapnik-Chervonenkis dimension draws its computa-
tional power.

Building an e-Approximation

Without loss of generality, assume that n = |X| is a power of two.! We
assume that the primal shatter function 7 (n) is in O(n?), and therefore
that the number of sets m = |R| is in O(n¢). For small values of ¢, the
problem is similar to two-coloring a set system for low discrepancy.

1To relax this assumption, we may pad the ground set with up to n artificial points
and add the old set X to the new set system. It is immediate that decreasing ¢ by a
constant factor and removing the artificial points at the end gives an e-approximation
for the original set system.
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The Low-Error Case

Color the elements of X red or blue by applying the unbiased greedy al-
gorithm of Chapter 1 to the set system (X,R U {X}). By Theorem 1.2
(page 7), this guarantees that, within any R € R U{X}, no color outnum-
bers the other by more than A = 1/2nIn(2m + 2). Take the more popular
color in X, say red, and let A be an arbitrary set of n/2 red elements of X.

Lemma 4.7 The set A is an e-approxzimation for (X, R) of size n/2, for
e =2A/n. It is computed in O(n?*) time.

Proof: Let A; be the set of red elements in X. Because X is added to the
set system, we have 0 < 2|4;| —n < A. Dividing by 2 gives

il - 11| < 5-

On the other hand, given R € R, we have |2|RN A;| — |R|| < A, which
shows that

|2IRNA|—|R]| < A+2(RNA-|RNA|
< A+2(A] 4]
<

2A.

Dividing by n proves that A is an e-approximation of size n/2 for the value
of € claimed in the lemma. O

Using the fact that m = O(n?), we find that (X, R) admits of an e-
approximation of size n/2 for e = f(n), where

f(m):,/m’

for some large enough constant c¢g. (In the following the constants c¢; are
all assumed to be independent of d,r,n.)

The General Case

We need two pieces of terminology: (i) Given Y, Z C X, to form the union
Y U Z is called merging Y and Z; (ii) given an even-sized subset YV of X,
computing an f(|Y])-approximation for (Y, R|y) of size Y/2 in the manner
just described is called halving Y. We now construct an e-approximation
A, given any € > f(n). Recall that r = 1/e. For minor technical reasons,
we assume that r > 2. We proceed in two stages (Fig. 4.1):
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Fig. 4.1. The white and black dots represent the merging and halving steps,
respectively.

STAGE 1. Partition X into arbitrary subsets of size 2¥, where
2% = ¢,d®r? log dr, for some large enough constant ¢;. (Recall
that n = |X| is a power of 2.) Form a binary tree with n/2*
leaves, each associated with a distinct subset. Starting at
the parents of the leaves, perform the following computation
bottom-up until the root is reached: At node v, merge the
two subsets associated with the children of v and halve the
new set: The resulting set is now associated with v.

STAGE 2. Keep halving the set associated with the root of
the tree until its size becomes codr? log dr, for a large enough
constant cs. The final set is A.

The procedure just described almost works but not quite: We modify it
by requiring that in Stage 1 the halving step should be skipped at every
positive level? of the tree that is a multiple of d 4+ 2. Why is the final set A
produced in Stage 2 a valid (1/r)-approximation? First of all, notice that
the size of A is O(dr? logdr), as desired.

Concerning the final error in the approximation provided by A, observe
that only halving steps increase the error of the current partial approxima-
tions. Considering a whole level at a time, the union of the sets associated
with its nodes form a J-approximation for some “error” §. At the first
(d + 1)-st level, the current J-approximation is formed as a disjoint union

2Tn this terminology, leaves are at level 0 and a pair merge/halve resides at a single
level.
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of sets of size 2* (since alternating halving and merging steps keeps the
size of the node sets constant). By Lemmas 4.1 and 4.2, the error § of the
current d-approximation is (d + 1) f(2¥). Skipping the halving step at level
d+ 2 doubles the size of the node sets; therefore, the next set of d+ 1 levels
will add (d + 1) f(2¥*1) to the current error. This produces a decreasing
geometric sequence (with a rate independent of d), so that the total error
at the end of Stage 1is O((d+1) f(2*)), with a constant factor independent
of d. In sum, the error can be kept below 1/2r by choosing ¢, large enough.

By similar reasoning we see that the error in each halving step of Stage 2
increases geometrically, so the contribution of the last step is dominant.
This gives an error of O(f(cadr? logdr)), which again is less than 1/2r, if
we choose c; large enough. By Lemma 4.2, the combined error is at most
1/2r 4+ 1/2r. So, the final set A is a (1/r)-approximation.

Lemma 4.8 The set A is a (1/r)-approximation for (X, R) of cardinality
O(dr? log dr).

Remark: Skipping a halving step once in a while is necessary to produce a
geometric sequence and, thus, keep the error small. Failure to do so would
add a logarithmic multiplicative factor to the final error. Our choice of
d + 2 in the skipping rate might seem arbitrary at this point. We justify it
now.

Algorithmic Issues

By Lemma 4.7, to halve an n-element set takes O(n?*!) time. It follows
that, measured across the entire level, the first halving step of the algorithm
takes time O(n/2%)(2%)?*1 ie, O(d)3?r??(log dr)?n. In the subsequent lev-
els up to the first skipping level, the total number of sets decreases geomet-
rically while their sizes remain the same, so the running time at each level
also decreases geometrically. At each skipping level, the size of each node
set doubles, which increases the time for halving them by 29t!. On the
other hand, the d + 2 previous merging steps up to the current level have
reduced the total number of sets by 2912, so the running time decreases
geometrically between skipping levels. Stage 2 also entails geometrically
decreasing costs. This shows that the total running time of the algorithm
is O(d)*¥r*?(log dr)n, as stated in Theorem 4.5 (page 175). O

As it turns out, an g-approximation can be obtained very easily by a
probabilistic algorithm. We do not prove the following result because we
will give a very similar proof for e-nets later.
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Theorem 4.9 Let (X,R) be a range space of VC-dimension d and let
r > 2. With probability close to 1, a random subset of X of size cdr?log dr,
for some large enough constant ¢, is a (1/r)-approzimation for (X,R).

An Improved Construction

Suppose, for convenience, that d > 1. By Lemma 4.7, we know the existence
of an ey-approximation for (X,R) of size [n/2], for £; = 2A(n)/n, where
A(n) is the discrepancy of (X, RU{X}). By Theorem 1.8 (page 14), A(n) =
O(n)'/?=1/2d(logn)'+1/24 Apply the lemma iteratively on each new sam-
ple k times. By Lemma 4.2, the resulting sample is an £;-approximation

for (X, R) of size
5151 11= 5]

. < Z 2A 72/12 (Qk) I/Q_I/Qd(log;—k)1+1/2d,

for some constant ¢ > 0. Setting k large enough so that e < 1/r, we find:

where

Theorem 4.10 Let (X,R) be a range space of VC-dimension d > 1.
Given any r > 2, there exists a (1/r)-approzimation for (X, R) of size at
most proportional to r>~2/(d+1) (log r)2—1/(d+1)

Again we mention that the theorem still holds as long as the primal
shatter function is in O(m?), regardless of the actual value of the VC-
dimension. By a similar argument, the discrepancy bound of Theorem 1.10
(page 17) yields the following result:

Theorem 4.11 Let (X,R) be a range space whose dual shatter function is
in O(m?). Given any r > 2, there exists a (1/r)-approzimation for (X, R)
of size at most proportional to r2~/(d+1) (logy)!—1/(d+1)

Three Ways to Build an e-Net

Recall that (X, R) is a subsystem of an infinite range space of VC-dimension
d, with n = |X| and m = |R|, and that e = 1/r. We give three distinct
proofs of Theorem 4.6 (page 175).
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Proof I: From e-Approximations to e-Nets

Let A be a (1/2r)-approximation for (X,R). By Lemma 4.2, a (1/2r)-net
N for (A,R]|4) is also a (1/r)-net for (X,R). By Theorem 4.5 (page 175),
a (1/2r)-approximation A of size at most the lesser of n and O(dr? logdr)
can be computed in time O(d)*?(r? logdr)?n time, while by Theorem 4.3
(page 172) we can obtain a net N of size O(drlogdr) in O(dr? logdr)d+!
time. We easily verify that the latter cost is dominated by the upper bound
on the cost for A. Thus, the total running time is O(d)*?(r? log dr)?n, which
establishes Theorem 4.6 (page 175). O

Proof II: From Low Discrepancy to Nets

We color the elements of X red or blue by applying the unbiased greedy
algorithm of Chapter 1 to the set system (X,R U{X}). Let A; be the
set of red elements. Next, we two-color the set system induced by A; and
call A; the new set of red elements within A;. We iterate on this coloring
process kg times, where kg is defined by
ko _ n
cdrlogdr’

for some large enough constant c.

Lemma 4.12 For r > 2, the set Ay, is a (1/r)-net for (X,R) of size
O(drlogdr).

Proof: Take any R € RU{X} of size greater than n/r. In the first stage,
no color within R outnumbers the other by more than /2d|R|(Inn + O(1)),
so we have

‘ 2)RN A| - |R| ‘ < 2dR[(Inn + O(1)).

Putting Ag = X, we have the more general relation: For k& > 1,

‘ 21RN Ay — |RN Ay ‘ < V2dR N Ay |(n [Ap] + O(D)).

Using the fact that X is included as a subset of the set system, it follows
from a tedious but easy inductive argument that,® for & > 1,

, dR|_d
‘|ROAk|—2*’”|R|‘<< ], dn

g (4.1)

3Recall that < and > are shorthand for O() and (), respectively.
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For ¢ large enough, 27%9| R| dominates

diR[ | dn

9k " ko
by a large constant factor, so RN Ay, # (), and Ay, is a (1/r)-net. Choosing
R = X, we find that

|Ag,| = |[RN Ag,| < 2'7%|R| = O(drlogdr),

as claimed. O

Proof III: A Probabilistic Argument

We prove a slightly more specific result by giving explicit constants. The
proof is self-contained and does not rely on our previous discussion. It
is simple but very ingenious, no doubt something Paul Erdés would have
called a proof from The Book. In the following, the term random s-sample
refers to a set of s elements drawn randomly in X without replacement, ie,
every s-tuple of points is equally likely.

Lemma 4.13 Given any integer s < n large enough (in relation to d), a
random s-sample of X constitutes an e-net for (X, R) with probability at
least 2/3, where € = 7d(log s)/s.

Proof: We rename (X, R) to denote the set system obtained by removing
from R all sets of size at most 7dn(log s)/s. We prove that, with probability
at least 2/3, a random s-sample N intersects every set of R. If it does not,
we say that N fails. The probability that N is disjoint from a given R € R

is at most
n — [7dn(logs)/s] n 7dlogs\°®
s / s 1= s
I

Thus, because |R| = O(n?), the probability that N fails is O(n?/s%). This
probability can be made less than 1/3 for, say, any s > 1/n.
So, assume now that s < y/n. The key idea is to compare the behavior of

s-samples and 2s-samples. Given a 2s-sample T we say that R is a witness
for T if

IN

2dlogs < |TNR| < s.

The term “witness” is used here to suggest good, normal behavior. Let
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f(s) be the probability that a random s-sample N fails. If N fails, we
choose some R € R such that N N R = ), which we denote by R(N). Take
a random s-sample N’ in X \ N. With high probability, N’ must “behave
as expected,” that is, make R(N) a witness for N U N'. Let p(s) be the
probability that a random s-sample N fails and that R(N) is a witness for
N U N’, where N' is a random s-sample disjoint from N. We have

p(s) = f(s) x Prob [|N’ NR(N)| > 2dlogs| N fails |.
Note that (N UN')NR(N) = N'N R(N) and that the condition
‘(NUN’)HR(N) <s

can be ignored since it follows automatically from the assumption that vV
is failing. To bound p(s) from below, we can assume that R(N) has the
minimum allowed size of u = [7dn(logs)/s]. We obtain

[2dlog s]

p9) > (1= X huwk))f(s), (4.2)
k=0

o= () (13)/ )

with m =n — s. It is a simple matter to show that

h(u, k) < 572, (4.3)

where

for large enough s < \/n and k < 2dlog s (see below for a proof). It follows
from (4.2) that

p(s) > (1 — (2dlog s + l)s*d/3)f(s) > @ . (4.4)
Let T be a 2s-sample in X and let p(T, s) be the probability that, given
a random s-sample N in T, N fails and R(N) is a witness for T'. Let us
now interpret p(s) slightly differently. It is the probability that, given a
random 2s-sample T and a random s-sample N C T, N fails and R(N) is
a witness for T'. So, we have

p(s) <max{p(T,s) : TCX, |T| =2s}. (4.5)

Now, consider a 2s-sample T for which some fixed R is a witness. A random
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s-sample in T" will miss R entirely with probability at most

(23 - 28dlogs>/<283> < (1 3 dlzgs)s — o(1/5°Y/%).

But because the underlying range space has VC-dimension d,

{TNR: ReR}| =0(s");

therefore p(T,s) = o(1). It follows from (4.4) and (4.5) that f(s) = o(1),
and so, with high probability, a random s-sample does not fail, and the
lemma is proven. O

For the sake of completeness, here is a derivation of (4.3). From the

approximation
_p\b b
(a —b) < (& ,
b! —\b) bl

h(u, k) < uf(m —u)*™* <S>

By Stirling’s approximation,

we find that

tre t\2mte!/ (12D < 1 < tte~t\/2mtet/(128)

s (s — k)* s\* 2k s
<——F—— < |+ 14+ —
<k> S A —kfs) = (z) +3)
for any positive k < s/2. Using the fact that s < m/2, we derive

o< (21 2) (2 1 2’

mk m m

it follows that

The function z — (M/x)", for £ > 0, achieves its maximum at x = M /e,
and so

h(u, k) < exp(—%(s k- z) + 4dlogs + 2mi2) < 5743

which is (4.3).

Product Range Spaces

The tools we built in the previous section are useful in providing accurate
estimates of geometric quantities. For example, given n hyperplanes in
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d-space, an g-approximation gives us an efficient way of estimating how
many hyperplanes cut through an arbitrary segment, presented as a query.
As we show below, the same data structure can be used to handle more
complicated questions such as: Given a simplex, how many vertices of the
arrangement of n hyperplanes lie within it (Fig. 4.2)? This will prove an
indispensable tool for building e-cuttings (Chapter 5) and convex hulls and
Voronoi diagrams (Chapter 7). Again, the idea is simple: We look at the
(presumably much smaller) arrangement formed by the e-approximation
and count how many vertices lie in the triangle. By scaling up that number
appropriately we derive an accurate estimate on the desired number.

Fig. 4.2. How many vertices of the arrangement lie in the triangle? Answer: 6.

Rather than dealing with this particular geometric problem in an ad hoc
fashion, we follow the same approach used earlier and provide a general
framework of wide applicability. The central idea is to define a binary
operation that allows us to combine range spaces to build more complicated
ones. In the example above, we would combine range spaces involving lines
to form a set system over pairs of lines, ie, vertices of the arrangement.

Given two finite range spaces ¥1 = (X1, R1) and ¥o = (X2, R»), the
product range space L1 ® Yo is defined as (X; x Xo,7), where T consists
of all subsets T' C X; x X5 such that each cross-section

T, ={z€Xi|(z,22) €T}
is a set of Ry and, similarly,
Tx21 = {Z’ S X2|(£L’1,1‘) S T}

belongs to Ra.
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By way of illustration, consider ¥; to be the range space induced by n
blue lines in the plane and the set of all line segments: A range is the subset
of blue lines intersected by a given segment. We define ¥o similarly, but
we color its lines red. The product X1 ® X is a range space (Z,T), where
Z is the set of bichromatic pairs of lines, ie, red-blue vertices (assuming
general position). A range is any subset T of Z such that, along any (blue
or red) line ¢, the vertices of T incident to ¢ (if any) appear consecutively
among the red-blue vertices of £.

Fig. 4.3. A seven-point range.

Note, in particular, that the bichromatic intersections within any convex
set constitute a range. This suggests that bounded VC-dimensionality
might not be preserved under the product operation: Indeed, this can best
be seen by observing that, in our example, any bichromatic matching of
the lines gives a collection of n vertices, any of whose 2" subsets is a valid
range. Given two range spaces of bounded VC-dimension, the existence
of a small-sized e-approximation for the product might thus seem unlikely.
And yet, it is indeed the case. Observe that the obvious counterargument,
ie, the presence of large shattered subsets means no sampling, does not
work here, because subspaces of product spaces are not, in general, product
spaces themselves.

Theorem 4.14 Given any 0 < ¢; < 1, let A; be an g;-approximation for
a range space X;, for i = 1,2. Then, the Cartesian product Ay x Ay is an
(€1 + e2)-approzimation for ¥ & Y.

Proof: First, a little terminology: For i = 1,2, put ¥; = (X;,R;). Let
Probx,[R] = |R|/|X;| be the probability that a random element z chosen
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uniformly in X; lies in R, and let Probx[R|A;] be the conditional prob-
ability that z is in R, given that it is in A;. As we observed earlier, A; is
an g;-approximation for ¥; if and only if, for each R € R;,

‘ Probyx,[R|4;] — Proby,[R]| < .
Let Z = X; x Xs; by reversing the summation order we find that, for any
TeT,

EXI {PrOsz [Tx21 |A2] | Al }7

Probz [T Ar x 4. :{ Ex, { Proby, [T | Ay ]| 42 ).

Using similar identities, it follows that, for some §; (i = 1,2) such that
|6l| S €i

Proby [T| A1 x As] = Ex, {Probx, [T, |A2]] A1}
EX1 {PrOsz [Ta?l ] |A1 } + 01
EX2 {PrOle [Twl2 |A1 ] } + 61

Ex, {Probxl [Tml2 ] } + 61 + do
= PrObz[T]+61+62,

which completes the proof. O

The product of range spaces is an associative operation, and we easily
extend the theorem as follows:

Theorem 4.15 Given an e-approximation A for a range space X, the
d-fold Cartesian product A x ---x A is a (de)-approzimation for the d-fold
product ¥ ® --- ® X,

We close this section with an application of Theorem 4.15 to counting
vertices in an arrangement of hyperplanes in d-space. We consider the range
space ¥ = (H,R) formed by a set H of hyperplanes in R, where each range
R € R is the subset of H intersected by an arbitrary line segment. Given a
convex body o (not necessarily full-dimensional), consider the arrangement
formed by H within the affine span of o. (See Appendix C for a definition of
these terms.) Finally, let V(H, o) be the set of vertices of this arrangement
that lie inside o.

Theorem 4.16 Given a set H of hyperplanes in R® in general position,
along with an e-approzimation A for ¥ = (H,R), for any convez body o of
dimension k < d,
Vi, o) _ V(4| __
|H ¥ [AF [
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Proof: We can always reduce the dimensionality of the problem to that of
0, so we might as well assume that o is full-dimensional. Let £¢ = (H? S)
be the d-fold product of ¥, and let H(? be the subset of H? consisting of the
d-tuples of distinct hyperplanes of H. By the general-position assumption,
there exists a natural correspondence between H (%) and the vertex set V (H)
of the arrangement formed by H. Let (hi,...,hq) be a d-tuple in H(®),
and let f(h1,...,hq) = hi N---Nhg be the corresponding vertex of V (H).
The preimage f1(v) of a vertex of V(H) consists of d! tuples. Given a
convex body o, it is easy to see that the inverse image, T = f~1(V(H, 7)),
is a range in X%, Indeed, its cross-sections are obtained by fixing d —
1 hyperplanes (hy,...,hi—1,hit1,...,hq) and collecting the hyperplanes
h such that the d-tuple (hy,...,hi—1,h, hit1,...,hq) is in T. But these
are precisely the hyperplanes intersecting the line segment defined as the
portion of the line Njx;h; within 0. The cardinality of T' is exactly d! times
the number of vertices of V(H, o). By Theorem 4.15, therefore,

V(H,0) _[V(40)l| _ d
T A |

<e.

4.4 Weak -Nets

Let P be a set of n points in R?. Given a parameter ¢ > 0, is it possible
to select a sample of P of size independent of P, so that the convex hull
of any subset of P of size at least en contains at least one of the sample
points? An ominous sign is that the range space formed by intersecting a
set of points with convex regions has infinite VC-dimension. Indeed, if the
points of P lie in convex position, then any subset is a valid range, and
therefore the sample must be of size at least (1 —e)n.

One reason for such a negative result is that we restrict ourselves to
choosing the sample from within the set P itself. What if we relax this
requirement and allow just any point in R?? A finite set N C R? is called
a weak e-net (for convex sets, with P understood) if it intersects every
convex region that contains at least en points of P. Next, we give a very
simple construction in two dimensions that produces a weak e-net of size
O(1/€?). The construction can be generalized to higher dimensions, but it
becomes more complicated and slightly less efficient.

Without much loss of generality we can assume that n is a power of 2
and that no three points are collinear. Let L be a vertical line splitting the
set P into two equal-sized subsets. Let ¢, ¢z, ... be the intersections of L
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with the segments formed by joining every pair of points on both sides of
L. Note that there are exactly (n/2)? such intersection points; we assume
that the list of ¢;’s is sorted along L. Let Ny be the set obtained by taking
every &(en)-th point in the list (Fig. 4.4). Now, recursively, compute a
weak (3¢/2)-net of the points to the left (right) of L, and form the union
N of Ny with these two sets. If 3¢/2 > 1, then, of course, no recursion is
needed since any single point forms a valid net. We claim that the set N
is a weak e-net for P. Indeed, let C' be a convex region that intersects P
in at least en points. We distinguish between two cases:

e If C'N P has at least a quarter of its points on each side of L,
then these points alone contribute at least 3(en)?/16 points g;’s.
The convex hull of these ¢;’s is an interval of L that lies entirely
in C and contains at least one point of Ny. Thus, as desired, NV
intersects C.

e If C'N P has more than three-quarters of its points on one side of
L, then C contains a fraction at least 3¢/2 of the n/2 points on
that side, and so by construction, C intersects the weak net built
on the side in question.

Fig. 4.4. The set Ny consists of the filled dots.

Now that N has been shown to be a weak e-net, it remains to see why
it is of size O(1/g?). Since Ny contains O(1/£?) points, the size S(g) of N
follows the recurrence:

S(e) = 28(3¢/2) + O(1/€2),
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where S(e) = 1, if e > 1. This gives S(g) = O(1/¢?), as claimed.

The main merit of the construction is its simplicity. It is far from ob-
vious, however, that it should be optimal. At this point, it seems natural
to investigate what a “hard” distribution P might look like. Any convex
region contains an ellipse that encloses at least a fraction of its area. Since
ellipses produce range spaces of bounded VC-dimension, standard e-nets
constructions will basically work if the points of P are “uniformly” dis-
tributed within some convex domain. So, it is only natural to investigate
the opposite extreme, which is points in convex position.

For concreteness we consider the case where the points of P are the
vertices of a regular polygon, or at least are distributed on a circle evenly
enough. We give a simple construction of a weak e-net of size O(1/e),
which obviously is optimal asymptotically. Rather surprisingly, a simple
tiling of the hyperbolic plane is the main vehicle used in the construction.
Although it might be tempting to translate the construction in Euclidean
terms (which is not too difficult to do) and present it as such, this would
be a mistake. Hyperbolic geometry is the native language of this particular
sampling problem, and much of the poetry would get lost in translation.
We begin with a review of the basic properties of the hyperbolic plane.

A Primer on Hyperbolic Geometry *

This section can be skipped by the reader familiar with the fundamentals of
the hyperbolic plane. For additional information on the subject, however,
one may consult [44, 101, 131, 207, 227, 307]. Euclid’s fifth postulate states
that, through a given point, exactly one line can be parallel to another given
line. Hyperbolic geometry postulates that an infinite number of such lines
exist. The hyperbolic plane H? is typically modeled in one of three ways:
the Klein model, the Poincaré model, or the halfplane model. We briefly
discuss each of them. The hyperbolic plane can be defined as one sheet HT
(for z > 0) of the two-sheeted hyperboloid

H:x> +y*—224+1=0
with the Riemannian metric
ds? = dx® + dy? — d2>.

Note that this is like the Euclidean metric, where z is the imaginary axis:
ds? = dz? + dy? + (idz)%. (Similarly, up to rescaling, one will recognize
in this metric on R? the three-dimensional version of the four-dimensional
Minkowski space-time of special relativity.) We can also view H? in terms
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of the real projective plane by considering lines passing through the origin.
In this way, a point of H? is represented by a line in R? passing through
the origin and piercing the hyperboloid (Fig. 4.5).

@)

Fig. 4.5. The hyperboloid model.

To be able to view the hyperbolic plane as a plane and not as a set of
lines, three models have been devised.

The Klein Model

This model, also known as the projective model, is obtained by projecting
Ht centrally (ie, toward the origin) onto the plane z = 1: Specifically,
the point (z,y,z) € HT maps to (z/z,y/z) on the plane z = 1 (Fig. 4.5).
The asymptotic cone z2 + y? — 22 = 0 intersects the plane z = 1 in the
unit circle D, which corresponds to the points at infinity (and thus not
in H?). A line from the origin that intersects the hyperboloid at p gives
the point ¢ on the unit disk at z = 1 (Fig. 4.6). Viewed in R?, a line of
H? is the intersection of the hyperboloid with the plane spanned by two
lines passing through O. The intersection of that plane with z = 1 is a
line; therefore, lines still look straight in the Klein model. The underlying
metric, however, must be transferred from the hyperboloid to the unit disk
D, and so it is not the familiar Euclidean metric. In particular, angles and
distances cannot be read off by simply looking at them in the Klein disk.
It is actually quite easy to express the metric of the Klein disk sup-
plied with polar coordinates. Let (p,f) be a point in the Klein disk with
Euclidean polar coordinates (r,6). The point is the image of a point
(tcos®, tsinf,z) € HT; therefore, t2 — 22 = —1. Since r = t/z, we find
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Fig. 4.6. The Klein model.

that t = r(1 — r2)~/2, and hence
dt* = (1 —r?) "3 dr.
From z = t/r, we derive that z = (1 — r2)~'/2, and hence
dz? = r*(1 —r?) 73 dr.
If we fix 0, we have
dp? = ds* = dz® + dy® — d2* = dt* — d2?,

and therefore

d
@:Mﬁhdﬁzlr

— 2
A deviation of df produces an arc of length tdf, and so the area measure
is tdpdf, which is
r(1 —r?) "3 2drds.

As mentioned earlier, this is the area density of the Klein model of H2.

The Klein model is useful for dealing with points and lines, but it does
not help much in dealing with angles because it distorts them. To remedy
this, we turn to conformal models, which preserve angles. In those models,
angles can be read off directly, since they are the same as in the Euclidean
case.
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LY

Fig. 4.7. From Klein to Poincaré.

The Poincaré Model

Let O stand now for the center of the Klein disk D and let S be the unit-
radius sphere centered at O. A point p in the Klein disk is mapped to
the point ¢ in the Poincaré disk (which is also D) as follows: Project p
vertically down to the southern hemisphere of S and then centrally onto
D toward the north pole of S (Fig. 4.7). Straight lines in the Poincaré
disk model appear as circular arcs orthogonal to 0D. In Figure 4.8, the
Poincaré disk is shaded and the line runs inside it from p to g.

Fig. 4.8. A line in the Poincaré model.

In this model, isometries are generated by composing inversions in circles
orthogonal to D (with poles outside D) and reflections through diameters
of D. As a function of the Euclidean metric dz? + dy?, the Poincaré metric
ds? satisfies

4
d82 = m (dCUQ + dyQ),
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where r is the Euclidean distance from the point (z,y) to O. Near the
origin, Euclidean and hyperbolic distances are similar; but as we (isometri-
cally) move a segment toward the boundary of D, its Euclidean size shrinks
by a factor roughly proportional to its (Euclidean) distance to the bound-
ary.

By the relationship between projective transformations and isometries
of H?, it is natural that the hyperbolic distance between two points p and
g should be a function of the cross-ratio of (a,b,p,q), where a,b are the
points of 9D such that a,p,q,b appear in that order on a line (Fig. 4.9).
Indeed, it is equal to
lg —allb—p|
lp—allb—ql
The logarithm is needed to make the distance function additive, while the
factor 1/2 is there to make the curvature —1. The notion of curvature is
central to hyperbolic geometry: Indeed, in H? the circumference of a circle
of radius r is greater than 27r, which is similar to what happens (locally)
in the Riemannian metric of a negatively curved surface, eg, a hyperbolic
paraboloid. Note that, on the contrary, the circumference of a small circle
taken on a positively curved surface, such as a sphere, is less than 27r.

1
3 log

a

Fig. 4.9. The hyperbolic distance between p and gq.

It is possible to construct negatively curved surfaces in R® whose in-
trinsic metric is hyperbolic, but this can be only a local property because,
by a theorem of Hilbert, no surface in R? can be isometric to all of H2.
Intuitively, there is not enough room in Euclidean space to accommodate
the hyperbolic metric.

The Halfplane Model

The halfplane model is obtained by applying to the Poincaré disk an in-
version whose pole lies on the unit circle. In other words, pick a point w
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on 0D and map D through the inversion in the circle of radius 2 centered
at w. In Figure 4.10, p maps to ¢ (both points are at infinity, and hence,
strictly speaking, not in H?). Because inversions are conformal mappings,
angles are still accurately represented in the halfplane model. The model
is particularly convenient to work with because it can be thought of as the
upper part of the complex plane. Pursuing this analogy, it can be shown
that the group of isometries is precisely the group of linear fractional trans-
formations (also known as M6bius transformations)

az+b

eC _—
i cz+d

with real coefficients and determinant ad — be # 0.

-
4

Fig. 4.10. From Poincaré to halfplane.

It is easy to verify that the area element is dzdy/y? at the complex
point z = x + ¢y. This allows us to evaluate the area of a triangle very
easily. First it can be shown that, unlike its Euclidean counterpart, a
hyperbolic triangle is completely determined (up to congruence) by its three
angles. In particular, all ideal triangles (those with vertices on 9D) are
congruent because their three angles are all zero. To verify that their
common area is 7, consider the triangle with vertices (—1,0), (1,0), and
(0, 00) in Figure 4.11. Its area is

1 o0 1
/ / — dydz
-1 JVi==2Zz Y

[ 7=
—dx
—1 1 —562
w/2
_ / cosf g0 — o

—n/2 /1 —sin?6

We can treat the general case by a very simple argument due to Gauss.
Since both the upper halfplane and Poincaré models are conformal, we
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-1 0 1

Fig. 4.11. All ideal triangles are congruent with area .

can go back to the Poincaré model and freely reason about angles. Given
0 <6 <m,let f(0) be the area of a triangle with two ideal vertices and
one vertex with angle 6. For fixed 6, all of these triangles are congruent,
so their area is indeed only a function of §. By extending the edges of the
triangles incident to the finite vertex, we easily derive

f@) + fr—a) =

We also leave it as an easy exercise that, by adding another edge toward
the finite vertex, we obtain the identity

fla)+f(B)+f2r —a=p)=m.

Therefore,

fl(m—a) + (7 =) = f(m —a) + f(m = f) — .

It follows that f(z) is a linear polynomial in z and, more precisely, that
f(a) = m—a. To deal with the general case, consider an arbitrary triangle
with angles «, 8,~. Extend each side in one direction toward 0D and form
the ideal triangle with the three new vertices. In view of the previous result,
the area A of the triangle satisfies

At fir—a)+ f(r—B)+ flm—7)=m;
hence
A:W—(CM+B+’)/),

as claimed earlier.
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Hyperbolic Triangle Groups

Remarkably, any regular n-gon whose angles are 27 /k, for some integer k,
can be used to tile the whole hyperbolic plane. This shows how much more
room H? has compared to E?. Consider a regular n-gon centered at O. By
triangulation, it immediately follows that its area is equal to (n —2)7 — na,
where « is its vertex angle. If the polygon is ideal, meaning that all of its
vertices lie on 0D, then a = 0. If we continuously decrease edge lengths
and scale down the polygon toward O, however, its area decreases to 0, and
consequently a tends to (1—2/n)m. If n > 3, this means that at some point
during that process the angle o attains the value 27 /n. At that point, let
us draw the polygon and reflect it in its edges (which we can do without
gaps or overlaps, since angles around the vertices sum up to 27). Iterating
these hyperbolic reflections everywhere yields a tiling of H2. Recall that
from a Euclidean standpoint these reflections are circle inversions.

A useful class of tilings is obtained by reflecting triangles in their edges.
It can be shown that given any positive integers [, m,n such that

1 1 1
S+ =<,
I m n

the triangle with angles n/l, 7/m, and x/n (which exists and is unique,
up to congruence) can tile the entire hyperbolic plane. Let L (resp. M, N)
denote the hyperbolic reflection in the edge of the triangle opposite the
vertex with angle 7/l (resp. w/m,w/n). The tiling is generated by the
group, denoted by T™*(I,m,n), with generators L, M, N and defined by the
local relations

(LM)" = (MN)' = (NL)" =1,
I?=M?=N?=1.

The first set of relations expresses the fact that reflected images of the
triangle around a fixed vertex cycle back after exhausting an angle of 2.
The second set simply indicates that reflections are involutory.

The characterization of hyperbolic triangle groups given above imme-
diately implies that any triangular tiling must consist of triangles whose
area exceeds some absolute constant. Quite unlike the Euclidean case, the
triangles involved in a tiling cannot be too small. We easily check that
T*(2,3,7) is the tiling whose fundamental region has the smallest possible

triangle (Fig. 4.12). Its area is (1 — 3 — 3 — )7 ~ 0.0748.
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Fig. 4.12. The (2,3, 7)-tiling. [Courtesy Daniel Huson]

Nets for Uniform Circular Distributions

We now have all the background needed to explain the construction of a
weak e-net for regular polygons.

Theorem 4.17 Let P be the vertices of a reqular polygon. There exists a
weak e-net for P of size O(1/¢).

We can slightly relax the conditions of the theorem and simply assume
that the points of P lie on the boundary 9D of the unit-radius disk D, and
that any arc of 9D of length A contains at most [cAn] points of P, for some
constant ¢ > 0. The following lemma trivially implies the existence of a
weak e-net for P of size O(1/¢), which in particular proves Theorem 4.17.
O

Lemma 4.18 Given any € > 0, there ezxist O(1/¢) points in the unit disk
D, such that any triangle of (Euclidean) side lengths > e, whose vertices
lie in 0D, encloses at least one of the points.
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To begin with, observe that the obvious approach of placing a fine square
grid in D and using the grid points as our net fails. Indeed, this might
succeed in hitting all the triangles of area O(g), but unfortunately some
of the triangles to be hit have an area as small as O(g®). For example,
take three points on 0D as close together as allowed by the lemma. Such
triangles are too small to always contain grid points. Intuitively, one would
like to be able to change the underlying geometry so that all triangles
with all three vertices on the circle 9D should have the same area. By
interpreting the disk D as the hyperbolic plane we are able to achieve
precisely that.

As far as the distribution of points goes, instead of choosing a uniform
grid we distribute the net points within D so that the density of the distri-
bution increases as we approach the boundary 0D. Specifically, we use a
nonuniform grid where the density of points at a distance r from the center
is roughly (1 — r2)~3/2. Of course, we recognize here the area density of
the Klein model of H2. We begin with a simple technical lemma.

Lemma 4.19 Let p and q be two points in the Poincaré disk, and assume
that their Euclidean distance ¢ is equal to 6'/100, where §' is the Euclidean
distance from 0D to p or q, whichever is closer. Then the hyperbolic dis-
tance between p and q exceeds a positive constant (independent of p and q).

Proof: As we saw earlier, in the Poincaré model the metric ds? is of the
form 4(1 — r2)72 (dz® + dy?). In view of the fact that § is much smaller
than ¢, the hyperbolic distance between p and ¢ can be approximated fairly
accurately by integrating ds along the geodesic from p to ¢ while keeping
r set to the value 1 — ¢’ in the expression for ds. Similarly, we can perform
the integration along the Euclidean segment pg (instead of the geodesic)
and lose only another constant factor in the final approximation. It follows
that the hyperbolic distance between p and ¢ is on the order of /6" = ﬁ.
O

For concreteness, place the center O of D at a vertex of degree 14 in the
tiling generated by 7%(2,3,7), as in Figure 4.12. Fix 0 < r < 1, and let D,
be the disk centered at O of Euclidean radius r < 1. From the hyperbolic
metric of the Poincaré disk, we immediately find that the area of D, is
O(1/(1 — r)). Because the triangles of the (2,3, 7)-tiling have bounded
diameter, it easily follows that the number of triangles intersecting D, is
also O(1/(1 —r)).

We actually wish to have smaller triangles. By decomposing each triangle
barycentrically (Fig. 4.13), and iterating in this fashion a constant number
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of times, we can bring down the hyperbolic diameter of every triangle below
any desired positive constant. Of course, the total number of triangles
among those intersecting D, remains O(1/(1 — r)). (Note that the new
triangles are no longer congruent.) To summarize, we have constructed a
triangulation of the Poincaré disk that consists of triangles of hyperbolic
diameter below some arbitrary positive constant. Furthermore, given any
0 < r < 1, the number of triangles intersecting the disk D, of Euclidean
radius 7 is O(1/(1 —r)).

Fig. 4.13. A barycentric subdivision.

We are now ready to prove Lemma 4.18. Set » = 1 — /10, and choose
a triangulation 7 of the Poincaré disk whose triangles are of hyperbolic
diameter less than some suitably small constant b > 0. We now show that
the set NV consisting of the vertices of 7 within D,. satisfies the conditions
of Lemma 4.18. Recall that the set contains O(1/(1 —r)) = O(1/e) points,
which is the desired number.

Next, consider an ideal triangle uvw in the Poincaré disk whose Euclidean
side lengths exceed . Since a constant number of random points will hit
any triangle with big enough sides, at the cost of adding a few new points
to the net, we can certainly assume that the sides of uvw are fairly short.
Now, let uvh be the triangle obtained as the intersection of the triangles
wow and v'uv, where v’ is the reflection of v in Ou (Fig. 4.14).

We may assume that the segments uv and vw are congruent (in the
Euclidean sense): Indeed, if w is further from v than w is, then we can slide
w toward v until equidistance is achieved. The triangle uvh is where we
will find a point of N, so sliding is not a problem because it causes only the
triangle in question to shrink. Let A be the Euclidean distance from u to v.
A simple calculation shows that in the Euclidean plane the curved triangle
uvh contains a disk B whose Euclidean radius and Euclidean distance to
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Fig. 4.14. Two ideal triangles.

0D are both greater than, say, A\/10. Because A > €, we have A > 10(1—r),
and therefore B is entirely contained in D,.. Suppose, by contradiction, that
B does not contain any point of N. Then, the triangle of 7 that contains
the (Euclidean) center p of B also contains a point at Euclidean distance
at least A/10 from p. Since the Euclidean distance from p to 0D is less
than 2, the triangle in question must contain a point ¢ such that the pair
p, q satisfies the conditions of Lemma 4.19. It follows that their hyperbolic
distance exceeds a fixed positive constant. Thus, choosing b small enough
leads to a contradiction.

The ideal triangle uvw has the same vertices in the Klein model; however,
its edges are straight. Mapping the net N back to the Klein disk thus gives
us a set of points that satisfies Lemma 4.18. This completes our discussion
of weak e-nets for points uniformly distributed on a circle, and completes
the proof of Theorem 4.17 (page 197). O

4.5 Bibliographical Notes

Section 4.2: The greedy cover algorithm leading to Theorem 4.3 (page 172)
was proposed independently by Johnson [171] and Lovasz [198]. The weight-
ed greedy sampling algorithm of Theorem 4.4 (page 174) is due to the
author and has not been published before.

Section 4.3: The randomized construction of e-approximations for range
spaces of bounded VC-dimension (Theorem 4.9, page 179) is due to Vapnik
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and Chervonenkis [317]. The deterministic construction given in the text
(Theorem 4.5, page 175) is adapted from an algorithm proposed by Chazelle
and Matousek [81]. The latter is itself a simplification of an earlier algo-
rithm presented by Matousek [216] in an important paper that introduced
the use of oracles and divide-and-conquer for effective sampling. The idea of
refinement (ie, sampling from samples) originated in the derandomization
paper of Chazelle and Friedman [78]. Earlier work by Matousek [210, 211],
although restricted to a geometric setting, nevertheless paved the way for
subsequent developments. The improved constructions leading to Theo-
rem 4.10 (page 179) and Theorem 4.11 (page 179) are due to Matousek,
Welzl, and Wernisch [222].

The first and third proofs for e-nets are due to Matousek [216] and Haus-
sler and Welzl [160], respectively. The second proof has never been pub-
lished; it was communicated to the author by Matousek. Interestingly,
the bound of O(rlogr) for (1/r)-nets cannot be improved in general, as
was shown by Komlds, Pach, and Woeginger [188]. Pach and Agarwal’s
book [247] has a nice discussion of this and related results. The running
time for computing a (1/r)-net was improved to O(d)*?(rlogdr)?|X| by
Bronnimann, Chazelle, and Matousek [57], using the notion of a sensitive
e-approzrimation.

Chazelle showed in [69] that e-approximations could be used to estimate
the number of vertices of an arrangement within a simplex. The tech-
nique was generalized by Brénnimann, Chazelle, and Matousek [57], who
introduced the notion of product range spaces and proved Theorem 4.16
(page 186).

Section 4.4: Alon et al. [14] initiated the study of weak e-nets. They
established the existence of weak e-nets for convex sets in R? of size in-
dependent of the cardinality of the point set. Specifically, they gave a
construction of size O(1/e?), for d = 2, and O(1/e)¢+D(=1/5a) " where
sq = (4d + 1)+ for general d.

The upper bound for d > 3 was improved by Chazelle et al. [77] to
O(s%1og’? 1), where 8, =0, 3 = 1, and

Ba~ (Ve—15)-2¢71d - 1) ~ 0.149 - 2971 (d — 1)!.

These bounds are likely to be far from optimal. If the points are in convex
position in the plane, then a net of size O(%log®1) can be found, where
c =log, 3 ~ 1.6.

The optimal hyperbolic tiling construction used for the case of a regular
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polygon (Theorem 4.17, page 197) is also by Chazelle et al. [77]. A weaker
bound of 298" (1/9)O(1/e) was obtained earlier by Capoyleas [61].



5

Geometric Searching

@ o answer specific queries regarding a large collection of geometric
) n data is what geometric searching is all about. The data could be

: a road map, the query could be a pair of coordinates obtained
from a GPS navigational system, and the expected reply could be the name
of the road that the car is on. With increasing frequency, such geometric
databases can be found tucked into car dashboards, or at least tucked
away in people’s imagination of what a dashboard should look like. Range
searching typically refers to more complex queries, eg, how many towns
of more than 10,000 people can be found within 100 miles of Natchez,
Mississippi? Or more challenging still: What is the library nearest you
with a copy of this book?

This chapter highlights one of the finest vehicles for divide-and-conquer
in computational geometry. It is a versatile data structure known as an
e-cutting. Suppose that we are given a set H of n hyperplanes in RY.
We wish to subdivide R? into a small number of simplices, so that none
of them is cut by too many hyperplanes. Specifically, given a parameter
e > 0, a collection C of closed full-dimensional simplices is called an e-
cutting (Fig. 5.1) if:

(i) their interiors are pairwise disjoint, and together they cover R?
(hence, some are unbounded);!

(ii) the interior of any simplex of C is intersected by at most en hy-
perplanes of H.

Intuitively, cuttings lend themselves to divide-and-conquer for the same
reasons that graph separators do. They allow us to break down a problem

L1f d = 2, for example, unbounded triangles consist of one or two edges. Alternatively,
we might think of a projective model, where triangles “wrap around” infinity.

203
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into independent subproblems of smaller size. Cuttings illustrate the typi-
cal discrepancy method pipeline: from low discrepancy to tools for divide-
and-conquer via a bunch of intermediate steps (here, e-approximations and
e-cuttings). Condition (ii) indicates the role of the parameter ¢ and the
inherent tradeoff that it implies: The smaller €, the easier the subproblems,
but the more of them.

Fig. 5.1. An e-cutting: No triangle is cut by more than en lines.

The chapter is organized as follows: we build cuttings in §5.1, and we
show how useful they are in §5.2. Extensions are also discussed. Section 5.3
addresses the following problem, known as simplex range searching: Given
n points in d-space, find how many of them fall within a given simplex,
presented as a query.

5.1 Optimal e-Cuttings

For simplicity, we assume that the set H of n hyperplanes in R is in
general position. This implies that the arrangement A(H) that it forms
has exactly (1) vertices. If need be, we can use the perturbation methods
of [120, 332, 333] to deal with degeneracies. How large must a (1/r)-cutting
C be? (For notational convenience, we prefer to write € as 1/r, for some
r > 0.) Whereas the arrangement A(H) has on the order of n? vertices,
each o € C contains only O(n/r)? of them, so obviously C must consist of
Q(r?) simplices. Is this lower bound tight? The answer, as we shall show,
is yes.

In trying to prove this fact, we are quickly led to dismiss standard spa-
tial decomposition techniques, such as grids, oct-trees, kd-trees, etc. These
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crude techniques are often computationally superior in practice, but math-
ematically they are inferior because they completely ignore the inner ge-
ometric structure of A(H). A better idea is to start with a (1/r)-net for
H (Chapter 4).2 Its VC-dimension is bounded, and so by Theorem 4.6
(page 175), a (1/r)-net N of size O(rlogr) can be found in nr®®) time.

Next, we define a canonical triangulation of A(N) by induction on the
dimension d. The one-dimensional case is immediate, so we may assume
that d > 1. We begin by ranking the vertices A(N) by the lexicographic
order of their coordinate sequence. Then, inductively we form a canonical
triangulation of the (d — 1)-dimensional arrangement made by each hyper-
plane with respect to the n — 1 others. Finally, for each cell® o of A(N),
we lift toward its lowest ranked vertex each k-simplex (k =0,...,d—2) on
the (triangulated) boundary of o, provided that it does not lie in a (d — 1)
face of A(N) that is incident to v.

\Y

Fig. 5.2. The canonical triangulation in action: In this close-up of a two-
dimensional face, v is the lowest ranked vertex of the face.

The facial complexity (ie, the size of the facial graph?) of A(N) is bounded
by O(rlogr)?. As is easily shown by induction, the same asymptotic bound
applies to the triangulation of A(N). Therefore, the closures of its cells
constitute a (1/r)-cutting for H of size O(r logr)?. This is good, but not
good enough. By a slightly more subtle argument we can find cuttings that
match the lower bound of Q(r?).

2Throughout this chapter, the underlying range space (X, R) consists of a set X of
hyperplanes and the collection R of subsets obtained by intersecting X with all possible
open d-simplices.

3In this chapter, we use the word “cell” as shorthand for “full-dimensional cell.”

4See Appendix C.
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Theorem 5.1 Given a collection H of n hyperplanes in R%, for anyr > 0,
there exists a (1/r)-cutting for H of optimal size O(r?). A full description
of the cutting, including the list of hyperplanes intersecting the interior of
each simplex, can be found deterministically in O(nrd=1) time.

To prove the theorem, we first sketch a simple strategy that almost works.
We then show how to patch its holes.

A First Try

Suppose that we were able to solve the problem optimally for constant-size
cuttings. Could we bootstrap the method to handle any size? In other
words, assume that we have an efficient method for constructing a (1/r0)-
cutting of size O(rd), for some suitably large constant® ro. To build a
(1/r)-cutting, we might proceed as follows: Start out with a constant-size
cutting, say the trivial cutting consisting of R? as its sole “simplex,” and
then progressively refine the cutting, producing several generations of finer
and finer cuttings, Cy,Ca, etc, where Cy, is a (1/rf)-cutting for H of size
O(rd*). That is the grand picture.

Now the details. Assume that we have recursively computed the cutting
Ci for H. We further assume that, for each o € Ci, the incidence list H,
of hyperplanes intersecting the interior of ¢ is available. To produce the
next-generation cutting Cr41, we could refine each ¢ in turn in this manner:

1. Compute a (1/rg)-cutting for H,, using the construction assumed
earlier.

2. Keep only the simplices that intersect o and cut off their portion
outside o.

3. If the cut-off creates nonsimplicial cells, triangulate them by using
the canonical method mentioned above (Fig. 5.3).

The collection of new simplices forms Cr4+1. One might think that we
are done. For one thing, Cyy; certainly is an (1/rf™!)-cutting, as desired.
The reason is that a simplex of Cry; in o is cut® by at most |H,|/ro
hyperplanes of H,, and hence of H. By induction, this gives at most
(n/r&)[ro = n/rETt cuts.

50f course, since rp is a constant we could simply say “of size O(1),” but to use the
bound O(r) allows us to see the problems that would still arise from a bootstrapping
approach, even if we could handle nonconstant values of rg.

6Shorthand for: intersected in its interior.
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Fig. 5.3. The small triangles overlapping with the big triangle are clipped and
then triangulated canonically.

What about the size of Cr11? The number of new simplices created
within o is at most crd, for some constant ¢ > 0. From this, the size of
Cr+1 appears to be bounded by erd - O(rg)?*, which might seem just fine;
but it is not. Indeed, in the end, the size of the final cutting is O(c'ry)7,
where j = [logr/logry] and ¢’ > 1, which is not O(r?). The weakness of
our method is that bounds for the current generation are based on bounds
from the previous generation. This nesting leads to error buildup. To avoid
this, we must use a global parameter to which the analysis constantly refers.

Which sort of parameter? Note that, in our analysis, bounding the
number of new simplices within o by crd is making the implicit assumption
that most of the vertices in the arrangement formed by the newly chosen
hyperplanes happen to fall within ¢. If the number of ¢’s were to grow
too fast from one generation to the next, obviously this could not remain
true very long. Indeed, many numbers can grow from one generation to the
next, but one that cannot is the total number of vertices in A(H). If too
many simplices are created, then several of them must enclose relatively
few vertices of A(H). Our effort will be aimed at reducing the growth of
cuttings within those sparse simplices.

That this should be possible is suggested by the following observation.
Suppose that the hyperplanes of H, (ie, those intersecting the interior of
o) create no vertices strictly inside o. Then, for any subset K of H,, the
portion of A(K) within o has complexity O(|K|?1): This indicates that
the size of a cutting within ¢ should have an exponent of d — 1 and not d.



208 GEOMETRIC SEARCHING

Getting it Right

We must be slightly more subtle in the way we refine a simplex o € Cj, into
cells of generation k + 1. We can assume that |H,| > n/ri™; otherwise,
o already satisfies the requirement of the next generation and needs no
refining. We distinguish between two types of simplices, full and sparse.
Given a set X of hyperplanes and a d-dimensional (closed) simplex o, let

v(X, o) be the number of vertices of A(X) in the interior of o.

e A full simplex o € Cj is one where v(H, o) > co|H,|?, for some
suitably small constant cg, say cg = 1/r3. We compute a (1/rq)-
net for H,. We triangulate the portion of the net’s arrangement
within o to form a (1/rg)-cutting of size O(rg logrg)?. Its simplices
form the elements of Cr4 that lie within o.

e A sparse simplex ¢ is one that is not full. We treat it slightly
differently. First, we compute a subset H? of H, that satisfies two
conditions:

(i) The canonically triangulated portion of A(H?) inside o
forms a collection C2 of full-dimensional (closed) simplices
of size at most rd/2.

(ii) The interior of each simplex of C? is intersected by at most
|H,|/ro hyperplanes of H.

The simplices of C2 constitute the elements of Cx4q within o.

It might not be obvious how all of these conditions can be met, let alone
implemented efficiently or used profitably. But, assuming that full and
sparse simplices can be processed as indicated, we now show that the net
result is a new-generation cutting Cr41 with all the right characteristics.

k41
o)

(rg(k+1) ) ]

Lemma 5.2 Cjy1 is a (1/ry")-cutting of size O

Proof: First, the “cutting-number” condition. The case of a full simplex
o is trivial: Any of the new simplices into which ¢ is subdivided is cut by
at most |H,|/ro hyperplanes and, by induction, |H,| < n/r§. By (ii), the
same argument applies to o, even if it is sparse.

How large is the new cutting Cj417 The number of full simplices cannot
exceed (7)) /co|Hy|?, and any one of them contributes O(ro logro)¢ simplices
to Cpy1. Since n/ré™ < |H,| < n/rf, this means that full simplices
contribute O(rg(k+1)) cells to Cr4+1. Note that the constant behind the

big-oh depends on d and ¢y but not on k.
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We now assess the contribution of sparse simplices. The construction of
simplices is hierarchical, so that it is natural to refer to o as the parent
simplex of the cells of Ciy; that lie within 0. A leaf of the hierarchy is a
simplex cut by at most n/ r§+1 hyperplanes. We use an accounting scheme
to bound the number of sparse cells: Any sparse simplex charges its nearest
full ancestor (or the root of the hierarchy if there is no such thing). In this
way, a full simplex o (at any generation, and not just the k-th one) is
charged at most

Olrologro)” - (r/2+ (1§/2)% + -+ + (1/2)"),

where 4 is the number of generations below o, ie, i is the smallest inte-
ger such that |H,|/rd < n/ri™. Tt follows that o is charged at most
O(|H,|rk /n)?/2!, where the constant behind the big-oh depends on” ry.
Since o is full (or is R? in the case of the root), another way to phrase this
is to say that each vertex of A(|H,|) within o is charged O(rk /n)?/2!. This
implies that, overall, a vertex of A(H) is charged O(rf /n)?, and therefore
the total number of sparse simplices is O(rf /n)?("}), which is O(rg(kﬂ)),
as desired. O

Our final task is to explain how to achieve conditions (i) and (ii) for
sparse simplices and to bound the complexity of the algorithm. We begin
with a simple technical fact:

Lemma 5.3 The number of simplices created within the sparse simplex o
at generation k+ 1 is O(v(HZ, o) + |H2|?™1).

Proof: Prior to triangulation, the portion of A(H?) within ¢ has facial
complexity in O(v(H2, o)+ |HZ2|4~1). This is because every face is incident
upon at least one vertex in the interior of o or on its boundary. Further-
more, by our general-position assumption, vertices are incident upon at
most a constant number of faces. The canonical triangulation itself can at
most multiply the facial complexity by a constant factor. O

Our first order of business is how to tell whether a simplex ¢ is full or
sparse. By Theorem 4.5 (page 175), we can build a (c¢o/2)-approximation
A, for H, of constant size in O(|H,|) time. We also know from Theo-
rem 4.16 (page 186) that®

7One can now appreciate the importance of the dividing by two in condition (i) of a
sparse simplex.
8For the application of the theorem, the range space should be defined by considering
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v(H,o) (4. 0)l | _ co
[T~ AT |52

(5.1)

and so we can estimate the value of v(H, o) in constant time with an error
of at most (co/2)|Hy|?. As far as distinguishing between sparse and full
goes, such an error is inconsequential (since no particular assumption has
been made on the constant ¢q yet).

Next, we investigate the complexity of refining o while satisfying the
required conditions. The case of a full simplex is straightforward. By
Theorem 4.6 (page 175), we can compute the (1/r9)-net in O(|H,|) time.
Since its size is constant, computing the new set of simplices in o, together
with all of the incidence lists, can also be done in O(|H,|) time.

To discuss the refinement of a sparse simplex, we begin with a prob-
abilistic construction, which we then derandomize. We compute H? by
choosing a random sample from A, of size ¢;rglogrg, for some constant
¢y large enough (independent of ry). By Lemma 4.13, with probability at
least 2/3, the sample forms a (1/2rg)-net for A,. By Lemma 4.2, it follows
that H? is an (co/2+1/2rp)-net for H,. By choosing ¢ smaller than 1/,
we ensure that (ii) holds with probability at least 2/3.

What about (i)? The probability that a vertex of A(A,)No turns up as
a vertex of A(H?2) No is equal to

(1) (Lol < L1l

\Hg| —d)/ \|Hg|) —~ eo |4z

using 1/1/¢p in the role of a suitably large constant. From (5.1), it follows
that the expected value of v(H?,0) is at most

o|d o|d
LH o Ll

Vo 46| = Vo [Ho |

Because o is sparse, it follows that, for ¢y small enough,

Ev(H?,0) < 2/c0 (c170 log o).

v(H, o) + /e [Hy|".

By Lemma 5.3, the number of simplices created within o at generation
k+1is O(v(HS,0) + |H2|%1); and so, with probability at least 2/3, the

intersections of hyperplanes with line segments; the current range space, which is defined
with respect to open d-simplices, is richer and works just as well, however.
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number of child simplices derived from o is

O(y/co) (170 logro)® + O(rg log o) 1.

Recall that ¢; is an absolute constant that does not depend on g, so by
choosing 7y large enough and, say, co = 1/r, we ensure that co < 1/rg (as
required), and we easily drive the number of child simplices below rg/2,
thus guaranteeing (i).

In summary, we have shown that, with probability at least 2/3, the
sample H? satisfies (i) and the same is true of (ii), so both conditions
hold simultaneously with probability at least 1/3. To derandomize the
construction, we may simply test out every possible sample. Since A, is
of constant size, this takes O(1) time; of course, there are better ways of
doing that, but this is just constant-factor finetuning, which we leave as an
exercise. The running time for refining o is thus O(|H,|).

We conclude that the refinement of any simplex takes time propor-
tional to the total size of the incidence lists produced in the process.
By Lemma 5.2, this shows that the time for building generation k + 1
is O(rg(k+1)) n/rett ) which is O(nrédil)(kﬂ)). The construction proceeds
until its reaches the first generation such that 7% > r. This brings the
entire cost of building the final cutting to O(nr¢~!), which concludes the
proof of Theorem 5.1 (page 206). O

5.2 Cuttings in Action

There are many applications of cuttings in geometric searching. One of
the most striking is simplex range searching, a problem for which cuttings
(along with other tools) lead to a complete solution (§5.3). In Chapter 6,
the solution is shown to be optimal in a very general model. This is one
of the great success stories in theoretical computational geometry. As a
warmup we mention a few simple applications of cuttings. Throughout our
discussion, d is arbitrary but constant.

Point Location Among Hyperplanes

Preprocess an arrangement of n hyperplanes in R? so that, given a query
point, one can quickly find which face of the arrangement contains the point
(Fig. 5.4). To simplify the discussion we assume that the hyperplanes are
in general position and the point does not lie on any of the hyperplanes.
Set r = n in Theorem 5.1 (page 206) and observe that, from the nesting
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structure of Cq, Cs, etc, we can locate p in Cy, (ie, find the cell that contains
it) in constant time, once we know its location within Ci_;. Indeed, recall
that a cell of Cr_; finds itself subdivided into O(rglogry)? subcells in Cy.
The algorithm is easily adapted to handle the case where the query point
lies in a lower dimensional face of the arrangement. Thus, the construction
of the cutting itself provides a data structure suitable for point location in
an arrangement of n hyperplanes.

Fig. 5.4. The answer to the query p is the label .J. Perhaps not the stuff of killer
demos, but the source of many ingenious ideas over a quarter-century of research
in computational geometry.

The query time is proportional to the depth of the hierarchy, which is
O(logn). The space needed is that of the cutting itself, ie, O(n?). Finally,
the preprocessing time is determined solely by the cutting construction. Of
course, in addition, one would need the arrangement itself, with pointers
from the terminal cells at the bottom of the hierarchy to their enclosing
cells in the arrangement. It is an easy exercise to do all of the above in

O(n?) time.

Theorem 5.4 Point location among n hyperplanes can be done in O(logn)
query time, using O(n?) preprocessing. This is the problem of preprocessing
an arrangement of n hyperplanes in R¢ so that, given a query point, the
face of the arrangement that contains the point can be found quickly.

If our goal is only to find out whether a query point lies on a hyperplane,
we can use the same method, but the storage can be reduced a little.
Indeed, we can do with a (1/r)-cutting for r = n/logn. The cells at the
bottom of the hierarchy are cut by only O(logn) hyperplanes; and so, once
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the cell enclosing the query point has been located, a naive O(logn)-time
incidence check finishes the job.

Theorem 5.5 Given n hyperplanes in R, it is possible to check whether a
query point is incident to any of them in O(logn) time, using preprocessing
time and space proportional to n?/(logn)?~!.

By duality® this also gives us the following result: Given n points in R,
it is possible to check whether a query hyperplane passes through any of
them in O(logn) time, using preprocessing time and space proportional to
nd/(logn)d=1.

Hopcroft’s Problem

The previous application is a good example of a geometric problem that
gains in being rephrased in dual space. Of course, any dual-invariant prob-
lem is immune to such gains. A nice example of this was formulated by
John E. Hopcroft. Given n points and n lines in the plane, check whether
all the points lie outside all the lines. In other words, is the configuration
free of any point/line incidence?

How hard should we expect this problem to be? There are good reasons
to believe that Q(n*/3) is a natural lower bound. Here is an intuitive,
nonrigorous explanation why. By a classical construction of Erdés, there
is an arrangement of n lines in the plane such that at least n of its vertices
are each incident to Q(n'/3) edges. A malicious adversary would choose
these n lines as input to Hopcroft’s problem. For the n points, he would
choose one very near each of the high-degree points.

Intuitively, for the algorithm to decide whether a point actually touches
its neighboring vertex or not, it should have to check in which wedge of the
star formed around it the point lies. This would drive the total cost to be
proportional to the total number of wedges over the n stars, ie, Q(n*/3).
Of course, that sort of pseudoargument should not be taken too seriously.

A simple solution to Hopcroft’s problem goes like this. By Theorem 5.1
(page 206), we construct a (1/r)-cutting!® for the n input lines, where
r = n'/3/(logn)?/?. Next, we locate each of the n points in their respective
cells. Using the hierarchical nature of the construction, this can be done in

9See Appendix C.

100bviously, one should not perturb lines when computing the cutting for fear of
“perturbing” the outcome, too. Symbolic perturbation methods can easily be made to
work, however.
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Fig. 5.5. By drawing n lines in a special way, we obtain an arrangement with at
least n vertices of degree Q(n'/?) each.

time O(nlogn), while the cutting construction itself takes time O(nr). If
any point/line incidence is discovered at this time, we stop with the answer.
Otherwise, we consider each cell (which is a triangle) of the cutting, and
we break up the set of points inside it into subsets of size roughly n/r? or
less. This gives us a total of O(r?) cells such that (i) only O(n/r) lines
cut through them, and (ii) only n/r? points lie inside. To find out whether
there is any point/line incidence within any such cell, we dualize the lines
into points and the points into lines, and ask the same question. To answer
it, we appeal to Theorem 5.5, at a cost of O(n/r)logn + O(n/r?)?/logn
per cell. The total running time is O(nrlogn + (n/r)?/logn), which, by
our choice of r, is also n*/? - O(logn)'/? time.

Theorem 5.6 To decide whether n points and n lines in the plane are

free of any incidence can be done in n*/® - O(logn)'/? time.

By a more careful balancing act among the various components of the
algorithm, it is possible to reduce the complexity of the algorithm. The best
time bound currently known is n*/3 20108 %) (see bibliographical notes).

5.3 Simplex Range Searching

How should we preprocess a set P of n points in R? so that, given a
query (closed) simplex o, the size of P N o can be evaluated very effi-
ciently (Fig. 5.6)? This problem, commonly referred to as simplez range
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Fig. 5.6. The answer to the simplex range query is 7.

searching, is often considered in a slightly more general setting, in which
weights are assigned to the points and the answer to a query is the sum of
all of the weights within . For simplicity, we assume that weights belong
to an additive group or semigroup, and that each weight can be stored in
one unit of memory. The data structures that we discuss below are all
easily adapted to the reporting case, where the answer to a query is the
explicit listing of the points in PNo.

Theorem 5.7 Given n points in R?, there exists a data structure of size
m (for any n < m < n?), which allows simplex range searching to be done
in time O(n'ts /m'/?) per query, for any fived e > 0.

Our discussion aims at explaining the main ideas behind this general
theorem and not at providing a comprehensive treatment of the subject.
In particular, we do not address issues such as preprocessing time. We
also assume that the points are in general position. The proof touches on
many ideas: VC-dimension, e-nets, e-approximations, e-cuttings, reweight-
ing, duality, etc. The theorem and its corresponding lower bound constitute
a wonderful summary of the depth and variety of ideas in geometric search-
ing. Indeed, as will be shown in the next chapter, the theorem is basically
optimal over semigroups. The proof involves integral geometry, extremal
graph theory, Heilbronn’s problem, etc. Simplex range searching truly is
one of the gold mines of computational geometry.

The following problem is an excellent vehicle for introducing several ele-
gant, powerful ideas about geometric range searching: Our goal is to store
a set P of n points in the plane in a linear-size data structure so that,
given a query triangle o, we can easily count or report the points in PNo.
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This is called triangle range searching. A natural approach is to construct
a partition tree. This is a rooted tree 7 with the following characteristics:
The root is associated with the point set P, which is partitioned into a
number of subsets Pi,..., Py,. Each P; is associated with a distinct child
v; of the root. In addition, we define a convex open set R;, called the region
of v;, that contains P;. Unlike the point sets P;, the regions R; are not
necessarily disjoint. If |P;| > 1, the subtree rooted at that v; is defined
recursively with respect to P;.

Suppose that we want to use a partition tree for triangle range counting
(the reporting case being similar). Then we must only add one number
to each node, specifying how many points of P lie in its region. Given a
query triangle o, we initialize a counter to 0, and we proceed to explore all
children v; of the root. We ask the following question: Does ¢ intersect the
region R; of v;? Depending on the answer, we take one of three actions:

e Answer is yes, but the query triangle o does not completely enclose
the region R; of v;: We visit v; and recurse.

e Answer is yes, but o completely encloses R;: We increment our
counter by |P;|, and we do not recurse at v;.

e Answer is no: We do not recurse at v;.

To make the discussion more concrete, we examine one of the earliest par-
tition trees.

The Conjugation Tree

The set P consists of n points in the plane. We choose an arbitrary line L
that bisects P into two equal halves, P; and P, (for simplicity, assume that
n is a power of 2). Having defined the root and its two children, we move
on to the grandchildren. By the classical ham-sandwich theorem,'! there
exists another line Lo that bisects each half into two quarters of equal size.
This produces a second-generation partition of P into four sets of size n/4.
At this point, we could simply recurse. But instead of treating each of the
four wedges independently, we combine their treatment in the following
way. Let P{ and P’ be the two sets partitioning P;. We use only one line
to halve both sets: That we can do so again follows from the ham-sandwich

1 its discrete version, the ham-sandwich theorem states that, given any collection of
d finite point sets in R%, each one can be simultaneously bisected by a single hyperplane.
A hyperplane h is said to bisect a set of n points if at most n/2 of them lie in either one
of the two open halfspaces bounded by h.
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theorem. Similarly, we subdivide Py and Py’ with a single cut, to produce a
total of eight grandchildren. The construction proceeds recursively, always
choosing the next bisecting line so as to halve two sets with a single cut.
This defines a particular partition tree, called a conjugation tree.

Fig. 5.7. A conjugation tree for 16 points.

The time for answering a query is proportional to the number of nodes
visited in the process. This is at most twice the number of nodes traversed,
which is our term for the nodes with visited children. The key observation
is that, among the four grandchildren of a node, at most three of them can
be traversed. It follows that the maximum number T'(n) of traversed nodes
satisfies the recurrence relation:

T(n) <T(n/2)+T(n/4)+2,

with the obvious boundary condition T'(1) = 1. Writing T'(n) = f(logn),
we obtain a Fibonacci-like sequence,

fR) < fk=1)+ f(k—=2)+2,

from which it follows that!2

T(TL) < (1 + \/5 )logn = nlOg(1+\/g)*1 < TLO'695,
2
The conjugation tree is an elegant construction that provides a linear-

storage data structure for triangle range searching in O(n%%%) time.

12Recall that < and >> are shorthand for O() and (), respectively.
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The Spanning-Path Tree

Recall the spanning path theorem (Theorem 2.20, page 124). Given n
points in R?, one can make them the vertices of a piecewise-linear curve
C, so that no hyperplane cuts more than O(n'~1/?) edges of C. This sug-
gests building the following partition tree, called the spanning-path tree
(Fig. 5.8):

e associate the root with the set of n points; then

e split the curve C into two curves with (roughly) the same number
of vertices, and associate each of them with a distinct child of the
root; finally,

e iterate as long as possible.

14

13

1234 15 16

Fig. 5.8. The spanning path tree: To answer the triangle query, we must reach
the filled nodes and add up the number of leaves (at or) descending from them,
which gives 7.

What distinguishes this from a regular partition tree is that nodes are no
longer associated with regions of space (only with subsets of the n points).
This makes searching the tree hopelessly difficult in higher dimensions. If
we knew which nodes to visit, however, the algorithm would be efficient
because the number of nodes to be traversed (defined as the nodes whose
children need to be visited) is O(n'~'/?logn). To see why this is, think
of how the curve C winds in and out of the query simplex o. Since o is
bounded by only d + 1 hyperplanes, the total number of entries and exits
is O(n'~1/?). This partitions C into curves, every one of which is either
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entirely inside or outside o. Only the curves inside cause nodes to be
traversed, and there can be at most 2logn such nodes per curve.

If we could quickly find the points of entry and exit, a solution would
follow. But how to do that is unclear. Only low dimensions seem to offer
a glimmer of hope. In the plane, for example, finding entry/exit points is
an instance of the classical ray-shooting problem: Given a source point and
a direction, find the first hit of a ray from the source along that direction.
If C forms a simple polygonal curve, then this can be done in logarithmic
time with linear storage (see bibliographical notes). We can always enforce
simplicity by removing all edge intersections one at a time. When two
edges ab and cd intersect, we remove them and reconnect the polygonal
curve by adding ac, bd or ad, be, whichever keeps C connected (Fig. 5.9).
Iterating until no crossings are left produces a simple curve. Convergence
is guaranteed because the Euclidean length of C decreases at every step
and the process cannot cycle. Furthermore, edge flipping cannot increase
the number of intersections with any given line, and so the number of cuts
by a line remains O(y/n).

Fig. 5.9. Disentangling a nonsimple polygonal curve.

To summarize, this provides a linear-size data structure for triangle range
searching with query time O(y/n logn). In higher dimensions, the data
structure is unusable but it proves the following: Given a set P of n points
in R, it is possible to form a collection S of O(n) subsets of P such that,
given any simplex o, the intersection P No can be expressed as the disjoint
union of O(n'~*/4logn) sets in S. Note that this statement is purely
combinatorial, and says nothing about computing the subsets.

Simplicial Partitions

We return to the original goal of finding an efficient, “algorithmically us-
able” partition tree for a set of points P in R?. We slightly refine the
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manner in which we distribute the points of P among the children of the
root. We say that the collection {(Pi, Ry),...,(Pn,Rn)} is a simplicial
partition, if (1) the P;’s partition P and (ii) each R; is a relatively open
simplex enclosing P;. Note that the R;’s can be of any dimension and need
not be disjoint. Also, P; need not always be the same as PN R; (Fig. 5.10).
We say that a hyperplane cuts R; if it intersects, but does not contain, it.
The maximum number of R;’s that a single hyperplane can cut is called
the cutting number of the simplicial partition. We postpone the proof of
the following fact:

Lemma 5.8 Given a set P of n points in R? (d > 1), for any integer
1 < r < n/2, there exists a simplicial partition of cutting number O(r'~1/7)
such that n/r < |P;| < 2n/r for each (P;, R;) in the partition.

Fig. 5.10. A simplicial partition: Filled dots correspond to points belonging to
the set P; of the middle triangle; note that P; misses one of the points in the
triangle.

Using the lemma for a large enough constant r, we obtain a partition tree
whose number T'(n) of traversed nodes'® satisfies the relations T'(O(1)) =
O(1) and

T(n) = O(r' /%) -T(2n/r),

from which it follows that T'(n) = O(n'~Y/+/("N) where f(r) tends to 0
as r — o0o. This gives us a linear-size data structure for answering any
simplex range searching query in O(n'~/4+%) time, for any fixed ¢ > 0.

13Recall that a node is traversed if its children are visited.
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Theorem 5.9 Given n points in R?, there exists a data structure of size
O(n) with which simplex range searching can be done in time O(n'~1/d+)
per query, for any fized € > 0.

Lemma 5.8 can be viewed as a generalization of the spanning path theo-
rem (Theorem 2.20, page 124). Its proof reflects this connection. Although
the number of hyperplanes is infinite, a polynomial number of them are suf-
ficient to test whether a simplicial partition has a small cutting number.'4
As it turns out, a well-chosen set of r hyperplanes is actually sufficient.
In other words, we can find r magically chosen hyperplanes that are so
representative of the others that any simplicial partition good for these
hyperplanes is, in essence, good for all the others. The existence of such
a small “test set” makes the construction of efficient simplicial partitions
much easier.

Lemma 5.10 Let P be a set of n points in R®. There exists a set Hy of
r hyperplanes such that, given a simplicial partition

{ (Pl,Rl),...,(Pm,Rm)}

for P, where each |P;| > n/r, the cutting number is (d + 1)k + O(r'~1/%),
where K is the maximum number of R;’s cut by a single hyperplane of Hy.

Proof: Let H be the set of hyperplanes dual'® to the points of P. By
Theorem 5.1 (page 206), there exists a O(r~'/%)-cutting C for H with a
number of simplices less than r/(d + 1). This implies that their combined
set V of vertices is of size at most r. We now prove that choosing Hy as the
set of hyperplanes dual to V' satisfies the lemma. Given a hyperplane h, let
G be a simplex of C that contains the dual point of h. By definition, the
dual hyperplane of any vertex of G' cuts at most x R;’s. This means that h
can cut at most (d+ 1)k R;’s plus an undetermined number of R;’s not cut
by any hyperplane dualizing to a point of V. By elementary properties of
duality, any of the (at least n/r) points of P within such an R; dualizes to a
hyperplane that intersects the interior of G. Only O(nr—'/?) hyperplanes
can do that, so the number of such R's is only O(r'~/?), bringing the
total of cut Ris to (d+ 1)k + O(r'=1/?) as desired. O

14 This might seem rather obvious, but in fact it is not: Recall that the test set must
work for “all” simplices R; and that there is no obvious way to discretize the candidate
simplices.

15Gee the discussion of duality in Appendix C.
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We are now able to focus exclusively on the sparse set Hy, for which we
customize a simplicial partition. We employ a weighting strategy similar
to the argument used in Theorem 2.20 (page 124).

Lemma 5.11 Let P be a set of n points in R, and let Hy be a set of hyper-
planes. Given any integer 1 < r < n/2, there exists a simplicial partition
{(P1,R1),-..,(Pm,Rm)} for P, such that (i) n/r < |P;| < 2n/r, for each i,
and (ii) the cutting number of any hyperplane of Hy is O(r* /% +1log|Hy|).

Proof: Suppose that (P, Ry),...,(F;, R;) have already been constructed
(to get started we just apply the procedure below with Qo = P). If the
leftover set Q; = P\ (PLU---U PB;) is too small, ie, |Q;| < 2n/r, we set
m=1i+1, P, = Q;, R, = R%, and the construction is complete. Assume
now that |Q;| > 2n/r. For each hyperplane h € Hy, we define a weight,

w(h) = 280

where x;(h) is the number of R;’s (j < i) cut by h. Now, imagine dupli-
cating each h of Hy by making w(h) — 1 extra copies of it. Each new batch
of w(h) hyperplanes is slightly perturbed so that the resulting set, denoted
by H;, is in general position. Note that

Hi| = 2mh), (5.2)
heHy

By Theorem 5.1 (page 206), there exists an e;-cutting C for H; whose
simplices have, in total, fewer than r|@Q;|/n faces of all dimensions, where
gi = Q(n/r|Q;))*/¢. By the pigeonhole principle, one of these faces must
contain at least n/r points of @);: We designate it by R;;1. Note that the
assumption r < n/2 implies that R;1; is of dimension at least 1. We define
P, by choosing [n/r] points of Q); in R;11 arbitrarily.

How large can the cutting number of h € Hy be? Intuitively, every
time h is found to cut a new R;, its weight is multiplied by 2. So, a
large cutting number would imply a weight for the whole system that is
exponentially larger. But to accumulate a large total weight is unlikely
to happen because of our choice of R;’s: Each newly chosen R;, being a
simplex of a cutting, is cut by relatively few hyperplanes, and therefore its
inclusion in the simplicial partition should increase the total weight by a
relatively small amount. We flesh out this argument in the following.

If Ky, (h) is the final cutting number of h, then the hyperplane must have
25m(h) copies of itself; therefore, by (5.2),

om (h) < log | Honl. (5.3)
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We now bound the increase in size from H; to H;;+1. At most g;|H;| hyper-
planes can cut R;;: this is true by definition if R;;1 is full-dimensional;
else it follows from the fact that cutting R; 1 implies intersecting the inte-
rior of any of its full-dimensional incident faces. These cutting hyperplanes
are the only ones to be duplicated, so

|Hipa] < (1+ei)|Hil

It follows that, for some constant ¢ > 0,

m—1

\Hnl < [Hol J] (1 +e)

=0
m—1 1/d
< |Hy|- 140"
0 Z11)( Tl/d|Qi|1/d)
< i f1(1+)
k=1

Taking logarithms and using the fact that In(1 + z) < z,

,
1 _
log |Hp,| < log|Ho| + Z Y < log |Ho| + r*=Y/4,
k=1
The lemma follows from (5.3). O

By combining Lemmas 5.10 and 5.11, we derive the existence of a sim-
plicial partition {(Py, R1),..., (Pm, Rm)} for P, such that (i) n/r < |P;| <
2n/r, for each i, and (ii) the cutting number of any hyperplane is (d +
1)k + O(r'=Y/4) where & is O(r'~'/¢ 4 logr). This bounds the maximum
cutting number of any hyperplane by O(r'~1/), which completes the proof
of Lemma 5.8. O

The techniques we have used can be strengthened further. For example,
treating each simplicial partition separately at each node is an obvious
weakness. By using more global (and complex) arguments, the following
can be shown.

Theorem 5.12 Given n points in R%, there exists a data structure of size
O(n) with which simplex range searching can be done in time O(n'~'/%)
per query.
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Logarithmic Query Time
Having discussed one end of the spectrum, ie, minimal-storage solutions, we
turn to the other extreme: solutions providing minimal query time. First,
notice that if the query is a halfspace, the problem, called halfspace range
searching, is equivalent, by duality, to point location in an arrangement
of hyperplanes. Our choice of a dual transform is one known to preserve
above/below relations (see Appendix C):

(P1,---yPd) = Ta =p1T1 + - - + Pa—1Ta—1 + Pd
and
rg=p1x1 + -+ Pa—1Zd—1 + pa = (=p1,- .-, —Dd—1,Pd)-

The term “above” refers here to the zy4-direction. We assume that none
of the n input points is at the origin. Halfspace range searching dualizes
to the problem of counting how many of n given hyperplanes lie above (or
below) a query point. Since each face of the arrangement formed by the n
hyperplanes corresponds to a single count, all we have to do in preprocess-
ing is to compute these counts and set up the arrangement for fast point
location (Theorem 5.4, page 212). To answer a query becomes equivalent to
locating the query point in the arrangement. This can be done in O(logn)
query time with O(n?) preprocessing.

The dual version of simplex range searching takes n hyperplanes as input,
and a query is a set of d + 1 labeled points (po, po), - - -, (P4, pa), Where p;
stands for “above,” “through,” or “below.”
obtained by counting the hyperplanes (or summing up their weights, if that
is how the problem is phrased) that satisfy each relation p; with respect to
pi, for i = 0,...,d. We discuss only the counting case. We shall not use
subtraction, however, so that our method will also work in the case where
weights are chosen from an additive semigroup.

It helps to think of this problem in more general terms by considering
queries of the form (po, po), - - -, (P, pr.), for any k, and constructing a data
structure of type (po,...,pr) to handle them. The idea is then to prepare
data structures of all possible types (po,...,pr) to accommodate (in the
dual) for all possible query simplices (in the primal). If £ = 0, the problem
is halfspace range searching and, as we just mentioned, a query can be
answered in O(logn) time using O(n?) storage.

Assume now that & > 1. We begin with a (1/r)-cutting C, where r = n®,
for some small fixed € > 0. Without loss of generality, suppose that pg says
“below.” Then, for each cell ¢in C, we identify the subset B, of hyperplanes
passing below the interior of the cell. For each cell ¢, we iterate on this

The answer to the query is
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process with respect to the set of hyperplanes that intersect the interior of
¢, using the same value of r at each iteration. This process can be modeled
by a rooted tree of degree O(r?). At each node v of depth k, we have:

e A set H, of hyperplanes of size at most n/r";

e A (1/r)-cutting for H,, along with, for each cell ¢, (i) the subset
B. of hyperplanes in H, passing below the interior of ¢, and (ii)
a data structure of type (pi,. .., px) built recursively with respect
to B..

To answer a query, we perform point location in the (1/r)-cutting stored
at the root and thus identify the cell ¢ enclosing py. Next, we recursively
answer the query (p1,p1),-- -, (Pk, pr) with respect to B.. Finally, we move
to the child v associated with ¢, and we recursively answer the original query
(po, po), - - -» (Pr, pr) with respect to H,. The correctness of the algorithm
is obvious.!'®

Because r = nf, the depth of the tree and, for that matter, of any of the
auxiliary trees is constant; so the query time is at most proportional to the
maximum time spent at any given node. Point location is the dominant
cost at each node, so the query time is, indeed, O(logn), as desired.

The storage Si(n) follows the recurrence: So(n) = O(n), Si(n) = O(1)
for n = O(1), and

Sk(n) = O(r?) - (Sk(n/r) + Sk—1(n)).

This gives Sy(n) = O(n®+"), for some ¢’ tending to 0 as £ — 0.

Theorem 5.13 Given n points in R%, there exists a data structure of
size O(n?*e), for any fived ¢ > 0, that allows simplex range searching to be
done in O(logn) time per query.

Space-Time Tradeoffs

Suppose that m > n units of storage are available. Plugging together
the two previous algorithms provides a near-optimal solution to simplex
range searching. The idea is to build a partition tree based on simplicial
partitions but to prune the bottom of the tree. Specifically, as soon as the
subproblem at a node involves fewer than ng points, for some parameter
no(n,m), we switch to the data structure of Theorem 5.13. The pruned

16\We assume that the query point does not lie on the boundary of a cell of C: To
handle this particular case requires only minor modifications to the algorithm.
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tree has only O(n/ng) leaves, each of which requires storage O(nd ). The
total amount of storage is therefore O(nnl~'"¢), which is less than m if
we set ng = c¢(m/n)'/(@~1%2) for some small enough constant ¢ > 0. The
query time is equal to tit2, where t; (resp. t») is the time indicated in
Theorem 5.9 (resp. Theorem 5.13) for a problem of size O(n/ng) (resp.

ng). This shows that the query time is bounded by

n\1-1/d+e
(—) log ny,
no

which is O(n!*< /m'/4) for some &' tending to 0 as € — 0. This completes
the proof of Theorem 5.7 (page 215). O

5.4 Bibliographical Notes

Section 5.1: The optimal e-cutting construction of Theorem 5.1 (page
206) is due to Chazelle [69]. A more complex argument was used earlier by
Chazelle and Friedman to [78] to prove the same result, but with a higher
preprocessing time. The idea of partitioning space into sparsely intersected
simplices goes back to Clarkson [94] and Haussler and Welzl [160]. The term
e-cutting, and the definition given here, were introduced by Matousek [211].
Near-optimal e-cutting constructions were given by Agarwal [4, 5] (in two
dimensions) and Matougek [210, 211, 216] (in any dimension), and played
an influential role in the development of the subject.

Section 5.2: Point location and incidence detection are applications of
cuttings discussed by Chazelle in [69], where Theorem 5.4 (page 212) and
Theorem 5.5 (page 213) are established. Other applications not discussed
here are given by Agarwal in [5]. The algorithm for Hopcroft’s problem
(Theorem 5.6, page 214) is also taken from [69]. The best bound currently
known, due to Matousek [213], is n/320008" ) Weaker bounds (though
with the right exponent 4/3) were obtained earlier by Edelsbrunner et
al. [119] and Agarwal [4]. Our passing reference to a natural lower bound
on Hopcroft’s problem is substantiated by Erickson [125], who has estab-
lished a lower bound of Q(n*/?) in a restricted but fairly realistic model of
computation.

Section 5.3: The idea of using a partition tree for triangle range search-
ing is due to Willard [324]. Edelsbrunner and Welzl [123] improved on
the choice of partitioning lines to produce the conjugation tree. Gener-
alizations to higher dimensions were also found, and many papers were
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written on the subject; see surveys [6, 214]. A breakthrough was achieved
by Haussler and Welzl [160] in a highly influential paper that introduced
e-nets. They provided a linear-storage solution to simplex range searching
in R? with query time O(n®), for a = 1 — m +¢ and any fixed € > 0.
In the planar case, d = 2, the query time was reduced to nearly optimal
by Welzl in [319] by using low-cutting spanning paths. The construction
was improved by Chazelle and Welzl [86]. The first quasi-optimal solution
in any fixed dimension, including the space-time tradeoff of Theorem 5.7
(page 215), was given by Chazelle, Sharir, and Welzl [85]. The construction
of partition trees based on simplicial partitions is due to Matousek [212], as
is Theorem 5.12 (page 223). The best space-time tradeoff currently known
is due to Matousek [213]. It represents a slight improvement over Theo-
rem 5.7: Instead of O(n'*s/m!/?), the bound is O(n(logm/n)%*+!/m'/?),
for m/n large enough.
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Complexity Lower Bounds

he discrepancy method is not just about designing algorithms.
Techniques used for showing the necessity of disorder in complex
s structures can sometimes be recycled to prove the computational
difficulty of solving certain problems. In this case, our aim is to translate
high discrepancy into high complexity. To add a touch of irony, we will
occasionally run into lower bound arguments that need highly uniform
structures as auxiliary devices. So, expect low discrepancy to be part of
the picture as well.

The arguments developed in this chapter are almost exclusively alge-
braic or Ramsey-type. The problems that they are trying to solve arise in
the context of arithmetic circuits and geometric databases. They are all
variations on the same “matrix complexity” theme: Let A be an n-by-n
matrix with 0/1 elements. The goal is to assemble the matrix A by forming
a sequence of column vectors Uy, ...,Us € Z™, where s > n and

e (Uy,...,U,) is the n-by-n identity matrix;

e A= (Uit Us);

e foranyi=mn+1,...,s, there exist j,k <7 and «;,5; € Z
such that U; = a;U; + B;U.

The minimum length s of any sequence that satisfies these three conditions
is called the complexity of A. We leave the following statements as warm-up
exercises: All 0/1 matrices have complexity O(n?). A matrix does not have
to be sparse to be trivial. For example, a triangular matrix with ones below

228
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the diagonal and zeros elsewhere has linear complexity. A random 0/1
matrix, on the other hand, has complexity Q(n?/logn). Hint: Compare
the number of possible sequences mod 2 and the number of matrices. What
about classical matrices such as the 0/1 matrix derived from Hadamard by
adding 1 to its elements and dividing by 2 (Appendix B.1)? What about
the complexity of geometric matrices, ie, incidence matrices of geometric set
systems? Also, why restrict ourselves to coefficients in Z7 What about the
discrete Fourier transform? Is the FFT optimal? Unfortunately, current
technology is not up to the task. At the time of this writing, answers are
unavailable.

So, in typical fashion, we restrict the model. First, we bound the size of
the coefficients; then we distinguish between group and semigroup struc-
tures. In the monotone (resp. nonmonotone) model, all ;, §;’s are confined
to {0,1} (resp. {—1,0,1}). Tools from extremal graph theory are powerful
enough to elucidate most questions in the monotone case. Nonmonotonicity
presents us with considerable difficulties, however, and more sophisticated
machinery must be brought to bear. This tune has a familiar ring to it:
The monotone vs. nonmonotone question echoes throughout contemporary
complexity theory.

The problem of assembling matrices one column at a time raises intrigu-
ing complexity questions, and the simplicity of its statement is compelling.
To make a good story even better, it has been the main vehicle for resolving
the complexity of multidimensional searching. In that context, the prob-
lem is phrased in its dual, equivalent version, where the cast of characters
consists of linear forms rather than vectors. So, purely for historical rea-
sons, instead of linear combinations of column vectors, we speak of gates
of linear circuits. The distinction between monotone and nonmonotone is
the same. In fact, as will soon be obvious, the vector and circuit models
are identical; only the language is different.

A range searching problem is specified by a set of n points in R?. Each
point p; is assigned a real number z;, called its weight. A query is given
by a range (ie, a region of space such as a box, a simplex, or a ball) and
the answer is the sum of the weights of the points within the range. This
is on-line range searching. There is also the off-line version, where all the
queries are given ahead of time and are to be processed in batched mode.
Figure 6.1 illustrates off-line triangle range searching. The input consists
of five triangles R;, five points, and five real numbers z; (the weights of the
points). The output is the sequence of numbers (z1,z2 + 3,3 + x5, T2 +
T4, Ts5).
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Fig. 6.1. Triangle range searching: The output is (z1, z2+x3, z3+x5, L2+24,T5).

The problem is neatly captured by the incidence matrix

10 0 0O
01100
A= 0 0 1 0 1
01 010
0 00 01
Given z = (21,...,7,)7, the task is to compute Az. For that purpose, we

use a circuit to encode A, whose input is  and output Az. Roughly speak-
ing, the nonmonotone model allows both addition and subtraction gates,
while the monotone version allows only the former. This is the distinction
in circuit complexity theory between monotone and nonmonotone compu-
tation. Nonmonotonicity is much harder to tackle because the computation
can create unforeseen cancellations and take advantage of hidden symme-
tries more effectively. In fact, it is often hard to tell what a nonmonotone
circuit cannot do. The monotone case raises mostly combinatorial ques-
tions related to the presence of complete subgraphs in certain geometric
graphs. Quite differently, the nonmonotone case involves mainly algebraic
issues, which we approach by investigating the spectrum of the correspond-
ing incidence matrices.!

Monotone models are often derided as informing us less about complexity

IThe term spectrum refers here to the set of singular values of the matrix A, ie, the
square roots of the eigenvalues of AT A.
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theory than about our inability to prove interesting theorems. Let’s face
it: More often than not, the only reason we consider monotone models
is to be able to prove something. This chapter is a happy exception. If
anything, the natural habitat of range searching is a monotone model. This
is because one might want to perform operations such as maz that do not
have inverses. Of course, to restrict the problem statement to operations
with inverses is a logical step, but the reason is not that monotonicity is
something to run away from, at least not in this case.

Discrepancy theory plays a major role in this chapter on lower bounds.
In the nonmonotone case, high discrepancy implies high complexity. Why
the ability of coloring evenly has anything to do with range searching is
one of the wonders to behold in this chapter. The link between discrepancy
and complexity is the spectrum of the incidence matrices. Interestingly, we
also use data structures to establish upper bounds on the singular values of
such matrices. This is an interesting twist where the theory of algorithms is
used to prove purely combinatorial results. A fact that seems to have gone
unnoticed is that much of the range searching literature (quad-trees, kd-
trees, interval trees, segment trees, range trees, etc) is implicitly concerned
with eigenvalue problems.

In the monotone case, the problem usually comes down to bounding
the size of complete bipartite subgraphs. In the case of simplex range
searching, we must solve a variant of Heilbronn’s problem (place n points
in the unit square forming no triangle of small area), a problem with a
heavy discrepancy scent. We also use our old friends from Chapter 2, low-
discrepancy point sets for boxes. This chapter introduces many different
ideas. I have tried to keep the sections mostly independent of one another,
with each one introducing at least one new idea.

A point of terminology: The incidence matrix A = (A4;;) of a set system
defined by points and regions of space is called a geometric matriz. In our
discussion, we restrict ourselves to square matrices defined by n points,
P1,---,Pn, and n regions Ry, ..., R, C R%, where

. 1 if p; € R,
Aij = { 0 else.

If the regions are boxes (resp. lines, triangles, simplices) we speak of box
(resp. line, triangle, and simplex) matrices. In this chapter all boxes are
understood to be axis-parallel.
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e In §6.1 we investigate off-line range searching in the nonmonotone

case. We prove a general spectral lemma relating the complexity
of a problem instance to the spectrum of the incidence matrix of
the set system associated with it. This gives us an opportunity to
introduce a general entropy-based method of independent interest.
We apply the spectral lemma to range searching with respect to
boxes and triangles, successively. This entails charting out the
spectrum of two important families of geometric matrices. We
also use a second-moment variant of the spectral lemma, called the
trace lemma, to investigate range searching with respect to lines
and boxes in higher dimension. This section ties in nicely with the
previous chapters on discrepancy theory by further exploring the
algebraic properties of geometric set systems.

In §6.2 we investigate the use of data structures to obtain upper
bounds on the singular values of some geometric matrices. It must
be understood that we are not concerned here with numerical com-
putations of eigenvalues but with asymptotic bounds as a function
of the size of the matrices, a much more difficult problem.

We revisit the same range searching problems in §6.3, but this
time in the monotone model. In other words, we investigate the
monotone circuit complexity of box, line, and simplex matrices.
We are able to prove much stronger results, in fact nearly optimal
lower bounds. The main thrust of the proof techniques lies in
extremal graph theory. We build geometric matrices containing no
large rectangles of ones, ie, bipartite graphs with no large complete
subgraphs. Again, discrepancy theory is used extensively through
such devices as Halton-Hammersley point sets.

In §6.4 we investigate space-time tradeoffs for on-line range search-
ing in the monotone model. We consider the case of queries given
as boxes and as simplices; these problems are commonly referred
to as orthogonal range searching and simplex range searching, re-
spectively.
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\’
AX

Fig. 6.2. The gates of an arithmetic circuit take two numbers as input and add
or subtract them.

6.1 Arithmetic Circuits

Let A be an n-by-n 0/1 matrix. We consider the problem of computing the
vector y = Az, where z = (21,...,7,)7, for any given x € R" and fixed
A. The model of computation is a linear arithmetic circuit (Fig. 6.2). This
is a directed acyclic graph whose nodes, the gates, have indegree 2. Each
gate takes two numbers a, b as input and outputs a+b or a —b. The size of
the circuit is the number of edges. The arithmetic complezity of the matrix
A is the size of the smallest circuit for computing z — Az. Note that the
circuit depends on A but not on z; it must work for any input x € R™. The
model is realistic inasmuch as it can describe all of the known algorithms
for range searching.’

It is easy to prove that the size of the circuit is Q(log|det A|). This
is the Morgenstern bound. A rough proof sketch goes as follows: Each
gate can be viewed as adding or subtracting two linear forms over the
variables z1,...,x,, or, equivalently, adding or subtracting two vectors in
R"™. Regard the circuit as a directed acyclic graph and order the gates
topologically. Going through the gates in sequence, we easily see that no
gate can more than double the value of the biggest determinant formed by

2This excludes special range searching problems where one wishes to detect which
ranges are empty, or report the points one by one. Ad hoc solutions sometimes ex-
ist for these problems. One could also allow more exotic operations at the gates (eg,
multiplication, square roots). At present, nothing is known about such extensions.



234 CoMPLEXITY LOWER BOUNDS

any subset of n of the vectors computed so far. The lower bound follows
immediately. Geometrically, this is saying that the circuit can “blow up”
the unit sphere {z : ||z|| = 1} into the ellipsoid { Az : ||z|]]2 = 1} only
so fast. The Morgenstern bound is useful for some highly structured linear
maps, such as the discrete Fourier transform, but in general it suffers from
serious weaknesses:

1. The matrix A needs to be of full rank.

2. To find good asymptotics for determinants can be exceedingly dif-
ficult. Recall that the Riemann hypothesis can be formulated as a
bound on the determinant of the Redheffer matrix (page 32).

3. The Morgenstern bound can be expressed as Q(n log([] Ai)'/"), where
AL, --., A are the eigenvalues of AT A. In other words, it is a func-
tion of the geometric mean of the eigenvalues. There are many
means to choose from: for lower bound purposes, the geometric
mean is among the worst. A bound involving the arithmetic mean
L5 Xi would be much more favorable. Not only because it is never
smaller than its geometric counterpart, but because the sum of the
eigenvalues is the trace of AT A, a much easier invariant to deal with
than the determinant.

We establish a trace lemma, which shows that the complexity of z — Ax
is at least on the order of nlog(tr M/n — e\/tr M2/n), where M = AT A
and € > 0 is any constant. The advantage of this formulation is that the
trace of M (resp. M?) has a simple combinatorial interpretation: it counts
the number of ones (resp. rectangles of ones) in A. The lower bound follows
from a more general result, called the spectral lemma, which bounds the
circuit complexity by Q(nlog ), for any k = ©(n).

To prove lower bounds for range searching, then we need either to esti-
mate the traces of M and M? or, if that does not work, to find asymptotic
estimates of the midrange of the spectrum of A. In both cases, tools from
discrepancy theory come into play. Entropy considerations about the cir-
cuit close the pipeline from discrepancy theory to complexity lower bounds
(Fig. 6.3).

The spectral lemma has the added advantage of accommodating up to
a linear number of help gates. (Something the Morgenstern bound cannot
do.) A help gate takes two inputs a,b and outputs f(a,b) € R, where f is
any function. Help gates need not all use the same functions. One should
not underestimate the power of help gates. Any Az can be computed
entirely with 2n — 1 help gates. By using n — 1 gates arranged at the nodes



6.1 ARITHMETIC CIRCUITS 235

[ discrepancy theory }

eigenvalues of AA

l

[ circuit entropy }

!

[ lower bound on circuit size }

Fig. 6.3. The discrepancy method pipeline for bounding linear circuits.

of a tree we encode the vector (z1,...,z,) into a number. Then, with
another n gates, we compute each coordinate of Az (Fig. 6.4).

X X
1 o o n

AX

Fig. 6.4. The middle help gate encodes the vector . The help gates below extract
the relevant subset of z;’s and sum them up. They take only one input each but,
to conform with the definition, a dummy one can always be added.

Obviously the Morgenstern bound cannot accommodate any help gates,
since even a single one can be used to blow up the unit sphere to any size.
On the other hand, the spectral lemma can be refined to show that any
circuit for computing Az has size Q(k — 2h) log Ar.. where h is the number
of help gates.

Entropy-Increasing Computation

We build a probability distribution on the input vector z and we monitor
the entropy of the set of variables computed by the circuit. Assuming
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O

N2

\

Fig. 6.5. The circuit turns a beach ball into a football.

that A is nonsingular, there is no loss of entropy, of course, and it is hard
to argue anything interesting. So, we build a device through which, to
a certain observer, the computation becomes entropy-increasing. Suppose
that the computation of the circuit is visible at each gate, but that the
observer is required to wear a certain type of glasses. Sadly for him, these
glasses blur his vision, so that instead of showing the real number z, it shows
C|z/C| for a large fixed parameter C. To our observer’s blurred eyes, the
input vector z appears to have much less entropy than it has (because of
the truncation). On the other hand, it can be shown that truncating has
very little effect on the entropy of the output variables. In other words, the
observer sees little entropy coming in and a lot of entropy getting out (note
that for the observer, the circuit behaves nondeterministically, so there is
no contradiction).

Intuitively, the reason why entropy is coming back into the system is
that, if the map A has large singular values, it should stretch the input
vector x, so that the various values of z that collide (with the glasses
on) no longer collide after being transformed by A. From the observer’s
viewpoint, therefore, the circuit appears to reinject entropy into the system:.
The second step of the argument is to show that any gate can reinject at
most a small amount of entropy, and so many of them are needed.

Blurring and computing are dual to each other. Their interaction man-
ifests itself through losses and gains of information. So, it is intuitively
natural to use entropy as the main monitoring parameter. It is not the
only possible choice. It is the best, however, because the entropy func-
tion satisfies all sorts of identities and inequalites, and proves a wonderful
vehicle for simplifying otherwise hopelessly messy calculations.
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high entropy low entropy
blurring lens
deterministic nondeterministic

circuit VAN circuit

high entropy high entropy

Fig. 6.6. A blurring lens makes the circuit appear nondeterministic. The com-
putation becomes entropy-increasing.

The Spectral Lemma

The result below forms the main focus of this section. For those who view
help gates as mere frills, we also state a weaker, bare-bones variant. Finally,
we mention a useful corollary, which requires only a second-moment tail
estimate on the distribution of eigenvalues, something we often can get at
by purely combinatorial means.

Lemma 6.1 (THE SPECTRAL LEMMA) Given an n-by-n 0/1 matriz A,
any circuit for computing Ax has size at least Q(k — 2h)log A\, for any
1 < k < n, where h is the number of help gates and \;, is the k-th largest
eigenvalue of AT A.

Lemma 6.2 Any circuit for computing Ax has size at least Q(nlog\x),
for any k = O(n).

Lemma 6.3 (THE TRACE LEMMA) Any circuit for computing Az has

size
Q. (nlog(trM/n - gx/trM2/n)),
where M = AT A and ¢ > 0 is an arbitrarily small constant.

Proof: An immediate corollary of the spectral lemma, together with
Lemma 1.19 (page 34), which states that

A > tr M/n —ev/tr M2 /n,
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for some k = Q.(n). O

Proof of the Spectral Lemma: To begin with, we specify a probability
distribution on the input vectors z € R™. We fix an arbitrary 1 < k < n
and prove the lower bound of the spectral lemma, for that particular k. Let
K be the invariant subspace spanned by the eigenvectors for M associated
with Ay,..., \;. (For convenience, we ensure that K is of dimension exactly
k by dropping some of the eigenvectors for \g, in case of multiplicity.) Let
B, (p,r) denote the Euclidean n-ball of radius r centered at p, and let V;,(r)
be its volume. Fixing a large parameter R, we consider the collection L of
centers of the cubes of the form Z™+]0, 1] that intersect KNB,, (0, R). The
underlying input distribution is defined by choosing z at random uniformly
in L.

We show that it is possible to bucket the random vector Az into a suitably
large grid without losing too much entropy. For convenience, we scale the
matrix to make the bucketing particularly simple. We bring the eigenvalue
of interest into the interval [1,2]; for this reason we must now consider
matrices with rational elements and not simply those of the 0/1 type.

Two pieces of notation: Given a random variable y, we let H(y) denote
the entropy of y (see Appendix A.3 for definitions and standard properties).
Also, given z = (z1,...,2,)7 € R"™, we use the shorthand |z| to denote
the vector (|z1],...,2.))7.

Lemma 6.4 Let B denote an n-by-n matriz with rational elements and let
By > - > By, be the eigenvalues of BTB. If 1 < B, < 2, then

H(|Bz|) > H(z) —log Va(5v/n ).

Proof: Note that the lemma refers to the parameter k that was fixed
earlier. We must show that not too many integer points = can collide into
the same unit cube via the transformation B. Let x,z’ € L be such that
| Bz| = | Bz'|. Write = as the direct sum xg + u, where o € K, u € K+,
and do the same with z', ie, ' = zf, + u', where z}, € K, v’ € K+. By
abuse of terminology, we also use K to designate the space spanned by the
eigenvectors associated with fy,..., 8. Observe that

llu = u'llz < fullz + [lu'll2 < Vn.

By the variational characterization of eigenvalues,

I1B(x0 — 20)ll2 > /B llzo — 2 l2-
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Because K contains u — ' and is spanned by eigenvectors corresponding
to B < Bk,

IB(u = u)llz < /B [lu =o'l
Because |Bz| = |Bz'|, we have ||B(z — z')||2 < /i, and hence (for 1 <
Br < 2)
lzo — @pll2 + [Ju — [l
1B (w0 — z0)ll2 + llu — v/l
1B(z — 2|2 + 1B (u — u)ll2 + [lu— u'l]2
Vit 3llu— ']z < 4v/n.
Thus, the preimage of a fixed z € R™ under z € L — |Bz] lies entirely in
aball B,,(z,4y/n), for some z € L. It follows that the uniform distribution
within that preimage has entropy at most log V,,(5v/n). Indeed, the unit

cubes centered at the points of the preimage all lie in B,,(x, 5y/n ). Standard
identities on the entropy of joint distributions (see Appendix A.3), namely,

e — 2’|l

IN AN IN N

H(z) = H(z, |Bz]) = H(|Bz|) + H(z | [Bz]),

complete the proof. O

Let z = (21,...,25)7 be the vector of R™ whose coordinates are the
intermediate variables computed by the nodes; we append the input vari-
ables at the beginning of the list (z; = z;, for 1 < j < n) and the output
variables at the end (2s_pn4; = y;, for 1 < j <n). We assume that the list
corresponds to a topological ordering of the circuit’s nodes, meaning that,
for any j > n,

zj = ajzp() + Bizg(5),

where f(j) < g(j) < j and «;,; € {—1,0,1}. If the node corresponds
to a help gate, then z; is an arbitrary real function of z; ;) and zy;). For
convenience we use the notation

p= 1V

The input x to the circuit is chosen so that £ = pz is a random vari-
able uniformly distributed in L. We shall assume that A is large enough,
something the spectral lemma certainly allows us to do.

For our unfortunate observer wearing blurring glasses, bucketing the in-
put z appears to cause a substantial loss of entropy (Lemma 6.5). On the
other hand, bucketing the entire vector z causes almost no entropy loss
(Lemma 6.6). Consequently, the gates of the circuit must appear to the
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observer as restoring lost entropy. Lemma 6.7 shows that a single gate can
contribute only that much to the restoring process, and therefore many
gates are required to do the job.

Lemma 6.5
H([z]) < 2n+log Vi (R/p).

Proof: Let C be the set of cubes of the form (uZ)" + [0, u]”. Any cube
of C that contains a point of L contains the entire unit cube centered at
that point, and so it intersects K N B, (O, R). The number of such cubes
is easily shown to be bounded by 3"V} (R/u), so that

H(lz]) = H(l&1/pl,--- [@a/1])
< 2n+logVi(R/p).

Lemma 6.6

H(|z]) > log Vi (R) —log Vi (V) — log Vi (5v/n ).
Proof: The unit-side length cubes whose centers are in L cover the ball

By (0O, R) embedded in K. The intersection of K with each of these cubes
fits into a k-ball of radius \/n/2, so |L| > Vi(R)/Vi(y/n ), and hence

H (%) = log|L| > log Vi (R) — log Vi (v/n).

Because A is a linear map, the circuit outputs BZ, where

B (l)A
In
obviously satisfies the conditions of Lemma 6.4. Thus,

H(|2)) > H(|Bz]) > H(#) — log Va(5v/),

which proves the lemma. O

As the circuit computes Az, the vector | z| gets modified by gaining one
more coordinate at each step. We argue that its entropy cannot increase
too much at any step. We distinguish between regular (ie, nonhelp) gates,
where the increase is shown not to exceed 3, and help gates, where the
entropy increase can be more substantial.

Without help gates, it is clear that the output of any gate is a variable
that can be expressed as a linear form over the input variables z1,...,z,.
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Let us call the output of any help gate a help variable. It is now equally
clear that any gate variable can be expressed uniquely as a linear form over
the input and help variables. Note that no attempt is made to express help
variables in terms of other variables. Let us break down the expression for
% (resp. 27) denotes the linear form over
the input (resp. help) variables. Our observer will monitor the information

contents of the pairs

TE3 — n
zj by writing z; = 2} + 2}/, where z

def
z; = (l2j],2)).

We denote by z the vector (z1,...,%s). The relevant conditional entropies
can be bounded as follows:

Lemma 6.7 Givenn < j <s,
3 for any regular variable z;,
; , L) <
H(z;121(5),295)) < { 2(logp + 1) for any help variable z;.
Proof: Suppose that z; is a regular variable. Obviously,

because 27 is completely specified by z(;) and z,(;). To deal with 2}, we

use simple inequalities about entropy (Appendix A.3), such as subadditivity
and H(LA|B)< H(A|C)+H(C|B):

H(L25] | 2y ds Lzgn)) < HCL25 a2 ), Bizg)))
+H( Lajz}(j)J | LZ}(j)J )+ H( LBjZ;(j)J | LZ;(]')J )-

Given two random variables £, &' arbitrarily distributed in R,

H([g+I1ELLE) <1

Indeed, the only information missing is a one-bit carry. Similarly, given a
real random variable £, we have H( [—¢] | [£] ) < 1. Since z; = zp(j) £ 24
it follows that

Dk
H( 23] | [2h))s Lzg))) <3
By (6.1), we have

H(zj| 255,25 ) < H([25) | 1255 ) L2505

which concludes the first case.
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If z; is a help variable, then z; = 27, where 2} is an arbitrary function of
zp(j) and z,(;). Regarding zy(;) = z}(j) +z}'(j), the only information we have
at our disposal is zs(;) = (Lz}(j)J,z}'(j)). There is no loss of information
in the second component, z}’( i) The same is not true of the first one,
however. The key observation is that z} i) is a linear form over z,...,Z,
with integer coefficients. Thus, since 2ux; is itself integral, so is 2uz}(j). It
follows that the fractional part of z} ;) can be one of only 2u possible values,
and hence H(z}(j) | Lz}(j)J) < logu + 1. By using standard properties of
the entropy function, in particular, subadditivity and the nonincreasing
effect of conditioning, we easily derive (skipping a few intermediate steps)

H(zj|zs(),29)) < H((21(), 200) | 21G) 0 Z9() )
< H(zpg [ L2p)) + Hzg( | Lzg05)))
< 2(logu+1).

By Lemmas 6.5 and 6.7 and standard facts about entropy,

H(z) = H(lz))+ Y  H(zl|z,...,zi1)

n+1<j<s
< H(lzD)+ Y H(zilzs0)24))
n+1<;j<s
2n +log Vi.(R/p) +3(s —n — h) + 2h(logp + 1)
3s —n+log Vi (R/p) + 2hlog i,

and therefore

H(lz]) < H(z|2])=H(z)+ H(|z]|2)

8§

< H()+ Y, H(lz+2)]|12].2])
j=n+1
< 4s+2hlogu +log Vi(R/1).

Bringing the lower bound of Lemma 6.6 to bear, we derive
4s > —2hlogu —logVi(R/p) + log Vi.(R) — log Vi.(v/n)
—log Vi, (5v/n).
Using for Vi (r) the approximation
1 /2em\k/2
Vrk (T) "
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we find that
4s > —2hlogu + klogp —log Vi (v/n) —log Vy,(5v/n).

The last two terms add up to O(n) in absolute value. Since )y is large
enough, it follows that

s > £(k — 2h)log A\, — O(n).

The size of the circuit is the number of edges, which is at least n + s. By
scaling down the constant ¢ in the spectral lemma accordingly, its proof is
now complete (page 237). O

A Wavelet Argument for Box Matrices

Our first application of the spectral lemma is to establish a lower bound
for off-line range searching with respect to axis-parallel boxes. By using a
wavelet approach reminiscent of something we did in Chapter 3, we provide
an eloquent example of the discrepancy method in action.

Theorem 6.8 There are n-by-n boxr matrices of arithmetic complexity
Q(nloglogn). This remains true in the presence of up to n/9 help gates.

We build a large N x n set system B, where N = n©(") from which

we extract an n x n set system A that satisfies the lower bound. (This
is not the same B as the one used in Lemma 6.4.) To construct B, as in
Chapter 2, we use a set P of n points corresponding to a two-dimensional
Halton-Hammersley point set; for boxes we take the southwest quadrants
cornered at the N points of a fine square grid. Let gy > --- > u, be
the eigenvalues of BT B. (From now on we identify a set system with its
incidence matrix.) The proof of the lower bound consists of three steps:

e STEP 1: Show that u; > (n — k)N(logn)/n?, forany 1 < k <n
(Lemma 6.10).3

e STEP 2: Prove the existence of an n-by-n submatrix A of B such
that det AT A = Q(logn)"” (Lemma 6.11).

e STEP 3: Show that the k-th largest eigenvalue A, of AT A is at
least (logn)®("), for any k up to roughly n/4 (Lemma 6.12).

Combining the lower bound of this last step with the spectral lemma proves
Theorem 6.8. O

3Recall that < and > denote O() and (), respectively.
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We now discuss each step separately. Let m be a large enough power
of 2, and let n = m/8. The set P is a subset of the bit-reversal point set
(Halton-Hammersley in two dimensions):

1 1 k
= (5 etk 5—+—) | 0<k :
@ {(2m+c()2m+m 0< <m}
where c(k) = Y ;5 b(i)/2""" and {b(i)} is the binary expression for the
running index k, ie, k = Y,5,b(i)2". To illustrate this rather abstruse
definition, we take the simple example m = 4. The set @) consists of the
points shown in Figure 6.7. Their coordinates in binary are

{(0.001, 0.001), (0.101,0.011), (0.011,0.101), (0.111, 0.111)}.

0.25

0 0.25 1

Fig. 6.7. The set Q for m = 4.

For any 1 < k < logm, let G, be the grid obtained by dividing [0, 1] into
m axis-parallel rectangles of size 27% x (2¥/m). See Figure 6.8. It is easy
to see that each cell o of Gy, is a rectangle of area 1/m that contains exactly
one point ¢ of Q). We say that ¢ is well-centered for Gy, if is lies near the
center ¢, of o, specifically, within the box (¢ +¢,)/2. At least a quarter of
the points in @) are well-centered for Gi. We omit the proof of this simple
fact.* Tt follows that at least m/8 points of @ are each well-centered for

4A hint: Subdivide each cell of G, into m squares of area 1/m?2. For each cell, exactly
one of the squares is occupied by a point of Q. From cell to cell the point in question
occupies a different square; since a quarter of a cell is well-centered, the point in question
is well-centered a quarter of the time.
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at least (logm)/8 grids Xj. We define P to consist of n = m/8 of these
points.

Fig. 6.8. The three grids for m = 8.

Let G be the (VN — 1) x (/N — 1) square grid covering [0, 1]?, where
N = (m? + 1)2. Each column of the N-by-n matrix B corresponds to
a distinct point of P. Each row of B is associated with the southwest
quadrant cornered at a distinct grid point; in other words, for each grid
point (z,y) there is a distinct row in B that is the characteristic vector of
the set PN (—o0,z] X (—o00,y]. Note that the N rows are not all distinct.
Next, we show that the set system B contains a hard subsystem (for range
searching). Our first task is to bound the L? norm of Bz in terms of the
L' norm of z.

Lemma 6.9 For any x € R",

1
[1Bz[l2 > —+/Nlogn |z

Proof: Fix x = (z1,...,2,)T € R". Each z; corresponds to a distinct
point of P, so by abuse of terminology x; will also be used to refer to its
corresponding point. By reversing signs if necessary, we can always assume
that

lzll <2 Z ;. (6.2)

z; >0

Given 1 < k < logm, we say that a cell o of Gy, is k-heavy if it contains a
well-centered point x; and z; > 0. We assign a weight to each grid point ¢
of G as follows: Let o be any cell of G, that contains q.

e If o is not uniquely defined (because ¢ lies on its boundary), or if
o is not heavy, then assign ¢ a weight of 0.
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e Else, subdivide o into four equal-size quadrants (similar to o):
Assign ¢ a weight of 1 if it lies in the interior of the northeast or
southwest quadrant; assign a weight of —1 if it lies in the interior
of the northwest or southeast quadrant. If g lies elsewhere, assign
it a weight of 0.

One might recognize a discrete version of the Haar wavelets used in the
method of orthogonal functions (Chapter 3). Using the same ordering
as the rows of B, let g € R"™ be the column vector of weights. It is
immediate that the logm vectors g; are orthogonal. Let G be the matrix
(91,-- -, Glog m) and let u be the column vector made of log m ones. Because
G is orthogonal,

logm
IGulB = > llgells < Nlogm.
k=1

By summing separately over each k-heavy cell o, we obtain

N
T
B i € k-h 1l of .
i m>>m% {z; € eavy cell of Gy, }

Why this is true is a little subtle, and an example might help. Figure 6.9
illustrates how, in a k-heavy cell, the weights of 1 at q;,¢s and —1 at go2, g4
produce the cancellations that contribute x; to g,{Ba:, for any ¢; higher
and to the right of z;. Since the cell in question is heavy, the set of such
q1’s covers at least a fraction of the cell.

-1 a, q, +1

Fig. 6.9. The four discrepancies at the corners of the rectangle gi1g2q3qs cancel
out to produce the discrepancy within the rectangle, ie, ;.

Because each z; > 0 is well-centered for at least a fraction of the grids
Gk, it follows from (6.2) and m = 8n that

Nlogn

(Gu)" B > [l

n
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Finally, by Cauchy-Schwarz,

Nlogn
gH|h<ﬁhffw<w%m|Wﬂb<vawHWﬂb

Lemma 6.10 For any 1 < k < n, the k-th largest eigenvalue of BT B
satisfies
(n—k+1)Nlogn

P > e

Proof: Let {v;} be an orthonormal eigenbasis for BT B, where v; is a unit
eigenvector associated with p;. If @ = (g;;) denotes the orthonormal matrix
whose rows are the eigenvectors v;, then the column vector £ obtained by
expressing z in the basis {v;} satisfies ¢ = Qz. The difficulty in applying
Lemma 6.9 is that the L? norm of Bz is bounded in terms of the L' norm
of x. To get over this hurdle, we show that the invariant subspace spanned
by {v,...,v,} contains a unit vector x whose L! norm is as large as
vn —k+ 1. By the variational characterization of eigenvalues, the lower
bound will then follow.

We use a probabilistic argument. Let R = (r;;) be the matrix obtained
by replacing each of the first £ — 1 rows of @) by a row of zeros. If y =
(y1,.-.,yn) is a random vector chosen uniformly in {—1,1}", then

ZrlJyJ)
]2 + Z Z 0505 Byjyp

i>k j#j'

E|Ryll; =

[l
||M:
Mz Py

S
\
=

<.

Il
-

q?j:n—k—kl.

S

v
=

<
Il

[l
M |

1

This implies the existence of a vector y € {—1,1}" such that
IRyllz >n —k+1,

and therefore the (n — k)-flat defined by the equations

{ =0 (1<i<k-1),

(Qy)Té-: Vn_k+]-)

intersects the unit-radius ball centered at the origin. Indeed, in the sub-
space spanned by {vg,...,v,}, the distance of the flat specified above to
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the origin is equal to vn — k + 1/||Ry||2. If z is a point of the intersection,
the relation £ = Qx shows that

lzllh >y "z = (Qy)"¢ =Vn—k+1,
and, from Lemma 6.9,

Nlogn

(n—k+1)Nlogn

[l > .

e > pellall3 > D it = || Bal3 > — -

i=1

O

Since the determinant of BT B is the product of the eigenvalues,

Nlognyn
Og") nl . (6.3)

det BT B = 0=

n

Lemma 6.11 There exist n points and n southwest quadrants whose inci-
dence matriz A satisfies

det ATA = Q(logn)™.

Proof: By the Binet-Cauchy formula,
2

Th_ Ju o J2 oo Un
det BB = Z' ‘detB( s )
1< 1< <jn <N
Therefore, by (6.3) there exists an n-by-n submatrix A of B such that

2

det ATA = |detB( 20 2 -+ In
1 2 ... n

—1
<N ) det BTB
mn

Q(l)"( n )n(ﬁ)n(NlOan)n = Q(logn)™.

eN e n

Y%

This completes the second step of the proof. Let Ay > --- > A, > 0 be
the eigenvalues of AT A. Moving on to the last step, we find that most of the
work left in establishing a lower bound on A involves first proving upper
bounds on these eigenvalues. In view of the spectral lemma (page 237),
Theorem 6.8 (page 243) follows directly from the lower bound below. O

Lemma 6.12 For any k < n/4.1, we have \; = (logn)®™),
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Proof: Of course, we can assume that n is large enough. The proof follows
easily from Lemma 6.17, proven in the next section, which states that

5n2log*n
Aj < 2
Indeed, by Lemma 6.11,
k—1
(n—k)logAr > logdet ATA— Z log \;
j=1
> nloglogn — O(n)

—k(2logn — 2logk + 4loglogn).

Choosing k = n/4 — en, for any fixed ¢ > 0, gives A\ = (logn)?) and
completes the proof. O

Triangle Matrices via Buffon’s Needle

For our second application of the spectral lemma we derive a lower bound
for off-line range searching with respect to triangles. The proof is also a
nice illustration of the discrepancy method, since it hinges on Alexander’s
work on the discrepancy of halfspaces [10] and, hence, as explained earlier,
Buffon’s needle experiment.

Theorem 6.13 There are n-by-n triangle matrices of arithmetic complexity
Q(nlogn). This remains true in the presence of up to n/5 help gates.

As before, for notational convenience, we do not distinguish between
the input points of P and their assigned weights x1,...,x,. Our goal is
to exhibit n halfplanes Ay, ..., h, and prove that the geometric set system
{PNh;} has high spectrum and, hence, is hard for range searching. (Recall
that the spectrum refers to the singular values of the associated incidence
matrix A.) A construction described in §1.5 provides such a set system.
By (1.11) on page 31, we know that

det ATA = Q(n)"/2. (6.4)

Following the approach of the previous section, we bound the singular
values of A from both above and below. We show that the k-th largest
eigenvalue A, of AT A is at least n*(M) for any k up to roughly n/2 (Lemma
6.14). Together with the spectral lemma (page 237), this establishes The-
orem 6.13 (page 249). O
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Lemma 6.14 For any fized e > 0 and any k < n/2 — en, we have X\, =
(1)
n ).

Proof: The lemma follows easily from the upper bound proven in Lemma 6.19:
en?log(j + 1)

A < D BU T
7= j

for some constant ¢ > 0. Indeed,

logdet ATA = Z log \;
i=1

IN

k 2 .

en?log(j +1)

n — k) log Ax + log —————=
(n—k)log A + > log ;

j=1
(n —k)log A + k(2logn
—logk + loglogk + ¢'),

IN

for some constant ¢ > 0. By (6.4), it immediately follows that the lower
bound of the lemma holds for any k¥ < n/2 —en and any fixed € > 0. O

Applications of the Trace Lemma

The main appeal of the trace lemma (page 237) is that it does not involve
individual eigenvalues but only first and second moments. The traces of
M and M? have simple combinatorial interpretations, which makes their
asymptotic estimation sometimes very easy. We give two examples below.
As we observed in Chapter 1, tr M is the number of ones in A, while tr M?
is the number of rectangles of ones in A.

Lemma 6.25 (page 263) asserts the existence of n points and n lines in
the plane, all of them distinct, such that each point belongs to 9(n1/3)
lines and each line contains ©(n'/3) points. The trace of M is the number
of incidences, which is ®(n4/ %). The matrix A is square-free, so the number
of rectangles of ones is ©(n(n'/?)?) and the trace of M? is O(n?/?). By the
trace lemma, we derive this result, which can be viewed as a strengthening
of Theorem 6.13.

Theorem 6.15 There are n-by-n line matrices of arithmetic complexity
Q(nlogn).
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In the proof of Theorem 1.21 (page 36), we exhibit a set of n points and
n boxes in dimension ©(logn) such that, for ¢ ~ 1.0955, tr M = O(n) and
tr M2 = O(n*¢"1). The trace lemma gives us the following lower bound.

Theorem 6.16 There are n-by-n box matrices in dimension ©(logn) of
arithmetic complezity Q(nlogn).

6.2 Data Structures and Eigenvalues

We show in this section how data structures for multidimensional searching
can help in bounding the singular values of geometric matrices.” Once
again, this shows how eigenvalues are the bridge between discrepancy and
algorithms. Let A be an n-by-n matrix with 0/1 elements, and let

M > >0 >0

be the eigenvalues of AT A. By the Courant-Fischer characterization of
eigenvalues, we have
xT AT Ax

A = min max 7

dim F=n—k+1 wh T
So, to find an upper bound on A, we can choose any subspace F of codi-
mension k— 1, ie, any set of kK — 1 homogeneous linear constraints, which we
call F'-constraints, and bound the maximum value of the Rayleigh quotient
above. Our goal in choosing the F-constraints is to “decimate” as many
ones as possible in the matrix A, the rationale being that a 0/1 matrix with
few ones has small singular values. We explain the logic of the approach
on a small example. Suppose that n =4, k = 3, and

. (6.5)

—_ == O
O O ==

1
1
0
1

O O = =

We now must specify the F-constraints. Being entitled to £ — 1 = 2 of
them, we choose 1 + 3 + 4 = 0 and 23 = 0. Then, over F' the map
specified by the matrix A coincides with the one specified by

5Recall that a matrix A is called geometric if it is the incidence matrix of a geometric
set system. The singular values of A are the square roots of the eigenvalues of AT A.
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Q

I
oo oo
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oo oo
oo oo

No eigenvalue of CTC can exceed 1; and so, Ay < 1 and the same is true
of the k-th largest singular value of A. Granted, this example was built to
impress. In general, what is a judicious choice of F-constraints? When A
is a geometric matrix, the answer is to be found in data structures for the
corresponding range searching problem. Magically, their design suggests
how to form the constraints in F'. Isn’t it interesting that, unbeknownst to
them, algorithm designers have been solving eigenvalue problems in disguise
all of these years? We explain this below by considering two cases: box
and triangle matrices.

The Spectrum of Rectangle Matrices

Let A be an n-by-n incidence matrix of a set system formed by n points and
n rectangles (ie, axis-parallel boxes in R?): A4;; is 1 if and only if rectangle
i contains point j. Again, let \; > --- > A, be the eigenvalues of AT A.

Lemma 6.17 For any 1 <k <n,
5n2log! n
k2 ’
Proof: Going from left to right, place the n points in bijection with the
leaves of a complete binary tree. Each node v of the tree is naturally

associated with the vertically sorted list IV, of the points in the leaves at
or below v. This forms what is known as a range tree. Given a southwest

A <

quadrant, a binary search for its z-coordinate leads to a decomposition
of the quadrant into rectangles, every one of which is associated with a
distinct node of the tree (Fig. 6.10). Thus, any set specified by a row of A
can be partitioned into at most ¥ = logn + 1 subsets:

(i) each one is a prefix of a list Ny;
(i) all of the relevant lists N, are on different levels of the tree.

This allows us to break up A into v separate set systems, one for each level
of the tree. Their n-by-n incidence matrices A;,..., A, satisfy A =, 4;.
For example, if row j of matrix A encodes {a,d, e, f} (Fig. 6.10), then row
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j of matrix A;, where i denotes the third level from the bottom, encodes

{a,d}.

b
g
c
f
h
b a 9
C e f
d h
a e
b c f g
a d e h

Fig. 6.10. The rectangle R is decomposed into three canonical rectangles, each
one associated with a node of the tree. The lists NV, appear next to each node.

To define the F-constraints, we break up the lists N, into sublists. For
the calibration of these lists, we assign integer weights to the points in NV,.
We do this in two passes. Initially, every weight is equal to 1. Let ¢ be
the level of v. Among the rows of A; corresponding to prefixes of N, we
check whether any of them are identical. For each group of identical rows,
we take the last element (ie, the point with the highest y-coordinate) in
the prefix and assign that point a weight equal to the size of that group.
Note that the total weight of all the elements at level i in the tree is at
most 2n. Next, consider each list N, (after the previous preprocessing)
and subdivide it into contiguous sublists of weighted size r (or less); r is
an integer parameter to be specified later.

To summarize, at each level we have a collection of at most 2n/r sublists
of weighted size exactly r along with a number of other sublists of size
less than r. Any subset specified by a row of A; can thus be written as
a union of sublists of weight r and a remainder set of size less than r.
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Recall that point ¢ is associated with the ¢-th coordinate of the vector
= (21,...,7,)7. For each sublist of weight 7, write the linear constraint
expressing that the z;’s in that sublist sum up to 0. This gives us a total of
at most 2vn/r F-constraints. Assume that all are satisfied. Then, A; can
be expressed more concisely as an n-by-n 0/1 matrix, denoted by C;, whose
rows each have fewer than r ones. In other words, as long as x satisfies the
given constraints, A;xz = C;z. Because of the calibration of the sublists,
note that similarly no column of C; can have more than r ones. It is a
standard result in matrix theory [193] that the spectral norm® of a matrix
M = (M;;) satisfies

M2 < (masx 37 [My]) (mase 3 [035]).
J i

and therefore ||C;||? < r2. Using the fact that
ICixll2 < 1Cills llll2 < rllzll2,

we find that, for any x satisfying the F-constraints,

v v
1 Azlls <Y~ lldszlls = Y ICillz < rvllz]lo.
i=1 i=1
It follows that over F' the Rayleigh quotient in (6.5) is bounded by r?v2.
Since A\; = [JA||? < n?, the lemma is trivial if k is O(v), so we assume
that it is not the case. There are at most 2vn/r F-constraints, so setting
|2vn/r| = k — 1 completes the proof. O

The Spectrum of Triangle Matrices

Let A be an n-by-n incidence matrix of a set system formed by n points
and n triangles: A;; is 1 if and only if triangle ¢ contains point j. Again,
A > --- > A, denote the eigenvalues of AT A. We derive a crude upper
bound very simply by using simplicial partitions.

Lemma 6.18 For any 1 <k <n, A\, = O(n*/Vk).

Proof: Recall from Chapter 5 that, given the set P of n points corre-
sponding to the columns of A, a collection {(Pi,R1),...,(Pmn,Rm)} is a
simplicial partition, if

6The spectral norm of M is defined as the maximum value of ||Mz||2 over all unit
vectors x.
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e the P;’s partition P and

e each R; is a relatively open triangle enclosing P;.

The maximum number of R;’s that a single line can cut is called the cutting
number. Replace r by 72 in Lemma 5.8; then, for any positive integer
r < \/m, there exists a simplicial partition of cutting number at most cr,
for some constant ¢ > 0, such that n/r? < |P;| < 2n/r? for each P;.

Recall that point j is associated with the j-th coordinate of the vector
r = (z1,...,7,)T. For each triangle R;, write the linear constraint ex-
pressing that the sum of the z;’s whose corresponding points fall inside the
triangle is null. This gives us the set of F-constraints; there are at most 2
of them, so we set r = [v/k — 1 | and assume that k > 1. Over F, the map
defined by A can be specified by means of a sparse 0/1 matrix C, where
no row of C' contains more than p = |[6¢n/r| ones: the number of edges
(ie, 3) times the cutting number (ie, ¢r) times an upper bound on |P;| (e,
2n/r?). The spectral norm of C' satisfies

10112 < (max 371C31) (max 32 (C51) < mp.
J i

and so, by (6.5), Ay = O(np), which proves the lemma. Obviously, the
bound remains true for k = 1, since \; = ||4]|? < n?, O

In the proof of the arithmetic circuit lower bound for triangle matrices
we had the additional assumption that the points were on a grid. This is
a case where we can do better with little effort.

Lemma 6.19 If the n points are the vertices of a square grid, then, for
any set of n triangles and any 1 < k <n,

2
Ak:O(%»

Proof: Let £ be the set of lines passing through the edges of the triangles.
We break up the square enclosing the grid into triangles with few of the
n points in any of them and few lines of £ crossing them. To do that, we
first subdivide the square into a regular r x r grid of lines, for some integer
parameter r large enough. In addition, we throw in a random sample of r
lines chosen among £. Next, we form the arrangement of these 3r + 4 lines
(counting the boundary of the square) and triangulate it (Fig. 6.11). For
a constant ¢ taken large enough for future purposes, with high probability
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no triangle is cut by more than en(logr)/r lines of £ and none contains
more than cn/r? points.”

N N . S
’ N i S \
h . i . .
/ . .
| N
/ \ 2 N \
N , . X
\ i / O
.- N \ N
P o,
/ - S -
B \/ _ -~
. . . /
, . i
, N )
/ ’ \\/ |

Fig. 6.11. The square is subdivided into triangles with few points and few lines
cutting through them.

The point labeled j is associated with the j-th coordinate of the vector
= (21,...,7,)T. For each triangle, write the linear constraint expressing
that the sum of the x;’s whose corresponding points fall inside of it is null.
This gives us a set of at most cr? linear F-constraints. If all are satisfied,
then A can be rewritten in a simpler form by means of a sparse matrix C.
Specifically, by the classical “zone theorem” for line arrangements [122],
we know that no line can cut more than c¢r triangles, and so the sum of
the z;’s within any triangle is a linear form over at most 3cr variables.
Therefore, within the restriction to the constraint space F', each row of A
corresponds to a linear form with at most 3¢?n/r nonzero coefficients. Let
C = (Cyj) be the new matrix formed by these coefficients. Note that no
column (resp. row) of C contains more than cn(logr)/r (resp. 3c’n/r)
ones. The spectral norm of C satisfies

3 21
IC1 < (max Y 16l ) (max - 1051) < 29T
Vi 13

"The theory of e-nets developed in Chapter 4 gives a comprehensive treatment of
this sampling technique and explains why not too many lines can cut any triangle. The
bound on the number of points is where we use the property of the grid.
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By (6.5), this shows that

M= O <n2 logr) ’

r2

from which the lemma follows for k large enough and the setting k — 1 =
ler?|. If k = O(1), we use the fact that A\; = ||4]|? < n? to conclude. O

6.3 Monotone Circuits

Arithmetic complexity in the monotone case disallows subtractions. For-
mally, this means that we are confined to the semigroup (R,+), and the
product Az must be computed by using additions only. Remember that
the matrix is 0/1, so this is possible to do with O(n?) additions. As be-
fore, the model of computation is a circuit or, equivalently, a straight-line
program: Each gate (or step) performs an operation of the form

zZ+xT+y,

where z and y are previously computed variables or input weights. The
circuit depends on the linear map A, but it must work for any assignment, of
the input variables (ie, the weights of the points) in the additive semigroup
of reals.

The monotone arithmetic complexity of the matrix A is the size of the
smallest monotone circuit for computing = — Axz. We prove three lower
bounds on the complexity of geometric matrices. Recall that a box (resp.
line, simplex) matrix is the incidence matrix of a set system defined by
points and axis-parallel boxes (resp. lines, simplices). For any n large
enough, we have:

Theorem 6.20 In any dimension d > 1, there are n-by-n box matrices of
monotone arithmetic complezity Q(n(logn/loglogn)d—1t).

Theorem 6.21 There are n-by-n line matrices of monotone arithmetic
complezity Q(n*/?).

Theorem 6.22 In any dimension d > 2, there are n-by-n simplex matrices
of monotone arithmetic complexity® Q(n)>~2/(@+1),

8The notation Q(f(n)) means Q(f(n))/(log n)0®.
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Fig. 6.12. A monotone circuit only has addition gates.

Recall that, in all three cases, the input consists of n points, n reals (the
weights), and n ranges (ie, boxes, lines, simplices). The output is the list
of numbers obtained by summing the weights of the points in each range.
All three lower bounds are essentially optimal, which means that (at least
in the monotone case) off-line range searching with respect to boxes and
simplices is a solved problem. Theorem 6.22 brings unexpected news: If d
is large, the bound is close to n? and the naive approach of comparing all
points against all simplices is, in practice, the method of choice.

All three proofs are applications of the following lemma. The ways in
which the lemma is applied are very different, however; each one offers an
interesting new perspective on the complexity of geometric matrices.

Let A = (a;;) denote the n-by-n incidence matrix of the underlying range
searching problem.

Lemma 6.23 If A is an n-by-n incidence matriz with no p-by-q submatriz
of ones, then the complexity of computing Ax on a monotone circuit is at

least on the order of

1 n

L(50)-2

P = p
Proof: Obviously, each input to a gate is a linear form over the n input
variables, and the output is the sum of the two corresponding linear forms.
A gate is called heavy if in the linear form it outputs, 3, a;z; (a; € NT),
at least ¢ variables z; are involved. Given row ¢ of the matrix A, let
Si=> ; @ij be the sum of its elements. The output gate g computing the
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form j @ijT; is connected to S; input variables z;,, z;,, etc. The circuit
forms a directed acyclic graph. Let T; be a subtree of the graph rooted at
g with z;,, x;,, etc, at its leaves (all edges directed from child to parent).
A subtree of T; with at most ¢ leaves is called maximal if its root either
has no parent or has one with at least q leaves descending from it.”

The maximal subtrees of T; are all mutually disjoint. Each such subtree
has one fewer two-child nodes (ie, nodes with two children) than leaves.
There are at least S;/q such subtrees, so together they account for no more
than S; — S;/q two-child nodes. It follows that at least S;/q — 1 internal
nodes of T; coincide with heavy gates. Obviously, no heavy gate can provide
a node for p (or more) trees of the form T; (over all output gates g), since
this would create a p-by-q submatrix of ones in A. The lower bound then
follows. O

Box Matrices and Chinese Remaindering

We exhibit n points and n axis-parallel boxes in R? whose corresponding
range searching problem requires Q(n(logn/loglogn)?¢~!) additions in the
monotone model (Theorem 6.20, page 257). Trivially, we can assume that
d > 1. The set of input points is obtained from a Halton-Hammersley
construction. For completeness, we repeat the construction used in §2.2.
Let py < p2 < --- < pg—1 be consecutive primes. Any integer m has a
unique decomposition in base pr: m = Y5, bi(i)p},. We consider the

function
by (i)
w(m) = Z 1
i>0 Pk

This allows us to construct the input point set in [0, 1)%:

P = {(ml(m),...,wd_l(m),%) ‘Og m < n}
We define an interval of type (k, j) to be of the form
[% M + 1)
pi ) pi )
where M is a nonnegative integer. Finally, we call a box B special if it is

of the form I} x --- x I; C [0,1)? and the three additional conditions below
hold:

9Descending means going against the direction of the edges.
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e I,...,I;_1 are intervals of type (1,71),...,{(d — 1, jq—1), respec-
tively, for some integers ji,...,Jq—1 > 0.

e I;is of the form [Mp,Q/n, (M +1)p1Q/n), where Q = H0<k<dp§;’“
and M is an integer.

e p1Q < n (Fig. 6.13).

Fig. 6.13. A special box.

Lemma 6.24 A special box contains exactly p1 points of P.

Proof: Let B = I x---xI4 be a special box indexed by (j1, ..., ja—1), with
Iy = [mg/p}t, (mi + 1)/pi¥); k < d. By the Chinese remainder theorem,
the system of congruences

m=my (mod pi’“),

for 0 < k < d, has a unique solution m* modulo ). Every other solution
is of the form m* + Q. It is immediate that each point

(#10m" +1Q), . 241 (0" +1Q))
liesin Iy X --- x I;_1. Since, by assumption,

[MplQ (M+1)p1Q)
n ' n

Iy =

lies entirely in [0, 1), exactly p; values of (m*+1Q)/n lie in I, and therefore
|B N P| =DP1. O

Next, we count the number N of special boxes:
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i
P Tockea Pt

v 3 el

Jiseesjd—120 o<k<d
> Z — = H pfg Jis-+-5yJa—1 > 0 and H Dy SQ—
P oSk 0<k<d P1
[log n/ log pa—1—2] n
> —
> > > 5

t=0 Ji+-+ja—1=t

We conclude that

N L (Loen )
p1 \logpg_1

By choosing p; around (log n)?~!, which implies that all of the other pj’s are
in O(logn)?~1, we then can find about n/(loglogn)? ! boxes that define a
set system whose incidence matrix A contains at least n(logn/loglogn)d—1
ones. By adding boxes that contain no points, we can make the set system
n-by-n. It remains for us to show that A is square-free (ie, has no two-by-
two submatrix of ones).

Consider the intersection of two distinct special boxes B and B', with
parameters (ji,...,jq4—1) and (ji,...,745 1), respectively. We may assume
that @ < @' (since equality gives an empty intersection). The intersection
of an interval of type (k,j) with one of type (k,j'), for j' < j, is either
empty or of type (k,j). This shows that BN B’ is a box J; x --- X Jg,
where each J; (k < d) is an interval of type (k, max{jx, j;.}) and Jg has
length < p;@Q/n.

Assume that the box B N B’ intersects P, and let m be the index of
a point in the intersection. By the Chinese remainder theorem, m is en-
tirely specified modulo szlax{j’“ i} Because Q < @', this determines m
uniquely modulo p;@, for some 0 < i < d. The point’s d-th coordinate
m/n lies in an interval Jg of length < p;@/n. Since in addition the residue
class of m modulo p;@ is specified and p; > p1, the value of m is uniquely
determined. Thus, two special boxes intersect in at most one point of P.
As a result, A is square-free and Theorem 6.20 (page 257) follows directly
from Lemma 6.23. O
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Line Matrices and the Euler Totient Function

It is remarkably easy to prove a lower bound of Q(n4/ 3) on the monotone
complexity of line range searching. The input consists of n weighted points
and n lines, and the problem is to compute the sum of the weights along
each line. In other words, we seek the monotone complexity of a line
matrix whose rows correspond to lines and columns to points. Note that
by thickening the lines ever so slightly and clipping them, we can turn them
into long, thin triangles. Any lower bound for line matrices thus applies to
triangle matrices as well.

Fig. 6.14. The output is {14,19,7, 3}.

Let m be a large enough integer. We specify the set of lines first. Each
line
uw(X —i) =v(Y —j)

is parameterized by u,v, 1, j, where

e 1 <u<v<m!?and GCD (u,v) = 1;
e 1<i<wvandl<j<m.

The first thing to notice is that all the lines are distinct. Indeed, because
uw and v are relatively prime, the slope u/v is distinct for each pair (u,v).
Similarly, given u,v, the affine term vj — wi is distinct for each pair (i, j);
else v would have to divide a term of the form 0 < i —i’ < v (the casei =i’
implies that j = j', and thus is ruled out). Since

N
3N?

Z@(k) =2t O(NlogN),

k=1
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where ¢(k) is the Euler totient function,'® the number of lines is on the
order of

A given line passes through integer points of the form (i 4+ vl, j + ul). Since
0 < i,u,v < m? and 0 < j < m, at least m?/® of these points lie in
[1,2m]2. If we choose the integer points

{@yl1<ay<om},

then we end up with m? points and m? lines (up to constant factors): every
line (resp. point) is incident to roughly m?/? points (resp. lines).
Lemma 6.25 There exist n points and n lines in the plane, all of them
distinct, such that each point belongs to ©(n'/?) lines and each line contains
O(n'/3) points.

Thus, we have an n-by-n set system of points and lines whose incidence
matrix contains at least Q(n*/®) ones. The lines are distinct and two of
them intersect in at most one point, so the matrix is square-free, and
Theorem 6.21 (page 257) follows from Lemma 6.23.

Simplex Matrices and Heilbronn’s Problem

We can generalize the previous result and derive a general lower bound on
the monotone complexity of range searching with respect to simplices in
any dimension d > 2. The exponent in the expression of the complexity
increases from 4/3 to 2 — 2/(d + 1); for technical reasons, we lose a small
polylogarithmic factor in the process.

In the proof of Theorem 6.22 (page 257), we assume that n is large
enough. We construct a set P of n points in R? together with a collection
{S,} of n slabs: (i) Each slab contains roughly n!=2/(¢*1) points; (i) the
intersection of any k > clogn slabs, for some constant ¢ > 0, contains
at most a polylogarithmic number of points. We apply Lemma 6.23 and
conclude. The details follow.

Given ¢ € R? distinct from the origin, let H, denote the hyperplane
normal to Oq passing through g; its equation is (p,q) — ||q||3 = 0. We
define S; to be the slab of width w consisting of all the points at most

104 (k) is the number of integers < k relatively prime to k.
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Fig. 6.15. The slab S,.

w/2 away from H, (Fig. 6.15). The parameter w will be set to its proper
value below. To specify the collection of slabs {S,}, it thus suffices to
provide a set @@ of n points q. We show that if any d of the points of
Q@ are sufficiently “spread apart,” then the d corresponding slabs have a
small common intersection. We use a construction related to Heilbronn’s
problem to exhibit a suitable set @). Finally, by throwing in random points
in the unit cube we form the set P and complete the construction of the
set system.

Building the Slabs

We use the notation vol; (4) and conv (A) to refer to the d-dimensional
volume and the convex hull of A, respectively.

Lemma 6.26 Let qi,...,qq be d points in [0,1]%, and assume that the
central projection q. of each q; on the hyperplane x1 = 1 also lies in [0,1]%.
Then

d
volyg ﬂ Slh' < wd/VOIdfl (COHV {qia v )(I:i}) :
i=1

Proof: In the two-dimensional case illustrated in Figure 6.16, the lemma
formalizes the intuitive notion that the longer the segment ¢} g5 the smaller
the intersection between the two slabs S;, and Sy,. Let [ug, ..., uq] denote
the matrix whose columns are the vectors u; spanning the parallelepiped
() Sq;- By convention, each u; has the direction specified by the intersection
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of hyperplanes bounding the slabs S, for all j # i. Since each u; is normal
to any q; (j # i),
d

H l1gill2 - [lusll2 cos(gi, us)

i=1

d
= wdH llgill2
i=1

det([ul, cud T a, ,Qd])

and hence
d
voldﬂSqi = |det[uy,...,uq]|
i=1
= w!(T] haills) /I det [ar, .. a]|
i
= w'(TTlaill:)/Idetlgs, . gi]|

< w'/|det[gy,..., qq]l,

from which the lemma easily follows. O

1
|,
)
o 1

Fig. 6.16. The intersection of the slabs shrinks as the convex hull of {g},q5}
expands.

The point set P should be well “spread out” in the unit cube. Specifically,
the convex hull of any d+ 1 of them should have volume Q(1/n). Except in
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the trivial case, d = 1, this turns out to be impossible to achieve. A slight
relaxation of the goal is within reach, however. We show in Lemma 6.27
that if P is random and k/logn is large enough, the convex hull of any &
points has volume Q(k/n).

This type of question is known as Heilbronn’s problem: Given n points
in the unit cube, what is the smallest volume of the simplex formed by any
d + 1 of them? The goal is to choose the points so as to maximize this
number. As shown by Roth [263], the intuitive answer of O(1/n) turns out
to be wrong. In fact, any set of n points in the unit square always contains
a triangle of area O(1/n°¢), for some constant ¢ > 1. Weaker results were
obtained earlier by Roth [260] in 1950 and then by Schmidt [271] over
twenty years later. The best current bound of O(1/n8/7—¢), for any ¢ > 0,
is due to Komlds, Pintz, and Szemerédi [189]. From the other end, the same
authors [190] have shown!! the existence of point sets with all (g) triangles
of area Q((logn)/n?). A nice chronological account of the problem is given
by Moser [235].

For our purposes here, a set of n points in [0,1]? is said to satisfy the
Heilbronn property if, for some fixed ¢ > 0, the convex hull of any subset
of k > clogn points has d-dimensional volume Q(k/n).

Lemma 6.27 A random set of n points uniformly distributed in [0, 1]¢
satisfies the Heilbronn property with probability tending to 1 as n goes to
infinity.

Proof: We begin with a simple approximation result. Fix a large enough
constant a, and let £ be the set of ellipsoids of volume at least 1/n entirely
contained in the cube [—a, a]?. For some constant b = b(a), there exists a
set & of O(n’) ellipsoids with the following property: Given any ellipsoid
E € &, there is some Ey € & such that £ C Fy and volgFEy < 2volgE.
Here are a few words of explanation why this should be true. First, we
observe that an ellipsoid can be specified by its center and its principal
vectors. In the case of £, any such parameter point lies in [—a,a]d(‘”l).
Round the d(d+1) coordinates to their -th decimal position, where £/ logn
is a large enough constant. The resulting set of rounded-off parameter
points creates a polynomial-size collection of ellipsoids that can be used as
&o. Indeed, given E € &, find the nearest E; € &, where nearest is defined
with respect to the Euclidean distance of their respective parameter points.

11 As noted by Erdés, to achieve Q(1/n?) is immediate: Consider the set of points
%(m,wQ mod n), for z = 0,1,...,n — 1. The area of any triangle can be expressed, up
to a constant factor, as a 3-by-3 Vandermonde determinant that is trivially > 1/n2.



6.3 MoNOTONE CIRCUITS 267

The two ellipsoids E and E; have a Hausdorff distance!? at most 1/n?, for
an arbitrarily large constant « = «a(f) (Fig. 6.17). Keep the center of E;
fixed and scale up its principal vectors (while staying in &) to ensure that
the resulting ellipsoid Ey contains all of E. Because the volume of FE is not
too small, neither are the lengths of its principal axes. It easily follows that
the volume of Ey need not exceed, say, twice that of E to ensure inclusion.
This establishes our claim.

Fig. 6.17. The ellipsoid Eo encloses E and is at most twice its volume.

Throw n points into [0,1]? at random uniformly and independently.
Given Ey € &, the expected number of points falling in Ey is equal to
nvolgEy N [0,1]%. Suppose that the volume of Ej is at most c(logn)/2n.
Then the expected number of points falling in Ey does not exceed c(logn)/2.
Furthermore, by Chernoff’s tail estimate (Lemma A.3),'3 the probability
that the number of points is at least clogn is less than l/ncl, for some
constant ¢’ growing monotonically to infinity with ¢. By choosing ¢ large
enough, we can thus ensure that, with probability arbitrarily close to one,
each Ey € & of volume at most (logn)/n contains fewer than clogn points.

We now can verify that the point set satisfies the lemma. Consider a
subset of size k > clogn and suppose, by contradiction, that the volume
of its convex hull is less than k/(c3n). Subdivide the convex hull into
|k/(clogn)] parallel slices of the same volume. By the pigeonhole principle,
one of them, C', contains at least clogn points, while its volume is less than
(logn)/en. From the existence of the Léwner-John ellipsoid!? it follows

12The Hausdorff distance between two compact bodies A and B is defined as

d(z,B d(z, A
max{rxnea[)l( (z, ),Lneag (z,A)},

where d(z, A) is the minimum Euclidean distance from z to any point of A.
13In the application of Lemma A.3, one can always assume that the probability of
success is ezactly ¢(logn)/2n, since any lower probability can only produce fewer hits.
4For any convex body K in RY, there exist a point p and a linear transformation f
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that C can be enclosed by an ellipsoid E of volume at most (logn)/2n.
Furthermore, this Léwner-John ellipsoid can be made to fit within C by a
constant-factor scale-down, and therefore E C [~a/2,a/2]? (just choose a
big enough). Of course, we have enough wiggle room to inflate E within
[—a, a]?, if necessary, to make it into an ellipse in [—a, a]? of volume at least
1/n, and hence an ellipse E € &. By our previous discussion, we know
that E is itself enclosed by some Ey € & of volume at most (logn)/n. The
ellipsoid Ey contains at least clogn points, which gives a contradiction. O

Choose an integer m = |conw|, for some constant ¢y > 0. By Lemma 6.27,
we can place m points in (1,0,...,0) + [0,1]?~! so that the convex hull of
any k > clogm points has (d—1)-dimensional volume at least Q(k/m). For
each such point ¢’, place points on the segment Oq' at intervals of length
2w. This produces O(con) points ¢, and if w is small enough, then, for at
least a constant fraction of them, the slab S, intersects the cube [0, 1]¢ in
a polytope of volume Q(w). By choosing ¢q large enough, we can find a set
Q@ of n such points. To summarize, () consists of n points such that, for
any q € Q,

volg Sy N [0,1]% > w. (6.6)

For any distinct qq,...,qx € @, with k > clogm, either at least two ¢;’s
have the same central projection ¢}, in which case voly ﬂle Sq; =0, or

else

k
volg—1 (conv{qi,...,q;}) > .

By triangulating the convex hull of ¢},...,q,, using O(kL4=D/2]) sim-
plices,"® we derive the existence of d points, say, ¢}, ..., q}, whose convex

hull has volume > k>~[%/21/m. By Lemma 6.26, this shows that, in all
cases, k > clogm implies that

k d
volg ﬂ Sq: < voly ﬂ Sy & nwtHiEd/21-2, (6.7)

i=1 =1
In summary, we have constructed n slabs of width w, denoted by S,,,...,
Sy, , that satisfy (6.7).

such that K is contained in p 4 df(B?) and contains p 4 f(B?), where B is the Euclidean
unit ball ([151], page 654).
155ee Appendix C.
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Placing the Points

As we said earlier, we construct the point set P by choosing n points in
[0,1]¢ at random uniformly and independently. Let w = n=2/(+1) and set
k = [clogn]. Any intersection of k distinct slabs has volume (logn)°(") /n,
and therefore, by Chernoff’s tail estimate, it contains (logn)?") points with
probability 1/n?, where b can be chosen (conservatively) as an arbitrarily
large constant. There are many k-wise intersections, but by simple exam-
ination of (6.7) we see that only (%) of them matter. By choosing, say,
b = d, we immediately derive the existence of a point set for which any
k-wise intersection of slabs encloses only (logn)°(") points.

Similarly, by (6.6) a given slab S,, contains Q(wn) points on average.
Chernoff’s bound again shows that the probability of falling much beyond
wn (ie, by a large constant factor) is exponentially small in n. So we can
easily ensure that each of them contains Q(wn) points.

The point set P and the slabs S; form a set system whose incidence
matrix A has no p-by-¢q submatrix of ones, for p, ¢ > (logn)”, with constant
B > 0. It follows from Lemma 6.23 that the monotone complexity of the
map z — Az is Q(wn?)/(logn)®M), which proves Theorem 6.22 (page 257).
O

6.4 Geometric Databases

Assume that the class of range queries and the underlying point set are
fixed once and for all, but that queries are specified on-line. For example,
in the case of simplex range searching in two dimensions, a database will
store a collection of weighted points in the plane so that, given an arbitrary
query triangle, the sum of the weights of the points within the triangle can
be computed efficiently. Intuitively, the more storage the database system
is equipped with, the faster the queries should be answerable. We provide
lower bounds on space-time tradeoffs to support this intuition. The model
is particularly simple. It is especially relevant for lower bounds and, if
anything, it underestimates the true costs of a real system, since it ignores
the cost of memory access (which is good, not bad).

The results are stunningly pessimistic. For example, to answer a simplex
range searching query in dimension 20 requires roughly n°®° additions in
the worst case on a database with as much as n? storage. Since any range
searching query can be answered in linear time, using no extra storage and
a 20-line piece of code, the moral of the story is clear: In higher dimen-
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sion, naive is best! True speed-ups require unrealistically high amounts
of storage, especially in higher dimension, and the naive algorithms are
unbeatable.'6

Consider the range space (P, R), where R is the collection of subsets of
the form P N R, for all allowable ranges R (eg, simplices or boxes). Given
an integer m > 0 (the size of the database), we wish to find the smallest
integer ¢ = t(m) such that any query can be answered with fewer than ¢
additions. There is a nice set-theoretical way to model this: We require
the existence of m subsets Py,..., P, C P such that, given any R € R,
PN R can be expressed as the union of ¢ of them, ie,

PAR=P,U---UP,, (6.8)

for some indices ¢ < --- < i;. The ¢ indices need not be distinct, so
this framework allows the (likely) possibility that some P N R might be
expressible by fewer than t subsets.

We dispense with a formal discussion of the model and its relevance.
The intuition is fairly obvious, however: The weights of the points in each
P; have been added up and stored in the database (hence, the size m). A
query is answered by collecting an appropriate, preferably small, collection
of P;’s and adding up their weights. The precomputed weights are used as
shortcuts to speed up the computation. Proving lower bounds becomes an
extremal problem on set systems. The following two results provide lower
bounds on #(m) for two basic problems. In both cases, the number m can
be chosen arbitrarily.

Theorem 6.28 Given n points in R, range searching with respect to
simplices requires Q(n/m*/?) additions on a database of size m.

Theorem 6.29 Given n points in R, range searching with respect to
azis-parallel bozes requires Q(logn/log(2m/n))?~! additions on a database
of size m.

Recall that the notation Q(f(n)) means Q(f(n))/(logn)®®. The two
proofs are quite different and give two new interesting perspectives on ex-
tremal geometric graph theory. Both of them are textbook examples of the
discrepancy method.

16See how useful lower bounds can be: the ultimate show-stoppers.
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Fig. 6.18. Counting points in slabs.

Simplex Queries: An Isoperimetric Inequality

We consider the set system (P,R) formed by a set P of n points in [0, 1]?
and sets {R € R}, each one defined as the intersection of P and a closed
slab of width w = 1/em!/?, for some large enough constant c¢. Throughout
the proof we make the following (obviously nonrestrictive) assumptions:'”
d>1and en <m < n?/log®n. The idea behind the proof of Theorem 6.28

is to show that no large P; can be used for “too many” queries.

Lemma 6.30 If the incidence matriz of a set system (P,R) has at least
pN ones, where N = |R|, and it does not contain any y-by-|pN/2my]|
submatriz of ones, for any integer y < yo, then t(m) > yom/N.

Proof: By contradiction, suppose that ¢t = t(m) < yom/N. Among
the precomputed sets P;, consider the fat ones, ie, those of size at least
pN/2myq. Of the t sets involved in answering a query R € R, the nonfat
ones cover fewer than tpN/2myy < p/2 points. Summing over all R’s, we
find that, counting multiplicity, fat P;’s cover more than pN/2 points of P.
But, as we show below, no fat P; can contribute as much as pN/2m to this
count; so the number of fat P;’s must exceed m, which is a contradiction.

Let y be the number of queries for which a given fat P; is used. We cannot
have y > yo, since this would produce a yo-by-|pN/2myg| submatrix of
ones. But y < yo implies that |FP;| is less than pN/2my, and hence the
contribution of P; to the count is y|P;| < pN/2m. O

17Note that m must be at least n or it is impossible to answer certain queries, so the
lower bound is trivial in the case d = 1.
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Theorem 6.28 follows directly from the next lemma; recall that w = 1/ em!/d,

The polylogarithmic factor hidden in the Q notation is in fact 1 /logn. It
is possible to remove it in two dimensions, but the higher dimensional case
is still open. (See bibliographical notes.) O

@)

Fig. 6.19. The slab of width w indexed by s containing the box R.

Lemma 6.31 There exist a set of n points in R? and a collection of N = nb
slabs, for some constant b > 1, that together form a set system whose
incidence matriz has pN ones and no y-by-|pN/2my| submatriz of ones,
for any y < wnN/logn.

What follows is the proof of the lemma. It is broken down into auxiliary
lemmas. As usual, we assume that n is large enough. We postpone the
discussion of the set P and instead address the selection of slabs right
away. All of the slabs have the common width w = 1/em!/¢
specified entirely by its bisecting hyperplane. We consider the set of slabs
whose bisecting hyperplanes intersect the unit cube. A standard result in
integral geometry says that there is a unique probability measure over such
hyperplanes (and hence slabs) that is invariant under rigid motions [265].
Since our method is based on integration, we may assume that no slab ever
passes through the origin. Thus, a slab can be specified by s, the point
on its bisecting hyperplane nearest to the origin. Up to a constant factor
(which, for our purposes, we can simply ignore), the differential element at
the slab indexed by s = (s1,...,8q) is

dsy A+ Ndsg
dw(s) = -1
[1sll2

, so each one is
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The heart of the lower bound proof rests in the following lemma. It is
an isoperimetric inequality that bounds the probability that a random slab
encloses a box as a function of the volume of the box. The relation with
the forbidden submatrix of ones in Lemma 6.31 is simple: The probability
will give the number of rows and the volume the number of columns.

Lemma 6.32 Given a box R C [0,1]¢, the probability that a random slab
encloses R is O(w®*! /voly R).

Proof: The probability, denoted by m, that a random slab encloses R is
at most [ dw(s), where the integral is taken over all the slabs (indexed
by) s that enclose R. (We may not have equality because the bisecting
hyperplane of an enclosing slab may not always intersect the unit cube.)
To upper-bound this integral, we can always assume, by motion invariance,
that the box is of the form [],_,.,[1,7:], where each r; > 1. Placing the
box away from the origin in this way has one advantage: We can assume
that the vector Os is not too short. Before we show why this is a good
thing, let us prove that it is, indeed, the case.

By symmetry we can restrict the domain of integration to s > 0 (ie,
each s; > 0). To see why is easy: The hyperplanes normal to the axes
passing through the center of R define d reflections generating a subgroup of
symmetry of order 2¢. Any slab indexed by an s with at least one negative
coordinate can thus be mapped uniquely to a point s’ > 0 (Fig. 6.20). So,
up to a factor of 2¢, we can upper-bound the probability = by integrating
dw(s) over slabs indexed by s > 0. Assuming from now on that s > 0, we
prove that

2 <sll2 < 2d. (6.9)
The slab must contain (1,...,1), so
w
> si— sl < 5 llslle, (6.10)
1<i<d

and since x < 1+ 2?/2 for all z,

2
w S
sl = Lslle < 37 s < 2
1<i<d

It follows that
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Fig. 6.20. Reflecting a slab about the vertical axis to make its parameter coor-
dinates nonnegative: s = (s1, s2) = s = (—s1, 52).

lsll2 < 5 + Vw?/4+2d,

and with w small enough, ||s||2 < 2d. Similarly, by (6.10) and s > 0,

w
11l + 3 llsll2 > > si>lslla,
1<i<d

and therefore ||s|lz > 1 —w/2 > 1/2, which establishes (6.9). It follows
from it that one of the coordinates must exceed 1/ 2v/d. By symmetry we
can assume that the coordinate in question is s;, which will cause the loss
of at most a factor of d. If A is the set of s > 0 (s; > 1/2v/d) whose
associated slabs enclose R, then

7T<</Adw(s). (6.11)

To tackle this integral, we perform the following change of variables:
uy = ||s||2 and, for i > 1, let u; = s;/uy. The transformation acts bijectively
between

{(sl,...,sd)eRd\{OHsl20}

and

{(ul,...,ud)|u1>03,nd Z ufgl}.

2<i<d

To compute its Jacobian J,,, we notice that
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sj/u1 ifi=1;
Ou; 0, 3 e .
5. = 1jui —s7/ui ifi>1andi=j;
! —s;85/ul ifi>1andi#j.
It follows that
81/11,1 82/U1 sd/ul
—sas1/ul  1jug —s3/ul ...  —sasq/ud
det J, =
—sas1/ui  —sgsaful ... 1jug — s%/u}
We derive:
, |1 1 1
(H1§igd 52) -1 (u1/s2)?—1 ... -1
det J, = —=3a—2  X| . . . .
S1Uq : N . .
-1 -1 oo (ur/sq)? =1

The determinant above is made triangular by subtracting the first column
from the others, which gives det J, = s;/u{. Let s(u) denote the point s
in bijection with u. By (6.9, 6.11),

s
/ dui AN+ ANdug = / —;dsl/\---/\dsd
s(u)EA seA Uy

> / dsi N+ Ndsg > .
SEA

Note that |(p,s) — [|s]|3| < (w/2)||s||> for the two corners of the box R:

p=(1,...,1) and p= (r1,...,74). Since s > 0, this shows that

w w
=5 llsll2 < Yoosi—llsllE< Y misi—llsll3 < 3 llsll2,
1<i<d 1<i<d
and, by (6.9),

Z (ri — 1)s; < wl|s||2 < 2dw.
1<i<d
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Because s > 0 and r; > 1,

0<u < riu_) -
for each 7 > 2, and
2dw
0< 5 <= (6.12)
for each ¢ > 1. When us, ..., uq are fixed, the direction of the vector s is
fixed, and so u; = ||s||2 can only vary in an interval of length no greater

than w. It easily follows that

w®

dui A ---Ndug < =——F+.
/s(u)EA H2gi§d (ri — 1)

We know from (6.12) that s; < 2dw/(ry — 1); therefore,
r—1< 4d\/3w,

and consequently

wd+1

T =
H1§i§d (ri —1)

We now have the tools for proving Lemma 6.31. The previous lemma
presents us with an infinite set of slabs. We can discretize it, however, by
restricting the points s specifying the slabs to lie in a polynomial-size low-
discrepancy sample. (One way to do this is to sample the parameter space
according to the motion-invariant measure. We did this sort of thing on
page 30 already, so we skip the details.) It is easy to make the number N
of slabs equal to n® while at the same time ensuring that the probability,
over the continuous uniform distribution, that a random slab contains a
box differs from its counterpart over the discrete uniform distribution by
at most 1/n"’; here, both b and b' = b'(b) are arbitrarily large constants.
In this way, Lemma 6.32 still holds verbatim, since w?*! /voly R is not too
small, ie, it exceeds 1/n>%¢.

The set P is obtained by taking n random points uniformly distributed
independently in [0,1]?. With high probability, the number of ones in the
incidence matrix of the set system is at least cownN, for a constant ¢y > 0
independent of ¢. To see why, observe that, because w tends to 0 as n goes
to infinity, we can assume that over 99% of the slabs “eat up” a chunk
of the unit cube of volume Q(w). With high probability, any such slab
contains Q(wn) points. The proof is elementary: Up to a constant factor,



6.4 GEOMETRIC DATABASES 277

the expected number of points in a given slab is Q(wn) > log®n; so by
Chernoff’s bound (see Appendix A) the number is Q(wn) with probability
at least 1 — 1/n?® for one slab (conservatively), and hence 1 — 1/n® for all
slabs.

To summarize, we have exhibited a set system (P,R) formed by n
points and N slabs, such that (i) its incidence matrix has pN ones, where
p > cown, and (ii) P satisfies the Heilbronn property (see Lemma 6.27,
page 266).18 To establish Lemma 6.31, we assume, by contradiction, that
some S C P is a common subset of at least y sets of (P,R), where
y < wi*nN/logn and |S| = |pN/2my]|. Because d > 1, we have
|S| > [5coctlogn] > clogn, and so, by the Heilbronn property, the convex
hull of S has volume > |S|/n. This convex hull contains a box R of volume
at least proportional to it. Indeed, we know that this is true of the largest
enclosed ellipsoid,'? and hence of the largest (arbitrarily rotated) enclosed
box. By Lemma 6.32 (and our previous observation about the discrete ap-
proximation of the measure on slabs), the total number of slabs enclosing
Ris

O(Nw™™* /voly R) = O(y/c?) < y,

which gives a contradiction, and proves Lemma 6.31. O

Box Queries: The Hyperbolic Boundary

We prove Theorem 6.29 (page 270) in the two-dimensional case only. Ex-
tensions to higher dimension are possible, but they present technical diffi-
culties, none of which is particularly germane to the discrepancy method.
The input set P consists of n (carefully chosen) points in the unit square
[0,1]?. Given m subsets P; C P, we want to exhibit a “hard” axis-parallel
box B, ie, one whose associated set PN B cannot be expressed as the union
of too few P;’s.

The key idea is to focus, not on the precomputed sets P; themselves, but
on the upper right corner p; of their smallest enclosing box. Specifically,
let P; C P C [0,1]* be one of the m sets whose weighted sum has been
precomputed. We define p; to be the upper right vertex of the smallest
axis-parallel box enclosing P; (Fig. 6.21).

As a matter of terminology, we say that a point p = (ps,p,) dominates q

18Note that the lemma implies an absolute lower bound for the constant c. Of course,
any higher value for ¢ (like the one we are using here) works just the same.
19Gee footnote on page 268.
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Fig. 6.21. The set P; consists of the filled dots.

if p», > ¢, and p, > g,. For the purpose of the lower bound, we restrict our
queries to axis-parallel boxes that contain the origin. Given such a box B,
we assume that the set P N B can be written as the union of ¢ of the sets
P;; see (6.8) on page 270. Obviously, the ¢ corners p; derived from these
P;’s collectively dominate PN B. By this we mean that each point in PN B
is dominated by at least one of the ¢ corners.

So, we can think of the problem quite differently. Given n blue points
and m red points in the unit square, we define the cost of a box B, =
[0,¢.] x [0,q,], where ¢ = (gz,q,) € [0,1]%, to be the minimum number
of red points in B, that collectively dominate the blue points in B,. Note
that to avoid infinite costs we must have m > n. We show that with “only”
m red points at our disposal and a low-discrepancy blue set, some boxes
do not have any small dominating red set.

The lower bound construction is built around the idea of a room R,
(Fig. 6.22): This is a box within [0, 1]? with upper right corner ¢, divided
up into four smaller boxes that share a common corner along the diagonal
(of positive slope) of R,. Of the four, we focus on the upper right (resp.
lower left) box, which we call the NE-chamber (resp. SW-chamber). The
room and its subdivision are calibrated so that the NE-chamber (resp. SW-
chamber) is of area 1/8m, (resp. 16/n). We easily verify that the area of
Ry is

Note that this area is independent of the actual shape of the room.
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NE-chamber

SW-chamber q

Fig. 6.22. The room R, with its two chambers.

Lemma 6.33 If g € [1/2,1]%, the boz [0, q,] x [0, q,] contains a collection of
Q(logn/log(2m/n)) rooms R, such that the intersection of any two of them
is disjoint from both their SW-chambers. This collection can be chosen to
be the same for all ¢ (up to translation).

Proof: Figure 6.23 illustrates the lemma. As we just observed, all rooms
have the same area A, irrespective of their aspect ratio. We build the first
room R, by choosing the width 1/2 and the height 2A. We easily check
that the ratio, width of NE-chamber over width of R, is equal to

area of R, B 1+8y/2m/n’

Note that this ratio is independent of the particular room R,. This means
that, to carve out rooms with the disjointness condition of the lemma, it
suffices to pick a sequence of widths, beginning at 1/2, that is decreasing
geometrically with a ratio of 14+8,/2m/n. The heights increase by the same
ratio. Elementary geometry shows that neither SW-chamber overlaps with
the other room. Since the rooms must stay within the unit square, we
safely bound heights and widths by 1/2, which gives us a number of such
rooms at least proportional to

\/ area of NE-chamber 1

logn

log(1 + 8y/2m/n)
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Fig. 6.23. Three rooms R, with disjoint SW-chambers.

Remark: The placement of rooms R, suggests a hyperbola: Look where
the SW-corners lie (Fig. 6.23). In the metric where the distance between
two points is the area of the smallest enclosing box, a ball has hyperbolic
branches as its boundary (hence the subtitle of this section). Should one be
surprised that so much attention is given to the region around a hyperbola
near the NE-corner of B,;? Of course not. The discrepancy theory of axis-
parallel boxes (§3.1) shows that the “action” is to be found near the upper
right corner of a random box, specifically, in the cells of the Haar wavelet
grids incident to that corner. Such cells lie right above a hyperbola. The
function for a hyperbola, f(z) = 1/, has indefinite integral ln z, which is
the reason why logarithms turn up in the discrepancy of boxes as well as
in Lemma 6.33.

We conclude the proof of Theorem 6.29 (page 270). Without loss of
generality, we assume that n is a power of two. The set P is formed by
the bit-reversal permutation (Halton-Hammersley in two dimensions), as
explained in §6.1 (page 244); see also §2.2. As was observed, the grid
obtained by subdividing [0, 1] into n boxes of size 2% x (2¥/n), for any
fixed 0 < k < logn, has the property that every cell contains exactly one
blue point (ie, point of P). Any interval in [0, 1] contains a dyadic interval,
ie, one of the form [K /277, (K + 1)277], at least one-fourth its length; so
any box of area > 16/n encloses at least one box of area > 1/n that is the
Cartesian product of two dyadic intervals. Such a box necessarily contains
a dyadic product of area exactly 1/n, ie, a grid cell (for some k). It follows
that the SW-chamber of any room contains at least one blue point.

Given ¢ € [1/2,1]%, let S, denote the collection of rooms in Lemma 6.33.
Choose a point q randomly, uniformly in [1/2, 1]2. Each of the SW-chambers
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in the rooms of S, contains at least one blue point. Since g is random over
an area 1/4, a given NE-chamber, being of area of 1/8m, is free of red points
with probability at least 1/2. By linearity of expectation, it follows that
the expected number of red-free NE-chambers among the rooms of S, is at
least half the total, and so there exists some S, at least half of whose NE-
chambers are free of red points. The corresponding SW-chambers, called
good, have the following property: Each one contains a blue point, but its
corresponding NE-chamber has no red point.

Because of the disjointness condition of the rooms in S;, SW-chambers
are naturally ordered from left to right and from top to bottom, and any
point that dominates three points in distinct SW-chambers dominates the
middle chamber entirely. Thus, no red point in B; can dominate blue
points in more than two distinct good SW-chambers. It follows that the
cost of By, ie, the minimum number of red points in B, needed to dominate
collectively the blue points in By, is at least half the number of good SW-
chambers, ie, Q(logn/log(2m/n)). This proves the two-dimensional case
of Theorem 6.29 (page 270). O

6.5 Bibliographical Notes

Section 6.1: The Morgenstern bound, named after its discoverer, was
established in [234]. The spectral lemma is due to Chazelle [74]. The
lower bounds for box and triangle range searching in the general arithmetic
model (Theorem 6.8 on page 243 and Theorem 6.13 on page 249) were also
established by Chazelle in [71] and [74], respectively. The trace lemma was
introduced and used by Chazelle and Lvov [79, 80] to prove Theorems 6.15
and 6.16 (page 251).

For the interested reader, we should also mention the existence of an
intriguing combinatorial approach due to Valiant [312]: The idea is to relate
circuit size to matriz rigidity, which measures how many entries must be
changed in order to reduce the rank. Unfortunately, this has proven a
rather difficult quantity to evaluate. See also [16] for a study of linear
circuits over Fs.

Section 6.2: The relationship between eigenvalues and data structures for
range searching was discovered and investigated by Chazelle [71, 74].

Section 6.3: In the monotone circuit model, the lower bounds for axis-
parallel boxes (Theorem 6.20, page 257) and for simplices (Theorem 6.22,
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page 257) were proven by Chazelle [71]; they are essentially optimal (within
polylog or polyloglog factors). For the case of triangles, a dynamic version
of Theorem 6.21 was proven by Fredman [134]; the lower bound requires
the use of inserts and deletes. Lemma 6.25 (page 263) is attributed to
Erdds [118].

Section 6.4: Chazelle [65] established the lower bound for range search-
ing with simplices (Theorem 6.28, page 270). As we saw in Theorem 5.7
(page 215), this bound is essentially optimal. The lower bound for axis-
parallel boxes (Theorem 6.29, page 270) was also proven by Chazelle in [67].
The proof given here, being in two dimensions, is much simpler. The lower
bound is tight for any m > n(logn)?~1*%, with any fixed ¢ > 0.

Other lower bound proofs in the arithmetic model are given in [58, 83,
133, 311, 331]. More restrictive lower bounds for pointer machines or
partition-based methods can be found in [66, 84, 125, 126]. There is a
huge literature on range searching, in particular in the on-line (database)
model. A good starting place is the survey article by Agarwal and Erick-
son [6] or the one by Matousek [214].



7

Convex Hulls and Voronoi Diagrams

he reader looking here for working codes may be disappointed.
The problem of how to compute the convex hull of n points in
s optimal time is viewed mostly through a theoretical lens. Op-
timality is understood here in a worst-case setting: Given n points in R?,
the convex hull is a polytope with O(nLd/ZJ) faces, and possibly as many as
that. It is well known that computing the polytope entails sorting, so the
complexity we are aiming for is O(nlogn + nld/2] ). To approach this com-
plexity is reasonably easy, but to design an optimal deterministic algorithm
is surprisingly challenging. In this chapter we do just that.

The algorithm is to this day the most sophisticated example of derandom-
ization in computational geometry. It is also the most unlikely, considering
how hopeless its basic line of attack might seem at first. To overcome such
odds, the whole kitchen sink of sampling technology developed in the pre-
vious chapters is called into action. Interestingly, sampling is used for two
very different purposes: One is to provide a divide-and-conquer mecha-
nism (as we’ve seen in Chapter 5), and the other is to evaluate complicated
potential functions approximately very fast (as we’ve seen nowhere yet).
No other (deterministic) algorithm has yet been found for computing con-
vex hulls optimally. So, perhaps more than any other, this chapter shows
how deep and uniquely powerful the discrepancy method is in the area of
algorithm design.

The algorithm brings together many concepts and ideas. Fortunately,
a good deal of them have already been introduced in previous chapters.
As explained in Appendix C, the problem of computing the convex hull
of n points in R? reduces, by duality, to computing the intersection of n
halfspaces (Fig. 7.1). Furthermore, computing the Voronoi diagram (or,

283
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equivalently, the Delaunay triangulation) of a finite set of points' in Eu-
clidean d-space can be reduced to a convex hull problem in (d + 1)-space.
It thus appears that the halfspace intersection problem holds the key to
both the convex hull and the Voronoi diagram problem.

Fig. 7.1. A convex hull is, by duality, an intersection of halfspaces.

The intersection of n halfspaces is a convex polyhedron of combinatorial
complexity O(nl4/2]). We show that, in any fixed dimension d, its facial
graph can be computed deterministically in time O(nlogn + nLd/zJ). Be-
cause the asymptotic bound of O(n La/ 2J) on the combinatorial complexity
is tight for certain inputs, the complexity of the algorithm is optimal in the
worst case. By the reductions mentioned above, we derive the immediate
corollary:

Theorem 7.1 The convez hull of a set of n points in R¢ can be computed
deterministically in O(nlogn + nl?/2l) time, for any fived d > 1.

Theorem 7.2 The Voronoi diagram of a set of n points in E¢ can be
computed deterministically in O(nlogn +nl?21) time, for any fived d > 1.

In some sense, computing the intersection of halfspaces is as simple as
one could hope for: We insert each halfspace one after the other and main-
tain the current intersection at all times. Although such a naive approach
might not always be optimal, it can be shown that, if the insertion se-
quence corresponds to a random permutation of the halfspaces, then the

IFor Delaunay triangulations, some general-position assumptions are necessary: It is
assumed that no d + 1 points lie in a common hyperplane and no d + 2 points lie on a
common (d — 1)-sphere.
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expected complexity of the algorithm is optimal. Of course, one needs a
supporting data structure to allow for efficient updating of the intersec-
tion. Surprisingly, a simple conflict-graph structure works. This consists
of a triangulation of the current intersection polyhedron, together with a
bipartite graph indicating which halfspace intersects which cell of the tri-
angulation. This leads to an optimal probabilistic algorithm. We show how
to derandomize the method to produce an optimal deterministic algorithm.
The idea is to compute deterministically a “random-looking” permutation
of the halfspaces that behaves as well as the random one used in the prob-
abilistic algorithm. This is where most of the effort goes; to maintain the
conflict graph is the easy part. Our main result below implies Theorems 7.1
and 7.2.

Theorem 7.3 The facial graph of the polyhedron formed by the intersec-
tion of n halfspaces in R can be computed in O(nlogn + nl?/21) time.

7.1 Geode and Conflict Lists

Let H be a set of n hyperplanes in R? (d > 1). We assume that none of
them passes through the origin O and that the hyperplanes are in general
position. Since the theorem aims only at a worst-case bound, anyway, we
can always use symbolic perturbation methods [120] to achieve the effect
of general position. Let H" denote the closure of the full-dimensional cell
enclosing O in the arrangement formed by H. Our goal is to compute a
full facial description of H™. Some notation:

e Given a simplex? s and R C H, let R, designate the subset of
hyperplanes of R that intersect but do not contain s.

e Let V(R) denote the set of vertices of the arrangement of R C H.
If P is a polyhedron, then V(P) refers to its vertex set. If s is
a simplex (not necessarily full-dimensional), V(R,s) denotes the
set of vertices within s in the arrangement formed by R and the
affine span of s. Given a vertex v of V(H), the conflict list of v,
denoted by H|o,, is the set of hyperplanes of H separating O from
v, ie, intersecting the relative interior of the segment (Fig. 7.2).
The size of the conflict list of v is denoted by n,. By extension,

2Tn this chapter, the term “simplex” refers to the relative interior of the convex hull
of at most d + 1 points. The dimension of its affine span is between 0 and d.
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we define the conflict list H|p, of a simplex s as the union of the
conflict lists of its vertices; equivalently, it includes exactly the
hyperplanes that intersect the relative interior of the convex hull
of s U{O}. Similarly, we set ns = |H|o,].

Fig. 7.2. The conflict list Ho, = {b, c,d}.

Given R C H, we define a canonical triangulation of R, called the geode
of R and denoted by G(R) (Fig. 7.3). This is similar to the triangulation
defined in Chapter 5. For completeness, we describe it again. We assume
that R" is bounded. We can always add a fictitious box large enough to
enclose all the vertices of G(R), if necessary. For k = 1,2,...,d, in that
order, triangulate each k-face f of R™ recursively as follows. The case k = 1
is obvious, so assume that 1 < k < d. Let the apex v of f be its vertex with
minimum n,. (Break ties by taking the vertex with the lexicographically
smallest coordinate vector.) Lift centrally toward v the triangulation of
each j-face (j < k) of R" that lies within the boundary of f but is not
incident upon v. By our choice of v this produces a triangulation of f
that is consistent with that of its boundary. (This is because v is also the
vertex chosen for triangulating the faces on the boundary of f that are
incident upon v.) For k = d, simply lift toward O the triangulation of OR"
just obtained. It follows easily from the Upper Bound Theorem that the
size of the geode is O(|R|Ld/2J). The next result motivates our choice of
triangulation.
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Fig. 7.3. A geode in R? (inside view) and R? (outside view).

Lemma 7.4 Given any constant ¢ > 1 and any R C H, there exists a
constant C (dependent on c) such that

Z ni <C Z ng
sEG(R) vEV(RM)
Proof: We prove by induction that, for any k-face f of R™, the sum
Sy = > ng, over all faces s of G(R) that lie within the closure clf of f,
satisfies
Sp<E+DE > ng,
veV(RM)Nclf

where 0! = 1. Plugging in k = d, where f is the interior of R, proves the
lemma.

Vertices are 0-faces, so the case k = 0 is obvious. Assume now that & > 0.

Any simplex s of the geode within clf is obtained by lifting a simplex s’
incident to f. By definition of the apex v, we have

Ns S Ng + Ny S 2”5’ .

It follows that

Sp<(2°+1)) S,
g

where g ranges over all the (k — 1)-faces of R™ that are incident to f. (The
term 1 comes from the contribution of the geode faces incident to f, while
the term 2¢ accounts for the simplices within f itself.) Because of general
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position, no vertex can belong to more than k faces of dimension k—1, and
thus is counted at most k times in the sum Zg Sg. Substituting into the
induction-hypothesis bound completes the proof. O

In the next section, we set the stage for a probabilistic solution to the
problem of computing H™. We show how the method can be efficiently
derandomized in the subsequent section to yield an optimal deterministic
algorithm.

7.2 A Probabilistic Algorithm

To compute H", we insert the hyperplanes of H one at a time, breaking
down the process into successive rounds. In the first round, a constant
number ¢ of input hyperplanes are inserted.? These hyperplanes need not
be randomly chosen. Any will do; for convenience one might want to
add the bounding hyperplanes of a large fictitious box, to ensure that the
initial geode is bounded. This (optional) step is meant to simplify the
maintenance of the geode, or at least our discussion of it.

Moving now to the i-th round, we let R denote the subset of hyperplanes
of H that have been inserted in the ¢ — 1 previous rounds. We assume a
standard facial-graph representation for G(R) that allows us to navigate
across adjacent faces of the geode. We also keep the conflict list of each
simplex of the geode. To open the i-th round, we begin by selecting a
probability

2r
3(n—r)’

where r = |R|. Next, we form a set S by randomly picking each hyperplane
of H\ R, independently, with probability p. For each simplex s € G(R), we
use its conflict list to compute the portion of the arrangement of S within
s, and from it we extract the intersection between s and (RUS)". Putting
all of the pieces together, we derive the facial graph of (RUS)™ and set up
the conflict lists of the faces of the new geode G(R U S).

Observe that the average number of hyperplanes finding their way into
RUS is 5r/3, and so we should expect the number of hyperplanes inserted
to grow exponentially at each round, and hence the number of rounds to be
logarithmic. After each round, R is updated to denote the new set RUS of

p:

3To simplify the notation, we use b and ¢ to denote large enough constants, with b
sufficiently larger than c¢. Both constants depend on d.
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Fig. 7.4. Each simplex of the geode has its conflict list.

inserted hyperplanes; as soon as the size of R exceeds n/c, we insert all of
the remaining hyperplanes by using the same method. By identifying the
hyperplanes of S in the conflict list of s in time O(ns+ 1), the arrangement
of S within s is then easily computed in O(|S|05|?) time. Thus, it is routine
to ensure that the work spent in round ¢ is at most on the order of

> (1Sj0sl” + s+ 1) (7.1)

s€G(R)

Since the hyperplanes are chosen randomly, one should anticipate that, for
a typical s € G(R), the value of ny is on the order of n/r. Of the n,
“cutting” hyperplanes, only a constant of them should end up in S, and so
|S|0s| is expected to be O(1). Unfortunately, this is not quite true of every
simplex, but only of an “average” one. By using higher moments, however,
we can capture this fact concisely in a manner that minimizes the negative
effect of the “deviant” simplices. Some additional notation:

{ gs = (r/n)ns +1,
rs = |S|Os| + 1.

Note that although ¢s; and rs; might occasionally be large, for all practi-
cal purposes they will act as constants in our analysis and thus should be
intuitively thought of as such. By the Upper Bound Theorem, R" has
O(rl4/2]) vertices, and a typical vertex v should have n, = O(n/r). There-
fore, a geode that conforms to one’s expectation of a random choice of R
should be a semicutting, which is our way of saying that it should satisfy

S g < N Eprla(2)

r
veV(RM)
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The sum is taken over the vertices, and not the simplices of the geode, to
simplify the analysis. This does not matter since, by Lemma 7.4, an upper
bound on the vertex sum implies one on the simplex sum. We assume
inductively that, prior to round 4, the current geode is a semicutting. (The
case i = 1 is satisfied by choosing b sufficiently larger than c¢.) Having
chosen R, we now pick S randomly. As we show below, the following
conditions hold with high probability:

Invl /2 <|S| <y
INV2 Zseg(R) re < b2rld/2l.
Inv3 The geode of R U S is a semicutting.

To see why these properties hold, it is convenient to define a function
associated with each of them:

A(S) = &SI -2r/3)2,
A2(S) = prtaer Lsea(r) e
A3(9) = &+ 2vev((rus)n) Mo -

Note that R is understood and does not appear as an argument. Finally,
we denote the expected values of these quantities by:

& = EA;(S),
for 1 < j <3, and we define
E=E+E+E&5.

These expectations refer to a random choice of S in round 7, using the dis-
tribution mentioned earlier, conditioned upon the earlier choice of R, which
is now fixed. By analogy with a thermodynamic system that cools down
through an energy-minimizing process,* we refer to these expectations as
energies. Next we show that, as anticipated, the energies are bounded by
constants. It is worth noting that, of the three lemmas below, only one
requires that G(R) should be a semicutting.

Lemma 7.5 We have & < 1/6.

4In this analogy, the entropy of the system, ie, the amount of randomness left in it,
decreases over time.
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Proof: The energy & is equal to (var|S|)/4r. For independent variables,
the variance behaves linearly, and so

& = (n;rr)p(l -p) <

=

Lemma 7.6 If the geode of R is a semicutting, then €y = O(1/b).

Proof: A hyperplane in H|p, contributes 1 to |S|o,| with probability p.
By Lemma A.1, it follows that

E|[S|0s|° < (¢ + plH|0s])¢ = (¢ +pns)® = O(q5)-

Next, we sum up over all simplices s in G(R) and apply the fact that G(R)
is a semicutting. By Lemma 7.4,

E{ Z r }_O( Z ) O(brld/2)y,
s€G(R) s€G(R)

from which the lemma follows. O

Fig. 7.5. The probability that v ends up a vertex of (RU S)" is p*>(1 — p)®.

Lemma 7.7 We have &5 = O(1/b).

Proof: The probability of a given vertex v € V(H) N R" turning up in
V((RUS)M) is p% (1 — p)™, where d, counts the number of hyperplanes
of H \ R passing through v; recall that n, is the number of hyperplanes
separating v from O. Therefore,

NE=E{ Y onij= ¥ pt-pmai (72)

veV((RUS)M) veV (H)NRN
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where N is, as we recall, brl%/2l(n/r)¢. The sum above would be easily
handled, were it not for that pesky factor nS. To take care of it, we use a
nice little trick. Consider another random sample T chosen in H \ R, where
each hyperplane is now picked with probability t = p/2. By definition, the
expected number @ of vertices of (RUT)" is

RE S ™.
vEV (H)NRN

By the Upper Bound Theorem and Lemma A.1, it follows that®
Q< E{|Ru T|td/2J} = O(rla/2)y,

Using the derivations
1-—t >1 P > p/4 > 7‘/8”
1-— p 2 ’

we infer that

1-p

Q — ZdeQ—du(l _ p)nv (ﬁ)nu

Z 27d Zpdv (1 _ p)nvenvr/iin_
v

Obviously,

e (8cn\crnyry€ 8cn\°¢ ., ./8n

o = (T) (SCn) < (T) enrren,
By (7.2) and (7.3) we find that

Nes = Y -t <2(PR) e
veV(H)NRN

= 0((n/r)crtd/2J) = O(N/b).

O

In the last two lemmas, the big-oh notation hides a constant that does
not depend on b, but does depend on ¢. For b large enough, we thus have:

E<t. (7.4)
By Markov’s inequality, it follows that, with probability at least 1/2,
A1(S) + A2(S) + A3(S) < 1,

5Recall that < is our notation for O().
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which implies that conditions INV1-INV3 are satisfied. In particular, the
geode of RU S is a semicutting. It is worth noting that, for this to be
true, Lemma 7.7 does not require that the geode of R itself should be a
semicutting. This robustness property is crucial. Indeed, the derandom-
ization procedure introduces errors into the computation, whose build-up
and propagation between rounds must be avoided at all costs. Lemma 7.7
circumvents this potential difficulty.

Suppose that INVI-INV3 are satisfied at each round. It follows easily
that each round i runs in optimal time. Why is that? Recall from (7.1)
that the execution of that round takes time on the order of

Z (|S|Os|d + 14+ ns) .

s€G(R)

By INV2, the first two terms of the sum add up to O(rl%/2!). To bound
the third term, we use the fact that the geode of R is a semicutting, and
therefore

S 0 < byl (;)C.

vEV(RN)

By Holder’s inequality® and the Upper Bound Theorem, the inequality
remains valid if we substitute 1 for c¢. It follows from Lemma 7.4 that

Z ng < Z )bnv§b2rtd/2J (;),

s€G(R) vEV(RN

and thus the total amount of work at round i is O(rl%/2 4 nrl?/21-1) By
INv1, the size of each new sample grows (roughly) geometrically between
rounds. So, if all three conditions are always satisfied, the total running
time of the algorithm is then O(nlogn + rl%/21), which is optimal. The
deterministic algorithm that we describe below maintains all three condi-
tions at each round. Note that this would be gross overkill if our target
were an optimal probabilistic algorithm. By using linearity of expectation,
we could do with simply bounding the expected completion time of each
round—a much easier task.

1/ 1/
oS uiws < (Lul) 7 (Sof) ", for any wiyvi >0, p,q > 1, where 1/p+1/q = 1.
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7.3 Derandomization

It seems natural to derandomize the probabilistic approach by using the
method of conditional expectations discussed in Chapter 1. The idea is
sound, although, as we shall see, it runs into a number of technical diffi-
culties. The chief obstacle is that the expectations needed are too costly
to compute, and we can only hope to estimate them with high enough
accuracy.

Again we consider the algorithm at the opening of round 4, assuming
that the geode of R is a valid semicutting. Our next step is to find a new
sample S C H\ R such that A;(S)+A>(S)+A3(S) < 1, with an eye toward
satisfying the three conditions INV1-INV3. We order the hyperplanes of
H \ R arbitrarily, hy,...,h,_,, and for each of them in turn we decide
whether to accept it or reject it, ie, include it in S or not. Suppose that
we have already decided on the status of hy,...,hy. Let S*) be the set
of accepted hyperplanes among them. We define the energy & ](k) to be the
conditional expectation

g](k) :E[Aj(S)‘S(k) :Sﬂ{hl,...,hk}},

and again we denote their sum El(k) + Sék) + Sék) by &) which is the total
energy at the k-th step. Finally, we let

e — B[ 4,(5) ‘ M =S {hi,.... by} and iy € S|
and
glklout) _ E[Aj(S) ‘ S® = S {hy,... hy} and hyst ¢ s]

designate the corresponding energy after accepting and rejecting hy1, re-
spectively. Recall that the method of conditional expectations stipulates
that the hyperplane hyi; should be accepted or rejected, depending on
which outcome yields the lesser total energy E*+1) | Because of the iden-
tity

R = pglklin) 4 (1- p)g(k\f’“t), (7.5)
such a selection rule ensures that

gkt < gk)

for each 0 < k < n — r, where £ is the expectation £ at the outset of

round i, when no hyperplane has yet been committed to S. By (7.4), this
indicates that, once S has been entirely selected, the energy is still less
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than 1/3. Since no randomization is left, we have, in effect,

3

> A48y <

j=1

)

Wl =

and the sample S thus satisfies all three conditions. To turn this into an
algorithm we must be able to compute the energies as we assemble S. The
case of Sl(k) or Sék) is easy. Unfortunately, the same cannot be said of
Sék). So, instead of evaluating £*) exactly, we estimate it by computing
the approximate energy

AE®W = £ + P 1 4P

The trick is to ensure that the approximate energy AE (5 gtill follows a
relation similar to (7.5), and tbus keep the basic derandomization approach
valid.

Sharp Energy Estimation

Recall from (7.2) that, at the beginning of round i, the third energy com-
ponent is of the form

0) _ 1 d, Ny . C
83 - N Z p (1 _p) Ny
vEV(H)NR"
where d, is the number of hyperplanes of H\ R passing through v. Breaking
down the sum along the facial structure of the geode of R, we obtain

0 _ 1 do Ty o C
& =~ > > ph-phal
sEG(R) veV(H)Ns

With the assumption of general position, a vertex v of V(H) that lies
within a j-simplex s of G(R) is contained in d — j hyperplanes of R and j
hyperplanes of H \ R, and so d, = j = dim s. It follows that V(H)Ns =
V(H,s), and hence

0 _ 1 dy Ny pC
& = ) > pr(1—p)mn. (7.6)
s€G(R) vEV (H,s)

For the time being, we assume the existence of an oracle that, given a
j-simplex s € G(R) as input, returns an approximation O(s) of the inner
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>

N
N

Fig. 7.6. The contribution of v to the third energy component is p?(1 — p)® - 5°,
up to a scaling factor of 1/N.

sum above. Specifically, we require that”

(06 - Y pa-pag

vEV (H,s)

Initially, the approximate energy is
(0) def 1
Ay = < > 0s).
s€G(R)

The geode of R is assumed to be a semicutting, so by (7.6, 7.7) and the
usual mix of Lemma 7.4 and the Upper Bound Theorem, we find that

(0) (0) 1 1 o= _ 5
&) - AP | <5 Y Be< X @I =00/0). (1)
s€G(R) s€G(R)

This proves the case k = 0 of the following, more general result:
Lemma 7.8 We have |E§k) - Afgk)| <1/3, for any 0 <k <n —r.

Proof: Of course, for this lemma to make any sense, we need to define the
approximate energy for arbitrary k > 0. Given a vertex v € (RUS®)" let
m, be the number of hyperplanes among {hyt1,...,h,—} in its conflict
list (note that m, depends on k). We now define d, as the number of

"The reader should not be frightened by the exponent y/c. This is just a convenient
mechanism for using constants with implied order relations without introducing new
notation. As hard to believe as it may be, the reader will come to appreciate this.
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hyperplanes among {hg41,- .., hn—pr} passing through v and write
(k) _ 1 d. .
&" =+ ijp (L=p)™ni, (7.9)

where the summation extends over the vertices v of the arrangement of
RUS® U{hgy1,...,hn_r} that lie within the polyhedron (RUS®*))"; this
excludes vertices lying on rejected hyperplanes.

We generalize the oracle O to provide good estimates on the contribution
of a given face to the sum above. The input is a j-dimensional polytope o
that lies entirely within a single simplex s € G(R), and whose affine span
is (i) R?, or (ii) a hyperplane of H, or (iii) the intersection of several of
them.® The oracle returns an approximation O*)(s) such that

0" (o) — > P(1—p)™ng| < Es, (7.10)

vEV({hkt1seeshn—r},0)

with E; defined as in (7.7). One might be tempted to approximate the
energy & by considering each simplex s of the geode of R separately and,
using the oracle, estimating the contribution of each face in the portion of
the arrangement formed by S(*) within s. The problem with that approach
is that the errors would grow to be too large. Instead, we use the oracle—
the source of error—only to approximate the difference in energy between
accepting or rejecting the new hyperplane.

I("k+1

Fig. 7.7. What happens to vertex v if we accept hj41?

Consider the contribution of a given vertex to £3, depending on whether

8This excludes polytopes within the “walls” of G(R), ie, within faces of dimension
less than that of the faces of R™ in which they live. For correctness, we should extend
the general-position assumption to rule out vertices within these walls.
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the new hyperplane hy1 is accepted or rejected. In the accepting case, the
contribution of the vertices on the same side of hx41 as the origin remains
unchanged; for lack of a better word, we say that these vertices are above
hg+1. The contribution of the vertices below hgy1 is zero. For a vertex v
that lies on hg41, the parameter d, decreases by one, which has the effect
of multiplying its energy contribution by 1/p. Let 5((,];) be the contribution
of the vertices on hg41 to the sum (7.9), and let Sglzgow be the contribution
of the vertices below the hyperplane. Obviously,

in 1 e
e =& £+ (1)l

Let ¥,,, be the union, for all nonwall s € G(R), of the collection of polytopes
o obtained by intersecting s with each face of the polytope hri1 N (R U
SN we include the polytope itself as a face. We define

Agk) 4 % Y 0¥ (o). (7.11)

OEXon

Why the factor p? Because the oracle includes the factor pdi™ 7 whereas as
far as £®) | and hence A are concerned, the desired factor is pdimo+1,

We define Y10 similarly to X,,, except that now s is clipped within
the portion of (RU S™)™ below hyy1. This leads to

def 1
Ayon € 22 OW(0), (7.12)

0EXpelow

and, finally,

below

e |in 1
AEGHD L geglklim) — e _ 4g®) 4 (5 —1)AE).

The case where hyy; is rejected is similar to the accepting case. The
vertices lying in hgy1 no longer contribute anything to the energy, and for
any vertex v below hy4; the parameter m, decreases by one, so their con-
tribution to the energy is multiplied by 1/(1 —p). This justifies introducing

the following definition:
e ou 1
AP gl — e+ (— .

From this follows an identity analogous to (7.5),

AEY = pAEST™ + (1 - p)AgS™,

below

- 1) AEH  qelh),

and hence
AEW = pAEHTI) 4 (1 — p)Agtionn,
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with the obvious meaning of AE (klinfout) "~ Ag expected, hi+1 is accepted

if A&Klin) < ggklout) anq rejected otherwise. With this rule, we ensure
that

AEC) < A
By (7.4), we know that £(°) < 1/3, and so, by (7.8),
AEC=) < g0 4 g0 4 AP < L4 AP — &0 < L. (7.13)

This immediately implies that

£ peh ) < 1
Since no randomness is left at stage k =n —r,

> A0y < g,

J=1,2
and so the final sample S = S("~7) satisfies conditions INV1 and INV2.

To complete the proof, we must perform the error analysis relative to
the approximations used in the algorithm, and show that the upper bound
that we have on AE gk) is basically valid for 5§’“> as well. By using the
identities relating AEQ’““) and Aé’gk) in the accepting and rejecting cases,
and combining them with the analog identities between E?Ekﬂ) and Sék),
we derive

e — Agl| < [ef? — Al

b ([ - asi

it h;€Sk)

Y (e - asi

i€{1,....k}: higS(®)

]__
Ll-p
p

e - Ag6, V)

+ el - Agginl)D .

By (7.8), the first term is bounded by O(1/b*). Turning now to the
contribution of a single simplex s € G(R) to the other terms, we distinguish
between the accepted and the rejected hyperplanes (ie, the second and third
terms above). Using a conservative estimate, the number of faces that s
contributes to X,, or Ypeiow 1S O(rg); of course, 75 is to be understood
here with respect to the final sample, ie, r; = |S|(gs_r)| + 1. Also, there are
no more than r; accepted hyperplanes cutting s or separating it from O,
so the total number of polytopes within s for which the oracle is called is

O(r?*1). For an accepted hyperplane h;, the definitions of AW in (7.12)

below
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and AE™) in (7.11) show that the oracle’s error bound of (7.10) must be
multiplied by, respectively, 1/N and (1 — p)/N < 1/N to provide upper
bounds for the middle sum above. So, the total error contribution for the
accepted hyperplanes is O(r¢*1E;/N).

As regards a rejected hyperplane h;, the same argument leads to mul-
tiplying the oracle’s error bound by p/(1 — p)N < 2p/N for the faces of
Shetow and p/N for those of ¥,,. Therefore, the contribution of s to the
third term of the sum above is O(nsrépE;/N) = O(gsr?Eg/N), and so the
last two terms together account for O(qsrét1E;/N) and the first one for
O(1/b?). This gives

e —ael | <« bl2 + bgﬂ% ST VErtpdt
s€G(R)
where the constant behind the notation <« does not depend on b. We
already have bounds on the powers of rs and ¢gs. To deal with products of
powers, we use the inequality xy < z% 4+ y, which is easily shown to hold
for any 1 < u < v such that 1/u + 1/v = 1. In this case, we set

r = ritt

y = ¢V < gV,

u = 2

v = 1 - _ ¢
T=1/u — cve/2 "

We derive
pdtlgemVert < p2(dHhve 4 ge

and therefore

(k) (k) 1 1 2(d+1)\/e ¢
53 — .Ag3 < b_2 + W Z T‘s( ) + Z qs
sEG(R) s€G(R)

By INV2 (which, earlier, was shown to hold true), the first sum does not
exceed b?rl?/2] . Because the geode of R is a semicutting, the second sum
is bounded by O(brl4/2). Therefore, the total error is O(1/b), which com-
pletes the proof of Lemma 7.8. O

Lemma 7.9 Assuming that the geode G(R) produced in round i — 1 is
a semicutting, then round i computes a subset S that satisfies all three
tnvariants INV1-INV3.

Proof: By (7.13) and the previous lemma, at the end of round i, we have:
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g(nfr) — El(nfr) +52(n7r) +g§nfr)
< g pglr Al 41
< AET 4 l<E

Again, because no randomization is left at the end of the round,

g(nfr) _ ZAJ(S(nfr)) < %’

j=1

and the final sample S = S("") satisfies the three invariants. O

The Oracle

We describe an implementation of the oracle @) used in the proof of
Lemma 7.8 with the following characteristics: Given an input polytope o
contained in a simplex s € G(R), the oracle returns its answer in O(|a|q?‘/z)
time, for some absolute constant a, where |o| denotes the combinatorial
complexity of o, ie, its total number of faces of all dimensions. The output
is an approximation O*) () that satisfies (7.10). The total time needed
for updating the data structure for s during the round is bounded by®
O(nsriqtVe).

For notational convenience, we introduce another parameter pg, which,
like g5 and 74, behaves “mostly” like a constant:

def ;3446 4d
ps = HPAFOLdVe,

Let H S(k) denote the set of hyperplanes yet to be processed, among those
in the conflict list of s. Specifically,

Hgk) = {hk+17 ey hn—r}|Os -

We maintain an e-approximation Agk) for the set H §’“> as it evolves dy-
namically. (A full treatment of the concept of an e-approximation is given
in Chapter 4.) The underlying range space is defined with respect to line
segments. To maintain such an e-approximation under deletion of hyper-
planes, we can start by using, say, a (1/2p,)-approximation A and re-
compute a brand-new (1/2p;)-approximation after every ns/2p;s deletions.

9The big-oh notation, when used for expressing running times, hides constants that
might depend on b.
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By Theorem 4.5 (page 175), each such e-approximation can be computed in
O(p2™*1ng) time, so the total maintenance time for all the e-approximations
is O(nsq2V°), as desired. The size of any A is O(p? log ps).

Recall that to answer a call to the oracle O®) is to provide a sharp
estimate on the value of

Z pdima(l _p)mvni .

To do this, we define the output of the oracle to be

0B ) L ST (ap) ™1 - p) g, (7.14)
veV (A% o)

where

8§

def
oy € HP)| /140

The parameters m, and n, can be computed for any vertex v € V(Agk), o)
in time O(p3ln,). Since O(ps) distinct approximations are needed, this
brings up the cost to O(p29*+1n,). With this information handy, given o,
we can compute the output of the oracle in O(|o| - |Agk)|d) time, which is
O(|a|q§1‘/E) time, for some suitably large constant a. The total combinato-
rial complexity of all the polytopes o in the sets X0 and X, introduced
while processing a hyperplane h; is in O(r¢), and this bound also covers
the cost of computing them. Thus, the overall time spent within s while
processing a given hyperplane is O(r;iqg‘/E ). There are ns hyperplanes to
process, so we have the following result.

Lemma 7.10 The work spent on any simpler s € G(R) during round i
takes O(nsrgq?ﬁ) time.

To conclude the proof of our opening claims, we now must show that
the oracle is accurate enough. For notational convenience, we deal only
with the case k = 0, the other cases being entirely similar; this allows us to
omit the superscript (k) from our notation, and to simplify our discussion
by observing that m, = n,. As was shown in §4.3, when suitably scaled,
the number of vertices falling within a polytope that are formed by the
e-approximation approximates the number of vertices of Hy; within that
polytope with relative accuracy e.

By analogy with the finite-element method, our strategy is to subdivide
o into a small number of cells, so that the variation of the summand within
each cell is small. Within such a cell the summand in question is estimated
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(erroneously, of course) by a single number. We begin with a discussion of
the error caused within a given cell. Then, we explain how to subdivide o
into cells. The function f to be summed is

f(z) =p' (1 —p)*a",

where j = dimo. We define its modulus of continuity over a set T as the
function denoted by My r(h), where

Myr(h) = sup |f(z2) — f(z1)|.
xq,20€T
|z2—z1|<h
Given a j-dimensional cell £ C o (Fig. 7.8), we use the shorthand
Sef= ), fln) and Ngf= ) alf(m).

veV(H,¢) vEV (A, €)

Fig. 7.8. Assuming j = d, the cell £ lies within o C s.

To bound the error [¥¢ f — Xf f| over the cell £, we define

T = {ny, :veV(H)},
fem = min{ f(z) sz €T},
frer = max{ f(z) : v € Tg },

Ae(f)

It is immediate that

[V(H, &) - f" < Sef <|V(H,E)| - feee

fgmaz _ fgmm
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and
al|V(A, 0] - fIM" < Sif < ol |V(As, 8] - £7°,

and therefore
[Sef - Sis

By Theorem 4.16 (page 186), for any j-dimensional cell £ within o C s,

< |od|V(As, )] = [V(H, O] - £ + [V (H, €A (f)-

. ni
| ad|V(As,6)| = [V(H, Q)| < = (7.15)
from which it follows that
* n‘; max
|Zef — i f| < o &+ |V(H, A (f) (7.16)

Note that, technically speaking, inequality (7.15) holds, but not for the
reasons we mentioned. Indeed, recall that we do not actually use a (1/p;)-
approximation, but a sequence of (1/2p,)-approximations, which we com-
pute after every ns/2ps deletions. This means that, to the standard bound
of n?/2ps, we must add the overcount of vertices lying on rejected hyper-
planes, ie, (jn_sl)ns /2ps; this makes the previous bound of nd/p; still valid.

Lemma 7.11 For any T C [0,7], My r(h) < hp't¢ (c — 7log(1 — p)).
Proof: By the mean value theorem, for any x1,zs € T,

|f(z2) = f(z1)] < |w2 —21| x sup  [f'(2)].
z€[w1,22]
Because f'(z) = p/(1 — p)*(ca®~! + 2¢log(1 — p)) and log(1 — p) < 0, it
follows that |f'(z)| < ep?m¢~! — p/7¢log(1 — p), which implies the lemma.
O

To estimate the total error within the cell o, we subdivide it into smaller
subcells. Setting

def ;3 o
VS = b qs\/E’

we choose a (1/v,)-net N' C H|o, (for the same underlying range space) of
size O(vslogvs). Note that this is a device used only for the error analysis,
which means no extra work for the algorithm. Let T be the portion of the
arrangement of A within o; because of general position, we may restrict
our attention to j-dimensional cells, so that T is a subdivision of ¢ into
|T| = O((vs logvs)?) = O(vdT!) cells. For any € € T, we have sup T < n;
so by virtue of NV being a (1/v5)-net and the fact that —log(1l — p) < r/n,
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it follows from Lemma 7.11 that
Sp] c—1 qsp]ng
< . .
Ae(f) Mng( ) < ( )ns <= (7.17)

Putting together (7.16) and (7.17), we obtain

|Zaf_z*f| < Z|E£f Zf|<<,/d+1 Sfmaac+ ]qsﬂni
(o — 5 VS
£er
d+1qd qd+1
oS5t ) 0w,
which establishes (7.7) and (7.10), and proves our claim about the oracle’s
performance.

Complexity Analysis
By Lemma 7.10, we derive the complexity of a round by summing up the
given time bound over all simplices of the geode. Using the inequality
zy < 2% +y?,

Z ngrd mf<( ) Z rdgavert < (;) Z (r§d+qzaﬁ+2)_

s€G(R) s€G(R) s€G(R)

As we observed in the proof of Lemma 7.8, INV2 holds. We also assumed
that the geode of R is a semicutting; so, by Lemma 7.4 and the fact that
¢ is arbitrarily larger than a, the sum above is O(nrl4/21=1). This applies
to all of the rounds except the first and last ones.

The first one takes O(n) time, while for the last round we use a naive
O(n?) algorithm for each simplex s of the geode G(R) computed in the
previous round. By Lemma 7.4, the semicutting property of that geode, and
Holder’s inequality, the costs sum up to O(rl%/2!)(n/r)?. Since r > n/c,
this gives O(nl%/2]). From the geometric growth of the sample size at each
round, we conclude that the running time of the convex hull algorithm is
O(nlogn + nl?21), which completes the proof of Theorem 7.3 (page 285)
and, hence, of Theorems 7.1 and 7.2 as well. O

A closing observation concerns the issue of finite precision. Since the
algorithm is polynomial, it suffices to represent numbers over clogn bits,
for ¢ large enough, to ensure that the numerical (relative) errors added at
each operation are small enough, eg, O(1/n). It is easily checked that
such errors are then inconsequential in the decision process.
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7.4 Bibliographical Notes

Optimal deterministic convex hull algorithms in dimensions 2 and 3 were
found by Graham [145] and Preparata and Hong [252]. For the case of
two-dimensional Voronoi diagrams, an optimal divide-and-conquer solution
was proposed by Shamos and Hoey [281], and a plane-sweep method was
developed later by Fortune [132].

Convex hulls are considerably more complicated to compute in dimension
higher than 3. Seidel [276] gave an optimal O(n'%/2])-time algorithm in any
even dimension d > 2, and a suboptimal O(nl%/2] logn) solution in any di-
mension d > 1 [277]. The problem was finally settled by Chazelle [70], who
discovered an optimal O(nlogn + nl%/2l) deterministic algorithm in any
dimension d. The algorithm was subsequently simplified by Bronnimann,
Chazelle, and Matousek [57]. Our presentation here follows the latter treat-
ment. The algorithm is but one example of derandomization in computa-
tional geometry. A nice survey of the subject is given by Matousek [217].

On the probabilistic front, the main breakthrough was the randomized
convex hull algorithm of Clarkson and Shor [97]. Their algorithm is of
the Las Vegas type. It always computes the right answer and its expected
running time is optimal. A nice, simpler variant was later proposed by
Seidel [278]. See also the textbooks by Mulmuley [237], Boissonnat and
Yvinec [52], and the survey by Clarkson [95] for a good coverage of ran-
domized geometric algorithms.
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Linear Programming and Extensions

eometrically, linear programming is the problem of minimizing
a linear functional (the cost function) over a convex polyhedron.
Algebraically, one of the many ways of stating the problem is

Minimize ¢! z,

subject to the constraints
Az <b and 22>0,

where b and ¢ are column vectors in R” and R?, respectively, and A is
an n-by-d real matrix. The number d of variables is the dimension of the
ambient space: It can be arbitrarily large, but in our context it will be
considered constant. In other words, we are primarily interested in the
dependency of the running time on n rather than on d. The main purpose
of this chapter is to use the discrepancy method to derive a deterministic
algorithm for linear programming that is linear in n and singly exponential
in d.

That linear programming can be solved in time linear in the number of
constraints is quite stunning. How can such a problem be easier than, say,
sorting? Furthermore, the algorithm is a variant of the well-known (dual)
simplex algorithm, and so these bounds hold in the unit-cost RAM model.
Unlike the classical algorithms of Khachiyan or Karmarkar, no assumption
is needed on bit encodings.

The underlying method is sufficiently general that it can be used for a
broad class of optimization problems. Remarkably, what happened with
VC-dimension theory will repeat itself. The problems can be treated combi-
natorially with no reference to geometry or linear algebra whatsoever. This
generality allows us to derive linear-time algorithms for nonlinear optimiza-
tion problems, eg, finding the smallest ball or even the smallest ellipsoid
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enclosing n points in R%. If linear-time LP seems stunning, what about the
following? Given n points in R!%°, the smallest enclosing ellipsoid (which
is unique) can be found in O(n) time!

8.1 LP-Type Problems

We define a class of combinatorial problems, called LP-type.! Any problem
in that class is characterized by a pair (H,w), where H is a finite set and
w is a “cost” function mapping certain subsets of H (not necessarily all
of 2f) to a totally ordered universe (W, <). The elements of H are called
the constraints of the problem. We say that h € H violates a subset
of constraints G C H if w(G) < w(G U {h}). A basis B of G C H is
a minimal set of constraints with the same cost as G. Specifically, we
must have w(B) = w(G) and w(C) < w(B) for any proper subset C' of
B. We define the combinatorial dimension of (H,w), denoted by §, to
be the maximum size of any basis (of any subset of H). To solve the
problem (H,w) is to find a basis of H. We need certain combinatorial and
computational assumptions to make this an efficient process.

The Four Axioms

The first two axioms concern the behavior of the function w; the others
provide computational oracles for the algorithm:

1. MonNoToNICITY. Given any F C G C H, w(F) < w(G).

2. Locavrity. If h € H violates G C H, then it violates any
basis of G.

Note that the converse of the locality assumption (the violation of a ba-
sis implies the violation of G) follows from the monotonicity assumption.
Before we go any further, it is useful to make a simple observation.

Lemma 8.1 A basis B of any subset of H is also a basis of BU N, where
N is any collection of nonviolating constraints for B.

Proof: We prove this by induction on the size of N. The case |N| = 0
is trivial. For |N| > 0, consider any h € N. Because B is a basis of

1Yes, LP stands for what you think.
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BU (N \ {h}), by the locality assumption, h cannot violate BU (N \ {h}),
and therefore

w(BUN) =w(BU(N\ {h}) = w(B).

Given a basis B (of some subset of H), let V(B) be the set of violating
constraints:

V(B) = {heH‘w(B) <w(BU{h})}.

We define a range space (H, R), where R is the collection of sets V (B), for
all bases B. We make the assumption that (H,R) has finite VC-dimension.
Let v be a bound on the exponent in its shatter function, ie, we assume that
mr(m) = O(m?). In practice, v is either equal or larger than §. We need
to make two computational assumptions: One is that violations can be
detected effectively; the other is an oracle for (H, R) of the kind described
in Chapter 4.

3. ViorarioN TeST. Given any basis B and a constraint
h € H, check whether h violates B. (Return an error message
if B is not a basis.)

4. ORACLE. Given any subset Y C H, compute the set R|y
in time O(|Y|7+1).

Linear Programming as an LP-Type Problem

How does all of that relate to linear programming? By rotation, the cost
function can be assumed to be of the form (1,0,...,0)7z. Because of the
nonnegativity constraints on the coordinates (x > 0) this implies that, if
the system is feasible, it must have a bounded optimal solution. Such a
solution can be made unique by choosing the one whose coordinate vector is
lexicographically smallest. For the time being, we assume that the system
is feasible. (We shall remove that assumption later.) The correspondence
with an LP-type problem is straightforward:

e H is the set of n closed halfspaces formed by the inequalities Ax <
b; note that we do not include the inequalities z > 0 in H.

e W = R?, ordered lexicographically.

e Given G C H, w(G@) is the unique (lexicographically) minimal
point with nonnegative coordinates in the halfspaces of G. Its
existence follows from the feasibility of the original linear program.
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P

Fig. 8.1. The halfspace h violates G.

A halfspace h € H violates G C H if w(G) < w(GU{h}), ie, adding h to
G would strictly increase the cost of the optimal solution. Geometrically,
this means that the hyperplane corresponding to h cuts off the old solution
from the new feasible set. A basis consists of at most d halfspaces, and
its combinatorial dimension is d. The monotonicity assumption expresses
the fact that adding more constraints cannot improve the optimal solution.
The locality assumption asserts that the violation of a set of constraints
can always be witnessed locally by looking at any one of its bases. Why
is that the case? The optimal is achieved at a unique point p in space,
which is unambiguously specified by any basis. (Note that the point p is
the intersection of the hyperplanes in B, possibly together with some of the
coordinate hyperplanes.) If a new halfspace h causes a violation, then, as
we observed, its bounding hyperplane cuts away the point p from the new
feasible set. In doing so, it also cuts p away from the feasible set defined
by h and any basis (Fig. 8.1).

Regarding the computational assumptions, a violation test can be per-
formed in O(d?®) time by Gaussian elimination. If the vertex (specified by
the constraints of the basis and the nonnegativity constraints) is available
explicitly—as it often will be—then the time is reduced to O(d). To imple-
ment the oracle, we consider the arrangement formed by the hyperplanes
bounding the halfspaces z > 0 and those in Y. Each basis for a subset of Y
corresponds to a vertex in that arrangement (but often not the other way
around). We form V(B) by checking which of the halfspaces of ¥ violate
that basis, using the fact that violation means that the halfspace does not
contain the vertex associated with the basis B. This is done naively in time

at most proportional to
m+d
d*m ( ; ) ,
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where m = |Y|. The running time of the oracle is therefore O(|Y|?+1).

Finally, what is to be done with the linear program if it has no feasible
solution? As will soon be evident, the algorithm will automatically detect
unfeasibility during Step 1 (or its recursive incarnations).

A Deterministic Solution

We give a recursive procedure that takes a set H of constraints as input
and returns a basis of H. Let D = max{d, v}, and let |H| = n.

The Algorithm

STEP 1. If n < cD*log D, for some large enough constant
¢, compute a basis of H directly by examining all possible j-
tuples of constraints in the order j = 1,...,4, and returning
the first one that is not violated by any constraint of H.

STEP 2. Compute a (1/4D?)-net N for (H,R).

STEP 3. Compute a basis B of N recursively. Let V' be the
set of all constraints in H violating the basis. If V' is empty,
then return B and stop; otherwise, add all of the violating
constraints to the set N and repeat Step 3.

Correctness

Why is the algorithm correct? In fact, why does it even terminate? It is
easy to see that the algorithm can iterate through Step 3 at most § times.
Indeed, assume that V is not empty after the first iteration. Then, by the
monotonicity assumption, the original basis B is such that w(B) < w(H).
Let B* be any basis of H. By Lemma 8.1, if none of the constraints in
B* violated B, then B would also be a basis for B U B*. But then, by
monotonicity, w(B) = w(B U B*) = w(H), which is a contradiction. This
means that, after the first iteration, IV contains at least one constraint
from any basis for H. These constraints can never again violate IV in later
iterations. Thus, the same reasoning shows that after each iteration at
least one additional new constraint from any basis of H joins N. After §
steps, therefore, the process stops with V' = ().

Note that an alternative to Step 1 is to try all possible j-tuples J, where
1 < j < 4, and report the one that maximizes w(J). This is correct
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because of the monotonicity assumption. Of course, this assumes that w
is computable, which, interestingly enough, is not part of our assumptions.
The correctness of the output follows from Lemma 8.1, since any basis that
has no violation is also a basis of H.

Complezity

Step 1 requires at most

n(’D +---+n<g> = O0(n/D +1)Pn

violation tests. Assuming that each test costs time t,, this amounts to
O(D)*P+4(log D)P*1 ¢, time. By Theorem 4.6 (page 175), a (1/r)-net
of size O(Drlog(Dr)) can be computed in time O(D)*Pnr2P log” (Dr);
therefore, Step 2 takes time O(D" log D)Pn. The size of no set V in Step 3
can ever exceed n/4D?. Tt follows that, at all times during the course of the
algorithm, |N| < n/4D. Therefore, each recursive call involves a problem
of size at most n/4D + O(D?log D), which is less than n/2D if ¢ is chosen
large enough. The violation costs in Step 3 are at most nt,. If T'(n) denotes
the running time of the algorithm, we have the recurrence:

T(n) = O(D)3P+4(log D)P+1 ¢, if n < eD*logD,
"= O(D"log D)Pn + nt, + DT (n/2D) else.

Assuming that t, is at most O(D)*P~1) /log D, which is the case in our
applications, we find that T'(n) = O(D" log D)Pn.

Theorem 8.2 An LP-type problem (H,w) satisfying assumptions 14 can
be solved in time |H|-O(D"log D)P. This assumes that a violation test can
be done in time O(D)*P~Y /log D. The parameter D is the combinatorial
dimension or the exponent in the complexity of the range space oracle,
whichever is larger.

Note that the complexity can be slightly improved by using the more
complex (but faster) e-net construction mentioned in §4.3.

8.2 Linear Programming in Linear Time

We continue our previous discussion of linear programming in light of The-
orem 8.2. The combinatorial dimension 4 is equal to d. From what we
said earlier, the oracle time is O(|Y'|9t1); therefore, we can set 7 to d, and
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hence D = d. The time t, to test a violation is O(d®), which is certainly
O(D)*P=1 /1og D (for d > 1). From Theorem 8.2 we derive

Theorem 8.3 Linear programming with n constraints and d variables can
be solved in d°Dn time.

8.3 Computing Lowner-John Ellipsoids

Given a set H of n points in R?, the smallest ellipsoid enclosing all n
points is unique. It is called the Léwner-John ellipsoid of H. How fast
can we compute it? Fortunately, it is not too difficult to see that we have
an LP-type problem in disguise. Each of the n points is a constraint.
Adding points cannot decrease the volume of the Léwner-John ellipsoid,
so the monotonicity assumption holds. In two dimensions, it takes at most
five points to specify an ellipse, and this upper bound is tight. Setting
the problem as convex programming easily shows that the combinatorial
dimension is 5. In R%, an ellipsoid is specified by an inequality of the form

(2 -0)TQx~0) <1,

where c is the center of the ellipsoid and @ is a symmetric positive definite
d-by-d matrix. Again, the combinatorial dimension § can be shown to
be at most the degree-of-freedom (DOF) number? of an ellipsoid, which
is d(d + 3)/2: d for the choice of ¢ plus d(d + 1)/2 for the choice of Q.
The locality assumption follows from the uniqueness of the Lowner-John
ellipsoid.

The violation test addresses the following question: Given a basis B and
a point h, verify whether & lies outside the Lowner-John ellipsoid of B.
We use a characterization of Juhnke which says that the point h lies in the
Léwner-John ellipsoid for B if and only if the real matrix @) is symmetric
positive definite and there exist reals a > 0, A(p) > 0 (p € B), such that

(h=0)"Q(h—¢) < 1
p-c)"Qp—¢) = 1, peB
S ®) 0 = (Tyepd0))e
(adetQU = Y pAMp)Q(—c)p—o)T,

2DOF considerations alone might not be sufficient to bound the combinatorial di-
mension. A nice illustration of this was indicated to the author by Jirka Matousek.
Consider the narrowest strip enclosing n points in general position in the plane. A strip
has three degrees of freedom and, sure enough, the narrowest one is specified by three
points. The combinatorial dimension can be as high as n, however. Can you see why?



314 LINEAR PROGRAMMING AND EXTENSIONS

where U denotes the d-by-d matrix with ones everywhere. Note that pos-
itive definiteness can be enforced by requiring that all of the upper left
submatrices of ) have positive determinants. To check the feasibility of
such a system of polynomial equalities and inequalities, we use a known
result concerning the complexity of the existential theory of the reals: A
system of m equalities and inequalities of maximum degree b in r variables
can be decided in (mb)°(") time (in the unit-cost RAM model of compu-
tation). Thus, it appears that a violation test can be performed in time
o),

The last point to check is the range space oracle. Given a set Y of points
in R?, the problem can be solved by enumerating all possible subsets of Y’
of the form Y N F, where F is the complement of an ellipsoid, and then—
the easy part—keeping those defined by actual bases. The enumeration is
easily done by lifting the problem into higher dimensions. This is intended
to linearize the inequality

(2 0)TQ—c) <1

which expresses the membership of z in the ellipsoid £(Q,c). We map
r=(z1,...,24)7 to

flx) = (x4, ... ,md,w%,mlw%wlx;;, . ,wlwd,mg,mgx;g, ... ,:ng) .

In this way, = belongs to £(Q, ¢) if and only if f(z) lies in a halfspace h(Q, ¢)
in R4(@+3)/2 " This shows that the subsets ¥ N F can be enumerated by
trying out all O(|Y'|)44+3)/2 halfspaces whose bounding hyperplanes pass
through d(d + 3)/2 points. Checking whether a point lies above or below
a hyperplane in R*4+3)/2 takes O(d%) time by Gaussian elimination, so
the total reporting time is O(|Y|)¥@+3)/2+146 A simple variation of the
analysis in the proof of Theorem 8.2 gives:

Theorem 8.4 The ellipsoid of minimum volume that encloses a set of n
2
points in R% can be computed in time d°(@)n.

8.4 Bibliographical Notes

The first polynomial-time algorithm for linear programming was discov-
ered by Khachiyan [181]. However, it is not a practical alternative to the
simplex algorithm of Dantzig [102], even though the latter is exponential
in the worst case. A polynomial algorithm shown to be efficient in practice
was given by Karmarkar [178]. The complexity of both Khachiyan’s and
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Karmarkar’s algorithms depends on the bit-complexity of the input. By
contrast, all of the algorithms discussed in this chapter, being dual simplex
algorithms in disguise, run in time that depends only on the numbers of
variables and constraints (assuming a unit-cost RAM model).

The first algorithm for linear programming with a running time linear in
the number of constraints was found by Megiddo [224, 225]. Its complexity
of 22° -O(n) is, unfortunately, highly dependent on the number of variables.
The multiplicative factor was reduced to 3 by Dyer [114] and Clark-
son [93]. Randomized algorithms with even lower dependency on d were
found by Dyer and Frieze [116], Clarkson [96], and Seidel [278]. Among
those, the lowest asymptotic complexity is achieved by Clarkson’s algo-
rithm [96], with a running time of O(d?n+d®*/?+°W) logn). Kalai [175, 176]
and, independently, Matousek, Sharir, and Welzl [220] broke the expo-
nential barrier. In combination with Clarkson’s algorithm, this led to a
randomized algorithm for linear programming with expected running time

O(d2n) + eO(\/dlnd)‘

Extensions to certain cases of convex programming were provided by Gért-
ner [141]. No deterministic algorithm can match this bound at present.

Section 8.1: The LP-type formalism was developed by Sharir and Welzl
[283]; see also [220]. The linear deterministic algorithm of Theorem 8.2
(page 312) was discovered by Chazelle and Matousek [81]. Extensions of
the LP-type formalism are discussed by Gértner and Welzl [142].

Section 8.2: The bound for linear programming (Theorem 8.3, page 313)
was derived by Chazelle and Matousek [81]. The running time of d°(®n
is the best known to date; however, it still falls short of the bounds for
randomized algorithms mentioned above.

Section 8.3: The linear algorithm for the smallest enclosing-ellipsoid prob-
lem (Theorem 8.4, page 314) is due to Chazelle and Matousek [81]. An
earlier linear algorithm was found by Dyer [115] with a higher dependency
on d. The problem was also investigated by Post [251] and Welzl [320].
The related problem of computing the smallest enclosing ball was solved
by Megiddo [224, 225] deterministically, and later by Welzl [320] proba-
bilistically. Here are references for the various results on the Lowner-John
ellipsoid that we mentioned without proof: Uniqueness is proven in [103];
the number of degrees of freedom of an ellipsoid is given in [103, 174]; and
the result on the existential theory of the reals that we used in the proof
of Theorem 8.4 is due to Renegar [259].
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Pseudorandomness

@f(\;\ s we saw in Chapter 4, the difficulty of sampling geometric spaces
=}’9 directly reflects their discrepancy. In the presence of unbounded
U&( VC-dimension, we have no combinatorial structure to hang on
to, and naive randomization is often the preferred route. The trouble is
that the underlying probability spaces are usually of exponential size and
straightforward derandomization is intractable. This chapter shows that,
by sampling sparse low-discrepancy subsets of the probability spaces, we
can often considerably reduce the amount of randomness needed. The con-
nection is intuitively obvious: A low-discrepancy subset should be mostly
indistinguishable from the whole set. So, by sampling from it we should be
able to fool the casual observer into thinking that we are actually sampling

from the whole set. Of course, “casual observer” is our euphemism for
“polynomially bounded algorithm.” Thus, if this chapter needed a wordy
subtitle, it could be: How designers of probabilistic algorithms can limit
the amount of randomness they need through the judicious use of the dis-
crepancy method.

Suppose that we wish to find a random sample S of size s in a uni-
verse with n elements. For concreteness, the universe can be thought of
as {0,...,n — 1}. The quality of the random sample is measured by its
discrepancy relative to any subset. In other words, imagine that we fix a
certain F' C {0,...,n — 1}. When picking S at random, it is desired that
the discrepancy

|F] _[FNnS]|
L
be small. (By analogy with the e-approximations defined in Chapter 4, we
use a relative discrepancy measure.) Note the ordering of the statement.
First we choose F, then S. Naturally, we cannot hope for a small discrep-
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ancy for all F’s once S has been chosen. This is the major difference with
set systems of finite VC-dimension. Standard calculations can tell us how
large a discrepancy we should expect with random sampling. This is not
the issue.

What is at issue is the number of bits required for sampling. If s is
sufficiently smaller than n, the number of bits is about log (Z) ~ slogn.
In other words, each sampled item requires logn bits. This might seem
natural, given the fact that simply to write down an item takes that many
bits. But, how do we know that all of these bits need to be random? After
all, a random item in the universe may require logn bits, but to indicate
whether it is in F' or not should require only one bit, so perhaps one could
hope to reduce the total number of (truly) random bits to only O(1) per
sampled item. Indeed, one can.

There are many applications of this result. We discuss one of the most
celebrated: amplification of success probability for BPP.! Recall that a
probabilistic algorithm is a deterministic algorithm that takes two inputs:
One is the standard input z to the problem at hand; the other one is a
random m-bit string R. The class BPP includes all the languages L that
can be recognized by a randomized polynomial-time algorithm with the
following characteristics:

e If a string z is in the language L, then the algorithm accepts the
string with probability at least 2/3.

e If z is not in L, then the algorithm rejects the string with proba-
bility at least 2/3.

Fix an input z once and for all. A BPP algorithm?® does the “right
thing” with probability at least 2/3. There is nothing magical about 2/3.
Any constant bounded away from below by 1/2, say, 0.5001 or 0.999, would
work just as well.®> The reason is that there is a straightforward way to
amplify the success probability. Simply run the algorithm £ times, and
take a majority vote on all of the k& outcomes. We expect the runs to give
us the right answer at least 2k/3 times. By ensuring independence among
the random strings, we can use Chernoff’s bound to show that taking a

majority vote fails to provide the right answer with probability at most
1/29k),

IBPP= Bounded-error Probabilistic Polynomial.

2By abuse of terminology, we call an algorithm of the type above BPP.

30f course, replacing 2/3 by 1/2 would be disastrous, since we could just flip a coin
and answer yes if the outcome is heads.
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This means that reducing the error probability to 1/2* requires on the
order of km random bits. Is it really the case that we need m random bits
per run? Let F' be the set of m-bit strings R that cause the algorithm to
fail on input z. Intuitively, after the first run, the only “entropy” used up
is the amount of randomness needed to tell whether R is in F' or not. One
bit should be enough for that. This is an indication that m — 1 or, say, at
least m — O(1) bits of the string R should still be usable for the next runs.
Wishful thinking? The answer is, beautifully, no.

Theorem 9.1 Given a BPP algorithm that uses m random bits per run,
the probability of failure can be reduced to 1/2F by using no more than
O(m + k) random bits and O(k) runs.

The connection to discrepancy theory is hard to miss. Any set of m-bit
strings has a natural measure, ie, its relative size within the set of all m-bit
strings. Fix an input x and consider the measure of the set F' of bad strings
(ie, those causing the algorithm to fail on the input x). Now pick & (truly)
random m-bit strings. The proportion of such strings within F' provides
a good approximation on the size of F'. Indeed, Chernoff’s bound shows
exponentially decaying deviation from the true answer. In other words, a
random collection of k& m-bit numbers provides a low-discrepancy set for
F (in the sense of an e-approximation). The theorem says that we can
restrict the choice of a random collection to a much smaller universe and
still have discrepancy that is just as low. Specifically, the size can be cut
down from 2™ to 20(*+™) without adding much discrepancy.

The theorem is proven in §9.4 by using random walks on expanders.
We prove two weaker results in §9.2 and §9.3. This gives us a vehicle for
introducing two fundamental techniques in pseudorandomness: pairwise
independence and universal hash functions. The latter have proven very
useful in complexity theory. In this text we use them for hashing randomly
with small likelihood of collision. An important dual use of universal hash
functions is to provide pseudorandom colorings, where each preimage de-
fines a color. We will not discuss this application here beyond mentioning
its relevance to the distinction between public and private coins.

In the following sections, we revisit the tight connection between low dis-
crepancy and small Fourier coefficients to build pseudorandom sequences.
In §9.5 we use quadratic characters to construct a pseudorandom m-bit
string, using much fewer than m (truly) random bits, while in §9.6 we
build sparse low-discrepancy sets for arithmetic progressions, and we show
how to use them for polynomial interpolation.
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9.1 Finite Fields and Character Sums *

We begin with a review of basic facts from algebra [24] that the mathe-
matically literate will be able to skip. First, finite fields. All of them are
commutative, and all of those with the same number of elements are iso-
morphic. This number is always a prime power p", and the field in question
is denoted by F,m (or GF(p™), for Galois field, in honor of its discoverer).
The two operations are called addition and multiplication, with unit ele-
ments denoted by 0 and 1, respectively. The characteristic of Fp= is p,
which means that adding the same element to itself p times always gives 0.
The case m = 1 is trivial, for F), is simply the set of integers mod p (which
is a field because p is a prime).

For m > 1, the field F= is not the set of integers modulo p™. However,
the multiplicative group Fy=\ {0}, denoted by F7.., is cyclic. This means
that all of its elements are powers of a single one, called a primitive element.
The order of any element in a group divides its cardinality, so z?" ~' =1
for any x € Fj. (Fermat’s theorem). This shows that the elements of Fm
are all roots of the polynomial zP” — z. In fact, by a counting argument,
we see that these are precisely the roots. So, it appears that F,= is an
algebraic extension field of F, in which the polynomial zP” — z resolves
into linear factors.

That fact alone is not too useful for carrying out field operations. For
that, we choose some irreducible polynomial f(z) of degree m with co-
efficients in F,, and we identify Fp» with Fp[z]/(f(x)), ie, the ring of
polynomials with coefficients in F,, taken modulo (the ideal generated by)
f(z). What makes this a field is that every nonzero element g has an in-
verse. If you have forgotten why, just compute the GCD of f and g by
Euclid’s algorithm. This allows you to express this GCD as pf + qg, where
p, q are polynomials of degree less than m. The GCD is constant; in fact,
it can always be chosen to be 1. So by reducing modulo f, you now find
that ¢ is the inverse of g. In this way, we can add, subtract, multiply, and
divide field elements quite easily.

We can do better still. The multiplicative group formed by the nonzero
polynomials in F,[z]/(f(z)) maps isomorphically to the cyclic group Fj...
Wouldn’t it be nice to ensure that the monomial z maps to a primitive ele-
ment a? In this way, all field elements could be obtained directly as powers
of z. For this to happen we must choose f as the minimal polynomial of «
(ie, monic polynomial of least degree with « as a root). The reason for this
is simple. If z is to map to « isomorphically, then f(z) must map to f(a).
But in the quotient ring, f(x) is identically zero; therefore, f(«) must be
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0, too. Our claim now follows from the fact that the degree of f cannot be
less than m (else how could a generate the whole multiplicative group?).
So, it is exactly m, and f(x), being irreducible, can be used to form the
field F=. Note that not all irreducible polynomials of degree m have this
property. For example, over Fy, both 2* +z+1and 2* +2® + 22 + 2 + 1
are irreducible; but, while x corresponds to a primitive element of Fss in
the first case, it does not in the second (hint: 2% = ).

The advantage of such a “primitive polynomial” representation is clear.
We can set up a table 0,1, z,22,...,zP" ~2 listing all of the field elements.
In each entry i > 0, we write 2’ as a polynomial Q;(x) of degree less
than m. For consistency, define Q_1(z) = 0. To add two field elements is
trivial: Just add the two corresponding polynomials @Q;(z) and Q;(z) term
by term, performing addition of coefficients mod p. To multiply @;(x) and
Q;(x) is even easier. If 4 or j is —1, then we get 0; else, observe that

Qi(z) x Qj(z) = 2t x gl =gt = Qitj(x),

where i + j is understood mod p"™ — 1. So, a simple table lookup gives the
answer; what we have is, in effect, a logarithm table.

Our discussion now will move to quadratic characters. Fix an odd prime
p. We say that = € F, is a quadratic residue if it is of the form y?, for some
y € F,. For reasons we will explain below, we define

0 ifzr=0,
Xp(x) = 1 if x is a quadratic residue,
—1 else.

The function x,(z) is extended to all of Z by making it periodic, with
period p. It is easy to see that x; is multiplicative, ie,

Xp(TY) = Xp(®)Xp(Y)-

In fact, x, is nothing but a multiplicative character of the sort encountered
in §2.6. We explain why, and we show which particular character it is. Pick
a primitive element « in the multiplicative group Fj. Every element m in
the group gives rise to its own distinct character

XLm] (at) def e2mimt/(p—1) :

for 0 <t < p—2. A quadratic character is one whose square is identically 1.
Of course, the case m = (p — 1)/2 fits the bill. Now, let us check that, for
that value of m, XLm agrees over F with the function x, defined above.
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We must show that
xp(af) = e, (9.1)

Obviously, the quadratic residuosity of = o depends only on the parity
of ¢ (its discrete log): z is a quadratic residue if and only if ¢ is even;
hence (9.1).

By Fermat’s theorem, the polynomial zP~! is equal to 1 over Fy. This
shows that

(P12 1) (zP=D/2 1 1) = 0;

therefore, either z(P=1)/2 = 1 or (»=1)/2 = —1 over F}. If x is a quadratic
residue y2, then
H0 02—t 2,

If = is a nonresidue, as we just saw, * = «f, for odd ¢, and so z = ay,
where y is a quadratic residue. It follows that

(P12 — -1)/2 — 1.

The reason for the —1 is that if it were 1, then the powers of a would cycle
past (p — 1)/2 and would generate at most half the group: So much for a
primitive element! This implies the classical characterization of quadratic
characters as:

Xolw) = 2@ D72,

From the Riemann hypothesis for curves over finite fields (proven by
Weil), we can bound how far the number of points of a curve with coordi-
nates in the field deviates from the field order. This has bearing on how
“randomly” xp(x) switches from 1 to —1. (The word “random” is not to
be taken in a complexity-theoretic sense here but in a statistical one.) Weil
showed that, given any polynomial f with coefficients in F,, if f is not a
square and has exactly n distinct zeros, then (see [275], page 43)

[ (@) | < -1y (9.2)

z€F,

Here is a simple example to illustrate how this relates to the Riemann
hypothesis and to randomness. Take a cubic polynomial f(z) with distinct
roots in an algebraic closure of F,,. Let C denote the affine elliptic curve
of equation y? = f(z), and consider its number N of points (z,y) with
coordinates in F,. For any € F,,, how many points with abscissa z lie on
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the curve C? If

0, the answer is 1: (x,0);
f(x) =< y?, then it is 2: (z,y) and (z, —y);
a quadratic nonresidue, the answer is 0.

So, we have

No= 3 (o) +1)

zeF,

= p+ Y 0(f@).

z€F,

By the Riemann hypothesis for elliptic curves over finite fields,* we know
that

|IN —p|<2yp.

See (2.39) on page 110. This proves (9.2) for n = 3. Up to a constant factor,
the upper bound is the standard deviation of the binomial distribution
B(p,1/2). As z runs through the field, it looks as though the quadratic
residuosity of the polynomial f(x) behaves randomly. We have something
looking random but that, in fact, is not random at all. Obviously, this is
welcome grist for the discrepancy method’s mill.

9.2 Pairwise Independence

As a warmup, let us consider a weak but exceedingly simple way of achiev-
ing amplification without using too many random bits. Given a BPP
algorithm that uses m random bits per run, we show how to reduce the
probability of failure to 1/k by using only O(m) random bits and O(k)
runs.

We identify strings of m bits with elements in the Galois field Fom in a
natural way. This means that we map an m-bit string (ag,...,am—_1) to
the polynomial ), a;x! with coefficients in Fy. Recall that field operations
translate into polynomial operations modulo some fixed irreducible polyno-
mial of degree m in F»[X]. Choose two random “seeds” a,b in Fam. Pick ¢
distinct field elements, z1,...,z; (which, of course, assumes that ¢ < 2™).
Our pseudorandom strings are

R; =ax; + b,

4This was proved by Hasse and later generalized to arbitrary curves by Weil. The
reader unfamiliar with these notions should read our discussion in §2.6.
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for 1 < i < t. Given any pair of distinct 4,7, the two vectors (z;,1) and
(zj,1) are independent over Fam, and so any system of equations of the
form {R; = # and R; = y} has a unique solution. It follows that the
random variables R; are pairwise independent, since the probability that
R; =z and R; = y is exactly 1/4™, ie, the product of the probabilities of
each event.

Run the algorithm ¢ = 8k times, and take a majority vote. A mistake
means that at least 4k R;’s were bad. Let v; = 1 if the i-th run was a
mistake and 0 otherwise, and let V' = > v;. The expectation of V' is at
most 8k/3. Pairwise independence implies that

16k
V= < —.
var Zvarv <9
By Chebyshev’s inequality,
varV 16k 1
Prob[[V —EV| > 4] < 52 < 9%z~ 1

for § = 4k/3. Thus,
1
Prob[V > 4k] < ..

This shows that running the BPP algorithm 8% times and taking a majority
vote produces the right answer with probability at least 1 — 1/k. The
number of random bits is 2m.

Fig. 9.1. The coordinates of a random point g in the plane P are pairwise inde-
pendent.

The method for generating pairwise independent random strings has a
simple geometric interpretation (Fig. 9.1). We choose a “generic” plane P
in the vector space F%,., ie, one whose projection onto any plane spanned
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by any two of the coordinate axes is itself a plane. We now sample P (or,
rather, its parameter space) uniformly, which takes relatively few random
bits, ie, a and b: The ¢ coordinates of such a random point form the desired
pseudorandom strings. Of course, restricted to any two coordinate axes,
the projection is just as random as the point itself; hence the pairwise
independence. Extending the construction to d-wise independence can be
done by using linear codes, polynomials, and other algebraic tools.

9.3 Universal Hash Functions

Pseudorandom number generation is the operation of taking a random
string on m bits and stretching it into an M-bit string (M > m). The
longer string should look random enough to the “eyes” of a polynomially
bounded computer. The previous section showed that linear codes can be
used to ensure pairwise independence. We follow a different tack here.

m bits

| bits m- | fresh bits

Fig. 9.2. From one pseudorandom string to the next.

We start with a random m-bit string R;. To obtain the next string Ro,
first we compress R; into a shorter ¢-bit string h(R;), where £ < m. Then,
we append to it m — £ truly random new bits so as to restore the string to its
previous length m. We iterate on this compress/expand process k—1 times
to produce, in the end, a sequence of k pseudorandom strings, Ry, ..., R,
each of length m. Of course, the success of such a scheme is entirely in
the hands of the function h. It is easy to come up with a dismal choice for
h, eg, truncate a fixed-length suffix of the string. Fortunately, it is just as
easy to find a good one. Intuitively, h should be “random” enough. A truly
random function h would use up too many random bits. By sacrificing true
randomness, we can limit the number of random bits needed to describe
such a function. This leads to the key notion of a family of universal hash
functions.
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Let H be a family of functions from {0,1}™ to {0,1}*, where ¢ < m.
The set H is said to be a family of universal hash functions if, given any
v #y € {0,1}™ arandom h € H (chosen uniformly) satisfies:

Prob[h(z) = h(y)] <27 +27™.

In other words, the probability of a collision is bounded by (roughly) what
it would be if h(x) and h(y) were random and independent. The question
is, of course: Are there sparse families of universal hash functions? The
answer is yes. We provide two examples.

1. Take H to be the set of all linear functions from the vector space
{0,1}™ to {0, 1}, with coordinates in Fy. If z # y, then h(x) = h(y)
implies that h(z) = 0, where 2 = x — y # 0. The i-th bit of h(z) is
the inner product of a random vector in {0,1}" with the nonzero
vector z. The probability of its being 0 is therefore 1/2. Over all
1’s, these events are mutually independent, so the probability that
h(z) = h(y) is 1/2¢, and the family H is universal. What is the size
of H? Any linear function can be represented by an /-by-m matrix
over F5, so the number of random bits needed to pick a random
h € H is Im.

2. Fix a prime p whose binary representation has length m+1 (which is
always possible since there are primes between 2% and 2¥+!). Now,
choose random integers a, b modulo p, and consider h = hq p, where

h(z) = ((az + b) mod p) mod 2°.

Intuitively, we form a standard linear congruential, but we truncate
it by keeping only the £ lowest order bits. Fix z # y. How many pairs
(a,b) can yield the same last ¢ bits in the number (az + b) mod p?
First let us ask, how many numbers modulo p can have a given £-bit
suffix? Obviously, at most [p/2¢]. For each such number, there are
exactly p pairs (a,b) producing it (choosing a specifies b as well).
Thus, the total number of pairs (a,b) producing the same suffix is
at most p[p/2°]. There are p? choices of (a,b), so this represents
a probability bounded by p[p/2¢]/p* < 1/2¢ + 1/p, and hence by
1/2¢ +1/2™. The family, therefore, is universal. To sample from it
requires 2(m + 1) truly random bits, which is much less than the ¢m
needed in the previous example.

5The standard definition has an upper bound of 27, and our choice is often referred
to as producing almost-universal hash functions.
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We now describe our new pseudorandom number generator for BPP. Choose
a parameter k and let H denote the family above for £ = m —4k. We define
k pseudorandom m-bit strings Ry, ..., Ry as follows:

(1) Pick a random hash function h € H.
(2) Choose a random m-bit string Ry € {0,1}™.
(3) Take k — 1 random seeds, ie, strings Si,...,S,_1 € {0,1}™~%.

The output is the sequence of strings: R; and, for 1 < i <k,
Ri=h(R; 1) Si 1,

where the dot sign denotes string concatenation. The strings Ri,..., Ry
are the pseudorandom strings that we use in running the BPP algorithm
k times. As usual, we conclude with a majority vote. We prove a result
that is slightly weaker than Theorem 9.1 (page 318).

Lemma 9.2 Given o BPP algorithm that uses m random bits per run,
the probability of failure can be reduced to 1/2% by using only O(m + k2)
random bits and O(k) runs.

The connection with discrepancy theory is now made explicit. Con-
sider a probability distribution m = (m,...,7n)7; we use the notation
u = (1/N,...,1/N)T for the uniform distribution. The ability of 7 to
“simulate” u is to be measured here by the L'-norm discrepancy

def
D(m) = |Im — ulls.

Lemma 9.3 Let 7 be the probability distribution formed in H x {0,1}¢ by
(h, h(R)), where h and R are chosen randomly and uniformly in, respec-
tively, H and some X C {0,1}™. Then,

(7)< 4| B 4t
D(m) <[ + 2=,
]

This result, commonly known as the leftover hash lemma, tells the whole
story in a nutshell. The input distribution (h, R) might be tremendously
biased, because R is chosen only within a subset X. And yet the output
distribution 7 is very close to uniform. Predictably, the smaller / is, ie, the
more compressive the hash function is, and the larger X is, ie, the less bias
we force on R, the more uniform 7 is.
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Proof: Given two random h,h' € H and R, R’ € X, the probability that
(h,h(R)) = (W', h'(R")) is exactly ||7||3. It follows that

Prob[h = h'] x Prob[h(R) = }'(R') |h = 1']
= Prob[h = 1] x Prob[h(R) = h(R')]
Prob[h = h'] x (Prob[ R = R'] + Prob[h(R) = h(R') | R # R'])

1 1
— [ —=— 42ty m)
] <|X| M )

Il13

IN

IN

The distribution 7 is defined over a set of size N = 2¢|H|. By Cauchy-
Schwarz and ||7]|; =1,

D(m)* = |l —ullf <Nlx —ull3 < N(l|7]3 + [Jull3 — 27" )
1 /1 1 2 2¢
< N [— (— +2704 2*’”) += - —||7r||1] < = +2m
|H|\[X] N N | X
O
It is now easy to show that the strings R;,..., R; behave much like

uniform, independent random variables. Let 7(¥) be the distribution of
that sequence of k strings. Fix an input z and let F' denote the set of m-bit
strings R that cause the BPP algorithm to fail on input z. For simplicity,
we consider a specific example that illustrates the whole argument. Suppose
that k = 3, and let p be the probability of both R; and R3 being in F' and
R, being outside:

p = Prob[R, € F; R, ¢ F; R; € F]
= PI‘Ob[RleF]XPI“Ob[RggF;R3EF|R1€F]

F
= | | PI‘Ob[(h(Rl)'Sl)gF;R?,€F|R1EF],

om
because Rs is defined as the concatenation of h(R;) and S;. Let IT be the
distribution induced by

(h, (h(R1) - S1), o, .. .,sk_l),

where Ry is random in F' and h, Sy, ..., Sr_1 are random as before. In our
example above, where k = 3, the underlying universe is i = H x {0,1}"™ x
{0,1}m=*. So, I = (I, . . ., H|u|)T, where II,, is the fraction of

(h,Ry,81,82) € Hx F x {0,1}" ¢ x {0,1}¢



328 PSEUDORANDOMNESS

producing the vector u = (h, (h(R1) - S1),S2) € U. Interpret any u € U as
a triplet (h, R3,Ss), where R is a string in {0,1}™, and define

£, = 1 if Ry ¢ F and R € F, where R = h(R3) - S,
“ 0 else.

Given a random (h, Ry, S1,S2), it is clear that
Prob[ (h(R1)-S1) € F; Rs € F|Ry € F1 =) ¢&,I1,,
ueU
while for a random (h, R}, S2)
Prob[R; ¢ F; Ry € F1=Y_ & /U],
uel
by the definition of &,. Since
D) = > |10, — 1/|U||,
uel
we have
PI‘Ob[(h(Rl) Sl) QF, R3 € F|R1 € F]

(9.3)
< Prob[ R} ¢ F; Rs € F| + D(II).

Let 7 be the distribution induced by (h,h(R1)), where h (resp. Rjp)
is random in H (resp. F), and let u be the uniform distribution over
H x {0,1}*. By the independence of (h,h(R;)) and (S1,Sa,...,Sk_1), it
is clear that® ||IL — Ul|y = |7 — ul|1, ie, D(II) = D(x). It follows that, by
setting X = F, the leftover hash lemma (Lemma 9.3) yields

D(1I) 2 4o
<[ 4 2tmm
|F|

By the definition of BPP, we have |F| < 2™ /3. By constant-factor ampli-
fication, we can strengthen this to |F| < 2™/5. We can also easily assume

6There is a subtlety here. Let v = |H|2¢; each term |m; — 1/v| in D(x) is in bijection
with a sum within D(IT) of the form

iy — /]| 4+

1, —1/lu]),

where m; = 37, II;; and r = |U|/v. What makes the identity true is that the TI;;’s

are all equal because of independence, and therefore each term is equal to the sum in
bijection with it.
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that | F| is not too small; in fact, we might as well assume that |F/| = 2™/5.
By (9.3) and £ = m — 4k, we find that

%Prob[(h(Rl)Sl) gF; R3 EF|R1 S F]
L prob[ R ¢ F; Ry € F]+ D(II)

LProb[Ry ¢ F; Ry € F]+ 22 %,

IN N INA

We can repeat essentially the same derivations with respect to
Prob[R; ¢ F; Rz € F';

the only difference is that F' is now replaced by its complement, which is
of size 2™*2 /5. The upper bound becomes (conservatively)

Prob[ Ry ¢ F; Rz € F] < Prob[ R} € F]+ 2>~k
Finally, we find that

1 22k
or, more generally,
p< 5 )

where b is the number of bad strings R;’s. So, given a fixed sequence
(good, good, bad, good, bad, etc) of length k with at least k/2 bads,
the probability that the strings Ri,..., Ry fit that sequence is at most
(1/5)%/2 4 k22=2k_ Thus, the probability that, out of Ry, ..., Ry, at least
k/2 strings are bad, ie, the probability that the BPP algorithm fails, is at
most (2/v/5)* +k2' 7 ie, O(c™*), for some fixed ¢ > 1. Going from k runs
to Ck runs, for a large enough constant C, reduces the error probability to
27% which proves Lemma 9.2. O

9.4 Random Walk on an Expander

The time has come for us to bring out our most powerful artillery and
prove Theorem 9.1 (page 318). We begin with a proof sketch. Let us
model the process of choosing k& random m-bit numbers R;,..., Ry as a
random walk in an undirected graph. Define K to be the complete graph on
n = 2™ nodes, labeled 0,...,n —1. In addition, we provide each node with
a self-loop, and we define a Markov chain where each edge is assigned the
probability 1/n. Starting from node 0, we perform a random walk of length
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k. Obviously, the labels of the first, second, etc, k-th node provide random
m-bit numbers Ry,..., Ry, as desired. Each step in the walk requires m
random bits, so the total number of random bits is klogmn.

%

W

Fig. 9.3. A random walk in Kg with self-loops produces random numbers but at
a cost of log 8 random bits per step.

Why this trivial analogy? Because it begs the question: Might we be
able to sparse out the graph K by removing edges while still generating
random enough R;’s? In particular, if we could limit our random walk to
a subgraph G of constant degree, then we would expand only a constant
number of random bits per step. We show below that choosing an expander
does the trick.

Let G be a connected graph on n = 2™ nodes. For simplicity, we assume
that G has the following structure: (i) It is derived from a bipartite graph
by attaching a self-loop to each node; (ii) each node is connected to d
other nodes, not counting itself. We consider the Markov chain formed by
assigning the probability 1/2 to each self-loop and 1/2d to each of the other
edges. The transition matrix P = (P;;) specifies the probability of going
from node i to node j. Because P is symmetric, it is diagonalizable and its
eigenvalues A\; > --- > A, are real. Furthermore,

Lemma 9.4

L=XA>X> > >0

Proof: Observe that P = (I + @)/2, where I is the identity and @ is the
transition matrix of the Markov chain formed by the bipartite graph (minus
the self-loops) with all edge probabilities equal to 1/d. Obviously, @ has
the same eigenspaces as P, and its eigenvalues are pu; = 2A; — 1. Because
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the graph for @ is regular, and @ is doubly stochastic,” |u;| < 1. This
shows that all of the \;’s are between 0 and 1. Obviously, (1/n,...,1/n)T
is an eigenvector for A\ = 1.

To complete the proof we show that, because G is connected, pu1 > us,
and hence A\; > Ay. We could invoke the Perron-Frobenius theorem, but
a direct proof is easy. Because @ is diagonalizable, it suffices to show
that the eigenspace for the eigenvalue 1 has dimension 1. In any nonzero
vector £ = (x1,...,2,)" such that Qz = z, consider the largest entry x; in
absolute value. Obviously, z; = (1/d) }; z;, where the sum extends over
all of the nodes (of G minus the self-loops) adjacent to the i-th node. By
the maximality of z;, it follows that the z;’s of adjacent nodes are all equal
to z;. This gives us a starting base. Now, using the fact that the value at
each node is the average of the neighboring values, we immediately derive,
by connectivity, that all of the x;’s are equal. Therefore, the eigenspace for
1 is generated by (1/n,...,1/n)T. O

Let 7(®) be an initial probability distribution on the nodes of G (ie, the
states of the Markov chain), represented as a vector column. The vector
71 = P71 gives the probability distribution after one step of the walk.
We shall soon see that, as the number of steps k increases, the distribution
k) = Pkr(0) converges towards the uniform distribution

u= (l/n,...,l/n)T,

and the convergence rate depends on As. This implies that a random
walk eventually leads to a uniform distribution among the nodes of G,
regardless of the starting node. The intuition is clear. Powers of P bring
all the eigenvalues down to 0 except for 1; in the limit we have the spectral
distribution of the complete graph with self-loops. The second largest
eigenvalue is thus a measure of how close to the complete graph our graph
G really is.

Lemma 9.5
[7®) — ufly < Mm@l < X

7A matrix is doubly stochastic if its elements are nonnegative and each row (and
column) sums up to 1. It is immediately seen that such a matrix preserves the Lt
norm of any nonnegative vector and so, in particular, it maps a probability distribution
to another one. No eigenvalue can exceed 1 in absolute value. To see why, assume
that one did. Then any associated eigenvector would grow to unbounded lengths by
repeated applications of the map (). This would mean that large powers of Q would
have to contain some very large matrix elements: But such a matrix cannot possibly map
probability distributions to probability distributions, and we would have a contradiction.
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Proof: Let eq,...,e, be an orthonormal eigenbasis, where ); is the eigen-
value associated with e;. The vector u = (1/n,...,1/n)T is an eigenvector
for the eigenvalue 1, and so e; = /nu. If

70 =cie; + -+ + cnen,

then
ak) = cl)\’fel + -+ cn)\flen
and
7™ —creslls < D GNF<AFDY ¢
i>1 i>1
< A3F|r O3

It follows that
7% — crealla < N[l < M7 < A

By Lemma 9.4, we have 0 < Ay < 1, and so, as k goes to infinity, the
distribution 7(%) converges toward cje;. This means that cje; is itself a
probability distribution, and therefore it is equal to u. O

Spectral Properties of Expanders

Lemma 9.5 indicates that, for a random walk to be “rapidly mixing,” ie, to
converge toward the uniform distribution fast, it suffices to ensure that A
is small. Expander graphs have this property. An (n,d,c)-expander H is
a connected, d-regular® bipartite graph (X UY, E), with | X| = [Y| = n/2.
Furthermore, for each subset W C X, the number of nodes adjacent to at
least one node in W is at least

(1 + c(l - @)) W.

It is easy to prove the existence of expanders (for suitable n,d,c) by a
probabilistic argument: Choose a random graph from some appropriate
distribution. This approach has two shortcomings. To be random is one of
them; checking whether a given graph is an expander is in general co-NP
complete (thus, likely intractable). Another weakness is that they must
be specified in full. Since in many applications the number of nodes is

8 A graph is d-regular if each node has degree d. In general, an expander need not be
bipartite; but only such graphs will be considered here.
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actually exponential in the problem size, it is preferable to have an implicit
description requiring only logarithmic space.

Such graphs do exist. Here is one: The number of nodes is of the form
n = 2p?, for some integer p. The graph H = (X UY, E) is bipartite. There
is a bijection between X and the pairs (a,b) € (Z/pZ)?, and the same is
true with Y. A node (a,b) is adjacent to any node of the form

(a,b), (a,2a+b), (a,2a+b+1), (a,2a+b+2),

(a + 2b,b), (a+2b+1,b), or (a+2b+ 2,b),

with addition defined modulo p. It can be shown that the graph is an
(n,7,a)-expander, where a = 1 — /3/2. The n-by-n adjacency matrix® of
H is symmetric, and so it has a full set of real eigenvalues, pu; > -+ > iy,
where obviously u; = —u, = d (for the first eigenvector, try a vector of
1’s; for the second, switch the sign of the coordinates in the first half). The
relation with the spectrum of the graph’s adjacency matrix is made explicit
in the following (we omit the proof).

Lemma 9.6 If u is the second largest distinct eigenvalue (in absolute
value) of the adjacency matriz of an (n,d, c)-expander, then
2

210 4 2¢2 "

Expanders behave like quasi-random graphs. The difference in behavior
between them and random graphs can be expressed by a discrepancy mea-
sure. Given two subsets of nodes, A C X and B C Y, let E(A, B) be the
set of edges joining A and B. The discrepancy for (A, B) is defined by

2d|A|| B|

- .

| <d

D(A,B) = | |E(A, B)|

The discrepancy can be bounded as a function of u. The following result
holds for any d-regular bipartite graph (no need for it to be an expander).

Theorem 9.7
D(A,B) < |ulVIA|lB|.

Proof: Let M be the n-by-n adjacency matrix of H, where n = | X UY|.
Let e1,...,e, be an orthonormal eigenbasis, where u; is the eigenvalue

9This is the matrix whose element at row ¢ and column j is 1 if (4,5) is an edge of
the graph, and 0 otherwise.
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associated with e;. If €4 (resp. &g) denotes the characteristic (column)
vector of A (resp. B), then (¢{M¢&p counts each edge between A and B
once:

|E(A, B)| = &4 Mép. (9.4)
Expressing the characteristic vectors in the eigenbasis gives {4 = ), ase;
and &g = Y, Bie;. Because er = (1,...,1)T/\/n,
) = 53;61 = %
Similarly, 81 = |B|/+/n. Now, using the fact that
en=(1,...,1,-1,...,-1)T/\/n,

we find that o, = |A|/v/n and B, = —|B|/+/n. Since p; = —p, = d, it
follows from (9.4) that

|E(A,B)| = (Zaiei)T(Zﬂiﬂiei):Zﬂiaiﬂi

2d|A||B
- 245l + Y b
n 1<i<n
and, by Cauchy-Schwarz, that

2d|A||B
peaB) - 28— 5 s <l el

1<i<n

|ulV/IA[l Bl .

IN

Recycling Random Bits

Returning to BPP, let F' be the set of m-bit strings that cause the algo-
rithm to fail. Because of constant-factor amplification of the type discussed
earlier, we can assume that |F'| < n/100, where n = 2™. By abuse of nota-
tion, let I also denote the n-by-n diagonal matrix, where Fj; = 1if ¢ =
and 4 (written in binary) is in F, and Fj; = 0 if not. Let G denote the
graph derived from a bipartite (n,d,c)-expander by adding self-loops to
each node. As before, we consider the Markov chain formed by assigning
the probability 1/2 to each self-loop and 1/2d to each of the other edges,
and we let P denote its transition matrix. If 7 is a probability distribution
on the nodes of G (or, equivalently, on the set of m-bit strings, by labeling
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the nodes between 0 and n — 1 in binary), then ||Fw||; is the probability
that a random string chosen from that distribution is in F'. This generalizes
easily. Let ¢ be large enough that

A< & (9.5)

Consider the strings Ry, ..., Ry obtained in the following fashion: R; is
picked by choosing a node of G at random (its label delivering the m bits
of Ry). Next, we perform a random walk of ¢ steps, which lands us at a
node providing R»; a subsequent t-step walk gives Rj3, and so on, until we
produce Ry. It is easy to keep track of the probability of each R; being a
bad or a good string, ie, being in or outside F'.

For example, suppose that k& = 4; then the probability that R; and R3
are in F', but R, and R, are outside, is exactly

H (I — F)PtFPY(I — F)PtFr(© H1 (9.6)

We can bound such an expression by using two simple facts:

Lemma 9.8 Given any nonnegative vector x € R™,

|1FP )l < Sl and  [|(1 = F)P'allz < [la]l2-

Proof: For the first inequality, trivially we may assume that x # 0. It
follows that z/||z||; is a probability distribution. By applying Lemma 9.5
for k =t, we get

¢ N1zl

|1F(Pt(z/||z]]1) — w)|l2 < ||Pt(z/||2||1) — ulls < >‘2W7

where u = (1/n,...,1/n)T, and by (9.5)

1F (P —ullll)ll: < 7
By the triangular inequality and Cauchy-Schwarz,
ol < ol il o 1ol o el lelle _ lialls
1F Pl < llalllull + A5 < J0L + 12 < 2

The second inequality is even easier to prove. Obviously,
|(I = F)P'zllz < [|P'z]]2 .

No eigenvalue of P? exceeds 1 in absolute value, so as a linear map it cannot
increase the L? norm of any vector, ie, ||Piz||s < ||z|l2. O
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The lemma shows that the probability in (9.6) is bounded by
NG H (I — F)PtFPYI — F)P'Fr© H < g |1Fx@]], .
2

Because the first string R; is obtained by picking a node at random, clearly,
70 = 4 and ||F7®]||; < 1/(10y/n); so, for a conservative upper bound
on the probability in question, we can use (1/5)?. More generally, given a
fixed sequence (good, good, bad, good, bad, etc) of length k& with at least
k/2 bads, the probability that the strings Ry, ..., R, match that sequence
is at most (1/5)*/2. Thus, the probability that, out of Ry, ..., Ry, at least
k/2 strings are bad is at most 2¥(1/5)%/2,

To summarize, we need m random bits to get Ry, and then only O(k)
random bits to obtain Rs,..., R;. The probability that a majority vote
results in an error is at most (2/v/5)*. We can increase k by a constant
factor to bring the error probability below 1/2* and still use only O(m + k)
random bits. This proves Theorem 9.1 (page 318). O

9.5 Low Bias from Quadratic Residues

Instead of generating several perfectly random m-bit strings, hoping for
some sort of independence among them, we consider a related but different
problem: How to produce a single pseudorandom m-bit string, using much
fewer than m truly random bits. Our criterion for pseudorandomness is
based on linear tests. This has an immediate Fourier analysis interpreta-
tion, which we explain below. The connection between pseudorandomness,
low discrepancy, and small Fourier coefficients is further exploited in §9.6.

We begin with a piece of terminology. The bias of a random variable X
in {0,1} is defined as | E (—1)* |, which is also

Prob[X = 0] — Prob[X = 1]|.

We can generalize this notion to multivariate distributions. Let S be a
subset of the hypercube {0,1}" with a distribution on it. For a given ¢t =
(toy-- - tm—1) € {0,1}™, let X} be the random variable ) ¢;b; € Fa, where
(bo, - .-,bm—1) is chosen randomly in S. The bias of S is the maximum bias
of X; for all ¢t # 0.

For any odd prime p > m, we show an easy construction of a set S of
size p and bias O(m/,/p). For any integer x, consider the vector:

s(z) & (bo(m),bl(m),...,bm_l(m)) ,
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where b;(x) is the 0/1 function defined by the recipe:

[t =xp(x+i) fz+iZ£0 (mod p),
bilw) = { : 110 else.

The subset S is defined as {s(z)|z € F,}. To prove that its bias is
small, we show that its discrepancy is low in the Fourier sense. What
we mean is that the Fourier coefficients of its characteristic function are
small: This is the function that is 1 at points of S and 0 elsewhere. The
Fourier transform is defined over the abelian group (Z/2Z)™. By definition,
the Fourier coefficient at the frequency ¢t = (¢1,...,t,) € {0,1}™ is (see
Appendix B)

ity = 37 (~1ytotole)tttnosbnos(o)

z€F,
Obviously,
1 ~
. _ VX _ =
bias (8) = max | B(~1)™ | = max | (1) (9.7)

From now on, we may assume that ¢ # 0. Observe that, for any fixed
z€Fy,

1 I,z +i) =0 (mod p).
Sl 0 else.

m—1

m—1, 1. NP

(=1 0 T i)
i=0

The first case happens for m values of z, so

Fol < |3 T ot +m
2€F, i=0
< ‘ > xp(ni—[l(a:+i)ti)‘+m.
z€F, i=0

The polynomial Hﬁgl(m + )% is not a square!® and it has exactly m
distinct zeros; so, by Weil’s bound (9.2) on page 321,

FB] < (m=1)yp+m < 2myp.
By (9.7), this shows that the bias of S is bounded by 2m/,/p. The savings is
in the number of random bits. Instead of m of them we need only |logp|+1
truly random bits.

10Because m < p, the only square it could be is the constant polynomial 1, but this
is impossible because t # 0.
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9.6 Polynomial Interpolation

It is well known that a univariate real polynomial of degree n — 1 with
rational coefficients can be reconstructed entirely by knowing only its value
at n points. Furthermore, a judicious choice of n points (ie, roots of unity)
helps to make this process extremely fast. A natural question arises: If
we know the value of the polynomial only at a small, say polylogarithmic,
number of points, can we reconstruct the polynomial, or some sufficiently
close approximation of it? In this section, we show that if the polynomial
is sufficiently sparse, the answer is yes. The idea is to pick roots of unity
that form a low-discrepancy set with respect to arithmetic progressions
along the unit circle. Such an approximate interpolation technique can be
especially useful when n is very large.

Low-Discrepancy Arithmetic Progressions

Our goal is to produce a small subset of integers in {0,...,n — 1} with
respect to which arithmetic progressions modulo n have low discrepancy.
We review a few definitions. Let n be a large enough prime, and let Z,, be
the set of integers modulo n. Given A C Z,, let zA C Z,, (z # 0) denote
the set {za|a € A}. The discrepancy of an interval R (taken modulo n,
ie, with wrap-around) in Z,, is defined as

def | |R TA)NR
D(A R, % 1Bl _ @A) N |?4| |

The maximum value over all R,z defines the discrepancy with respect to
A

)

D(A) ¥ max D(4, R, z).
R,z
An important remark: By perfect analogy with e-approximations, the dis-
crepancy is defined as a difference between a probability and a conditional
probability. Note that

R.| JANR,|

D(A,R,l') = n |A| Y

where R, = (z7!)R is an arbitrary arithmetic progression. Thus, D(A)
measures the maximum discrepancy of any arithmetic progression modulo
n with respect to A (the set A playing the role of the coloring here). By
Theorem 4.4 (page 174), we can construct a set A of size O(e2logn)
such that D(A) < e. The following result gives a weaker bound, but the
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advantage is that A is given by a formula, so there is no need to look at
the set system itself.

Theorem 9.9 Fiz a large prime n and a small enough constant o > 0.
Given any e such that n~=® < e < 1, there exists A C Z,, of size (¢~ logn)°™)
such that D(A) <e.

Proof: Obviously, we can assume that e is less than a suitably small
positive constant. Choose some large enough constant ¢, and define N =
(e tlogn)¢. Becausen is prime, Z, is a field. The reciprocal of p is denoted
by p~!. We define

A={spt€Z,]0<s<eN and N < prime p < 2N }.

We easily verify that |A| = (¢ ' logn)?™®. Fix a nonzero integer x < n and
an interval R in Z,,. To facilitate the notation, the term random s, p refers
to a random 0 < s < eN and a random prime p such that N < p < 2N
(both uniformly distributed). Since e can always be rescaled by a constant
factor, it suffices to prove that

Prob[zsp ' modn € R] — 1B] = O(e).
n

By scaling down R to an interval I C [0, 1) modulo 1, we have the equivalent

bound

zsp~ ' modn

Prob

er|—|I||=0). (9.8)

Uunless specified otherwise, the arithmetic below is performed over Z (ie,
not modulo anything). By the Chinese remainder theorem,

p(p~t modn) + n(n"! modp) = pn + 1.

(Of course, n! is here the reciprocal of n modulo p, which exists since
p # n.) Let {z} denote the fractional part of z in [0,1), ie, zmod 1. We
derive

~! mod ~! mod
{:rs(p mo n)+:rs(n mo p)}:{xsﬁ-ﬁ}:ﬁgs.
n P pn pn

It follows that, for some interval I' of length at most |I| + ¢,

Prob[{w} c I] < Prob[{M} c I’]

n
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and, conversely,

prob { Z O ¢ 1] ¢ prop[ {0t} ¢ ],
As a result, (9.8) is a consequence of the bound
‘P@[{M} el _|1|‘:0(5), 9.9)

where I is an arbitrary interval in [0,1). We may assume that |I| > ¢,
since otherwise we can always prove (9.9) for an enlarged |I| = ¢ and then
shrink I back to its original size. We now say that p is favorable if, for all
s<1/e,
zs(n~' ' modp) )" 2
- > s
P e3N
where

Az if{zr<1)/2,
{1 = { 1—{z} else.

It remains for us to show that (9.9) holds for any favorable p, and that a
random p is favorable with probability at least 1 — O(g). We begin with
the former.

Assume that p is favorable. The pigeonhole principle ensures the exis-
tence of two integers, 0 < s < s’ < 1/e, whose difference sy = s’ — s satisfies
sp < 1/e and

_1 *
y def { x5o(n~! mod p) } <el
b

We can prove (9.9) separately for each residue class i < sy, ie,
‘Prob[Pr eI]-|1| ‘ = 0(e), (9.10)

where

o {:r(rso + i)(;fl mod p) } ‘

By p being favorable, we know that y > 2/e3N. This shows that, by
exhausting all the values of r, P, cycles around the interval [0,1) at least
1/e times. Indeed, r can step through about e N/sg values. Each step shifts
P, by y (or by —y), wrapping around the unit interval when necessary.
The total amount of shift is at least (about) (eN/sg)(2/e3N) > 2/e, and
so P, cycles around the unit interval at least 1/ times. At each cycle, P,
visits I a certain number of times, creating a discrepancy of O(y) = O(e).
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Discrepancy is defined here as a relative error, so by summing over all cycles
around [0,1) and all residue classes i, we still find the discrepancy to be
O(e), as desired.

We now show that a random p is favorable with probability at least
1 —0O(e). If p is not favorable, then

zs(n"' mod p) = b (mod p),
for some s < 1/e and!! |b] < p/(Ne?) « 1/&3. It follows that

bn = xsn(n 'modp) (modp)
= s (modp),

and so p divides zs — bn. Obviously, xs # bn, since otherwise, being
prime, n would divide z or s, both of which are less than n. Because
|zs — bn| < n?, by a trivial count on the number of prime divisors of
xs — bn, we find that each pair (s,b) gives rise to only O(logn) unfa-
vorable p’s. Since s < 1/e and |b] < 1/€3, this leads to a total of
O((logn)/e*) unfavorable p’s. The number of prime p is at least on the or-
der of N/log N > (¢ tlogn)¢/log(¢ !logn), and so, with ¢ large enough,
a random prime p is favorable with probability at least 1 — O(e). O

Small Fourier Coefficients

In this section, n is a large prime and, as usual, Z, denotes the set of
integers modulo n. Given A C Z,, the discrete Fourier transform (DFT)
of A is, by abuse of terminology, the DFT of its characteristic vector, ie,

fA(t) — Z e27riact/n-
T€EA
Note the absence of a minus sign in the exponent; we use the conjugate
of the standard definition for notational convenience. Intuitively, a low-
discrepancy set should produce evenly distributed points on the unit circle
(in the complex plane), which mutually cancel to produce a small Fourier
coefficient (Fig. 9.4). It is easy to flesh out this intuition. Recall that D(A)
is the maximum value, over all z and intervals R in Z,,, of

|R _|(@A)NR|
n | Al

1 Recall that < and >> denote O() and €2(), respectively.
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0
‘\ 2
11 13

Fig. 9.4. The elements of A C Zi6 are indicated by radial axes. Push the origin
toward each point of A with a force equal to 1: The resulting force is the Fourier
coefficient for ¢ = 1. If the points of A are “uniformly” spread out around
the circle, one expects the forces to cancel out and result in near-equilibrium,
ie, a short resulting force vector. For ¢ > 1, the ¢t-th coefficient has a similar
interpretation: Simply move the points around the circle by multiplying their
radial angle by ¢.

~
[EnY

Lemma 9.10 Given any A CZ, and 0 < t < n,
|fa(®)] < 2m[A| D(A).

Proof: Present Z, as {1,2,...,n} and, with m = |A|, let taq,...,tay, be
the numbers in tA (all of which are distinct) in increasing order with respect
to that presentation. Because |’ —e®| < |z—y| and |taj/n—j/m| < D(A),

‘ o2mitaj/n _ j2mij/m ‘ < 2rD(A),
and therefore

‘i(e%ritaj/n _ eQwij/m) ‘ < 27rmD(A)
j=1

The lemma follows now from the fact that 3, _;,, €*™/™ =0. O

Interpolating a Sparse Polynomial

Let n be a prime and let P =" ., arx® be a sparse polynomial in Q[z]
over the reals. Suppose that the coefficients of P are unknown, but that
an oracle is available for giving us the value of P(y), given any real y. The
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DFT is the standard vehicle for reconstructing P. As is well known, the
coefficients of P satisfy:

n—1
ap =n " Z P(e%ij/")e*%ijk/” ) (9.11)
j=0
Given € > 0, let A be the set of Theorem 9.9 (page 339). Now, instead
of computing the average in (9.11) over all n terms, let us compute the
estimate

a’l*c — |A|_1 Z P(eQﬁij/n)e—Qm'jk/n_
JEA
How big an error are we making by pretending that the a}’s are the true
coefficients of P? The coefficient a; is a sum of terms of the form

n—1
amfl § e27rzg(lfk)/n‘
j=0

By Lemma 9.10, |fa(t)] < 27|Ale for any 0 < t < n, so computing the
average over A instead creates an additive error of

n—1
lap —a}| < Z | ! Z e2mid(l=k)/n _ |A|_1 Z e2mid(l—k)/n
! j=0 jeA
< D lal 1A [ fall = B)|

1k
< 2n(|lar| + -0+ Jan))e -

We conclude that interpolation can be done with a small additive error, ie,
O(eL'(P)) per coefficient by evaluating the polynomial at (¢~*logn)°™")
places. This might be a good approximation method if P is sparse but of
high degree.

9.7 Bibliographical Notes

Section 9.2: The construction of pairwise independent distributions was
suggested by Joffe [170]. Alon, Babai, and Itai [13] generalized the construc-
tion to achieve k-wise independence by using standard linear codes (say,
BCH codes). A nice exposition can also be found in Alon and Spencer’s
book [20]. In an influential paper, Luby [203] pioneered the use of limited
independence for derandomization. The relevance to probability amplifi-
cation was shown by Chor and Goldreich [90]. To achieve k-wise indepen-
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dence for large values of & is too expensive (provably so), which motivates
studying weaker models of independence. Such an investigation was initi-
ated by Naor and Naor [238] and pursued further by Alon et al. [15]. For
general information, good sources are the books by Alon and Spencer [20],
Luby [204], Motwani and Raghavan [236], and the monograph of Luby and
Wigderson [205]. For an introduction to probabilistic algorithms, one will
consult [179, 236, 253].

Section 9.3: Carter and Wegman [60] discovered universal hash functions.
Impagliazzo and Zuckerman [166] designed the pseudorandom number gen-
erator given in the text. The leftover hash lemma is due to Impagliazzo,
Levin, and Luby [163]. Our presentation differs somewhat from the original.

Section 9.4: For an introduction to algebraic graph theory, see the texts by
Biggs [45] and Bollobés [53]. The co-NP completeness of checking whether
a graph is an expander was established by Blum et al. [49]. The proba-
bilistic construction of expanders was observed by Pinsker [249]. Gabber
and Galil [139] discovered the bipartite expander described in the text.
Other constructions were given by Lubotzky, Phillips, and Sarnak [202]
and, independently, Margulis [208, 209]. The spectral properties of ex-
panders expressed in Lemma 9.6 (page 333) and Theorem 9.7 (page 333)
were established by Alon [12]; see also [18, 108, 302].

Ajtai, Komlés, and Szemerédi [9] exploited the rapid mixing property of
expanders. Their use for probability amplification goes back to Sipser [290].
Extensions of the method were given by Cohen and Wigderson [98] and Im-
pagliazzo and Zuckerman [166]. See also [241, 244] and the monograph by
Luby and Wigderson [205] for other examples of pseudorandom number
generators. Luby’s book [204] offers a comprehensive treatment of the re-
lation between pseudorandomness and one-way functions. Minimizing both
the amount of randomness and the number of sampling rounds is investi-
gated by Bellare, Goldreich, and Goldwasser [43] and Zuckerman [337].
The subject has been very active recently, with a flourish of results re-
lating pseudorandom number generation and hardness (roughly, functions
that are provably hard to compute can be used to generate pseudorandom
numbers good for derandomization) together with work on functions ex-
tracting true randomness out of weak random sources [21, 22, 23, 50, 64,
127,128, 143, 164, 165, 197, 243, 244, 245, 250, 255, 256, 266, 267, 296, 300,
310, 322, 330, 336]. To view randomness through the prism of computa-
tional complexity is a major, but fairly recent, development. The classical
viewpoint, based on statistical tests, is discussed by Knuth [183].
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Section 9.5: The quadratic residue construction is due to Alon et al. [15],
and so is the lower bound on its size.

Section 9.6: The low-discrepancy set for arithmetic progressions was ex-
hibited by Razborov, Szemerédi, and Wigderson [257], who proved The-
orem 9.9 (page 339). The application to polynomial interpolation was
observed by Alon and Mansour [17], whose paper investigates mostly the
multivariate case.
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Communication Complexity

n the last two decades, communication complexity has emerged
as an important methodology in the study of computational com-
plexity. As opposed to, say, information theory, which seeks to
model and analyze real-life problems, communication complexity is an ab-
straction aimed at isolating the computational bottlenecks of certain prob-
lems and providing tools for resolving their complexity. The discrepancy
method has played—directly or indirectly—a pivotal role in the develop-
ment of that theory.

We provide two examples, one very simple, the other less so. Both

illustrate the underlying theme of this chapter: Low discrepancy implies
high complexity. Informally, what happens is this. Two people play a
game by taking turns. Each player has some distribution associated with
him/her, which evolves over time at each move. As long as the players
keep the two distributions “similar” enough, they can continue playing.
This is a dynamic version of a discrepancy game, where a lower bound on
the number of rounds depends on the players’ collective ability to maintain
low discrepancy as long as possible. Paradoxically, this phenomenon is the
opposite of the one described in Chapter 6, where high discrepancy implied
high complexity.

If all of this talk sounds a little surrealistic, the two examples treated in
this chapter will surely clarify matters. In §10.1, we discuss the communi-
cation complexity of the inner product function. In §§10.2-10.4 we devise a
communication complexity game and use it as a vehicle for deriving lower
bounds for searching in a bounded universe.

346



10.1 INNER ProDuUcCT MoDULO TwoO 347

10.1 Inner Product Modulo Two

Suppose that two parties, Alice and Bob, wish to compute
def
(@,y) = > miy; (mod 2),
i

where z and y are {0,1}". Alice knows z but not y, and Bob is in the
opposite situation, ie, he knows y but not . How many bits must they ex-
change before both of them can know (z,y) with full confidence? Certainly
n + 1 is enough, since Alice can always hand over all of her bits to Bob, let
him compute the inner product, and then have Bob send back the answer.
Can they do better? Note that our measure of cost is the communica-
tion complexity of the problem, ie, the number of bits exchanged between
the parties. How much internal computation either one does internally is
immaterial.

Alice

Fig. 10.1. The tree modeling the protocol between Bob and Alice.

In our model, Bob and Alice exchange bits one at a time. A protocol is
a binary tree that specifies the rules of exchange (Fig. 10.1): An internal
node is labeled Bob or Alice, depending on whom is sending a bit at that
round. Assume that the root is labeled Alice (meaning that she talks
first). She evaluates a function a : {0,1}" — {0,1} associated with the
root and outputs a(z) to Bob. The left (resp. right) branching from the
root, corresponds to the outcome a(z) = 0 (resp. a(z) = 1). Suppose that
the two children of the root “belong” to Bob. With each one is associated
a function b; — {0,1} (i = 0,1), which Bob uses to send his next bit. For
example, if Alice sent 0 first, Bob would then send bo(y) back to her. In
general, he sends her b,(,)(y). Thus, each node labeled Alice (resp. Bob) is
associated with a particular function from z (resp. y) to {0, 1}. Given z,y,
the computation follows a unique path down the tree. Leaves are labeled
0 or 1, and correctness means that, for any z,y, the computation path
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reaches a leaf labeled (z,y). The cost of the protocol is the length of its
longest path.

Distributional Communication Complexity

Variants of the model exist where random bits are allowed into the com-
putation. To establish lower bounds for randomized protocols, it is useful
to define the following notion of distributional communication complexity.
Consider the possibility that a protocol is flawed and that correctness is
not always guaranteed with certainty. Fix some € > 0 and assume that,
given a random pair z, y drawn independently and uniformly in {0, 1}", the
probability that the protocol fails to compute the right answer is at most
1/2—¢. Let C.(n) be the minimum cost of all the protocols with that prop-
erty. This is, by definition, the distributional communication complexity
of the function that Bob and Alice want to compute.

The relation with discrepancy theory is easy to see. A (combinatorial)
rectangle is any Cartesian product X X Y, where X and Y are subsets of
{0,1}™. Each node splits the current set of z’s (or y’s) into two subsets
(those causing a left or right turn), so all of the (z,y)’s leading to the
same leaf ¢ form a rectangle Ry; this has nothing to do with the particular
function that they are trying to compute. Furthermore, the collection of
Ry’s partitions the set of all inputs {0,1}" x {0,1}™. The discrepancy D(n)
of the protocol is the maximum discrepancy D(Ry), over all leaves £, where

D(X xY) = ‘Z{H(m,yﬂxeXander} :

with
_ 1 if(z,y)y=1,
Hwy) = { -1 if (x,y) =0.

The discrepancy D(R;) measures the difference between the number of
right and wrong answers at leaf £.

Lemma 10.1 For any 0 < e < 1/2, C.(n) > 2n + log(2¢) — log D(n).

Proof: Recall that, within the rectangle Ry, the protocol produces the
same answer regardless of the input pair. So, the difference between the
number of pairs where the protocol succeeds and the number of those where
it fails is bounded (in absolute value) by D(n). Since over all input pairs
this difference is at least (1/2+¢) — (1/2 —¢) times the number of possible
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inputs, ie, 2e(2" x 2"), it follows from summing up over all leaves that

£22"+1 < D(n) x number of leaves < D(n) -2,

By a simple discrepancy analysis we derive our main result on the dis-
tributional communication complexity of the inner product function.

Theorem 10.2 For any 0 < € < 1/2, the distributional communication
complezity of the inner product modulo 2 satisfies

n 1
. >—4+1—-log—.
C’(n)_2+ ogE

Proof: The 2"-by-2" matrix H = (H(z,y)) is the Hadamard matrix, and
HTH = 2"I, where I is the identity (see Appendix B.1); implicit in this
definition is the ordering of the rows and columns, which we choose as the
lexicographical ordering of {0,1}™. It follows that, for any vector v,

1Hvll> = 2" |[o]l2.

Given a rectangle X x Y, let v (resp. w) be the characteristic vector in
{0,1}%" of the set X (resp. Y). By Cauchy-Schwarz,

D(X % ¥) = o Hu| < loll | Hwls = 2ol [hulls < 2"/*V/3F - V3,
and therefore D(n) < 2°"/2. By Lemma 10.1,
C:(n) > 2n + log(2¢) — 3n/2,

which proves the theorem. O

The Matrix Rank Bound

Having gone thus far, it would be a pity to leave out any discussion of
the deterministic complexity of the inner product function. Consider the
minimum-cost protocol for computing (z,y), and let C'(n) be its cost, ie, the
length of its longest path. Let M be the 2"-by-2" matrix, where M (z,y) =
(z,y). Each leaf of the protocol is associated with a rectangle of maximum
discrepancy, ie, with only 0’s or only 1’s (any mix would cause errors at
that leaf). Let £ be a 1-leaf, ie, one associated with a rectangle full of
1’s, and let M, be the matrix obtained by zeroing out every element of M
outside that rectangle. As we remarked earlier, the rectangles at the leaves
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partition the set of all input pairs (z,y), and so M = >, M,. Each M, has
rank one,! and from

rank(A4 4+ B) < rank(A) + rank(B)
it follows that
rank(M) < Zrank(Mg) < number of 1-leaves.
¢
Of course, if we change the matrix M by switching all 0’s and 1’s, we obtain
a new matrix M', and the same argument yields
rank(M') < number of O-leaves.
Because M + M’ = U, where U is the rank-1 matrix with 1’s everywhere,

rank(M) < rank(—M') + rank(U),

and hence rank(M') > rank(M) — 1. Since a protocol is a binary tree, its
cost is at least the logarithm of its number of leaves, and so

C(n) > log(2 - rank(M) — 1). (10.1)
To find out the rank of M is easy. Consider the matrix P = M?, where

P(m,y) = Z(a:,z) ' (Zvy>
z

e If either z or y is (0,...,0), then P(z,y) =0.

e Suppose that z = y # (0,...,0). A random choice of z gives
(w,z) = 1 with probability 1/2, and so P(z,y) = 2" L.

e Neither = nor y is (0,...,0), and  # y. Then the two vectors =
and y are independent, and so the n-by-2 matrix (z,y) is of rank
2 over F5. It follows that, for random z, the two random variables
(z, z) and (z,y) are independent, and therefore the probability that
both are 1 is equal to 1/4. It follows that P(z,y) = 2"~2.

Thus, the matrix derived from P by stripping its first row and its first
column has 2"~! on the diagonal and 2"~2 everywhere else. It is a circulant
matrix whose determinant can thus be easily computed. We find that it
is nonzero. The stripped matrix is nonsingular, and so the rank of P is

IMatrix rank is to be understood here over the reals, not over the integers mod
2. Indeed, over Fa, the Galois field with two elements, the matrix M is of the form
uTu, and thus has rank 1: not a hopeful start for a rank-based argument. (See §9.2 on
page 319 for background material on finite fields.)
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2" — 1. In turn, this implies that rank(M) > 2™ — 1. By (10.1), this shows
that C(n) > log(2"T! — 3). Obviously, C'(n) < n + 1; therefore,

Theorem 10.3 For any n > 2, the communication complezity of the inner
product of two n-bit vectors modulo 2 is exactly n + 1.

10.2 Searching in a Finite Universe

From a lower bound perspective, searching a database can be usefully mod-
eled as a game between Alice (the querier) and Bob (the responder). Alice
chooses a set £ of potential queries and Bob a collection P of potential
key-sets. Any pair (¢, P) € £ x P defines a problem instance, with one or
several solutions. Here are some examples:

e PREDECESSOR SEARCHING: The query / is an integer and the key-
set P is a collection of integers. The solution is the largest element
in P that does not exceed £, or —oco if there is no such thing.

e POINT SEPARATION: The query £ is a line in the plane R? and
the key-set P is a collection of points in the plane. The solution is
0 if all the points of P lie on the same side of £ and 1 otherwise.
This is also known as halfplane range detection.

e APPROXIMATE NEAREST NEIGHBOR ON THE HAMMING CUBE:
The query £ is a point in the cube {0,1}%, while the key-set P is
a collection of points in that cube. Fix some approximation factor
d > 1. The solution is any point of P whose L' distance to ¢ does
not exceed 0 times the shortest distance between ¢ and any point
of P.

We investigate these problems in the cell probe model. The data structure
consists of a table T of n® cells of w bits each, where n = |P| is the size
of the key-set, ¢ is a constant, and the word size w is a problem-dependent
parameter. To strengthen our lower bounds, we assume that c is fixed but
arbitrarily large. An algorithm consists of two parts:

(i) A table assignment strategy that indicates how, given P, the table
T should be filled.
(ii) An infinite sequence of functions fi, fo, etc.

Presented with a query ¢, the algorithm evaluates the index f; (¢) and looks
up the table entry T[f1(¢)]. If T[f1(¢)] provides a solution, the algorithm
terminates; otherwise, it moves on to evaluate fo(¢, T[f1(£)]) and then looks
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up the entry T'[f2(¢,T[f1(£)])], iterating in this fashion until a cell probe
finally reveals a satisfactory solution.

To prove a lower bound for a given problem, we fix an algorithm once and
for all. Then, we let Bob and Alice cooperate to exhibit a hard problem.
Alice starts out with a set £; of candidate queries and Bob with a collection
P1 of key-sets. Their task is then to exhibit a hard problem instance
(¢,P) € Ly x Py, which they do by playing a communication complexity
game.

The n® possible values of the index f;(¢) partition £; into as many
equivalence classes. Alice chooses one of them and sends to Bob the unique
value of f; (£) corresponding to it. The assignment of T' depends only on the
key-set P that Bob has in mind. Of all the possible 2% assignments of the
entry T'[f1(£)], Bob chooses one of them and narrows down his candidate
set P to the set P> of key-sets leading to that chosen value of T'[f1(¢)]. Bob
sends back to Alice his choice of T[f1(¢)]. Knowing f; (¢) and T'[f1(€)], Alice
settles on a choice of a value for fo(¢, T[f1(¢)]), which she communicates to
Bob, etc.

Alice Bob

requeststable entry at f 4 (1)

grants request

requests another table entry

\

Fig. 10.2. Bob and Alice—the lower bound prover hopes—have a lot to say to
each other.

Each round k produces a new pair (Lg+1,Pr+1) with the characteristic
property that, for all queries in Lfy; and all key-sets in Pry1, Bob and
Alice exchange the same information during the first k£ rounds. In other
words, these first k£ rounds are unable to distinguish among any of the
problem instances in Lgy1 X Pry1. To alleviate notation, we say that a
query (resp. key-set) is active at the beginning of round k& to indicate that
it belongs to Ly (resp. Pi). The set L x Py is called unresolved if it
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contains at least two problem instances (¢, P) and (¢', P') that have no
common solution. In such a case, Bob and Alice need to proceed with
round k, perhaps with more, and the cost of the protocol (ie, the minimum
number of rounds necessary) is at least k.

Note that in one round Alice sends only log(n¢) bits to Bob (a table
index), who then sends back w bits to Alice (a table entry). If, say, Al-
ice, were to send the query £ explicitly, then Bob could conclude with no
additional round. The same is true if Bob were to send Alice the key-set.
Counting rounds can only, if anything, underestimate the true cost of any
real algorithm, which is what we expect of a general lower bound model.
Bob and Alice produce a nested sequence of unresolved sets

L1 xXPy DD Ly x Py,

and so t constitutes a lower bound on the number of cell probes necessary
to compute a solution to any problem instance in £; x Pp. We summarize
the results below. All three of them are derived by specializing a master
argument—developed in the next section—to the corresponding problem.

Theorem 10.4 Given any algorithm for predecessor searching, there exist
a key-set and a query that require Q(log b/ loglogb) probes to answer, where
b is the number of bits needed to encode the integers used to specify the query
and the keys. This holds for any word size w = b°()

Theorem 10.5 Given any algorithm for point separation, there exist a
key-set and a query line that require Q(logb/loglogb) probes to answer,
where b is the number of bits needed to encode the (rational) coefficients of
the line and the coordinates in the point set. This holds for any word size
w = oW,

Theorem 10.6 Given any algorithm for approzimate nearest neighbor
searching on the Hamming cube, there exist a key-set and a query that
require Q(loglog d/ logloglog d) probes to answer, where d is the dimension
of the cube. This holds for any approzimation factor § < 2018 d)lfs, with
any fized 0 < € < 1, and for any word size w = d°).

10.3 The Master Argument

We begin with a little notation: ¢ refers to the lower bound sought on
the number of rounds; queries are chosen from a universe of size at most
29; the word size w is defined as ¢°. Note that it is appropriate to use
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the same exponent ¢ for the word size ¢° and table size n°, since it is
assumed to be arbitrarily large. Finally, for notational convenience, we
write h = [tlog”t]. Throughout our discussion, it is understood that g
and t exceed any constant that might show up during the proof.

Keys and queries are chosen in the universe. Keeping track of queries
is relatively straightforward since, by and large, all that matters is size.
We just need to ensure that intervals in the universe contain enough keys.
Choosing key-sets is more difficult, however, because simply having many
of them is not particularly useful. We need to maintain an entire spectrum
of key-sets ranging over the whole universe, some concentrated in small
intervals, others spread across the universe. Ideally, for any sequence of
disjoint intervals (narrow or wide) we would like to have at least one key-
set intersecting many intervals in the sequence. This translates into low
discrepancy of the one-way sort; it is one-way because one must worry only
about having too few hits, not too many.

Without pushing the analogy too far, one can think of the set of key-sets
as a “signal” with a full spectrum in the Fourier transform sense. The
analogue of a Fourier basis is here a set of “canonical intervals” defined
hierarchically. Indeed, we build a large balanced tree over the universe, and
associate leaves with universe elements and nodes with intervals (induced
by the leaves below it). By contracting the tree in various ways we can
define more trees and more intervals. The construction involves a double
induction. One type of induction allows us to build each tree level by level;
the other one defines the family of trees. This second type of induction is
of length equal to the number of rounds.

We construct key-sets iteratively by a top-down process that selects
nodes in trees and then recurses within subtrees rooted at these nodes.
The only reason the construction is a little involved is that we want to
achieve several objectives at once: One is that key-sets should cover a
large variety of ranges; another is that the construction should be highly
structured. In particular, for technical reasons, the family of valid key-
sets should be defined as Cartesian products of smaller families (products
ensure that projections have nice properties). We embed our key-sets in
a probabilistic space to produce a highly nonuniform distribution of key-
sets. This nonuniformity is what makes the lower bound proof unusual. If
the reader can bear with a few paragraphs of formal definitions, it will all
become crystal clear in the next section.
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A Hierarchy of Tree Contractions

Let 7; denote the perfect y-ary tree of depth h*. The branching factor
v > 2 is a parameter whose setting depends on the application problem.
Our choices of ¢t and v will always ensure that

¢ <A and <2t (10.2)

so that, in particular, the total number 29 of queries available to Alice at
the start exceeds the number 7ht of leaves in ;. By performing a sequence
of edge contractions we define a sequence of auxiliary trees that guide
Bob and Alice’s strategy. Contract all the edges of 71 except those whose
lower node is of depth divisible by h*~! (depth of root being zero). This
transforms the tree 77 into a smaller one, denoted U/, of depth h. Given a
node v of the tree 77, let 7;(v) denote its subtree of depth h!~! rooted at
v. The depth-1 subtree formed by an internal node v of I, and its fyhkl
children forms a contraction of the tree 7 (v). Note that, in Figure 10.3,
71 (v) contains leaves of Ty, but this need not be the case in general.

Repeating this process leads to the construction of Uy, for 1 < k < t.
Figure 10.4 tells the whole story, but for completeness here are the details.
Given an internal node v of Uy_1, the depth-1 tree formed by v and its
children is associated with the subtree T;_;(v), which now plays the role
of 7 earlier, and so can be renamed 7 (with v understood). Note that
Tr is of depth At=**!. For any node u € Tj of depth divisible by At—*
but distinct from h*~¥*1 let Ty (u) denote the subtree of 7 of depth ht—*
rooted at u: As before, turn the leaves of Ty (u) into the children of u by
contracting the relevant edges. This transforms 7y into the desired tree Uj,
of depth h.

o5 ——

Fig. 10.3. The tree 7; and its contraction into U;: The tree T3 is defined, non-
deterministically, as 71 (v), for some v € Ui; the branching factor ~ is set to 2 in
this example.
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The contraction process is the same for all k < t. The final case, k = t,
is a little different, however. We simply make all the leaves of 7; into the
children of the root and remove the other internal nodes. This contraction
produces a depth-1 tree 7; with v" leaves. We should always remem-
ber that a specific 7 implies the choice of various intermediate nodes in
Uy, ...,U,—1. Although T is defined nondeterministically, it is always a
perfectly balanced y-ary tree of depth h*~#+1. It follows immediately from
the construction that:

Lemma 10.7 Any internal node of any Uy, has ezactly 7ht7k children if
k<t, and y" children if k = t.

f@%@w
AN I o)
(VAN N SR r

Fig. 10.4. The hierarchy of trees.

A Product Space Construction

Bob’s starting collection P; of active key-sets is defined implicitly by in-
troducing a nonuniform probability distribution D; over the universe of
key-sets. Similarly, we define any P}, by means of a distribution Dj. While
every key-set with nonzero probability in D; is active during the first round,
this is not the case with subsequent distributions. So, we specify a lower
bound on the probability that a random key-set P, drawn from Dj, is active
prior to round k, ie, belongs to Py.
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e Distribution D1: A random key-set Pj is defined by two parameters, Iy
and o1, drawn independently of each other: The indez list I is a sequence of
integers, while the signature o is a function assigning each element of I; to
either 0 or 1. In the case of predecessor searching and approximate nearest
neighbor searching, the signature function is constant and, in effect, plays
no role at all. For point separation, however, o; assigns 0 or 1 randomly
to each element of I, uniformly and independently of the choice of I;.
Regardless of the distribution on oy (trivial or uniform), in all cases we may
say that a random P; is defined by a random index list I; and a random
signature o;. For minor technical reasons, we require that P, should not
be much larger than I:

n < Pl = O(1)). (10.3)
So, to define D, we now need only explain the meaning of a random I;.
The index list I; is defined recursively in terms of I, which itself depends
on I3,...,I;. Each I is defined with respect to a certain tree Uy (the
word “certain” being a reminder that U is not unique but depends on the
choice of nodes in U;, for i < k). Number the leaves of 71 from left to
right, O, ... ,yhi — 1, and with each node of the tree associate the interval
formed by the integers at the leaves descending from it. Any node v of Uy,
inherits the interval of the corresponding node in 7;. The key of v refers
to the smallest integer in that interval. We define a random index list Iy
by setting k = 1 in the procedure below:

Random Index List I

e For k = t, a random I}, (within some 7) is formed by the keys
of w® nodes selected at random, uniformly without replacement,
among the leaves of the depth-1 tree .

e For k < t, a random I}, (within some 7y) is defined in two stages:

[1] Foreach j =1,2,...,h—1, choose w® nodes of Uy of depth
j at random, uniformly without replacement, among the
nodes of depth j that are not descendants of nodes chosen
at lower depth (< j). The (h — 1)w® nodes selected are
said to be picked by I}.

[2] For each node v picked by I}, recursively choose a random
Iy 1 within Tx41 = Tz (v). The union of these (h — 1)w®
disjoint sets Iy forms a random I} within 7.

Note that the degree of any internal node of U, (k < t) is at least
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(A,

Fig. 10.5. Picking w® nodes at each level outside the dark subtrees rooted higher
up.

" (Lemma 10.7), which by (10.2) greatly exceeds (h — 1)w®. Thus, we
never run out of nodes in step [1]. Since we need not be concerned with the
signature o, yet, this essentially completes the definition of the distribution
D;. We see by induction that a random I, consists of (h — 1)t=Fedt—k+1)
integers. Setting k = 1, we have the identity

|| = (h — 1) 1w . (10.4)

o Distribution Dy: During round k£ > 1, our only control over active key-
sets is through one number: the probability that a random key-set drawn
from Dy, is active (ie, belongs to Pr). A random key-set drawn from D,
is active with probability 1, since no information has yet been exchanged
between Bob and Alice. But this is no longer true of Dy for k£ > 1, and we
need to enforce an invariant to keep the “activity” level high enough:

e KEY-SET INVARIANT: For any 1 < k < ¢, a random P} from
2
Dy, is active with probability at least 27 .

But what exactly is D;? One can think of the distributions Dy, D,, etc, as
assigning probabilities to all possible key-sets parameterized by (I,c). By
abuse of terminology, we say that a key-set belongs to Dy, if sampling from
Dy, produces it with nonzero probability. With this notation, we can write
Pr C Dg. An important feature is that, once the probability of a key-set
is 0 in some Dy, it remains so in all subsequent distributions D; (j > k)
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or, put differently,
Dy D---DDy. (10.5)

To go from Dy, to Dy entails choosing specific nodes of Uy and look-
ing at the projections of key-sets of these nodes. We define this notion of
projection next. Let P; be an input key-set in D;. In the recursive con-
struction of Iy, if v is a node of Uy picked by I}, in step [1], let I}, denote
the set Iy 41 defined recursively within 711 = T¢(v). Similarly, let o, be
the restriction of the signature function oy to I|,. The key-set parameter-
ized by (I,,0|,), denoted by Py, is called the v-projection of P;. A few
remarks:

(i) The notion of v-projection extends to any key-set in any D; (j < k),
since by (10.5) such a key-set also belongs to D; .

(ii) One should not confuse the key-sets in Dy, such as Py, all of which
have exactly the same size n, with the v-projections P),, which
are much smaller and are not part of Bob’s arsenal of key-sets.

(iii) A v-projection might seem to depend on the choice of some P,
but obviously one can speak of a random P}, (with v € U}, fixed)
independently of any P, as the key-set formed by a random I
defined within Ti11 = Tg(v) together with the restriction to it of
a random ¢y. It is this distribution that will be understood in any
further reference to a “random P|,.”

Assume that we have already defined Dy, for k < t. Just like I, a
distribution Dy, is associated with a specific tree 7. So, to define Dy41,
the first order of business is to choose a node v in U}, and make T+1 = Tg(v)
our reference tree for Dyy1. Any key-set of Dy whose probability is not
explicitly set below is assigned probability 0 under Dj,;. Consider each
possible set K of the form P),. Note that this enumeration is independent
of Dy, and recall that v is fixed. For each K considered, apply the following
rule:

e If K is the v-projection of at least one key-set in Py (ie, active
at the beginning of round k), then take one of them (any will do)
and assign its probability under Dy, to be the probability that a
random P|, is equal to K.

e Otherwise, take one key-set in Dj whose v-projection is K (of
course, it is inactive) and again assign its probability under Dy,
to be the probability that a random P, is equal to K.

This completes the definition of a random Py drawn from Dyy;. The



360 COMMUNICATION COMPLEXITY

distribution is inherited directly from Py, (not from Dy!), but the choice
of which key-sets of Dy, make it into D1 depends on Py, ie, on the active
key-sets. Note that Dy is already fully specified before round k. During
that round, Bob chooses the contents of a table entry pointed to by Alice,
and this in effect reduces the number of active key-sets in Dji1: The
surviving ones constitute Pry;. To summarize, a random key-set in D41
is defined with reference to a specific tree 741, and the distribution Dy
is isomorphic to that of a random P),, for fixed v € U.

Candidate Queries

Alice starts out with the set £; of queries formed by the keys of the leaves of
Ti. As the game progresses, this set decreases in size to produce the nested
sequence L1 D -+ D L;. For k > 0, the set L1 is obtained by identifying
a special node v in U}, as well as a certain equivalence class in the partition
of £, induced by Alice’s choice of a table index in round k: The set Lj41
consists of all the queries in that class that lie in the interval of v. (Recall
that each node of Uy, is associated with a unique interval in {0,7"*" —1}.)
Together with the invariant on key-sets, we impose a constraint on the
active queries. Of course, prior to round k, the currently active query set
Ly, is defined with respect to the same reference tree 7T used to specify a
random Pj.

e QUERY INVARIANT: For any 1 < k < ¢, the fraction of the
leaves in U, whose intervals intersect Ly, is at least 1/q.

Naturally, £ and P; trivially satisfy their query and key-set invariants,
respectively. The challenge for Bob and Alice is to coordinate their strategy
to maintain these invariants throughout the ¢ rounds of the game. In each
application of the lower bound technique we must prove that, as long as
the invariants hold, the game must go on.

Lemma 10.8 If £L; and Py satisfy their respective invariant, then L; X Py
15 unresolved.

The lemma says that if both key-set and query invariants hold at the
beginning of round ¢, then the protocol must proceed through round ¢ if
it is to solve all problem instances in £; X P; correctly. This shows that,
indeed, ¢ is a lower bound on the number of rounds necessary. Of course,
the lemma cannot be proven in the abstract, and we must postpone the
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proofs until we have specific problems in hand (eg, predecessor searching,
point separation, approximate nearest neighbor searching).

During the k-th round, Alice chooses an index in Bob’s table. As we
discussed earlier, the set of n° possible choices partitions her current query
set L) into as many equivalence classes. To define L1, Alice first must
choose a “special” node of U}, and then an equivalence class. For the node
she will limit her choice to heavy ones: A node v of U, is called heavy if

(i) it is not a root or a leaf, and
(ii) at least one of the equivalence classes intersects the intervals of a
fraction > 1/q of the children of v.

The levels of Uy span a whole spectrum of widely different interval widths.
We use this variety to argue that some levels must have a certain number
of heavy nodes.

Lemma 10.9 The union of the intervals associated with the heavy nodes
of Uy, covers at least a fraction 1/2q of the leaves’ intervals.

Proof: Recall that ¢ plays two roles: The total number of queries is at
most 29, and the word size w is equal to ¢°. To prove the lemma, let us fix
an equivalence class C and color the nodes of U, whose intervals intersect
it. Mark every colored node that is heavy with respect to class C. Once
this is done, mark every descendant in U}, of a marked node. Let N denote
the number of leaves in U}, and let IN; be the number of leaves of I/}, whose
depth-j ancestors in U}, are colored and unmarked; in this terminology, a
node is included among its ancestors. For j > 1, an unmarked, colored,
depth-j node is the child of an unmarked, colored, depth-(j — 1) node that
is not heavy for class C, and so N; < N;_;/q. Since, obviously, Ny < N,
it follows that, for any j > 0,

¢

If we repeat this line of reasoning for all of the other equivalence classes,
we find that all the unmarked, colored nodes (at a fixed depth j > 0) are
ancestors of at most n°N/¢’~! leaves. This implies that the number of
unmarked, colored leaves is at most n°/N/¢" =1, which by (10.2-10.4) is less
than N/2q. By the query invariant, at least N/q leaves of U}, are colored,
and so at least half as many are both colored and marked. Walking up
the tree from these leaves shows that the marked nodes whose parents are
unmarked are themselves ancestors of at least N/2q distinct leaves. All of
these nodes are heavy, and the lemma is proven. O
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Alice’s strategy is to keep her active queries as “entangled” as possible
with Bob’s key-sets. Put differently, the active queries should form, in a
weak sense, a one-way low-discrepancy approximation of the set system
formed by the key-sets. The next result hints at such a close interaction
between queries and key-sets. On at least one level of U}, many heavy
nodes—the ones needed for maintaining the query invariant at the next
round—end up being picked by a random Ij,.

Lemma 10.10 For any 0 < k < t, there is a depth j in U, (0 < j < h),
such that, with probability at least 2_’”2_1, a random Py from Dy, is active
and its index list Ij, picks at least w® heavy, depth-j nodes in Uy,.

Proof: We use our previous observation that Dy, is isomorphic to a random
(Ix,0r), where oy is the restriction to I of a random signature chosen
independently of I;. Fix o once and for all. The heavy nodes of U}, are,
together, ancestors of at least a fraction 1/2q of the leaves (Lemma 10.9).
It follows that, for some 0 < j < h, at least a fraction 1/2¢h of the nodes
of depth j are heavy. Among these, Iy may pick only those that are not
picked further up the tree. This caveat rules out fewer than hw® candidate
nodes, which, by Lemma 10.7, represents a fraction at most hw®/y" of all
the nodes of depth j. So, it appears that, among the allowable depth-j
nodes (ie, those that may be picked by Ij), the fraction « of heavy ones
satisfies (conservatively)

a > i — h_w5
=~ 2hqg M’
where, as we mentioned earlier, w = ¢¢ and h = |tlog®t]. By (10.2), it
follows that a > 1/3hq. Recall that I} picks w® depth-j nodes of U}, at
random with no replacement. By Hoeffding’s bounds,? the probability that
the number of heavy ones picked exceeds the lemma’s target of w? is at
least?
1—2e~ 2w (a=1/w?)? 5 q _ g—w®

It follows from the key-set invariant and the independence of I}, and oy
that, with probability at least 2—w* _ 2_‘”3, a random P, is active and its

2See Appendix A.

3To be fully rigorous, this bound holds when we condition upon a given set of al-
lowable depth-j nodes. But since we get the same bound for all such sets, we can
decondition right away.
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index list I; picks at least w® heavy depth-j nodes in its associated tree
U,. O

Probability Amplification by Projection
During the k-th round, Bob sends to Alice the contents of the cell

Prior to doing so, Bob must settle on one of the at most 2% possible values
of the cell. His best strategy is not to follow blind greed (ie, not necessarily
to select the one leading to the largest number of active key-sets) but to
maintain low discrepancy between active queries and key-sets. The 2%
choices partition the current collection Py of active key-sets into as many
equivalence classes. This is such a large number that one needs to build
in a probability amplification mechanism to avoid an inevitable violation
of the key-set invariant. We exploit the product nature of the distribution
Dy, and project it on one of its factors. This is a now-classical technique in
combinatorics that has a straightforward geometric interpretation. In the
plane, it says that, given a measurable region, one of its two axis-projections
has extent at least the square root of its area (Fig. 10.6).

A

Fig. 10.6. Obviously, the larger of A or B is at least the square root of the area.
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Lemma 10.11 For any 0 < k < t, there exists a heavy node v of Uy
such that, with probability at least 1/2, a random Pyy1 drawn from the
distribution D11 associated with Tp11 = Ti(v) belongs to Py.

Proof: The lemma claims the existence of a heavy node v “at which,”
with high enough probability, a random Py is active at the beginning of
round k. Considering how low the probability of “activity” specified by
the key-set invariant is, this bears witness to truly impressive probability
amplification. Of course, we should note that most such Pj41’s might lose
their active status during round & and thus fail to make it into Py1.

To prove the claim, we refer to the depth j in Lemma 10.10. Let ps
denote the conditional probability that a random P from Dj, belongs to
Pk, given that S is exactly the set of heavy nodes of depth j picked by Ij.
Summing over all subsets S of heavy depth-j nodes of size at least w?®, we
find that

Z Prob[S = set of heavy depth- jnodes picked by I, ] -pjs  (10.6)
S

is the sum, over all S, of the probability that P, € P, and that S is

precisely the set of heavy nodes of depth j picked by its index list I,. By
2

Lemma 10.10, this sum is at least 2% !, and therefore, by (10.6),

P > 27 (10.7)

for some set S* of at least w® heavy nodes of depth j. The crux of the
proof lies in the following two remarks, which together point to the desired
projection node:

1. Fix some node v in some U. Following our observations on page 360,
the v-projection P}, of a random Py, from Dy, is distributed according
to Dy+1. The same is true if the distribution on Py is conditioned
upon having S* as the set of heavy depth-j nodes picked in that U/
by the index list of Py. Furthermore, the projections on the nodes
of S* on the one hand, and the rest of P, on the other hand, form
|S*| + 1 mutually independent random variables.

2. If P belongs to Py, then its v-projection maps to a unique set
Pyy1 € Dry1 also in Pi. So, in particular, given any P, € Py
claiming S* has its set of picked heavy nodes of depth j, each of its
v-projections maps to a unique Pyy1 € Diy1 N Pr.

Let pj, denote the probability that a random Py drawn from the distri-
bution Dy associated with Ty = T (v) belongs to Pr. From the two
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observations above, we find that

Dis+ < H Djw -

veES*

Since |S*| > w3, it follows from (10.7) that

e NI

1
>_7
-2
for some v € S*. O

With the ground rules in place, Bob and Alice have no difficulty main-
taining their invariants from round to round. Note that both query and
key-set invariants are trivially satisfied at the outset. Assume now that
they hold at the opening of round k& < ¢t. Let v denote the node of Uy re-
ferred to in Lemma 10.11. The n° possible ways of indexing into the table
T partition Alice’s query set L into as many equivalence classes. Because
v is heavy, the intervals associated with at least a fraction 1/¢ of its chil-
dren intersect a particular equivalence class. Alice chooses such a class:
The queries in it that lie in the interval associated with v constitute the
new query set Lgy1. The tree Ugy1 is naturally derived from Ti11 = Tg(v).
By this choice, the fraction of the leaves of U1 whose intervals intersect
Lr+1 is at least 1/q, and the query invariant is satisfied at the beginning
of round k + 1.

Upon receiving the index from Alice, Bob must choose the contents of the
table entry while staying consistent with all past choices. By Lemma 10.11,
a random Py from Di4q (distribution associated with Tr41) is active at
the beginning of round k with probability at least a half. There are at
most 2% choices for the table entry, and so for at least one of them, with
probability at least (1/2)27% > 2*“’2, a random key-set from Dy, is active
at the beginning of round & and produces a table with that specific entry
value. These key-sets constitute the newly active collection P11, and the
key-set invariant still holds at the beginning of round & + 1.

To show that ¢ rounds are needed, we must prove that £ x Py is un-
resolved, for any k < ¢. In fact, because of the nesting structure of these
products, it suffices to show that £; x P; is unresolved, which follows from
Lemma 10.8. In the applications that follow, we need to set ¢t appropriately
to make the lemma true.
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10.4 Applications

We use the master argument to prove Theorems 10.4-10.6 (page 353). We
begin with the simplest application.

Predecessor Searching

The starting set £; of queries consists of all integers between 0 and 2° — 1.
A key-set is specified entirely by its index list. The signature function is
irrelevant and can be chosen to be constant. We set:

g = b,
t = |logb/2loglogb] ,
vy = 2.

We easily verify that conditions (10.2) are satisfied. To prove Theorem 10.4,
we need only establish Lemma 10.8, ie, prove that if £; and P; satisfy their
respective invariant, then £; X P; is unresolved. By contradiction, suppose
that £; x Py is not unresolved. Then, all the key-sets of P; must lie either
to the left or to the right of all the queries. By the query invariant, the
leaves of U; whose interval contains a query of £; constitute a fraction of at
least 1/q of all the leaves. Within D, the probability that the projections
of a random P; lie to the left or to the right of the leaves in question is at
most (recall that w = ¢°)

5
(1 — l)w < 2"”2,
q

which contradicts the key-set invariant. (We cheated a little because the
left-most and right-most intervals containing a query are not necessarily
forbidden, but the error is insignificant. Also note that, since D; is hy-
pergeometric, allowing replacement—as we did in the calculation—gives a
valid upper bound.) This concludes the proof of Theorem 10.4. O

Point Separation

This problem is also known as halfplane range detection. We begin our
discussion with the construction of point sets. We then turn our attention
to the query lines. Let p; denote the point (i,i2) and, given i < j, let
Aij = 3(i+4,i* + j°) and By; = ((i + j)/2,ij). Note that 4;; (“A” for
above) is the midpoint of p;p; and lies above the parabola y = 2. On
the other hand, B;; (“B” for below) is the point of intersection between
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the lines through p; and p; tangent to that parabola, and hence below it
(Fig. 10.7). Any of Bob’s n-point sets P is of the form

P = {pi17Xi1i27pi27Xi2i37' - '7pis_17Xis_1isapis }7

for some i1 < --- < iz, where n = 2s — 1 and X denotes the symbol A
or B (not necessarily the same one throughout the sequence). Thus, P
can be specified by the index list I = I(P) = {i1,...,45} consisting of s
distinct b-bit integers (the abscissae of the points) and a signature function
mapping each i; to A or B. Note that the signature bit of i, is irrelevant.
For technical reasons, we require that all of the integers of the index list
I be even. Going back to the master argument, a random P; is defined
by forming a random I; over the set of even integers in [0,2%), and for the
signature of each index in I;, choosing a random assignment, uniformly
and independently, in {A, B}.

Fig. 10.7. The two points A;; and B;; above and below the parabola y = z2.

The starting query set £1 consists of the lines of the form, y = 2kx — k2,
for all odd b-bit integers k. This is the equation of the line tangent to the
parabola y = 22 at p;. From now on, we identify each line of £; with the

coefficient k in its equation.* The number of bits needed to encode any

4A minor technical point: The master argument does not allow us to restrict the
index list to even integers or the query set to odd ones. To be rigorous, we should form
the index list I; first and then multiply each index by two to produce the sequence
i1,...,is. Similarly, the coefficient k of a query line should be of the form 25 + 1, where,
as required by the master argument, j is a key of a leaf of 7;. We ignore these fine,
but essentially unimportant, distinctions in our discussion below. So, when there is no
ambiguity, we might say “key 2¢ and query 2j + 1 are in the same leaf interval,” instead
of the correct statement, “key 2¢ and query 2j + 1 are such that ¢ and j belong to the
same leaf interval.”
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point coordinate or line coefficient is 2b (and not b, as we claimed earlier,
but this is of no consequence while it simplifies the notation). Observe that
the problem does not become suddenly easier with other representations
such as ax + By = 1, and that for the purposes of our lower bound, all such
representations are essentially equivalent.

Our requirement that i; € I be even and k be odd is meant to prevent
any line of £; from passing through any point of P;. The following lemma
motivates our construction of points and lines. It is an immediate conse-
quence of the fact that P is always in convex position, and we may leave
out the proof.

Lemma 10.12 Let p;; and p;,;,, be two points of P, and let { be the line
y = 2kx — k*, where i; < k < ij41. The line { separates the point set P if
and only if the symbol X in X; ;. is of type B.

~__— query lines

Fig. 10.8. A set P with n = 7 points and two queries with different answers.

We use the same parameter setting that we used for predecessor search-
ing:

g = b,
t = |logb/2loglogbd] ,
vy = 2.

As we already mentioned, conditions (10.2), required by the construction
of 71, do indeed hold. To prove Theorem 10.5, it now suffices to prove
Lemma 10.8. Recall that the lemma states that if £; and P; satisfy their
respective invariant, then £; X P; is unresolved. We assume that £; satisfies
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the query invariant and £; x P; is not unresolved, and we show that P
must then violate the key-set invariant. For each leaf of ¢/; whose interval
intersects L¢, select one j; € L; in that interval. By Lemma 10.7 and the

query invariant, this gives us an odd-integer sequence j; < -+ < jp, of
length
2h
m > e (10.8)

Given P, € Dy, we define the spread of P;, denoted spread(P;), to be
the number of intervals of the form [j;,ji4+1] (0 < i < m) that intersect
the index list I(P;) (Fig. 10.9); for consistency, we write jo = —oo and
Jm+1 = 00. Informally, this is the number of intervals spanning consecutive
queries that “enclose” at least one p;;. We argue that if the spread is small
(resp. not small), then the points p;; (resp. Xj;,,,) of an active P; are
too heavily constrained for the key-set invariant to hold.

Fig. 10.9. A spread of 3 determined by [jo, j1], [J2, 73], [J4, J5]-

Fix a set S of intervals, where |S| < w?, and consider the probability
that S defines the spread of P;. Of the m + 1 intervals [j;, ji+1], a random
I; must then avoid m +1—|S] of them. Such an interval J may not always
enclose a whole interval associated with a leaf of i/;. By definition of the
ji’s, however, the finite endpoints of J are odd integers in distinct leaf
intervals, and therefore J contains at least one key (ie, the smallest even
integer in the leaf interval). These keys are candidates in the construction
of I; and thus must be avoided. This limits the choice of I; to at most
2" —m —1+S| leaves of U;. It follows that the probability that the spread
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is defined by S is bounded by

(S () < -5

Recall that w = ¢¢ and h = |tlog” t]. By (10.2) and (10.8), we find that

m —|S] 1
<1-——.
2 = 2q

1-—

Summing over all S’s of size less than w* and using the fact that m < 2"
and c is large enough,

Prob [spread (P) < w4] < Z <m]_: 1) (1 - i)ws <2, (10.9)
k<w?

2q

Fig. 10.10. Pairing the point p;; with the line y = 2kz — k2.

Suppose now that the spread is at least w*. Then, the point set
Pt = { Diys Xi1i2 » Disgy Xi2i37 s Pig_qs Xis_1isapis }

includes a subset P* of at least w* — 1 points pi;, every one of which can
be paired with a line y = 2kz — k* of L, where i; < k < ;41 (Fig. 10.10).
In Figure 10.9, for example, P* can be chosen to be p;,, p;, and be paired
with the lines j; and j3, respectively. Draw a random P; from Dy, and
let = denote the event: “All queries from L£; give the same yes-or-no an-
swer with respect to the point set P.” By Lemma 10.12, the X, ;. ,’s
corresponding to the p;.’s of P* are either all of the form A;; ;. .,
of the form B;, ;;., (no mix). As we observed earlier, D; is isomorphic to
the distribution of a random I; together with a string of w® bits (drawn

or all
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uniformly, independently). The constraint on the X’s reduces the choice
of a random P, by a factor of at least 2@~ /2, and hence

Prob [E| spread (P;) > w4] < 92w, (10.10)

Putting together (10.9) and (10.10), we find that

Prob[Z] = Prob[Z| spread(P;) < w*] - Prob[spread(P;) < w! |+
Prob[_| spread (Pt > w 4]- Prob[spread (P;) > w?]
S 2 w? + 22 w? 2 w?

which violates the key-set invariant. O
This completes the proof of Theorem 10.5 (page 353). O

Note that it is easy to rederive the lower bound on predecessor searching
directly from this result.

Approximate Nearest Neighbors

We consider the problem of preprocessing a set P of n points in {0,1}%, so
that, given a query point £ € {0, 1}¢, one can quickly find a J-approzimate
nearest neighbor of £ in P, that is, any p € P such that |[{—p||1 < d]|[€—q]|1,
for any ¢ € P. Setting § = 1 makes p the actual nearest neighbor. We
fix the approximation factor § = 2(°69"™° once and for all, where ¢ is an
arbitrary constant (0 < € < 1). Note that this is a very generous factor,
leading therefore to an equally general lower bound. The data structure
consists of a table T' whose entries hold d¢ bits each, where c is an arbitrarily
large constant. This means that a point can be read in constant time. This
assumption might be unrealistic when d is large, but it can only strengthen
the lower bound result of Theorem 10.6 (page 353), which we now prove.
For convenience we introduce the quantity,

B L gt+Tlogd)' =] (10.11)

Throughout our discussion, we assume, without loss of generality, that d
is a large enough power of 2. In this way, we can divide d by powers of
and still get an integer. The term distance refers to the L! norm. A ball
of radius r is the set of points in {0,1}? whose distance to a given point,
the center, is at most r. We begin with a technical result that allows us to
build the hierarchy of trees.
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Lemma 10.13 Let B C {0,1}? be a ball of radius k < d large enough.
There exists a collection of at least 2%/7 balls within B, each of radius
Lk/B], such that the distance between any two points in distinct balls exceeds
the distance between any two points in the same ball by a factor of at least

B/16.

Proof: Let V. be the number of points in {0,1}¢ in a ball of radius r
centered at a point in {0,1}?. Obviously, this number does not depend on
the center. In fact,

L7]

Vv, = <d>
‘ 7
=0

Fig. 10.11. Choosing a family of balls far apart.

Consider the ball B’, concentric with B and of radius |k/2], and initially
call its points unmarked. Next, mark the points of B’ as follows. While
there is an unmarked point left in B’, select one and mark all of the points
at distance at most k/4 from that point. The number N of points of B’
selected in this manner satisfies

[k/4]
d d
> > .
¥ 2 o > (i) 2 ()
The denominator is dominated by a geometric series of ratio 1/3; therefore,

ka <d> : g(t/f/iu)'

=0
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It follows easily that N > 2¥/8. To form the desired family, we take balls
of radius |k/B]| centered at the N points chosen above. These balls lie
within B since their centers are in B’ and their common radius is much
less than k/2. To verify the distance condition, first notice that any two
points in a ball are at most 2k/f apart. So, suppose, by contradiction, that
two points p and ¢ in balls centered at distinct points pg and gg lie within

(B/16)(2k/B) = k/8 of each other. Then,
diSt(p0> (IO) S dlSt(po,p) + dlSt(p) q) + dlSt(q7 q[))
< K/B+R/S+ k(B < B/,

which contradicts the fact that, by construction, the centers py and ¢ are
more than k/4 apart. O

Again, to prove Theorem 10.6 it suffices to establish Lemma 10.8, ie, that
if £; and Py satisfy their respective invariants, then £; x P is unresolved.
We set

g = d,
t = |eloglogd/2logloglogd] ,
y = 248"

Recall that b = |tlog®t] and B = 24+ ) 1 We easily verify that (10.2)
is satisfied. The ~ children of the root of 7; are each associated with one of
the 2%/5 balls in Lemma 10.13; note that this comes nowhere near exhaust-
ing all of the balls made available by the lemma. Repeated application of
the lemma leads us to associate any node of 7; of depth k < h! with a
ball of radius d/f*. This works because 7, the number of children of an
internal node, never exceeds the number of balls provided by the lemma,
which is 2¢/5*" for a node of depth k. In particular, the balls associated
with the nodes of 77 right above the leaves are of radius d/ Bht_l, which,
by our choice of t, is large enough for the application of Lemma 10.13. In
fact, this is what, by and large, determines the lower bound t.

Recall that, by the master argument, any of Bob’s n-point sets is specified
by a pair (I, o). In this case, the signature is the constant function mapping
any element of I to zero; in other words, the signature plays no role and
can be ignored. The index list I is a set of keys. Any key corresponds to
a leaf of 71, and hence to a distinct ball. The collection of centers of these
balls constitutes the key-set parameterized by I. The set £; of queries
consists of all the centers of the balls associated with the leaves of 7;.

To establish Theorem 10.6, it suffices to establish Lemma 10.8, ie, that
if £; and Py satisfy their respective invariant, then £; x P; is unresolved.



374 COMMUNICATION COMPLEXITY

Each node of 77 is associated with a certain ball. Of course, the same
is true of the nodes of any Uy, since they originate from 7 and, hence,
from 7;. Below we prove the existence of a key-set P in P; whose index
list picks two distinct leaves of the tree Uy, each of whose associated balls
contains a query in £;. By Lemma 10.13, point distances between the balls
and within them are in a ratio greater than 5/16 > 2(1°¢ 9" Within the
approximation factor d, the two queries thus cannot be answered the same
way, and therefore £; X Py is unresolved.

We say that P; € D; hits a leaf of U; if its corresponding I; picks it and
the ball associated with the leaf in question intersects L£;. Let y denote
the number of leaves hit by P;. To prove the existence of P we proceed by
contradiction. Suppose that no active P; hits more than one leaf. Then,
the probability 7 that a random P, is active (ie, belongs to P;) satisfies

7w < Prob[x =0]+ Prob[x =1].

To form a random I;, we choose w® leaves of U; at random, uniformly. By
the query invariant, at least 1/d of them are associated with a ball that
contains at least one query in L£;. It follows that

1w’ 1y w1 2
1——) 2d(1——) 9w’
7r<( p + p <

which contradicts the key-set invariant. This concludes the proof of Theo-
rem 10.6 (page 353). O
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(Lemma 10.9, in particular, is due to him.) Ajtai proved that constant
search time cannot be achieved with polynomial storage. The lower bound
is as weak as can be, but the remarkably original ideas behind its proof
played a major influence in subsequent work on this and other problems.

The master argument goes beyond Ajtai’s method in some important
ways, however. For one thing, the calibration of the recursion parameters
is optimized. Also, the recursions do not create new problem instances but
always keep subsets of the original ones. This is essential for proving the
Hamming cube lower bound. Finally, the master argument is more general
than Ajtai’s, because it covers search and decision problems (obviously a
necessity for the point separation lower bound). Although phrased dif-
ferently, most of the ideas behind the master argument can be found, in
fragments, in the works of Ajtai [7], Beame and Fich [29, 30], Chakrabarti
et al. [63], and Chazelle [76].

The lower bound for predecessor searching (Theorem 10.4, page 353) was
established independently by Xiao [326] and Beame and Fich [30]. The
latter authors also prove that, rather surprisingly, the bound is optimal.
Weaker lower bounds were obtained earlier by Miltersen [228] and Miltersen
et al. [230].

The lower bound for point separation (Theorem 10.5 page 353) is due
to Chazelle [76]. As was pointed out to the author by Fich, an alternative
proof involves keeping the same geometric construction but reducing from
membership in a class of languages called “strongly-indecisive regular.”
Lower bounds for these languages were proven by Beame and Fich [29].

The Hamming cube lower bound (Theorem 10.6, page 353) was proven
by Chakrabarti et al. [63]. In the same model of computation, but with
randomization allowed, an (almost) matching upper bound of O(loglog d)
follows from [167, 192]. Borodin, Ostrovsky, and Rabani [55] proved a
stronger lower bound, but for the exact version of the nearest neighbor
problem on the Hamming cube.
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Minimum Spanning Trees

ome of the most intriguing problems in computer science predate
J@ the field itself. Computing minimum spanning trees (MST) is
&~ one of them. As far back as 1926, Bortivka asked how to find a
minimum-cost tree spanning the vertices of a connected graph with costs
assigned to the edges. According to Nesetfil [239],

This is a cornerstone problem of combinatorial optimization
and in a sense its cradle.

Amazingly, after all of these years, the problem is still open. History aside,
the minimum spanning tree problem is remarkable for several reasons. One
of them is that it can be solved very quickly. Simple textbook solutions
run in time O(mlogm), where m is the number of edges. This is aston-
ishing. Problems of that flavor are usually NP-complete or at least involve
complicated polynomial-time procedures. But the minimum spanning tree
problem is special. As a particular case of matroid optimization, it can be
solved by a greedy approach. Crudely put, the hard part in finding the
right answer is not if but when. Almost anything you try will eventually
produce a minimum spanning tree. The question is, How long will it take?

Most methods based on divide-and-conquer split up the graph according
to its combinatorial structure or to its distribution of edge costs. Random
sampling allows us to do both at once, and by exploiting this fact, an opti-
mal probabilistic solution was discovered. This sampling approach should
be grist for the discrepancy method’s mill. The challenge is to find, deter-
ministically, a “low-discrepancy” subgraph whose own MST bears witness
to the non-MST status of many edges.

By way of analogy, how should we go about finding the minimum element
in a finite set of integers? Check all of the numbers one by one and keep

376
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track of the smallest. Perhaps a tad too dull and simplistic, no? Instead,
extract a low-discrepancy subset, say the collection consisting of the highest
number in each of the 100 percentiles of the set. All numbers outside
the first percentile can be discarded. This leaves you with a set 1% the
size of the original, to which we apply the procedure recursively. Using
repeated linear selection for computing the sample of percentiles leads to a
linear-time solution. Absurdly complicated? Yes, of course, but this low-
discrepancy approach,! if not particularly simple, has the merit of being
general. Such sampling can often be done even in the absence of a total
ordering, and this will be the guiding theme of our discussion of the MST
problem. In particular, it illustrates the nongreedy nature of our approach.

We need a form of low-discrepancy sampling that allows us to select edges
that are both combinatorially (graph-wise) and numerically (cost-wise) rep-
resentative of the whole. Furthermore, the selection must take place in a
changing environment where insertions and deletions are allowed. The sam-
pling is powered by an approximate priority queue, called a soft heap. We
present its main features in §11.2 but postpone its implementation to the
end (§11.4). The culmination of this chapter is the proof in §11.3 that the
MST of a connected graph with n vertices and m edges can be computed
deterministically in O(ma(m,n)), where « is the classical inverse Acker-
mann function. This is currently the fastest deterministic algorithm for
MST. If randomization is allowed, however, a solution of linear expected
complexity is known.

11.1 Linear Selection as Low-Discrepancy Sampling

Linear selection is one of the earliest examples of the discrepancy method.
Thirty years of age at the time of this writing, the method still stands as a
model of algorithmic elegance and simplicity. Given a set X of n distinct
numbers and an integer 1 < k < n, linear selection returns the k-th smallest
element of X by making only O(n) comparisons. The pseudocode in the
next figure explains how it all works. The algorithm is extremely simple:
only a few lines of code. Yet it is hardly trivial: no fewer than three widely
different recursive calls.

LAs our example suggests, this notion of low discrepancy is one-way in the sense
that the £ smallest numbers should include enough sample points, but having too many
would not hurt.
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SELECT (X, k)
[1] If | X| = O(1), sort X and return its k-th
smallest element.
[2] Partition X into subsets X; of size 5. Let YV’
be the set formed by SELECT (X, 3), for all 3.
[3] Compute y = SELECT (Y, [n/10]), and form
the subset Z of elements in X less than y.
[4] If |Z| > k then return SELECT (Z, k) else
return SELECT (X \ Z,k — |Z|).

In Step 2, all (but at most one) of the X;’s have five elements. To
compute the set Y of medians takes O(n) time. Step 4 eliminates Z or
its complement from contention. The issue is not correctness (which is
trivial) but progress. The size of Z is between n/4 and 3n/4, roughly,
and so the time complexity T'(n) follows a recurrence of the form: T'(n) =
0O(1) if n is O(1), else T'(n) = T(n/5) + T'(3n/4) + O(n), which gives
T(n) = O(n).

We could easily tie up the loose ends of our explanation to produce
industrial-strength code for linear selection. This is not our purpose here.
The discrepancy method is the point of our discussion. Indeed, linear
selection bears an uncanny resemblance with the computation of e-approx-
imations and, hence, low-discrepancy subsets. To see why, define the e-
percentiles (0 < € < 1/2) of a set X to be its elements of ranks i[en], for
i = 1,2, etc, where n = |X|. By iterating linear selection in trivial divide-
and-conquer fashion, we derive an algorithm for computing all e-percentiles
in O(nlog1/e) time. (We leave this as an easy warmup exercise.) These e-
percentiles constitute an optimal e-approximation for the set system formed
by the intervals of X (or, rather, the intervals of the sequence created by
X sorted in increasing order).

Linear selection yields low-discrepancy subsets, which in turn set the
grounds for divide-and-conquer. This pipeline, which can be found in most
applications of linear selection, bears the marks of the discrepancy method.
Also, in typical fashion, randomization can be used to simplify the proceed-
ings greatly. For example, to select the k-th smallest element in X, pick
random elements until one is found of rank between n/4 and 3n/4; then
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recurse as in Step [4]. One expects to succeed after only a constant num-
ber of picks, and so the expected complexity of randomized selection is also
linear.

Once again, we contemplate the same tradeoff encountered in many of
the previous chapters, in fact, one of the running themes of this book: a
deterministic solution of appealing algorithmic sophistication vs. a simpler,
faster, but, shall we say, hopelessly banal, randomized algorithm. The
algorithm designer might rush to the latter for practical applications, but
it is toward the former that he or she will turn for algorithmic insight.

Linear selection has been gently maligned over the years as being too
complicated. As outlandish as that particular charge surely is, the algo-
rithm does have some weaknesses. One of them is its off-line nature. Num-
bers need to be known ahead of time; none can be added or deleted during
the computation. Dynamic low-discrepancy maintenance has a number of
applications, one of which—minimum spanning trees—is the focus of this
chapter. We begin with a data structure, called a soft heap, that offers a dy-
namic alternative to linear selection. We apply this structure to computing
the minimum spanning tree of a graph with arbitrary edge costs.

11.2 The Soft Heap: An Approximate Priority Queue

The soft heap is a data structure that supports the sort of dynamic sam-
pling alluded to earlier. The data structure stores items with keys from a
totally ordered universe. Like any full-fledged priority queue, it supports
the following operations:

e create (S): Create an empty soft heap S.

e insert (S,z): Add a new item z to S.

e meld (S,S’): Form a new soft heap with the items stored in S and
S' (assumed to be disjoint), and destroy S and §'.

e delete (S, z): Remove an item z from S.

e findmin (S): Return an item in S with the smallest key.

The catch is, the soft heap is allowed to make mistakes! Specifically, it
may increase the value of certain keys at any time. Such keys, and by
extension the corresponding items, are called corrupted. Keys cannot be
decreased, so once corrupted always corrupted. Which item is corrupted
when is entirely at the discretion of the data structure: The user has no
control over it. The data structure remains heap-ordered with respect to
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current keys (corrupted or not), and £findmin returns the minimum current
key. The benefit is speed. During heap updates, items travel together in
linked lists in a data structuring equivalent of “car pooling.” To substitute
mass transportation for individual travel cuts down on motion and, in our
case, pointer updates. Similarly, by reducing the number of distinct keys,
corruption cuts back on comparisons between keys.

The information theorist might call it entropy reduction, the coding the-
orist might name it lossy encoding, and the urban planner might invoke car
pooling. Whatever one chooses to call it, the idea behind soft heaps is to
make errors work to one’s advantage. The amount of erring, the so-called
error rate, is a parameter that we can adjust at will. It is the maximum
allowed ratio between the number of corrupted items at any time and the
total number of inserts so far.

Theorem 11.1 Beginning with no prior data, consider a mized sequence
of operations that includes n inserts. For any 0 < e < 1/2, a soft heap with
error rate € supports each operation in constant amortized time, except for
insert, which takes O(log1/e) time.> The data structure never contains
more than en corrupted items at any given time. In a comparison-based
model, these bounds are optimal.

In the worst case, every single item might end up being corrupted, and
so the bound of en applies only to a snapshot of the data structure at
a given time. Despite this apparent weakness, the soft heap is optimal
and—no mean feat—useful. Of course, by setting the error rate ¢ = 1/2n,
we disallow corruption and the soft heap behaves like a regular heap with
logarithmic insertion time.

To see the relation to linear selection, however, we must set € to a higher
value, say e = 1/4: Insert n keys and then perform |n/2] findmins, each
one followed by a delete. This takes O(n) time. Among the keys deleted,
the largest (original) one is at most n/4 away from the median of the n
original keys. Like in the case of randomized linear selection, we can recurse
through Step [4]. This gives us another linear selection algorithm, in fact
one radically different from the classical deterministic solution.

The soft heap is built around a deceptively simple idea with powerful
consequences. Most priority queues are represented as rooted trees with the

2This means that a particular operation may take longer than claimed, but that a
sequence of m operations with n inserts runs in time O(m+nlog1/¢). Note that ¢ need
not be a constant but can be chosen to be a function of n.
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minimum key at the root and keys arranged in nondecreasing order along
any path to a leaf. When the key at the root is deleted, the algorithm sifts
items back up recursively to “refill” the now-empty root. Very roughly, the
code might look something like this:

sift (tree)
1. if tree has one node then exit;
2. v = child (of root) with smallest key;
move key (of v) to root;
3. sift (subtree rooted at v);

The key novelty in the soft heap is to add a loop:
4. if height of tree is odd then goto 1.

The conditional statement creates a branching process. Instead of looking
like a path, the computation tree of sift is now truly a tree. Visually,
items will no longer sift up one at a time, but they will collide and move
together, creating the desired car-pooling effect. Of course, if we look too
closely, most of what we just said is false: The loop condition is more than a
parity test; lists must be formed to handle collisions, etc. From a distance,
however, the picture we gave is the right one. A complete discussion of the
soft heap with a full implementation in C is given in §11.4 (page 412).

11.3 Computing the MST

Let G be a connected, undirected graph with n vertices and m edges. The
graph may have multiple edges but no self-loops (ie, no edge with the same
endpoints). Each edge e is assigned a cost c(e). We assume that these costs
are all distinct real numbers: a nonrestrictive assumption. The MST of G
is the tree spanning the vertices whose total edge cost is minimum. This
definition involves the addition of costs, but remarkably one can compute
MST (G) without ever adding any numbers. In fact, the beauty of the MST
problem is that it is governed by a single contraction rule, from which
everything else follows:
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becomes

Given any vertex v of G, the cheapest edge incident to v belongs to the
MST and can be contracted.

“To contract the edge” means glueing together its two endpoints and
removing all the self-loops created in the process. By “can be contracted”
the rule indicates that it can be applied repeatedly anywhere, any time.
When in the end the graph G has shrunken to a single vertex, the collection
of contracted edges selected by the rule® forms precisely the MST of G.

Apply the contraction rule
to the vertex with the

17
23
filled circle. After five : m
iterations the MST is .. 12 56 ﬁ’
’ 17
. 23

identified: dashed edges in 7
bottom-right corner. 3
[N 9.-7
a 21 % n -« ), 16 done!
27 e
17 17

The contraction rule is about edges incident to a vertex. It implies a dual
rule, which governs the MST status of edges along a cycle. In most MST
algorithms the dual rule is seldom, if ever, used. The algorithm presented
in this book, however, features the dual rule in a leading role.

Given any cycle of G, its
most expensive edge does
not belong to the MST .

3Because of this rule, the MST problem can be redefined without mentioning the word
sum and edge costs can be taken in any totally ordered universe.
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Obviously, the converse is true, too. Any non-MST edge forms a cycle
with the MST and it is the most expensive. We have been speaking of the
MST of G as though it were unique. In fact, it is. The dual rule and the
distinctness of edge costs make sure of this.

There is usually a great deal of freedom in choosing contraction edges,
and this high degree of nondeterminism is what explains the proliferation of
different MST algorithms in the literature. All confront the same dilemma,
however. As the graph gets contracted, the degrees of the vertices tend to
grow, and so finding contraction edges becomes more and more difficult.
A typical strategy is to maintain, for each vertex v, a heap H, of incident
edges. This data structure, also called a priority queue in the literature,
maintains the edge costs under inserts, deletes, and melds (ie, forming
the union of two heaps). Through an operation called findmin, the heap
can return the minimum number in store. Usually, these operations take
O(logk) time, where k is the number of edges present in the heap.

Heaps are often implemented as trees
with items stored at the nodes. A rule of
thumb says that the higher up an item is

in the tree the more time-consuming its

deletion is. Applying the contraction —

rule repeatedly tends to increase edge be deleted
multiplicities and, hence, the number of
edge deletions per contraction. One
would like to store such deletion-prone
edges low in the heap, but if their cost is
low, how can we do that? This is the
heart of the matter: The central
question that has eluded 70 years of
research on MST .

As contractions multiply, one should count on the degrees of the vertices
to grow and on the heaps H, to follow suit. Bigger heaps means slower
heaps. Where this hurts is at deletion time. Indeed, as the average degree
in the graph grows, for each MST edge discovered, more and more edges
get deleted, which is increasingly costly.

A short digression: In some lucky cases, contracting G does not cause
any growth in vertex degree. If the graph is planar, for example, it remains
so under contraction; and since the average degree is less than 6, we are
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always able to apply the contraction rule to low-degree vertices. This leads
to a straightforward linear-time algorithm for planar graphs. As a bonus we
have this nice theorem from computational geometry: Given the Voronoi
diagram of a set of n points in B2, its Euclidean MST can be computed in
linear time. Proof: Form its Delaunay triangulation and use the classical
fact that Euclidean-MST is a subgraph of Delaunay.

The contraction rule drives most MST algorithms. The difference be-
tween them has to do with the selection process for contraction edges, the
organization of heaps, etc. To widen our range of action, we will relax
the rule and contract edges that are not cost-minimum but only nearly so.
The end result will be a spanning tree that is not minimum but—we hope
—mnearly so. The question will then be how to turn the nearly-so into the
surely-so, using some form of bootstrapping.

2 22
2 2
2
2 2
3 0 2 4 2 2 )
2 2
2 22 22 22
2 2 2 2
2 O 2 4 2 2 2 2
1 0 2 4 8 16 32 64
o] O 2 4 6 8 10 12
0 1 2 3 4 5 6

The first row is the function two-times(x), the second one is derived
by applying a feedback loop: 2, two-times (2), two-times (two-times (2)),
etc. This yields the function two-to-the (x)-th. Another feedback loop
gives the function tower-of (x)-twos. Then, we run out of names. Pretty
soon, the rows seem to grow extremely fast. They do. But in fact the real
story is in the columns. Past the column of fours, each one grows faster
than any primitive recursive function. The diagonal grows at about the

same speed as any column, which is much faster than any row!



11.3 CoMPUTING THE MST 385

Before getting into the details, let us state the complexity of the algo-
rithm. It involves Ackermann’s function A(%, 7), which is defined recursively
as follows:* For any integers 4,j > 0,

A(0,5) = 2j, for any j > 0,
A(,0) = 0 and A(i,1)=2, foranyi>1,
A(Zaj) = A(’L - lvA(’La.] - 1))7 for any i Z la .7 Z 25

and for any n,m > 0,

a(m,n) = min{i >1: A(i,4[m/n]) > logn}.

Theorem 11.2 The MST of a connected graph with n vertices and m edges
can be computed in O(ma(m,n)) time.

Suppose we could, without knowing the
MST , partition the edges of G into
subgraphs that each intersect the MST in a
single connected component. Then we could
work on each subgraph separately without
worrying about inter-components edges. In

other words, we could use genuine

The graph G and its MST

divide-and-conquer, something the classical
methods do not allow.

A Preview

The contraction rule tells us that the cheapest edge incident to a vertex
is contractible. We generalize this notion by saying that a subgraph is
contractible if its intersection with MST (G) is connected. To extend the
contraction rule from single edges to entire subgraphs has an obvious ben-
efit. Consider a contractible subgraph C, and let G’ denote the graph G

4The definition is very robust and a number of variations can be found in the litera-
ture [99, 282, 303], all of them essentially equivalent.



386 MINIMUM SPANNING TREES

after the contraction of C' into a single vertex. The MST of G can be as-
sembled directly from MST (C) and MST (G'), as illustrated in the figure
below.

Suppose that an oracle tells us that the triangle C' is contractible. Then,
we can compute its MST , contract it, compute the MST of the remainder
G', and put the the two trees together to form MST (G). What is the
advantage? With standard methods, we would not know that the trian-
gle is contractible until after its MST has been computed. By reversing
this order, we are able to compute MST (C) without having to look at
the edges labeled 4,17,23: a small but important time savings.

Standard MST algorithms identify contractible subgraphs on the fly by
computing their MST . The idea now is to reverse this process, ie, to certify
the contractibility of C' before computing its MST. The advantage is to
speed up the computation of MST (C), since we can then do it unencum-
bered with edges having only one endpoint in C'. This offers the possibility
of effective divide-and-conquer. Of course, we need to be able to discover
contractible subgraphs without computing their MST’s at the same time.
That is where soft heaps come in. More on this shortly.

To compute MST (G), first, we decompose G into vertex-disjoint con-
tractible subgraphs C; of suitable size. Next, we contract each C; into a
single vertex and decompose the resulting minor® into another set of con-
tractible subgraphs C]. We iterate on this process until G becomes a single

5A minor is a graph derived from a sequence of edge contractions and their implied
vertex deletions.
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vertex. This forms a hierarchy of contractible subgraphs, which we can
model by a tree 7. The leaves correspond to the vertices of G; an internal
node z with children {z;} is associated with a graph C, whose vertices are
the contractions of the graphs {C,,}. Assuming that each C; has the same
number of vertices at each level, T is perfectly balanced.

Each level of T represents a certain minor of G, and each C, is a con-
tractible subgraph of the minor associated with the level of its children. In
this association, the leaf level corresponds to GG while the root corresponds
to the whole graph G contracted into a single vertex. Once 7T is avail-
able, we compute the MST of each C. recursively. By the contractibility
property, glueing together the trees MsT (C) gives MST (G).

We have great freedom in choosing the height d of 7 and the number n,
of vertices of each C, (which is also the number of children of z). As we
shall see, by using soft heaps, we can compute the tree 7 in O(m + d®n)
time.

The bottom level £ = 0 of the tree T corresponds to the graph G.
Each level £ > 0 corresponds to the graph obtained from level £ — 1 by
contracting C., for each z at level £. The vertices of C', are contractions

of some C., at level £ — 1; typically, they are not vertices of G.

Obviously, there is a tradeoff: If d is chosen large, then the n.’s can
be kept small; the recursive computation within each C, is very fast, but
building 7 is slow. Conversely, a small height speeds up the construction of
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T but, by making the C.’s bigger, it makes the recursion more expensive.
Ackermann’s function provides the sort of Goldilocks height: not too big,
not too small. For technical reasons, we define a slight variant of A(3,j),
which grows at about the same speed but is more in “synch” with the
algorithm:

S(1,5) = 24, for any j > 0,
S(i,1) = 2 for any i > 0,
S(i,j) = S(@,j—1)S(E—-1,5(i,j—1)), foranyi,j>1.

Let d, denote the height of 2z in 7 (with the leaves at height zero). A
judicious choice for the degree n, of node z is

_{S(t,1)3:8 if d, =1

S(t—1,S(t,d, —1))> ifd, > 1. (11.1)

The algorithm is built on a double recursion: One stepping through the
levels of T, from 0 to d; the other iterating within each C, for a maximum
recursion depth of t. For this reason we treat d and ¢ as parameters, which
we adjust at each recursive call. To compute the MST of G, we call the
recursion for the first time by setting:

d
t
Given the graph G, the values of d and t are uniquely determined and, in
turn, each n, is fully specified. The graph C. has n. vertices, but what
about its expansion, ie, the subgraph of G whose vertices are mapped into

C.? The number N, of such vertices, which is also the number of leaves in
the subtree rooted at z, satisfies

N. = S(t,d.)’, (11.3)

c[(m/n)'/?], for some fixed c large enough
smallest positive integer such that n < S(t,d)3.

(11.2)

as can be seen by induction using the identity
S(t,d, —1)°n, = S(t,d. —1)*S(t — 1,S(t,d, — 1))* = S(t,d.)".

This might not quite be true at the root, as we might run out of vertices of
G to provide the root with its prescribed number of children. At any rate,
if z is the root, S(t,d. — 1)®> < n < S(t,d.)? and so, by the monotonicity
of S(i,j), the height of T is at most d.
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In this example,

d, =2 and n, = 3.
The expansion of C,
is a graph with six
vertices. The height
dof T is 3.

We prove by induction on ¢, d that if the number of vertices of G satisfies
n = S(t,d)?, then MST (G) can be computed in bt(m + dn) time, where
b is a large enough constant.® We are not trying to give a rigorous proof
at this point, so let us leave aside the basis case, t = 1. To apply the
induction hypothesis on the time for computing MsT (C,), we observe that
the number of vertices in C, satisfies n, = S(t — 1,S(¢,d. — 1))3, and so
by visual inspection we see that, in the expression “bt(m + d3n) time,”
t must be replaced by ¢ — 1 and d by S(t,d. — 1). This gives a cost of
b(t — 1)(m, + S(t,d. — 1)®>n,), where m, is the number of edges in C..
Summing up over all internal nodes z € T and replacing n, by its value
in (11.1), we find that the cost of computing all the MST (C)’s is

b(t — 1)(m +3° S(t,d: — 1)*S(t - 1,5(t,d. — 1))3),
which is also, by (11.3)
b(t — 1) (m +3 s, dz)3): b(t — 1) (m + ZNZ): b(t — 1)(m + dn).

The last derivation uses the fact that the tree is of height d and so each
vertex is counted d times. Adding to this bound the time claimed earlier
for computing 7 yields, for b large enough,

b(t — 1)(m + dn) + O(m + d®n) < bt(m + d*n),

which proves our claim. As we show later, our choice of ¢ and d implies
that ¢ = O(a(m,n)), and so the running time of the MST algorithm is
O(ma(m,n)). Voila!

6The case where the equality n = S(t,d)® cannot be strictly enforced is a minor
technicality we can overlook in this overview. Note that with this assumption, the
height of 7 is precisely d.
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This informal discussion leads to the heart of the matter: How to build 7
in O(m + d®n) time. We have swept under the rug a number of peripheral
difficulties. The end result is an algorithm far more subtle than the one
we have outlined. Indeed, quite a few things can go wrong along the way;
though none as serious as edge corruption, an unavoidable byproduct of
soft heaps and our next topic of discussion.

The Effect of Corruption

In the course of computing 7T, certain edges of G become corrupted, mean-
ing that their costs are raised. (The costs of corrupted edges can be raised
more than once but never decreased.) The reason for this has to do with
the soft heap, the approximate priority queue that we use for identifying
contractible subgraphs. One might think that all the corrupted edges need
to be reprocessed from scratch some time later. This would spell doom,
since in fact it could well happen that every single edge becomes corrupted.
Fortunately, the problem is one of timing. Some corrupted edges cause
trouble, while others do not. This depends on when the corruption occurs.
To understand why, we must first discuss how the overall construction of
T is scheduled.

It might be tempting to build 7 bottom-up level by level, but this won’t
work here. It is important to maintain a single connected structure at
all times. Keeping around separate components would make the dual rule
impossible to apply. So, we compute 7 in postorder, instead: children first,
parent last. This is the order in which the C.’s are contracted.”

Let z be the current node visited in 7, and let 21,...,2x = z be the
active path, ie, the path from the root 2z; to 2. The subgraphs C.,,...,C5,
are being currently assembled, and each one has at least one vertex. As
soon as C, is ready it is contracted into one vertex which is then added
to Cy,_,. Any edge of G with exactly one vertex in C,, U---UC,, is said
to be of the border type. Naturally, the type of an edge changes over time.
The example below should lift any remaining ambiguity.

"In our discussion, we actually refer to the order, first child first, parent next, other
children last. In this way, at any time, the nodes visited so far form a tree, and so we can
define paths among visited nodes and things of the sort. This is purely for notational
purposes, however, and the sequence of contractions still follows the regular definition
of postorder.
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The subgraphs C,, C.,, and C,
are under construction. Subgraphs
Cy, Cy, and Cy, have been
completely processed already.
Subgraph C, is under construction.
In accordance with our (modified)
postorder visit of the nodes, x does

not yet exist in T. As soon as we

u V. are done with z», node x will be
added. There are exactly five
% border edges.
zZ,

Corruption can strike edges only while they are of the border type (since
it is then that they are in soft heaps). At first, corruption might seem fatal,
for if all edges become corrupted, aren’t we solving an MST problem with
entirely wrong edge costs? Fortunately, corruption causes harm only in one
specific situation. A corrupted edge is called bad if it is still a border edge at
the time its incident C, is contracted into one vertex (ie, when z is popped
off the postorder stack). Once bad, an edge remains bad always, but like
any corrupted edge its cost can still rise. Remarkably, it can be shown
that if no edges ever turned bad, the algorithm would behave as though no
corruption ever occurred, regardless of how much actually took place. The
recurrence of the previous section would be completely accurate, and our
MST story would near the end. Our goal, thus, is to fight badness rather
than corruption. We are able to limit the number of bad edges to within
m/2 + d®n. The number of edges corrupted but never bad is irrelevant.

Once T is built, we restore all of the edge costs to their original values
and remove all of the bad edges. We recurse within what is left of the C,’s
to produce a spanning forest F. Finally, we throw back in the bad edges
and recurse again to produce the minimum spanning tree of G. There are
subtleties in these various recursions, which we explain in the next section.

The Algorithm

The previous section presented a road map of the algorithm. This one
explores its twists and turns. First twist down the road: the Boruvka
phase. This is the repeated application of the contraction rule at each
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vertex of GG. It involves finding the cheapest edge incident to each vertex
and contracting it. Once this is done, self-loops are removed from the
resulting graph. It is easy to perform a Boruvka phase in O(m) time in a
single pass through the graph. The number of vertices drops by at least a
factor of two.

To compute the MST of a connected graph G with n vertices and m
edges, we call the function msf(G,t) for the parameter value

t=min{i>0|n < S(i,d)*}, (11.4)

where d = ¢[(m/n)/?]. Throughout this chapter, ¢ denotes a large enough
integral constant. The function msf takes as input an integer £ > 1 and a
graph with distinct edge costs, and returns its minimum spanning forest
(MSF). As the name suggests, we no longer assume that the input graph
should be connected.® Note that ¢ is a parameter. It is set in (11.4) at the
beginning of the algorithm and is decremented during later recursive calls.

THE MST ALGORITHM

[1] If t =1 or n = O(1), return
MSF (G) by direct computation.
[2] Perform c consecutive Boruvka phases.
[3] Build 7 and form the graph B of bad edges.
[4] Set F' < J,cr msf(C. \ B,t—1).
[5] Return msf(F U B,t) U {edges contracted in [2] }.

Ackermann’s double induction is visible in Steps [3] and [4]. The index
i in the table S(i,j) is the same throughout Step [3], and the tree T
corresponds to the induction along the index j. Each new nesting in the
recursion of Step [4] decreases the value of i (from t on down). So, a
given T is built according to the numbers in a given row in the table of
S(i,7)’s. Step [4] move to the next row below. Step [5] reprocesses the
bad edges.

8This is a minor technicality required for the recursion invariants. As we shall see, the
algorithm occasionally discards edges. Alternatively, we could keep everything connected
at all times by adding dummy edges, but it is just as simple to allow the possibility of
several connected components.
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STEPS [1] AND [2]: BOUNDARY CASES AND BORUVKA PHASES

The case t = 1 is handled separately. We compute the MSF directly by
performing as many Boruvka phases as it takes to contract G into a single
vertex. If we keep the graph free of multiple edges by holding on to the
cheapest edge in each group of same-endpoint edges, we can easily do all
the work in O(n? + (n/2)% +---) = O(n?) time. If n = O(1), we trivially
compute the MST in O(m) time; note that we say O(m) and not O(1)
because the graph may have multiple edges.

If the graph is not connected, we apply the algorithm to each connected
component of G separately. To avoid repeating this last sentence inces-
santly, we assume connectivity throughout our description of the algorithm
(but not in the complexity analysis). The purpose of Step [2] is to reduce
the number of vertices. In O(n + m) time, this transforms G into a graph
Go with ng < n/2°¢ vertices and mgo < m edges.

STEP [3]: BUILDING THE TREE 7 OF CONTRACTIBLE SUBGRAPHS

With the argument ¢ > 1 specified, so is the number n, of vertices of each
C., which is also the degree of z in 7. Indeed, n, = S(t — 1,S(t,d., — 1))3,
where d, is the height of z. Actually, we should speak only of target size,
because the algorithm sometimes fails to grow the contractible subgraphs
to their intended vertex counts. Such failures are no mere technicality,
but part of the fundamental structure of the algorithm. It stems from the
occurrence of fusions, a phenomenon to be explained shortly.

To get things off the ground is a routine matter, and we may pick up
the algorithm in midaction. Let z;,...,z; = z denote the active path.
As shown below, the subgraphs C.,,...,C,, currently under construction
are linked together by means of a cost-decreasing sequence of edges. The
algorithm occasionally discards’ edges from Gy. Each graph C. includes
all the nondiscarded edges of Gy whose endpoints map into it. With this
provision, a given C, is entirely specified by its vertex set alone.

The invariants below hold at any time with respect to the current'® Gy.
We need to introduce the important concept of the working cost: At any
time, the working cost of an edge is its current cost if the edge is bad, and

9The word “discarded” has a technical meaning and refers to edges removed from
consideration only in the specific circumstances stated below.

10The term “current” refers here to the original G minus all the edges discarded up
to that point.
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its original cost otherwise. Thus, we distinguish among three types of cost:

original, current, and working.

Invl

Inv2

subgraphs along the
active path, with edge
costs indicated by

Working costs are
current for bad edges

For all i < k, we maintain an edge (called a chain-link) joining
C; to Cy, s
edge incident to C,, U---UC}, and (ii) less than the working cost
of any edge joining two distinct C.;’s (j < 7). To enforce the
latter condition efficiently, we keep a min-link, if it exists, for each
pair ¢ < j: This is an edge of minimum working cost joining C.,
and C.;.

whose current cost is (i) at most that of any border

For all j, the border edges (u,v) with u € C.; are stored either
in a soft heap, denoted H(j), or in one, denoted H (7, j), where
0 < i < j. No edge appears in more than one heap. Besides the
condition u € C;, membership in H(j) implies that v is incident
to at least one edge stored in some H (i, j); membership in H (i, j)
implies that v is also adjacent to C, but not to any C, in between
(i <1< j). We extend this to ¢ = 0 to mean that v is incident to
no C,, (I < j). All the soft heaps are chosen with error rate 1/c.

border edges no cheaper than e
The chain of

vertical height.

and original for others. -
*----«_working cost (link) > current cost (€)

The main thrust of INV1 is to stipulate that the active path should
correspond to a descending sequence of edges connecting various C,’s. This
descending property is essential for ensuring contractibility. The chain-link

between C,, and C,

.1 is the edge that contributes to C,, its first vertex.

Subsequently, as C,,, grows, lower cost edges might connect it to C.,
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and so, in general, the chain-link is likely to be distinct from the min-link
between C; and C.,,,. The invariant INV2 specifies which edge should be
stored in which heap.

A possible assignment of

edges to heaps:

a € H(4,5),be H(4),
)

c€ H(2,4),d e H(2),
e€ H(1,2), f € H(1,2),
g € H(0,1).

From a distance, the algorithm exhibits the traits that we expect of an
1A closer
inspection reveals a more puzzling picture. Why does INV1 mix in cur-

Ackermann-like complexity, in particular, a double induction.

rent and working costs? Roughly, because using current costs alone would
deny us the miraculous distinction between bad and corrupted, while using
working costs alone would make soft heaps irrelevant. Why do we need so
many heaps and not just one? The short answer is, to fight badness. The
problem is that when bad edges are deleted from a soft heap, Theorem 11.1
allows the same amount of corruption to be produced anew. These newly
corrupted edges might then turn bad and be deleted. Cycling through this
process could have disastrous effects, perhaps even making every single edge
bad. We use separate heaps to create a buffering effect meant to counter
this process. This mechanism relies on structural properties of minimum
spanning trees and a delicate interplay among heaps. This is rather subtle
and can be fully explained only later.

The tree 7 is built in a postorder traversal driven by a stack whose two
operations, pop and push, translate into, respectively, a retraction and an
extension of the active path.

11'Well, triple actually, but the last one is more bark than bite and plays no role in
the Ackermann behavior.
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e RETRACTION: This happens for £ > 2 when the last subgraph C,, has
attained its target size, ie, its number n,, of vertices has reached the value
of S(t—1,S(t,d,, —1))3, where d., is the height of z;, in 7. Recall that this
is also the number of children of zj in 7. In the particular case d, =1,
the target size is set to S(¢,1)% = 8.

Y Y
| — | R—
In a retraction, C-,
contracts 1nto a 1
vertex and C., _, becomes
becomes the new end
of the chain.

% G Cz.,

The subgraph C., is contracted to become a new vertex of C,, ,, which
thus gains one vertex and one or several new edges (including the chain-
link); the end of the active path is now zi—;. Maintaining INV1 in O(k)
time is straightforward; INV2 is less so. Here is what we do.

The heaps H(k) and H(k—1, k) are destroyed. All their corrupted edges
are discarded. (These edges, if not bad already, become so now.) The
remaining items from the two destroyed heaps are partitioned into subsets,
called clusters, of edges that share the same endpoints outside the chain.
For each cluster in turn, select the edge (r, s) of minimum current cost and
discard the others (if any). Next, insert the selected edge into the heap
implied by INV2. Specifically, if (r,s) comes from H (k) and shares s with
an edge in H(k—1,k), or if it comes from H(k —1, k), then by INV2 it also
shares s with an edge in some H (i, k — 1) already, and so it can be inserted
into H(k — 1). Otherwise, (r,s) comes from H (k) and by INV2 it shares s
with an edge in some H (i, k), now with ¢ < k — 1. The edge (r, s) should
be inserted into H(i,k).!2 Finally, for each i < k — 1, meld H(i, k) into
H(i,k—1).

12Two remarks: (i) This insertion forces into H(i,k) at least a second edge pointing
to s; (ii) since the heap is then melded into H(Z,k — 1), we could have inserted (r, s) into
H(k — 1), instead of H (i, k), and still maintain INv2. This would be a fatal mistake, for
edges might then hop between H(x)’s at each retraction, which could be prohibitively
expensive. Intuitively, H(j) is a buffer heap collecting edges while the action is below
zj. There is no bound on how many of these edges can share the same endpoint (what
will be called “multiplicity”). For the H (i, j)’s, however, there is such a bound.
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In this retraction, the thick edges are the cheapest in their clus-
ters. Suppose thata,c € H(k) andb € H(k — 2,k): b remains in
H(k—2,k) while, in the cluster {a, c}, a is discarded and c is in-
serted into H(k—2,k). This heap is melded into H(k—2,k—1).
In the cluster {d,e, f, g, h}, suppose that d,e, f,g € H(k) and
h € H(k —1,k). Note that | € H(k — 2,k — 1) is not in the
cluster. Only f survives and moves into H(k — 1).

e EXTENSION: Perform a findmin on all of the heaps and retrieve the
border edge (u,v) of minimum current cost c(u,v). We call it the extension
edge. Of all the min-links of working cost at most ¢(u,v), find the one (a, b)
incident to the C;; of smallest index 4. If such an edge does indeed exist,
we perform a fusion: We contract the whole subchain C, , U---UC., into
a. It is best to think of this as a two-step process: First, we contract all of
the edges with both endpoints in C, , U---UC,. By abuse of notation,
call b the resulting vertex. We now contract the edge(s) joining a and b.

becomes

Fusion in action: All three subgraphs right

of C,; collapse into b and then into a.
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Next, we update all relevant min-links, which is easy to do in O(k?)
time. To update heaps we generalize the retraction recipe in the obvious
way. For the sake of completeness, here are the details. First, we extend
the destruction of heaps to include not just H(k) and H(k — 1,k), but
H(Gi+1),...,H(k), and all H(j,5"), i < j < j'. Then, we discard all
corrupted edges from those heaps since they are now bad. Next, we regroup
the remaining edges into clusters and, for each one in turn, we reinsert the
edge (r,s) of minimum current cost and discard the others. As before, we
distinguish between two cases:

1. If (r,s) comes from some H(j,j') or H(j'), but in the latter case
shares s with an edge in H(j,j'), where i < j < j', then by iterative
application of INV2 it also shares s with an edge (r',s) in some
H(h,l), with h < i <. As we explain below, the edge (r',s) is to
migrate into H(h,i) through melding, if it is not there already, ie,
if [ > i; therefore, by INV2 we can insert (r,s) into H (4).

2. Otherwise, (r, s) comes from H(j), where i < j, and it shares s with
an edge in some H(h,j), now with A < i. We insert the edge (r,s)
into H(h,j).

Finally, for each h,j with h < i < j, we meld H(h,j) into H(h,i).
Observe that by INv1(i) the vertex a, as defined, cannot be further down
the chain than u. So, whether u originally belonged to the last C, in the
chain or not, it now does. In all cases (ie, fusion or not), we extend the
chain by making v into the single-vertex C, and the extension edge (u,v)
into the chain-link incident to it. The end of the active path is now zj,
where k + i+ 1 (fusion) and k < k + 1 (no fusion).

Old border edges incident to v cease to be of the border type. We delete
them from their respective heaps, and we find among those that are not
bad the min-link between v and each of C,,,...,C,, ,. We insert the
new border edges incident to v into the appropriate H (i, k); in the case of
multiple edges, we keep only the cheapest in each group and discard the
others.

This completes our discussion of retractions and extensions. Let us
briefly review the postorder-driven construction of 7. At any given node
zr, of height at least 1, we perform extensions (and their accompanying
fusions) as long as we can, stopping only when the size condition for re-
traction at that node has been met. There is no retraction condition for
the root 21, and so the algorithm stops only when border edges run out
and extensions are no longer possible.
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If no fusion ever takes place, then our previous argument leading to the
identity (11.3) on the size of the expansion of C., still holds, ie, N, = S(t,d.)>.
Fusions muddy the waters in two ways: They force contractions before the
target size has been reached and they may cause arbitrarily large expan-
sions. As we shall see, however, any C, whose expansion exceeds its allowed
size is naturally broken down into subgraphs of the right size, which then
can be treated separately. In fact, those dreaded fusions turn out to be
a blessing in disguise. We conclude this discussion of Step [3] with a few

remarks:

> One should not mistake a fusion for a retraction into C;;. Because
the edge (a,b) is contracted, too, it does not become an edge of C.;.
Therefore, unlike a retraction, a fusion does not add new vertices to C,,
although it does increase its expansion.

> To be able to form B in Step [3], we need to keep track of the bad
edges. Badness occurs to the corrupted border edges incident to C.,
(in retraction) or C;,, U---UC., (in fusion). All such edges either are
explicitly examined and, hence, discarded or belong to heaps that are
being melded. A soft heap gives ready access to its corrupted items, so
we can mark the relevant edges bad. It is routine to ensure that edges

are marked only once.

STEP [4]: RECURSING IN SUBGRAPHS OF T

Having built the tree 7, we consider each node z. Recall that C, does
not include any of the discarded edges. Let C. \ B denote the subgraph of
C. obtained by removing all of the bad edges.!> We apply the algorithm
recursively to C, \ B after resetting all edge costs to their original values and
decrementing the parameter ¢ by 1. With this new value of ¢, all the target
sizes of the new tree 7 to be built are fully specified and the recursion has
all that it needs to proceed.

The correspondence between the vertices of C, and the children of z
would be obvious, were it not for those pesky fusions. Consider the first
fusion into vertex a of C, (see figure on page 397). Prior to it, vertex a
corresponded to some child zg of z, meaning that it was the contraction
of C,,. What happens to it after the fusion? Nothing special: Step [4]
recurses with respect to C,, \ B as it would without any fusion. What
happens to the part of 7 whose corresponding subchain C,,,, U---UC,
contracts into b? It is treated as a hierarchy of its own and handled like 7.

I3Bear in mind that not all bad edges may have been discarded in Step [3]; in fact,
bad edges can be selected as extension edges and play a direct role in building the C.’s.
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becomes

A fusion causes the pruning of a subtree constituting a suffix of the active
path. Although “unfinished,” this subtree is processed in Step [4] just
like T.

So, a and b are “handled” separately in Step [4]. Does this mean that no
edge joining them finds its way into F'?7 In fact, from the group of multiple
edges joining a and (contracted) b, we retain in F the original'* min-link
(a,b) provided that it is not bad. By construction, this edge is the cheapest
in the group (with respect to original costs, excluding bad edges). If the
min-link is bad, we need not retain any edge of the group, since bad edges
are all reprocessed in Step [5].

To summarize, if any fusion into a has taken the place, the expansion
of a is treated as a collection of connected components, each of which is
treated recursively in Step [4], possibly joined together by nonbad min-links
which we include in F'. Because each connected component stays within its
mandated size, their potential proliferation does not increase the per-edge
complexity of the algorithm. Fusions might blur the picture a little but,
from a complexity viewpoint, the more the better.

e e e e e o In this ultimate case, edges (resp. ver-

tices) are horizontal (resp. vertical)

segments with height indicating costs.

— In the absence of corruption, every ex-

— tension gives rise to a fusion. The tree
— T remains of height 1 and Step [4] is

trivial: a dream scenario.

M Recall that (a,b) was chosen as a min-link in the first place.
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STEP [5]: THE FINAL RECURSION

In Step [3] we collected all of the bad edges created during the construction
of 7 and formed the graph B. We now add to it the edges of F' to assemble
the subgraph F'U B of Gy. The output of msf(F U B, t) is now viewed as a
set of edges with endpoints in G, not in Gp. Adding the edges contracted
in Step [2] produces the MST of G.

The recursion in Step [5] involves
the bad edges (the dashed lines)
and the edges of F' computed in

Step [4] (the thick lines). The
output is a forest. Adding to it the
edges contracted in Step [2] (the

thin lines) gives us the MST of G.

Correctness

We prove by induction on ¢ and n that msf(G,t) computes the minimum
spanning forest of G. Since the algorithm iterates through the connected
components separately, we can again assume that G is connected. Also,
because of Step [1] we can obviously assume that ¢ > 1 and that n is larger
than a suitable constant. Borivka phases contract only MST edges; so,
by induction on the correctness of msf, the output of Step [5] is, indeed,
MST (G), provided that any edge e of Gy outside F' U B also lies outside
MST (Gp). In other words, the proof of correctness of our MST algorithm
hinges on the following;:

Lemma 11.3 If an edge of Gy is not bad and lies outside F, then it is
outside MST (Gy) as well.

Note that in the lemma all costs are understood as original. Of course,
this innocent-looking statement is the heart of the matter, since it pertains
directly to the hierarchy 7. We omit the proof that invariant INV1 is
maintained, which is straightforward. Note that the sole purpose of fusions
is to maintain INV1(ii). Similarly, the carefully regulated updating of the
heaps is meant to preserve INV2 and we need not revisit this territory.
We now must show why maintaining these invariants produces contractible

C.’s.
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Contractibility is defined in terms of the MST, a global notion. Fortu-
nately, we can certify by local means that the subgraph C' of Gy induced
by a given subset of the vertices is contractible. Indeed, it suffices to check
that C is strongly contractible, meaning that for every pair of edges e, f
in Gy, each with exactly one vertex in C, there exists a path in C that
connects e to f along which no edge exceeds the cost of both e and f. This
implies contractibility (but not the other way around). Why is that so?

We argue by contradiction, assuming that C' is not contractible. By
definition, C'N MST (Gy) must have more than one connected component.
Counsider a shortest path 7 in MST (Gg) that joins two distinct components
(see next figure). The path has no edge in C' (else it could be shortened),
and it has more than one edge (else it would be in C since the graph
contains all the edges induced by its vertices), so its end-edges e and f are
distinct and each has exactly one endpoint in C'. Any path in C joining
e and f forms a cycle with = and, by elementary properties of MST, the
most expensive cycle edge is outside MST (Gy), ie, outside of 7 and, hence,
in C. This contradicts the assumption and proves the claim.!®

Strong contractibility
implies contractibility.

The advantage of the
former notion is that it is
a local condition, which
involves only the subgraph

and its neighborhood.

Lemma 11.4 With respect to working costs, C, is strongly contractible at
the time of its contraction, and the same holds of every fusion edge (a,b).

Proof: The lemma refers to the edges present in C, and in its neighbor-
hood at the time C, is contracted; it does not include the edges of Gy that
have been discarded (in fact, the lemma is false otherwise). The graph C,
is formed by incrementally adding vertices via retractions. Occasionally,
new neighboring edges are added by fusion into some a € C,. Because C,
does not contain border edges, edge discarding never takes place within it,
and so it grows monotonically.

13 Implicit to the proof was the assumption that all edge costs are distinct. In the pres-
ence of duplicate edge costs, strong contractibility implies contractibility with respect
to at least one MST.
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Assume for now that no fusion occurs. Each retraction has a unique
chain-link (ie, an extension edge) associated with it, and together they
form a spanning tree of C,. Thus, given any two edges e, f, each with
exactly one endpoint in C,, the tree has a unique path 7 joining (but not
including) them. Let g = (u,v) be the edge of 7 of the highest current
cost ever; break ties, if necessary, by choosing as g the last one selected
for extension chronologically. As usual, we make the convention that v
is the endpoint outside the chain at the time of extension. Along =, the
vertex u lies between v and one of the two edges, say e. Throughout this
proof the term “working” is to be understood at the time right after C, is
contracted, while “current” refers to the time when g is selected as a new
chain-link (u,v) through extension. We claim that the working cost of e is
at least the current cost of g. Since the working cost of no edge in 7 can
ever exceed the current cost of g, the lemma follows.

Along the path ...

We prove the claim. If e currently joins C, to some other C./, it fol-
lows from INV1(ii). Otherwise, let e’ be the first (current) border edge
encountered along the path from g to e. By INV1(i), its current cost is
at least that of g, and so by our choice of g we have ¢ ¢ m, and hence
e' = e. Consequently, e currently is and still will be a border edge when
C. is contracted. If it is in a corrupted state, then it becomes bad after
the contraction (were it not so already), and so, by definition, its working
cost (right after C,’s contraction) is at least its current cost (right after ¢’s
extension); otherwise, both costs coincide with the original one. In both
cases, the claim is true.

To deal with a fusion into C',, we should think of it as a two-step process:
(i) A sequence of retractions involving, successively, C.,,C.,_,,..., Cs,,,,
where in this notation C, = C,;; and (ii) the contraction of (a,b) into
a. For the purpose of this discussion, let us run the algorithm right until
the time C, is contracted, while skipping Step (ii) in all fusions into C..
Then, as far as C, is concerned, its evolution is indistinguishable from the
no-fusion case discussed earlier, and the same result applies. Executing
all delayed applications of Step (ii) now results in contracting a number of
edges already within C, which therefore keeps C. strongly contractible.
This proves the first part of the lemma.
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Now, going back to the normal sequencing of the algorithm, consider the
min-link (a,b) right before Step (ii) in a fusion into C,. By construction,
no other edge incident to (contracted) b is cheaper than (a,b) relative to
working costs; remember that all corrupted border edges incident to b be-
come bad, and so working and current costs agree. This shows that the
edge (a,b) is strongly contractible. O

Proof of Lemma 11.3: The computation of 7 corresponds to a sequence
of contractions of minors, which transforms Gy into a single vertex. Denote
these minors by S1, S2, ... in chronological order of their contractions. Note
that either S; is of the form C', or it consists of the multiple edges of some
fusion edge (a,b).

Let G{ be the graph G minus all the edges discarded during Step [3].
It is easy to see that G}, spans all the vertices of G because no discarding
takes place within any H(0,j). Lemma 11.4 applies to C. at the time
of its contraction. The working costs of all edges within C, are frozen
once and for all. The current costs of edges with one endpoint in C, might
change, but the working costs can never decrease, so the lemma still applies
relative to final working costs, ie, with each edge assigned its last working
cost chronologically. Unless specified otherwise, such costs are understood
throughout the remainder of our discussion.

Fix some S;. A vertex of S; is either a vertex of G or the contraction of
some S; (j < ¢). In turn, the vertices of S; are either vertices of G or con-
tractions of Sy, (k < j), etc. By repeated applications of Lemma 11.4 (and
again identifying graphs with their edge sets) it follows that the MST of Gf,
is the union of all the MST (S;)’s: We call this the composition property.'S

In proving Lemma 11.3, we begin with the case where the edge e under
consideration is never discarded, ie, belongs to Gf. Consider the unique
S; that contains both endpoints of e among its vertices. By induction on
the correctness of msf, the fact that e is not in F' implies that it is not
in MSF (S; \ B). Since it is not bad, the edge e is then outside MST (S;)
and, by the composition property, outside MST (G}). Recall that this holds
relative to final working costs. Now, switch all edge costs to their original
values. If changes occur, they can only be downward. The key observation
now is that, by not being bad, the edge e witnesses no change and so still
remains the most expensive edge on a cycle of G, with respect to original

16Keep in mind that the S;’s might include bad edges, and so the composition property
does not necessarily hold for the graphs of the form C, \ B. In fact, it is worth noticing
that, for all their “badness,” bad edges are useful for making contractibility statements.
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costs. This shows that e is not in MST (G{)) and, hence, MST (Gy) relative
to original costs.

Assume now that e is not in Gf. Before being discarded, e = (u,v)
shared a common endpoint v with a cheaper uncorrupted edge €' = (u',v).
In the case of a retraction, u and v’ coincide, while in a fusion both are
merged together through the contraction of a subgraph. In both cases, u
and ¢’ end up in a vertex that, by repeated applications of Lemma 11.4,
is thus seen to be the contraction of a contractible subgraph of G, relative
to working costs. It follows that e is outside MST (Gp). Again, observe
the usefulness of bad edges. Indeed, because e’ might later become bad,
we could not conclude that e is outside MST (Gp \ B). This completes the
proof of Lemma 11.3. O

FREQUENTLY ASKED (QQUESTIONS |

> Why are current costs used in INV1(i) and not original ones? Because the
errors caused by soft heaps make it impossible to enforce order relations
among original costs.

> But, then, why are we comparing working costs against current ones
in INV1(ii)? The weaker invariant obtained by comparing only current
costs would force us to treat all corrupted edges as bad. Indeed, strong
contractibility would then hold only relative to current costs, and we
would be unable to restore any corrupted edge to its original cost without
violating the contractibility conditions.

> Why does INV1(i) say “at most” and INV1(ii) say “less” ? A very minor
point, indeed: Soft heaps tend to assign the same corrupted keys to
many items; so if we want extensions to take place, INV1(i) should avoid
strict inequalities. On the other hand, to say “less” in INV1(ii) is to favor
fusions, which are highly desirable events from a complexity standpoint.

The Decay Lemma

We need to show that the creation of bad edges tapers off rapidly while
iterating through Step [5]. To do that, we bound the size of B after Step [3].

Lemma 11.5 (Decay Lemma) The total number of bad edges produced
while building T is |B| < mo/2 + dnyg.

We begin by bounding the total number of inserts. Recall that ng (resp.
mo) denotes the number of vertices (resp. edges) of Gp.
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Lemma 11.6 The total number of inserts in all the heaps is at most 4my.

Proof: The first insertion of a given edge into a heap occurs during an
extension. In fact, all extensions witness exactly mg inserts. To bound the
number of reinserts, we provide each edge with three credits when it is first
inserted. At a currency rate of one credit per reinsert, we show that the
credits injected cover the reinserts.

We maintain the following invariant: For any j, any edge in H(j) has
two credits; for any i,j and any vertex s outside the chain, the x edges
of H(i,j) incident to s contain a total of k + 2 credits (or, of course, 0 if
k = 0). With its three brand-new credits the first insertion of edge (r,s),
which takes place in some H (i, k), easily conforms with the invariants.

Consider the case of a reinsert of (r, s) through retraction. If (r,s) orig-
inates from H(k — 1,k) or comes from H (k) but shares s with an edge in
H(k — 1,k), then its cluster of edges pointing to s releases at least three
credits, ie, k + 2 + (zero or more credits from H(k)), for & > 0: One pays
for the insert into H(k — 1), while the other two are enough to maintain the
credit invariant for H(k —1). Otherwise, (r,s) originates from H (k) and
has two credits at its disposal, as it is inserted into some H (i, k), where
i < k — 1. After the insertion, the heap H (i, k) contains more than one
edge pointing to s, and so only one credit is needed for the heap as (r, s)
moves into it. The remaining credit pays for the insert.

We just revisited the retraction procedure step-by-step and followed the
movement of credits alongside. We can do exactly the same for a fusion
and cover extensions in a similar fashion. We omit the details. O

The time has come to explain why we need all those heaps. This is
elementary but subtle. Intuitively, the difficulty is that deleting corrupted
items does not necessarily imply a decrease in corruption. In fact, all edges
of G might end up being corrupted. To prevent all of them from becoming
bad we must force them to enter into cycles with extension edges before
their incident C,’s get contracted. At first this might seem impossible since
we have no control over the cycle structure. The trick is to combine three
ingredients: (i) Making 7 shallow enough; (ii) keeping the H (x,*)’s sparse;
and (iii) using the H (%)’s as overflow heaps. We explain with the following
picture.
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In the worst case, a typical vertex
v ends up with about m/n border
edges incident to it. This is much
more than the height of T, therefore \'
many of these edges end up shar-
ing the same C.’s. In such clus-
ters most of the edges end up being
stored in H(%). For them, deletions
may cause added corruption but not
added badness, since the latter can
occur only at the very end of an
H(%)’s life.

Furthermore, since the heap is entirely dismantled and bad edges are
discarded, corruption does not propagate to other heaps the way it does
with the H (*,)’s through melding. In this regard, the H(x,x)’s are the
true villains, which is why we keep them sparse. But why can’t we do
with H (%) only? Because dismantling would be too costly. This is why
we make the H (%)’s act as overflow heaps, whose dismantling can always
be amortized against discarded edges. To summarize, we need a number
of H(x)’s to keep badness low and a number of H(x,*)’s to keep the

running time low.

After the obligatory words of wisdom, the facts. Let B(i,j) be the bad
edges in the heap H (i, j) at the time of its disappearance (either via melding
or actual destruction). To avoid double-counting, we focus only on the
edges of B(i,j) that were not already bad while in B(i', j'), for any (i, j')
lexicographically greater than (i,j). Actually, we can assume that i = i,
since for i’ > i all such edges are discarded before they can have a chance to
appear in B(i, j). We also have the bad edges from the heaps H(x). They
are easy to handle because, unlike H (%, %), these are never melded together:
By Theorem 11.1 and Lemma 11.6, the total number of corrupted edges
in all the H(%)’s at the time of their destruction is at most 4mg/c. Thus,
the total number |B| of bad edges satisfies (by abuse of notation, i,j is a
shorthand for all pairs (node, descendant) in 7):

1Bl < 4mo/e+ Y |BG)\ | BG.S)| (11.5)

>3
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We define the multiplicity of the heap H (i, j) to be the maximum number
of edges in it that share the same endpoint (outside the chain). Melding
H(i,j') into H(i,j) does not increase its multiplicity; that is precisely the
reason why we keep separate heaps for each pair ¢,j. An insert into some
H (i, j) during an extension sets the multiplicity to one. During a retraction,
an insert can increment the multiplicity by at most one, but then the heap
is immediately melded into H(i,j — 1). It follows that the multiplicity of
any H (%,%) is at most the height of 7.17

Any edge in H(i,l) that ends up in H(i,j) passes through all of the
intermediate heaps H (7,1') created for I’ between i and [ (because of fusions,
not all " might occur). So, with the summation sign ranging over the
children j' of node j in 7, we find that the summand in (11.5) is equal to

|B(i, j)| — ZlB(z‘,j')l +

Z # bad edges deleted from H (i,j') during extensions.  (11.6)
j/

The last additive term comes from the fact that the only deletes from
H(i,j') are caused by extensions. Indeed, deletes occur after findmins: All
the edges sharing the same endpoint with the edge selected by findmin
are deleted. As we just observed, there are at most d of them in each
B(i,j). There are at most (d‘gl) < d? heaps H(x,%) at any time, so the
total number of edges deleted from H (i, '), for all i,5’, is at most d®>ng. In
view of (11.6), expanding (11.5) gives us a telescoping sum resulting in

|B| < dmyo/c+d*ng + Y |B(i,i")],
i3
where i’ denotes any child of node i. The inserts that caused corruption
within the H(4,4')’s are all distinct, and so, again by Theorem 11.1 and
Lemma 11.6, the |B(7,i')|’s sum up to at most 4mg/c. We conclude that
|B| < 8mg/c+ d?ng. (In fact, we are overcounting.) With ¢ large enough,
the decay lemma (Lemma 11.5) is now proven. O

17Pause a minute to understand why repeated melds into H(i,7 — 1) cannot keep
bringing in more and more edges incident to a given endpoint.
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Complexity Analysis
We show that executing msf(G,t) takes at most bt(m + d*(n — 1)) time,
where b is a constant large enough (but arbitrarily smaller than ¢) and d
is any integer such that n < S(t,d)®. We prove this by induction on ¢
and n. The basis case t = 1 is easy. We have n < S(1,d)? = 84> and the
computation takes time O(n?) = O(d®n) < b(m+d?(n—1)). So we assume
that ¢ > 1 and, because of Step [1], that n is large enough.

The Boruvka phases in Step [2] transform G into a graph Gy with
ng < n/2¢ vertices and mg < m edges. This transformation requires O(n+
m) time. The complexity of building 7 in Step [3] is dominated by the heap
operations. By Lemma 11.6, there are O(my) inserts and, hence, O(my)
deletes and melds. There are ng — 1 edge extensions, each of them calling
up to O(d?) findmins. Each heap operation takes constant time so com-
puting 7 takes O(mg + d>ng) time plus the bookkeeping costs of accessing
the right heaps at the right time. Naturally, for each node z;, we maintain
a linked list giving access to H(j) and to the H (i, j)’s, with the nodes z;
appearing in order of increasing height and pointers linking H(4,7) to z;.
In addition, we need:

1. wv-lists keeping the border edges incident to each v, sorted along the
active path;
2. z-lists keeping the border edges incident to each C,.

The only nontrivial bookkeeping operation is this one (needed in exten-
sion and retraction). Given a border edge (u,v) incident to some C, find
the next z; up the active path such that C,, is adjacent to v. This is easily
done in constant time.'®

There is only one difficulty. During a retraction (or fusion), two or more
C.’s collapse together. But we cannot link the corresponding z-lists (else
edge-to-z is no longer a constant-time operation) nor can we copy one into
the other (too costly). So, we modify each z-list into a tree as follows:
Partition it into groups of size d, with a remainder group of size < d.
For each size-d group, create a node of height 1 whose children are the
corresponding leaves. The root of the tree is the parent of these nodes and
of the leaves associated with the remainder group. The updating cost per
C. is now O(d) plus 1/d per border edge. The latter cost can be incurred
at most d times by a given edge, since the height of its corresponding z

18 A minor technicality: Since several edges in the v-list might join the same C,, we
might have to walk past them in the list to find 2z;. A quick inspection shows that with
a little care we can charge the extra cost to the discarded edges in the list.
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increases by at least one at every retraction/fusion. This gives a per-edge
cost of O(1). There are at most d C,’s involved during a given retraction
or extension; so, conservatively, the reconfiguration costs of O(d) add up
to O(d*ng). All together, this gives bookkeeping costs of O(mg + d?ny).

A z-list is a tree which provides
constant-time edge-to-z access with
efficient dynamic linking.

In sum, by choosing b large enough, we ensure that
e time for Steps [2, 3] < 2(n+m+ d®ny).

Turning now to Step [4], consider an internal node z of 7. If d. =1, we
say that z is full if its number n, of children (ie, # vertices in C.) is equal
to S(t,1)> = 8. If d, > 1, the node z is full if n, = S(t—1,S(t,d.—1))% and
its children are also full; recall that the condition on 7. is precisely (11.1).
As we saw in (11.3), given a full z, the expansion of C, relative to G has
a number N, of vertices equal to S(t,d.)?; we do not include the fusion
subgraphs in the count. For z not to be full, the construction of C, must
have terminated prematurely, either because a fusion pruned a part of T
including z or, more simply, because the algorithm finished. Therefore,
either z is full or else all of its children but (the last) one are. This shows
that N, > (n.—1)S(t,d.—1)3, for all d. > 1. By construction, the number
of vertices in C, \ B is at most S(t — 1, S(t,d, — 1)), and so we can apply
the induction hypothesis and bound the time for msf(C, \ B,t — 1) by

bt — 1)(mz +S(t,dy — 1)3(ns — 1)) <b(t—1)(m.+N.),  (11.7)

where m, is the number of edges in C, \ B. Accounting for fusions, recall
that a vertex of C, may not be the contraction of just one C/, for some
child 2z’ of z in T, but also subgraphs of the form C,, where v is a node
pruned from the active path of 7 together with its “fusion tree” below.
Fusion trees are treated separately, and so the inequality in (11.7) applies
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to any such v as well. Over all nodes of 7 (and all fusion trees), we have
> my <mgp — |B| and > N, < dng (at most ng vertices per level), so the
overall recursion time is bounded by b(t — 1)(mo — |B| + dno):

e time for Step [4] < b(t — 1)(mo — |B| + dny).

Finally, Step [5] recurses with respect to the graph F'U B. Its number of
vertices is ng < n < S(t,d)? and F is cycle-free; so, by induction,

e time for Step [5] < bt(ng — 1+ |B| + d*(no — 1)).

Adding up all of these costs gives a running time at most
b
btmo + b(% —mo + |B|) + 2btdPng + 7" .

By the decay lemma (Lemma 11.5), this is no more than

1
btm — b(m — my) (t - 5) + 3btd®ng + b?n .

Finally, using the fact that no < n/2¢ we find that the complexity of
msf(G,t) is bounded by bt(m + d*(n — 1)), which completes the proof by
induction.

When we call the function msf for the first time, our choice of d ensures
that d®n = O(m). As shown below, this implies that t = O(a(m,n)). This
proves Theorem 11.2 (page 385). O

Lemma 11.7 If d = c[(m/n)'/?] and t = min{i > 0|n < S(i,d)?}, then
t = O(a(m,n)).

Proof: It follows from the definition of Ackermann’s function (page 385)
that, for i > 1 and j > 4,

A(3i,7) = A(3i — 1, A(3i,§ — 1)) > 246071 — 9gAGI—LAGLI=2)),
By using the monotonicity of A, since A(3i,j —2) > j, we find that
A(3i,5) > 2409, (11.8)

It is easily shown by induction that, for any u > 2,v > 3, A(u,v) > 2°*1,
and so

A(3i,5) = A(3i — 1, A(3i,5 — 1)) > A(3i — 1,29) > A(i,27).  (11.9)
Trivially, A(u — 1,v) < S(u,v), for any u,v > 1, which implies that
S(9a(m,n) + 1,d) > A(9a(m,n),d).
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Therefore, by (11.8) and (11.9) and with d > 4,

d

S(9a(m,n) +1,d) > 24Balmn).d) 5 gAla(m.n),2%)
> AemmAlm/nD 5y,

and therefore the smallest ¢ such that n < S(¢,d)? satisfies t < 9a(m,n)+1.

O

11.4 The Soft Heap, Cont’d

We pursue our discussion of the soft heap begun in §11.2. We prove Theo-
rem 11.1 (page 380) and provide a working implementation of the soft heap.
A binomial tree of rank k is a rooted tree of 2* nodes. It is formed by the
combination of two binomial trees of rank & — 1, where the root of one
becomes the new child of the other root. A soft heap is a sequence of mod-
ified binomial trees of distinct ranks, called soft queues. The modifications

come in two ways:

e A soft queue ¢ is a binomial tree with possibly a few subtrees

pruned. The original binomial tree from which ¢ is derived is
called its master tree. The rank of a node of ¢ is the number of
children of the corresponding node in the master tree. It is an
upper bound on its actual number of children in ¢. We maintain
the following rank invariant: The number of children of the root
of ¢ is at least [rank (root)/2].

A node v may store several items, in fact, a whole item-list. The
ckey of v denotes the common value of all the current keys of the
items in item-list(v). It is an upper bound on the original keys.
The soft queue is heap-ordered with respect to ckeys, ie, a ckey
of a node does not, exceed the ckeys of any of its children. We fix
an integer parameter r = 2[log1/e] + 2, and we require that all
corrupted items be stored at nodes of rank greater than r.
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Two soft queues of rank 2 were (4 24
combined to form one soft queue of
rank 3. The light edges are r.nissing, [5] 5 (737
but the ranks of both of their upper
nodes are 1 (not 0). The soft queue (6] 6 [9]9

is heap-ordered with respect to
ckeys (indicated in brackets), but [8] 8
not with respect to original keys.

The actual code for soft heaps is quite short (about 100 lines of C).
Including it helps resolve ambiguities that might arise from pseudocode.
Readers allergic to C code should be able to get by with our plain-English
explanations. An item-list is a singly-linked list of items with one field
indicating the original value of the key:

typedef struct ILCELL

{ int key; ) . = t
struct ILCELL *next; & | nex & | nex
} ilcell; ilcell ilcell

A node of a soft queue indicates its ckey and its rank in the master tree.
Pointers next and child give access to the children. If there are none, the
pointers are NULL. Otherwise, the node is the root of a soft queue of rank
1 less (pointed to by next) and the parent of the root of another one of the
same type (pointed to by child). The figure below indicates the binary-
tree representation of a soft queue of rank 2. Item-lists are stored in nodes
marked by filled circles. We also include a pointer i1 to give access to the
head of the item-list. To facilitate the concatenation of item-lists, we add
a pointer il_tail to the tail of the list.

typedef struct NODE
int ckey, rank;

struct NODE *next, *child;, hild
struct ILCELL *il, *il_tail; cn
} node;
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The top structure of the heap'® consists of a doubly-linked list A1, ..., A,
called the head-list. Each head h; has two extra pointers: One (queue)
points to the root r; of a distinct queue, and another (suffix min) points
to the root of minimum ckey among all r;’s (j > i). We require that
rank(r;) < --- < rank(ry,). By extension, the rank of a queue (resp. heap)
refers to the rank of its root (resp. ry,). It is stored in the head h; as the
integer variable rank.

typedef struct HEAD
{ struct NODE *queue;
struct HEAD *next, *prev, *suffix_min;
int rank;
} head;

The head-list @
points to the
roots of the l l i
queues and to the 2
minimum ckeys mﬁ \
ahead (indicated

by the integers 2,
7,1, 8).

We initialize the soft heap by creating two dummy heads (global vari-
ables): header gives access to the head-list while tail, of infinite rank,
represents the end of that list. The functions new_head and new_node cre-
ate and initialize a new head and a new node in the obvious way. The third
global variable is the parameter r = r(e).

head *header, *tail; int r;

header = new_head (); tail = new_head ();

tail->rank = INFTY; header->next = tail; tail->prev = header;
printf (‘‘Enter r: ’’); scanf (‘‘4d’’, &r);

9For brevity we drop the adjective “soft.”
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Implementing the Four Operations

To simplify our discussion we bypass the create operation and integrate it
within insert. Similarly, delete warrants no discussion, since to delete an
item we can simply remove it from its item-list, leaving ckeys untouched.
Actual work is required only when findmin returns an empty item-list. For
this reason, we ignore findmin and delete altogether and, instead, discuss
deletemin, the operation that finds an item with minimum current key
and deletes it. Our discussion includes an informal explanation of what
happens, actual C code, and often a picture. The remainder of this section
should basically read itself...

| INSERT |

To insert a new item, we create an uncorrupted one-node queue, and we
meld it into the heap. The code is just a sequence of straightforward
initializations:

insert (newkey)
int newkey;
{ node *q; ilcell *1;
1 = (ilcell *) malloc (sizeof (ilcell));
1->key = newkey; 1l->next = NULL;
q = new_node (); gq->rank = 0; gq->ckey = newkey;
q->il = 1; g->il_tail = 1;
meld (q);

| MELD |

We discuss the melding of two heaps S and S’. The idea is to break apart
the heap of lesser rank, say S’ (or either one if the ranks are equal), and
meld each of its queues into S separately. To meld a queue of rank £ into
S, we look for the minimum index i such that rank(r;) > k. (Note that
the dummy head tail ensures that ¢ always exists.) If rank(r;) > k, we
insert the head right before h;, instead; otherwise, a conflict arises because
all ranks must be distinct. So, we meld the two queues into one of rank
k + 1, which we do by making the root with the larger key a new child of
the other root. If rank(r;+1) = k + 1, a new conflict arises. We repeat the
process as long as necessary, like a carry propagation in binary addition.
Finally, we update the suffix min pointers between h; and the last head
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visited. When melding not a single queue but a whole heap, the last step
can be done at the very end in just one pass through S.

7 5 4 3 2 1
. . eld
Melding a queue is much here
- . . \ 2
like adding numbers in beforethemeld 7 /\
binary notation. Ranks A
.. and after

are indicated next to the

—
roots. 7 A 6 Al

And now the C code: Let q be a pointer (node *q) to the soft queue to
be melded into the soft heap. First, we scan the head-list until we reach the
point at which the melding proper can begin. This leads us to the first head
of rank at least that of q, which is denoted by tohead. To facilitate the
insertion of the new queue, we also remember the preceding head, called

prevhead.
tohead  prevhead
l l
meld (q)
node *q;

{ head *h, *prevhead, *tohead = header->next;
node *top, *bottom;
while (q->rank > tohead->rank) tohead = tohead->next;
prevhead = tohead->prev;

If there is already a queue of the same rank as q, we perform the carry prop-
agation, as discussed earlier. When merging two queues, we use the vari-
ables top and bottom to specify which of the two queues end up at/below
the root. We create a new node q pointing to top and bottom. Its item-list
is inherited from top, and its rank is 1 plus that of top (ie, top->rank +1).
Finally, we update tohead to point to the next element down the head-list.
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while (q->rank == tohead->rank)
{ if (tohead->queue->ckey > g->ckey)
{ top = q; bottom = tohead->queue; }
else
{ top = tohead->queue; bottom = q; }
q = new_node ();
q->ckey = top->ckey; q->rank = top->rank +1;
q->child = bottom; g->next = top;
q->il = top->il; q->il_tail = top->il_tail;
tohead = tohead->next;

it'sthis or that

Next, we insert the new queue in the list of heads. We use a little hack: If a
carry has actually taken place, then the head pointed to by prevhead->next
is now unused and can be recycled as the head of the new queue; otherwise,
we create a new head h. We insert h between prevhead and tohead. Fi-
nally, we call a function, called fix_minlist (h), to update the suffix min
pointers.

}

if (prevhead == tohead->prev) h = new_head ();
else h = prevhead->next;
h->queue = q; h->rank = g->rank;
h->prev = prevhead; h->next = tohead;
prevhead->next = h; tohead->prev= h;
fix_minlist (h);

/* end of meld */

| FIX_MINLIST |

Before calling fix minlist(h), all suffix min pointers are assumed cor-
rect except for those between header and h. We update them by walking
from h back to header, as shown below.
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fix_minlist (h)
head *h;
{ head *tmpmin;
if (h->next == tail) tmpmin = h;
else tmpmin = h->next->suffix_min;
while (h != header)
{ if (h->queue->ckey < tmpmin->queue->ckey)
tmpmin = h;
h->suffix_min = tmpmin;
h = h->prev;
}

| SIFT |

Our discussion up to this point is unlikely to have drawn from the reader
more than a yawn. After all, we have been busy doing mostly the obvious.
With deletemin, the attention level should perk up. The suffix min
pointer at the beginning of the head-list points to the head h with the
minimum ckey (corrupted or not). The trouble is, the item-list at that
node might be empty. Should this happen, we refill the item-list with items
taken lower down in the queue pointed to by h: The call sift (h->queue,
h->rank) attempts to do that by replacing the empty item-list with another
one.

Of course, there is no reason why the new item-list might not itself be
empty, in which case we repeat the same calls until good things happen.
The function sift is at the heart of the soft heap, and this is where we
focus our discussion. The argument v is the node at which the sifting takes
place. We begin with some pseudocode:

sift(v)

item-list(v) < T <« 0;
if v has no child
then set ckey(v) to co and return;
1. sift(v->next);
if ckey(v->next) > ckey(v->child)
then exchange v->next and v->child;
T < TU item-list(v->next);
if loop condition holds then goto 1;
item-list(v) < T.
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The “loop condition” is what makes soft heaps special. Without it, sift
would be indistinguishable from the standard deletemin operation of a
binomial tree. This loop condition holds if and only if (i) the goto has
not yet been executed during this invocation of sift (ie, branching is at
most binary), and (ii) the rank of v exceeds the threshold r and either it
is odd or it exceeds the rank of the highest ranked child of v by at least

two.

The rank condition ensures that no corruption takes places too low in
the queue; the parity condition is there to keep branching from occurring
too often; and, finally, the last condition guarantees that branching does
occur frequently enough. The variable T' implements the car-pooling in
the concatenation T' < TU item-list(v->next). The cleanup is intended
to prune the tree of nodes that have lost their item-lists to ancestors and
whose ckeys have been set to co.

On the left, the
computation tree
without a goto. On

the right, the goto \ \
creates branching.

siftin abinomial tree siftin asoft heap

We now give and explain the code for sift. The item-list at v is worthless
and it is effectively emptied out at the beginning. We test whether the node
v is a leaf. If so, we bottom out by setting its ckey to infinity (ie, a large
integer), which will cause the node to stay at the bottom of the queue. If
v is not a leaf, then neither v—>next nor v->child is NULL. In fact, this
is a general invariant: Both are null or neither one is. This might change
temporarily within a call to sift, but it is restored before the call ends.

node *sift (v)
node *v;
{ node *tmp;
v->il = NULL; v->il_tail = NULL;
if (v->next == NULL && v->child == NULL)
{ v->ckey = INFTY; return v; }
v->next = sift (v->next);

to sift here

first
sift there
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The new item-list at v->next now might have a large ckey that violates
the heap ordering. If so, we exchange the children v—->next and v->child,
an operation that we call a rotation.

if (v->next->ckey > v->child->ckey) v v

{ tmp = v->child; becomes
v->child = v->next;
v->next = tmp;

}

Once the children of v are in place, we update the various pointers from
v. In particular, the item-list of v->next is passed on to v, and so is its
ckey. Recall that v->child is truly a child of v in the soft queue, but the
node v->next is a child of v only in the binary-tree implementation of the
queue.

is passed on to

—_

v->il = v->next->il;
v->il_tail = v->next->il_tail;
v->ckey = v->next->ckey;

Next in line, the most distinctive feature of soft heaps: the possibility of
sifting twice, ie, of creating a branching process in the recursion tree for
sift. If the loop condition is satisfied (rank of v is > r and either odd or
2 over the ranks over its children), we sift again. As a result of the sifting,
another rotation might be needed to restore the heap ordering.

if (v->rank > r &&
(v-=>rank ) 2 == 1 || v->child->rank < v->rank-1))
{ v->next = sift (v->next);
if (v—>next—>cke¥ > v->child->ckey) when condition
{ tmp = v->child; holds
v->child = v->next;
v->next = tmp;
} sift again

The item-list at v->next should now be concatenated with the one at v,
unless, of course, it is empty or no longer defined. The latter case occurs
when ckey is infinite at both v->child and v->next. One can easily verify
that this cannot happen after the first sift but only after the second one.
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if (v->next->ckey != INFTY && v->next->il != NULL)
{ v->next->il_tail->next = v->il;
v->il = v->next->il;
if (v->il_tail == NULL)
v->il_tail = v->next->il_tail;
v->ckey = v->next->ckey;

}
is concatenated

" . " e —
} /* end of 2nd sift */ it
at root
to
give

We clean up the queue by removing the nodes with infinite ckeys. We do
not update v->rank since rank is defined with respect to the master tree.
This is where the rank and the number of children can be made to differ. In
fact, we ensure that for any node v the ranks of its children (in the binary
tree) are always equal, ie, v->next->rank = v->child->rank.

if (v->child->ckey == INFTY)
{ if (v->next->ckey == INFTY)
{ v->child = NULL; v->next = NULL; }
else
{ v->child = v->next->child;
v->next = v->next->next; }
}
return v;
} /* end of sift */

oo

rank does not decrease despite pruning

| DELETEMIN |

The function deletemin finds an item with minimum ckey and then re-
moves it from the soft heap. The first suffix min pointer takes us to the
smallest ckey, which is where we want to go, unless of course the corre-
sponding item-list is empty. In that case, we call sift—perhaps more than
once—to bring items back to the root. Calling sift may prune the tree
and cause a violation of the rank invariant. (Recall that this invariant stip-
ulates that # children of root > |rank(root)/2].) We count the children of
the root; alternatively, we could add a field to keep track of this number.
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deletemin ()
{ node *sift (), *tmp;
int min, childcount; head *h = header->next->suffix_min;
while (h->queue->il == NULL) /* outer while loop */
{ tmp = h->queue; childcount = 0;
while (tmp->next != NULL)
{ tmp = tmp->next; childcount ++; }

The advantage in spotting a rank invariant violation so late in the game is
that to fix it is much easier since the root’s item-list is empty (else, what
would we do with it?) If the rank invariant is violated (ie, childcount <
|h — rank/2|), then we remove the queue and update the head-list and
suffix min pointers. Then, we dismantle the root by remelding back its
children.

if (childcount < h->rank/2)

{ h->prev->next = h->next;
h->next->prev = h->prev;
fix_minlist (h->prev);
tmp = h->queue;
while (tmp->next != NULL)

{ meld (tmp->child);
tmp = tmp->next; }

meld back

If the rank invariant holds, we are ready to refill the item-list at the root
by calling sift.

else
{ h->queue = sift (h->queue);
if (h->queue->ckey == INFTY) Sift
{ h->prev->next = h->next;

h->next->prev = h->prev;
h = h->prev; }

fix_minlist (h);
} & fix heads
h = header->next->suffix_min;
} /* end of outer while loop */
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We are now in a position to delete the minimum-key item.

delete this

min = h->queue->il->key;
h->queue->il = h->queue->il->next;
if (h->queue->il == NULL)
h->queue->il_tail = NULL;
return min;
} /* end of deletemin */

[592] 592, 559, 532, 319 (6)

[815] 815 (2)
[916] 916 (0)
[867] 867 (1)
[600] 600, 544 (3)

[711] 711 (2)
[720] 720, 577 (4)

[783] 783 (0)
[789] 789, 582 (3)

N

[816] 816 (1)

[876] 876 (2)

[882] 882 (1)
This is a queue
from a soft heap after
100 random inserts followed [790] 790 (2)
by 50 deletemins. The parameter r is [887] 887, 638 (3)
set to 1. Note that all the item-lists at nodes
of rank less than 2 are of size 1. Each node is
represented in the format: [ckey], key1, key2, . . . (rank).
Indicating ranks allows us to spot missing child: for
example, the root is missing both children of rank 0 and 1.

[720] 720, 530, 581, 564 (5)

[944] 944 (2)
[817] 817, 457 (4)

[982] 982 (2)
[903] 903, 873 (3)

[936] 936 (2)
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The Error Rate

To prove that the soft heap meets its claims is surprisingly easy. The
first point to clarify is the correspondence between a soft queue and its
master tree. When no deletion takes place the equivalence is obvious, and
it is trivially preserved through inserts and melds. During a sift, we are
careful to keep v — next — rank and v — child — rank identical. As
we mentioned earlier, it is the enforcement of this equality that causes
discrepancies between ranks and numbers of children. But it allows us to
think of a rotation as an exchange between soft queues of the same rank
(albeit with perhaps missing subtrees). The corresponding master trees,
having the same rank, are isomorphic and a rotation thus has no effect on
the correspondence. Similarly, the cleanup prunes away subtrees, which in
this regard is of no consequence either.

The interesting aspect of the correspondence is that the leaves of the mas-
ter tree that are missing from the soft queue correspond to items that have
migrated upward to join item-lists of nodes of positive rank. Such items
can never again appear in leaves of any soft queue. Note that dismantling
a node by remelding its children does not contradict this statement, since
it merely reconfigures the soft heap.

A sift branches at (roughly) every other recursive call until the rank
reaches r. Thus, its execution is modeled by a perfectly balanced binary
tree of depth (k — r)/2. Going bottom-up, each level in the tree doubles
the size of each item-list, so the item-list at v should be of size roughly
2(k=7)/2 We formalize this intuition below.

Lemma 11.8 For any node v in the soft heap,
item-list (v) ‘ < max{ 1, 2frank(v)/2]=r/2 }

Proof: Only sifts have the power to increase the size of an item-list. Fur-
thermore, no operation can by itself cause a violation of the lemma (in
fact, some like meld can only, if anything, strengthen the inequality). We
prove by induction on their number that sifts cannot violate the lemma. If,
through sift(v—mnext), sift (v) calls itself recursively exactly once, then
the loop condition is not satisfied and the item-list of v—next (after possi-
ble rotation) migrates to a higher ranking node by itself: The lemma holds
by induction. Otherwise, the item-list at v becomes the concatenation of
the two item-lists associated with v —next after each call sift(v— next).
For this to happen, v— rank must exceed r and one of two conditions must
hold: Either v — rank is odd or it exceeds v — child — rank + 1. In the
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first case, after either recursive call, the rank of v — next is strictly less
than v — rank, and by induction the size of either one of the item-lists of
v —next is at most

max{ 1, l(rank(v)—1)/2]—-r/2 } — ol (rank(v)—1)/2]=r/2 _ g[rank(v)/2]-1-r/2

Note that the max disappears because rank(v) > r. In the other case, ie,
v—rank > v—child—rank + 1, the size of either one of the item-lists of
v —next is at most

max{ 1, ol (rank(v)=2)/2]—r/2 } _ ofrank(v)/2]-1-r/2.

This time, the max disappears because r and the rank of v are both even,
and so rank(v) > r + 2. We have shown that the concatenated item-list is
of size at most 2 x 2[rank(v)/21-1=r/2 "and 50 the lemma holds. O

Lemma 11.9 During a mized sequence of operations that includes n in-
serts, the soft heap contains at most n/2" 3 corrupted items at any given
time.

Proof: We begin with a simple observation. Let S be the node set of a
binomial tree. It is immediate to prove by induction that

Z 2rank(v)/2 S 2k+2 _ 3 . 2k/2’
veS

where k is the rank of the binomial tree. Since S consists of 2% nodes, it
follows that

D grank(/2 < 4)g]. (11.10)
veES

The ranks of the nodes of a queue ¢ are derived from the corresponding
nodes in its master tree ¢'. So, the set R (resp. R') of nodes of rank greater
than 7 in ¢ (resp. ¢') is such that |R| < |R'|. Within ¢/, the nodes of R’
account for a fraction at most 1/2" of all the leaves. Summing over all
master trees, we find that

Y IR < 2% (11.11)
ql

There is no corrupted item at any rank < r, and so by Lemma 11.8 their
total number does not exceed

Z Z 9 (rank(v)+1-r)/2 _ 22 Z 9 (rank(v)—r—1)/2 (11.12)

q veR' q" veER'
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Each R’ forms a binomial tree by itself, where the rank of node v becomes
rank(v) —r — 1. So, by (11.10) and (11.11), the sum in (11.12) is at most

n
28|RI| < 53
q’

The Running Time

All operations take constant time, except for meld and sift, which can take
longer. Melds are easily disposed of: Assign one credit per queue. Every
time two queues of the same rank are combined into one, one credit can be
released to pay for the work involved. Updating suffix min pointers can
take time, however. Specifically, carries aside, the cost of melding two soft
heaps S and S’ is at most the smaller rank of the two (up to a constant
factor). The entire sequence of soft heap melds can be modeled as a binary
tree M. A leaf z denotes a one-item heap (its cost is 1). An internal node
z indicates the melding of two heaps. Since heaps can grow only through
melds, the added size of the master trees in the soft heap at z is proportional
to the number N(z) of descendants in M. Since the rank of a soft queue
is exactly the logarithm of the number of nodes in its master tree, the cost
of the meld associated with node z is at most 1 + logmin{ N(z), N(y) },
where x and y are the left and right children of z. It is a simple exercise
to show that adding together all of these costs gives a total melding cost
linear in the size of M or, in other words, O(n).

This analysis implicitly assumes the absence of any node dismantling. We
can easily amend it, however, to cover the general case. For the purpose of
the analysis, let us regard the remelding caused by dismantling not as heap
melds but as queue melds. The benefit is to leave the tree M unchanged.
The dismantle-induced melds associated with a node z of M reconfigure
the soft heap at z by removing some of its nodes and restoring the rank
invariant. This can only decrease the value of N (z), so the previous analysis
remains correct.

Of course, the queue melds associated with node z now must be ac-
counted for. Dismantling node v causes at most rank(v) queue melds.
From the violation of the rank invariant, we conclude that the node v has
at least one missing child of rank > [rank(v)/2]. In the master tree there
are at least 2[rnk(v)/21-1 Jeaves at or below that child, all of which are
gone from the soft queue. We charge the dismantle-induced melds against
these leaves and thus observe that melding still takes O(n) time.
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Last but not least, we show that the cost of all calls to sift is O(rn).
Consider any decreasing sequence of integers. We call an integer m notice-
able if it is odd or if its successor is less than m—1. Clearly, any subsequence
of size 2 contains at least one noticeable integer. Now, consider the com-
putation tree corresponding to an execution of sift(v). Noticeable ranks
higher than 7 coincide with nodes where the loop condition holds. So,
along any path of size greater than r, at least one branching must occur;
in fact, more than that at ranks higher than r. It follows that, excluding
the updating of suffix min pointers, the running time is O(rC'), where C
is the number of times the loop condition succeeds.

We omit the easy proof by induction that if v is the root of a subtree
with fewer than two finite ckeys in the subtree below, the computation
tree of sift(v) is of constant size. Conversely, if the subtree contains at
least two finite ckeys at distinct nodes, and if the loop condition is satisfied
at v, then both calls sift(v— next) bring finite ckeys to the root, which
triggers the concatenation of two nonempty item-lists. There can be at
most n — 1 such concatenations, so C' < n and, as claimed, calls to sift
cost a total of O(rn) time.

We have accounted for the costs of updating suffix min pointers (via
fixminlist(h)) during melds, but not during deletemins. Maintaining
the rank invariant makes the cost of suffix min updating negligible. In-
deed, each update takes time proportional to the rank of the queue: (i) If
the rank invariant holds, then the updating time is dominated by the cost
of the call to sift that precedes fix minlist (h) (which has already been
accounted for); (i) otherwise, the root v is dismantled, which, as we just
saw, releases 27ank(v)/21=1 Jeayves, against which we can charge the updat-
ing cost. By Lemma 11.9, the total number of corrupted items is bounded
by n/2"=3. Setting r = 2[log(1/)] + 2 proves Theorem 11.1 (page 380).
We omit the proof of optimality.?® O

20Space optimality requires a few simple modifications.
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11.5 Bibliographical Notes

The classical linear selection algorithm mentioned at the beginning was dis-
covered by Blum et al. [48]. The soft heap was invented by Chazelle [72],
where Theorem 11.1 (including optimality) is also established. The bino-
mial queue was designed by Vuillemin [318]. Fredman and Tarjan [136]
created the Fibonacci heap, which differs from the binomial queue mostly
by its ability to support a constant-time decrease-key operation.
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Computing a minimum spanning tree optimally is perhaps the oldest
open problem in computer science. Boruvka inaugurated the pursuit for
an optimal solution in 1926 [56, 147, 239]. The O(ma(m,n)) algorithm was
discovered by Chazelle [73]. It is the fastest deterministic solution to date.
As befits one of the most central problems in combinatorial optimization,
the literature on MST is vast. Textbooks usually discuss algorithms at-
tributed to Prim (but also discovered by Jarnik [169] in 1930) or Kruskal,



11.5 BIBLIOGRAPHICAL NOTES 429

both of which run in O(mlogm) time. Improvements to O(mloglogm)
were given independently by Yao [327] and Cheriton and Tarjan [87]. About
ten years later, Fredman and Tarjan [136] brought the complexity down to
O(mpB(m,n)), where B(m,n) is the number of log-iterations necessary to
map n to a number less than m/n. In the worst case, m = O(n) and
the running time is O(mlog®m). Soon after, the complexity was further
reduced to O(mlog 3(m,n)) by Gabow et al. [140]. More recently, Karger,
Klein, and Tarjan [177] discovered a randomized algorithm with linear ex-
pected complexity. The algorithm relies on a linear-time procedure for
verifying whether a spanning tree is minimal. The ideas behind this pro-
cedure go back to Komlds [187] and were developed into a full-fledged
algorithm by Dixon, Rauch, and Tarjan [110], which was later simplified
by King [182]. With this verification procedure, one can apply a very gen-
eral result of Levin [196] to produce an optimal algorithm of undetermined
complexity. Basically, one enumerates all algorithms by size until the right
one is found; see also [154, 172] and a variant based on soft heaps by Pet-
tie and Ramachandran [248]. Whether any of these ideas can be used to
obtain a linear-time algorithm for MST or even just to improve Chazelle’s
method [73] in any way is an intriguing open problem.

All of the algorithms mentioned so far make no assumption on the edge
costs. In models where costs are small enough integers one can do bet-
ter [137]. There is probably little to learn from such models, however, if
one’s goal is to resolve the MST question and settle what truly is one of
the most remarkable open problems of computer science.



Appendix A

Probability Theory

e review some simple probabilistic facts that are used through-
out the text. In particular, we estimate the tails of common
probability distributions, and we discuss a general proof tech-
nique for deriving such results. We also mention basic properties of the
entropy of a probability distribution. Again, we remind the reader that all
logarithms are to the base two.

A.1 Common Distributions
Two integer random variables X and Y are said to be independent if, for
any k,I,
Prob[ X =k and Y =] = Prob[X = k] Prob[Y =1].
The conditional probability of X = k given Y = [ is defined by

Prob[X =k and YV =1]
Prob[Y =]

Prob[ X = k|V =1] = (A.1)

Independence implies that the distribution of X is equal to its conditional
distribution for any value of Y. The lack of symmetry in (A.1) leads to
some interesting formulas, such as Bayes’ rule:

Prob[X =k|Y =1] Prob[X = k]

Prob[Y =1|X =k] ProblY =1] °

Exercise: Use Bayes’ rule to prove the well-known fact that testing positive for
a rare disease still leaves you unlikely to have the disease in question; this is
assuming, of course, that the test has a small but nonnegligible chance of being
faulty.

430
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The notion of independence extends naturally to the case of several ran-
dom variables: X1,..., X, are (mutually) independent if

PI‘Ob[Xl = kl, AN ,Xn = kn] = PI‘Ob[Xl = kl] X s X PI‘Ob[Xn = kn]
A more general notion is that of t-wise independence, meaning that any
subset of ¢ variables is mutually independent.

The ezpectation EX (also called the mean) of the random variable X is
defined as

> kProb[ X =k].
k>0

The equivalent formulation
EX =) Prob[X > k]
k>1

is often useful. Arguably the single most useful fact in probability theory,
the expectation operator is linear: given two random variables X and Y,
and two reals «, 3, regardless of any dependency between the variables,

ElaX +8Y | =aEX + SEY.

Given two random variables X and Y, the conditional expectation of X
given Y is defined as

E[X|Y]=) kProb[X =k|Y].
k>0

Note that it is itself a random variable. It satisfies the identity
EX =EyEx[X|Y],
where the subscripts indicate which random variable is being averaged over.

The variance varX of X is defined as E[ (X — EX)?]. It measures the
average square deviation of X from its mean. It is immediate that

varX = EX? — (EX)?,

which is often a more useful formulation of the variance. If X and Y are
independent, it is easy to see that E[ XY | = (EX)(EY), from which it
immediately follows that

var[ X + Y | = varX + varY.

Notice that this is usually false if X and Y are not independent; for ex-
ample, var[ X + X | = 4varX. The standard deviation is defined as the
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square root of the variance. Next, we discuss a few important classes of
probability distributions.

Uniform Distribution. Toss a coin in the air. If it comes down without
landing on its side, we have what is known as a Bernoulli trial. Not as-
suming that the coin is necessarily fair, the outcome is heads (resp. tails)
with some probability p (resp. 1 — p). If the coin is fair, ie, p = 1/2, the
distribution is called uniform. If we define a random variable X equal to 1
if the outcome is heads and 0 otherwise, we can easily verify that EX = p
and varX = p(1 — p). It is worth noticing that the assignment p = 1/2
corresponding to the uniform distribution maximizes the variance.

Geometric Distribution. Keep tossing the coin as long as the outcome
is tails. The number X of tosses (excluding the final “heads” toss) follows
a geometric distribution: Prob[X = k] = p(1 — p)*, for k > 0. The
expectation is EX = (1 — p)/p and the variance is varX = (1 — p)/p?. If
we consider heads to be a success and tails a failure, then the geometric
distribution describes the time that it takes to get a first success.

Binomial Distribution. For our next experiment, we toss the coin n
times. The number X of heads follows a binomial distribution, denoted by
B(n,p). Clearly,

Prob[X = k] = <Z>pk(l —p)nk,

We can write X as a sum X; + --- + X, of mutually independent 0/1
variables, so it immediately follows that EX = np and varX = np(1 — p).
It is often useful to have an upper bound on the higher moments of the
distribution.

Lemma A.1 If X is distributed in B(n,p), then, for any integer ¢ > 0,
EX¢ < (c+np)©.

Proof: To prove the lemma, we establish the slightly stronger bound:
E(X +j)° < (c+np+j)¢, for any integer j > 0. Proceeding by induction
on ¢, we begin with the observation that the cases ¢ = 0,1 are obvious. If
the bound holds for some ¢ > 0 and all n > 0 and j > 0, we find that

E(X +))* = JEW +j)°+ ) pBIX +j)°| X; =1]

< npEY +j+ 1)+ jEX +7)°,
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where Y is distributed in B(n — 1, p). Thus,
E(X+5) <nplc+(n—1)p+j+1)°+j(c+np+5)° < (c+1+np+j)°TL

O

Depending on the magnitude of the expectation, denoted by pu, the bi-
nomial distribution resembles a Poisson distribution (u small) or a normal
distribution (u large). What does this mean?

Poisson Distribution. Suppose that g = pn is at most a constant. Then,
(Z) p*(1 —p)"* is dominant for small values of k. It can be approximated
as
k k
PN ke—pn — o~k
( ! Jprern = K
The distribution X € {0,1,...} such that
1
Prob[X = k] = e_“ﬁ
is called Poisson. Notice the crucial fact that the sum of the probabilities
is, indeed, 1.
Another way to derive these probabilities is via the generating function
of the binomial distribution,

G(z) ef ZProb[X =k]* = E2¥.
k>0

Generating functions (or Fourier transforms) usually shine when dealing
with sums of independent random variables (because convolutions become
products). By independence of the variables,

G(z) = (B2Y)" = (1+p(z - 1)",

which can be approximated by P(z) = e#*~1. Expanding in Taylor series
gives us

1oy
P(z)=e HZE’Z’
k>0

which is the generating function of the Poisson distribution. Because E X =
Y k>0 kProb[ X = k] = P'(1), the expectation is p. We also find that the
variance is p.

Normal Distribution. At the other end of the spectrum, suppose now
that p is a constant, and therefore u is a fixed fraction of n (as in tossing
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a coin). The (standard) normal distribution with mean 0 and variance 1,
denoted by N(0,1), is the continuous distribution defined over the entire
real line by

Prob[ X < t] = /2 o,

1 t
— e
=

What makes the normal distribution so natural and compelling is that “typ-
ically” the average of any set of independent random variables converges
towards a normal distribution as n goes to infinity. This applies, in par-
ticular, to the binomial distribution when p does not depend on n. More
generally, let y1,...,y, be n ii.d. (independent, identically distributed)
random variables with mean g and variance o?. Define the normalized

average
1 n

Y, = —— ).

NG ;:1(% 1)

By the Central Limit Theorem, as n goes to infinity, Prob[Y,, < ¢] tends
to
VY
. -z%/2 4
e x.

vV 2T /—oo
Hypergeometric Distribution. We close this laundry list by briefly
mentioning the hypergeometric distribution H(N,n,p). Suppose that N
urns contain red and blue balls. Each urn contains exactly one ball and a
fraction p of the balls are blue. Pick n balls at random without replace-

ment, that is, without refilling the emptied urns. If X is the number of
blue balls, we have

Prob{ X — k] - <p]z€V> <N751_—kp)> / (Jz )

The mean and variance of the distribution are, respectively, EX = np and
varX = np(l — p)(N —n)(N —1).

A.2 Tail Estimates

In the following we assume that X denotes a nonnegative integer random
variable. It is often needed to have some estimation of the probability that
X exceeds a given quantity. Exact bounds usually do not come in closed
form, so we seek asymptotic approximations. Naturally, the more infor-
mation we have about the distribution, especially in terms of its higher
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moments, the sharper tail estimates tend to be. Thus, there is a trade-
off between sharpness and generality. The weakest but most general tail
estimate is Markov’s inequality: For any ¢ > 0,

EX
Prob[X Z t] S T,
which is obtained by straightforward truncation. (Note the importance of
the assumption X > 0.) Observe that

Prob[|X — EX| > t] = Prob[(X — EX)? > #*].

So, by applying Markov’s inequality to (X — EX)?2, we derive Chebyshev’s
inequality,
var X

Prob[|X —EX|>1t] <
t2

We can iterate on this idea and generate k-moment tail estimates, which
give us a vanishing rate of the order of 1/t*: For k even,

E(X —EX)k
tk '
One limitation of this technique is that it is often difficult to obtain good

estimates on the higher moments of the distribution (not to mention the
fact that these moments might not even exist). A useful property, however,

Prob[|X —EX| >t] <

is that if X is a sum of random variables, then such tail estimates require
only bounded independence.

Lemma A.2 Let x1,...,x, be 2k-wise independent 0/1 random variables,
each equal to 1 with probability p. There is an absolute constant B (inde-
pendent of n, k) such that, given any constant a > 0,

Bk Nk
Prob[|X — np| > anp] < (oﬂnp) ,

where X = x1 + -+ xp.

Proof: Setting ¢t = anp, we obtain

E(X — EX)?

Prob[|X —np| > anp] < (anp) %

Because expectation is linear, we can expand the numerator to obtain a

E[[@i -p),

icl

sum of terms of the form
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where |I| < 2k. By regrouping identical factors together, this becomes
E[[,(z; —p)®, where the i’s are distinct and the ¢;’s sum up to 2k. Be-
cause there are at most 2k factors and the x;’s are 2k-wise independent,
expectation and product commute, and so we obtain [, E(z; — p)“. Note
that if ¢; = 1 for some 4, then the product vanishes. Thus, the numera-
tor is the sum of at most O(nk)* nonvanishing terms. Furthermore, every
term is the product of at most k factors of the form E(z; — p)¢. A simple
calculation shows that each such factor is at most p. Thus, the numerator
is in O(pnk)* and the proof is complete. O

The Chernoff and Hoeffding Bounds

In the case of the binomial distribution, we can push the method one
step further and consider all the moments of the distribution at once to
obtain tail estimates that vanish exponentially fast. Assume now that
X = >"" | z; obeys the binomial distribution B(n,p). Chernoff’s bounds
are tail estimates obtained by applying Markov’s inequality to the moment
generating function G(z) = Ee*¥.

Lemma A.3 Let xq, ..., x, be mutually independent 0/1 random variables,
each equal to 1 with probability p. If X =Y | x;, then, for any 0 < § <
1/2,

Prob[X < (1 —¥6)pn] < e Pn/2,

and
Prob[ X > (1 +8)pn] < e=Pn/4,

Another useful version of Chernoff’s bounds brings upper and lower tails
together:

Lemma A.4 Given py,...,p, € [0,1], let X =1 | x;, where x1,...,x,
are mutually independent random variables, and for each x;, Prob[z; =
p; — 1] = p; and Prob[z; = p;] =1 — p;. For any A > 0,

Prob[|X| > A] < 2¢728°/n,

The technique used to prove these lemmas is useful to know, and so we
illustrate it by establishing a slightly simpler tail estimate. In the next
section, we show that it is part of a general scheme that can be used to
derive other interesting bounds.
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Let X = > | x; be the sum of n mutually independent random variables
z; € {—1,1}, where

Prob[z; = 1] = Prob[z; = —1] = 1.

Note that the expectation EX is 0. The standard deviation is \/n, so by
Chebyshev we know that 99% of the distribution is concentrated within
[-104/n,104/n], but a Chernoff-like derivation allows us to tighten the de-
viation from the mean much more sharply.

Lemma A.5 If X = )" | x; is the sum of n mutually independent random
variables x; uniformly distributed in {—1,1}, then, for any A >0,
Prob[ X > A] < e~/
Proof: By Markov’s inequality,
Prob[X > A] = Prob[e*¥ > e*] < e *AE M.
Because of the independence among the z;’s,
Ee = (Ee*™)" = cosh” A,

with cosh A = %(e)‘ + e *). Expanding cosh A in Taylor series at 0 gives,
for any A > 0,

L — )\21’ /\22’ _ )\2/2
CcOos —ZW<22%!—6 .
i>0 i>0

Thus, by choosing A = A/n, we find
Prob[X > Al < N

O

Note that by symmetry the same upper bound holds for Prob[X < A], if
A <0.

Finally, we consider the case of the hypergeometric distribution. Recall
that X belongs to H(N,n,p) means that X is the number of blue balls
found among n (blue or red) balls picked at random without replacement
from N urns containing a total of pN blue balls. Interestingly, the following
result, known as Hoeffding’s bound, holds even if we allow replacement.

Lemma A.6 If X € H(N,n,p), then, for any 0 <t <1,
Prob[|X/n — p| > t] < 2e2""
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A Unifying View of Tail Estimation

Although the proof techniques above might seem different at first, they
all follow the same general pattern. For a change, we consider integrable
functions that are not necessarily discrete, but, as shall soon be obvious, the
same technique applies to discrete sums almost verbatim. Let f : R — RT
be a function whose tail f;)o f(y) dy we wish to upper-bound. The strategy
is to choose an appropriate kernel, ie, a function g(z,y) > 0, nondecreasing
in y, such that the corresponding integral

@ = [ swniody
has a known upper bound. Since

(@) > / " (@, y0) fy) d,

Yo

- (=)
/yo flw)dy < mmln g(z,y0)

It is easy to see that every tail estimate we have obtained so far was derived

we have

through this process. For example, in the proof of Lemma A.5, we have
f(y) = Prob[ X = |y|] and g(z,y) = e*l¥].

Fig. A.1. n(i, ) = 8.

Example: k-Sets. Let pi,...,p, be a collection of points in E2. For
simplicity, we assume that no two points are vertically aligned and that no
three points are collinear. Given 1 < i < j < n, let n(i,5) be the number
of points lying strictly below the line passing through p; and p;, and let
fr denote the number of pairs (i,j) such that n(i,j) = k (Fig. A.1). In
the figure, for example, fo = 4. We apply the previous technique to derive
an upper bound on the prefix sum f<i = fo + --- 4+ fir. We define the
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function g by conducting a randomized experiment. Pick each point p;
with probability r/n (independently), and denote by X the number of
edges on the lower hull of the chosen points. The lower hull is the portion
of the convex hull visible from y = —oo. Obviously,

EX <r. (A.2)

On the other hand, EX is the sum of all Ex;; (i < j), where x;; is 1 if
edge p;p; is on the lower hull and 0 otherwise. For x;; to be 1, both p; and
p; must be picked (each event has probability r/n) and none of the n(i, j)
points below the line passing through p;p; must be chosen (each event with
probability 1 — r/n). So,

EX=Y (%)2(1 - %)n(i’j) =Y feon,

i<j k>0

2 ryk
w=(@0-3)
n n
Here, gr = g(r, k) is nonincreasing in k (as opposed to nondecreasing), so
the order of truncation must be reversed:

o2 (1)) re

n

where

From the upper bound (A.2), setting r = n/k yields
fSk = O(kn) .

Remark: 1t is easy to see that the upper bound f<; is asymptotically tight
(take n points on a semicircle).

A.3 Entropy

We mention useful facts about the entropy of a distribution. The entropy
of a probability distribution R = (p1,...,pn) is defined as

- 1
H(R) = Zpk log —.
k=1 Pk

In information theory, the motivation behind the notion of entropy is that
if a memoryless source generates random symbols with the distribution R,
then H(R) is the average number of bits per source symbol needed by the
“best possible” data compaction code. More relevant to the purposes of
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this book is fact that the entropy measures the randomness of R, that is,
how many bits are required on average to sample from the distribution.
For example, if R is uniform, its entropy is logn. Skewing the distribution
can only lower the entropy.

Lemma A.7 If R is a probability distribution of size n, then H(R) < logn,
with equality occurring if and only if the distribution is uniform.

This follows easily from the fact that, given two distributions py,...,p,

and qi,---,qn,
1 1
> pelog— <Y prlog—,
& Pk " dk

with equality if and only if the two distributions are identical. It is also
immediate to see that if p; < p; < 1, then decreasing p; by € > 0 while
increasing p; by the same amount can only decrease the entropy. The
following is a simple corollary of that fact.

Lemma A.8 Let X be a random variable over a universe of size n. If the
probability of no single value of X exceeds 27, for some 0 < t < logn,
then H(X) > t.

We follow common practice here by using H(X) to designate the en-
tropy of the underlying distribution. Let X,Y be two (possibly correlated)
random variables. Given a fixed value of Y = y, let H, be the entropy of
the distribution Prob[ X |Y = y]. The conditional entropy of X given Y,
denoted by H( X |Y), is defined as the expectation of the random variable
Hy . It is expressed explicitly as,

1
P Y = P X=z|Y =y]l .
zy: rob| y]zm: rob| x| v] OgProb[X:a:|Y:y]

We have the standard identity,
HX)Y)=HX)+H(Y|X), (A.3)

from which it immediately follows that joining distributions cannot de-
crease the entropy:

H(X) < H(X,Y). (A4)

A less trivial fact that is that conditioning can never increase the entropy:

H(X|Y) < H(X). (A.5)



A.4 BIBLIOGRAPHICAL NOTES 441

This implies that the entropy function is subadditive in the following
sense: If Xi,...,X, are random variables and Z = (Xi,...,X)) is the
random variable with the joint distribution, then

H(Z) < H(X1)+ -+ H(X,).

Equality holds if the X;’s are mutually independent. Finally, we mention
the useful inequality,

H(X|Y)<H(X|Z)+H(Z|Y). (A.6)

A.4 Bibliographical Notes

Section A.1: The reader should consult Feller [130] for an introduction
to probability theory. The bound on the higher moments of the binomial
distribution (Lemma A.1) is taken from Bronnimann, Chazelle, and Ma-
tousek [57].

Section A.2:  The tail estimate on the sum of random variables with
bounded independence given in Lemma A.2 is due to Reif and Sen [258].
Chernoff’s bounds are named after their originator [88]. The bounds given
in Lemmas A.3 and A.4 are borrowed (with some minor modifications)
from Alon and Spencer [20]. Lemma A.6 is due to Hoeffding [162]. The
proof technique used to bound the number of k-sets is due to Clarkson and
Shor [97].

Section A.3: We left out the proofs, most of which are quite elementary
and can be found in standard texts on information theory, eg, Blahut [47].



Appendix B

Harmonic Analysis

e give a quick review of Fourier transforms and Fourier series
and discuss the properties that are used in this text. A good
introduction to the subject can be found in Dym and McKean

B.1 Fourier Transforms

We begin with the classical setting for Fourier transforms, ie, real (or
complex-valued) functions with bounded L? norm. Then, we discuss the
Fourier transform over abelian groups, restricting ourselves to the two
cases, Z and (Z/pZ)". Finally, we briefly review the discrete Fourier trans-
form. We skip over spherical harmonics, which are discussed in the text
itself.

Functions in L2(RY)
Let f : RY+— C be a function in L?(R%), meaning that ||f||> < co. Recall
that the L? norm of a function f is defined by

15l ([ 5@ ar) .

Throughout this section, the integration domain is assumed to be R%. The
Fourier transform of f is defined as

Fley & / F(@)e 2T g,

t) = z1t1+- - -+ z4tq is the inner product of x = (z1,...,24) € R?

where (z,
= (t1,...,ts) € R% By the inversion formula we can recover f from

and ¢

442
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its Fourier transform:!
f@ = [ Foeretar

The Parseval-Plancherel identity expresses the fact that the Fourier oper-
ator preserves the L? norm of the function f:

[iswraz= [\For

The convolution of f and g is the function

def
(F9)@ ™ [ fwat - vy

Note that convolution is commutative. More interesting,

frg=[fxg.
We use the notation ¢ for the Dirac delta function. Many fascinating things
can be said about that function, beginning with the fact that it is not a
function, but for us only its behavior on other, smooth functions is what
matters; in particular, its integral over an open interval containing the
origin is 1 (and zero over the outside) while, more generally, the integral
of f(z)d(x) is f(0). The Fourier transform of ¢ is 0(¢) = 1. Another useful
function is
1 ifzel-r/2,r/2]%
0 else,

) = {

whose Fourier transform is

f(t)znw_

7Tti

=1

Abelian Groups

As is well known, every finitely generated abelian group G is isomorphic
to a finite direct sum of a free group @k Z and a number of cyclic groups
of the form Z,, = Z/p;Z, where p, divides p», which itself divides ps, etc.
The rank k is called the Betti number of the group. The finite groups are
the torsion subgroups and the p;’s are the torsion coefficients. We examine
the two cases G = Z and G = Z;;. We omit all discussion of characters,

lEquality of functions is to be understood here in the sense of the Hilbert space
L%(R?%), ie, f = g if and only if ||f — g|]2 = 0.
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invariant subspaces, eigenfunctions, etc, and refer the reader to [117] for
all of the necessary mathematical justifications.

Fourier Transform over Z. Let f be a function in L?(Z). We define its
Fourier transform by
Z f 72ﬂ'znt

neZ

for 0 < ¢ < 1. The inversion formula,

1
— / f(t)e27rint dt,
0

follows directly from the fact that

/1 e2ﬂ'i(nfm)t dt = 1 ifn= m,
0 0 else.

The Parseval-Plancherel identity becomes

S ) = / Fio)? d.

neZ
As usual, the convolution theorem says that if
def
n) < Y f(m)g(n —m),
meZ
then

—

fxg=fxg

Fourier Transform over Z;. Let p be a positive integer and let Z, =
Z/pZ denote the set of integers modulo p. Given = (21 ...,z,) and y =
(y1-..,yn) in Zy, we use (z,y) to denote the inner product z1y1 +- - +Tnyn
over Z. Given any function f : Z7 — C, its Fourier transform is defined

by
Z f —27rz(t x)
zEZ"

where t € Z. The inversion formula is

Z f 2771(90 ty/

teZy



B.1 FOURIER TRANSFORMS 445

The case p = 2 is particularly important for us: (t,z) indicates the
number of 1-bits common to ¢ and z, and we have

fty="3 fa)(-nto.

te{o,1}»

Viewing f as a vector in C2" (whose coordinates are f(0),..., f(2" — 1)),
the transform is simply a linear mapping in finite-dimensional space: Its
associated matrix H = (h;;) is called a Hadamard matriz of order 2. Note
that h;; is 1 or —1, depending on the parity of the number of common 1’s
in the binary expansion of ¢ and j. This leads to the following recursive
definition of this type of Hadamard matrix® of order 2", denoted by H (™.

Beginning with
1 1
1 =
(1)

we define H(™ as a tensor product. We take the so-called Kronecker prod-
uct of H™ 1 with HD | ie,

H(n—1) H(n—1)
(n) —
H™ = ( Hn=1) _f(n—1) >

For example, we have

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
O _ 1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1
The Discrete Fourier Transform. Given a vector = (zg..., 7, 1)7

in C™, its discrete Fourier transform is its image F'z under the linear map
defined by the Fourier matrix F' of order n. If ¢ denotes e 27%/" then F
is of the form:

2Generally speaking, a Hadamard matrix of order m is any m-by-m matrix with
+1-elements, whose row vectors are mutually orthogonal; of course, so are its column
vectors.



446 HARMONIC ANALYSIS

1 1 1 e 1

1 ¢ <
F— 1 4-2 <-4 o C2(n71)

1 Cnfl C2(n71) L C(nfl)2

One will recognize the same coefficients used in the Fourier transform over
Z,, defined earlier. From the fact that, for any k,

Ozl_ckn:(1_Ck)(]-+ck+C2k+"'+c(n71)k);

it easily follows that the inverse of F' is its Hermitian transpose (up to a
factor of n):

1 1 1 . 1
1 C—l C—Q . C—(n—l)
T I e
1 C—(n—l) C—2(n—1) . C—(n—l)2
This implies the Parseval-Plancherel identity, ||Fz||2 = /n||z||2. The con-
volution theorem says that if © = (xo,...,%n—1) and ¥y = (yo,-- -, Yn—1),
then # ¥ is the coordinate-wise product (Zo¥o, - - -, Zn_1Un_1), Where zxy

is the vector whose i-th coordinate is

n—1
E LjY (i—j) modn -
Jj=0

B.2 Fourier Series

We have defined the Fourier transform for functions whose L? norms con-
verge. Thus the theory does not seem to apply to periodic functions,
even bounded ones. This would seem an unfortunate technical flaw since
such functions are nothing more than infinite copies of functions for which
Fourier transforms exist. To salvage the theory we just need to tweak it a
little and introduce Fourier series. Let f : R — C be a function in L*(S?),
ie, periodic over [0, 1] and such that fol |f(7)]? dz < oo. Setting

f(n) — /0 f(x)e—anac dl‘,
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for any n € Z, we define the partial sum

n — Z f 2ﬂ'zkz

|kI<n

which is a function of z (note that the sum is over negative and positive
integers). By the orthogonality of the function basis, we have the Parseval-
Plancherel identity for Fourier series:

[ 1@ =3 7w
nez
It can be shown that the function S, converges to f in the L? sense, ie,
fo |Sn(z)— f(x)|? dz tends to 0 as n — oo. If f is continuously differentiable

p times, then the convergence is uniform and, furthermore,?

IS0~ Flle < Y2,

Thus, high smoothness (a local property) translates into fast uniform con-
vergence (a global property). This is a typical phenomenon in harmonic
analysis: Local properties of a function translate into global properties of
its Fourier series. As shown below, however, Gibbs’ phenomenon dashes all
hopes of uniform convergence in the presence of discontinuities. We illus-
trate this difficulty by introducing a function of wide use in discrepancy
theory.

Example: The sawtooth function. Let f(z) = {z}, where {z} 4 2 mod 1
(Fig. B.1). If n # 0, 1ntegrat10n by parts shows that f( ) = —1/(2win),
while trivially f ( fo xdx = 1/2. For nonintegral z, we have

27rznz

1 sin 2mnx
le}=3- Z o2min 2 Z ™m (B.1)

n>0

1. Note that the Fourier series estimation for {0} is 1/2, which is the
average of the two limits around 0. Outside of integral values of z,
however, S, converges to f pointwise.

2. In the vicinity of any integer x, the convergence is not uniform:
Gibbs’ phenomenon says that, for any value of n, there is some
place near x at which S,, — f deviates from 0 by at least a fixed
amount.

3Recall that < and > denote O() and (), respectively.
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f(x)

7

Fig. B.1. The sawtooth function.

3. The sawtooth function yields unexpected results: From the Parseval-
Plancherel identity we find that fol f(z)?dz = 1/3 is equal to

1 1
4 + Z 2m2n2
n>0

and therefore the sum ((2) o >

a nice, nontrivial result.

nso 1/n? is equal to w2 /6, which is

Even though S,, might fail us at bad points, we should mention that, as
long as f is continuous (and periodic over the unit interval), the average
L Ez;é S, converges uniformly to f (Fejér’s theorem). We close this brief
review by introducing the exponential sum

Dn(ﬂf) d:ef Z eQm’km,

|k|<n

known as the Dirichlet kernel. It is a geometric series, so we can write it

in closed form:
ewi(2n+1)x _ e—wi(2n+1)x

D,(z) = ,

ewix _ e—nix

and hence
_sinT(2n 4+ 1)z
- sinmx ’

Dy (z) (B.2)

Note that if = is not a multiple of 7, then the denominator is nonzero and
the exponential sum D,,(z) remains bounded as n — oo.
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Convex Geometry

e review basic facts about polytopes, cell complexes, Voronoi
diagrams, and duality. These topics are treated in detail in the
texts [118, 335] and the collection of surveys [152]. We assume
that the reader is familiar with the notion of a linear subspace V of R?
and its affine version, a flat, ie, 2 +V (z € R?). The affine span of a set is
the lowest dimensional flat enclosing it.

C.1 Polytopes

A conver polyhedron in R is the intersection of a finite number of closed
halfspaces, ie, sets of the form {z € R%|a-x < b}, for a,b € R%, where
a # 0 and a-z denotes the inner product of a and . A polytope is a bounded
convex polyhedron. Equivalently, it is the convex hull of a finite point set.
A face of a polytope P C R? is the relative interior' of the intersection of P
with a supporting hyperplane.? The dimension of a face is that of its affine
span. A face of dimension 0 (resp. 1 or d — 1) is called a vertez (resp. edge
or facet). The collection of all faces, ordered by inclusion of their closures,
forms a cell complex with a lattice structure. It is convenient to represent
it by a facial graph. Each node denotes a face, and an arc connects two
incident faces whose dimensions differ by exactly one. The cell complex
and facial graph of an arrangement of hyperplanes can be defined in much
the same way. The faces of an arrangement are sometimes called cells, or
j-cells to specify their dimension.

IThe term “relative” refers to the topology of the affine span of the set in question.
2A hyperplane is supporting if it intersects the polytope but not its relative interior.

449
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Fig. C.1. The facial graph of the triangle abc.

Given a point € R? distinct from the origin O, we define its polar

hyperplane as
{yeR|z-y=1}.

This is the hyperplane normal to Oz at distance 1/||z||2 from the origin
and on the same side of O as x. Conversely, we can define the polar point of
any hyperplane that does not pass through the origin. This transformation,
called polarity, creates a duality between points and hyperplanes, in the

sense that it preserves incidence relations.

Fig. C.2. The polar hyperplane of a point p: The circle is of unit radius.

We mention in passing another popular dual transform (this one is not
involutory, but it is still commonly referred to as a dual transform):

point (pi1,...,pa) — hyperplane g = p1x1 + -+ + Pa—1Ta—1 + Pa

and

Tg=p121 + -+ Pa-1Ta—1 + Pa — (=P1,. .-, —Pd—1,Pd)-
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This maps any point different from the origin to a hyperplane not parallel to
the z4-axis. It is easily verified that the transform preserves “above/below”
relationships. In other words, a point p above a hyperplane h (in the sense
of x4) maps to a hyperplane above the image point of h.

Returning to the polarity, suppose that the polytope P C R? contains
the origin O in its interior. Then its polar polytope P*, which is defined as
the region containing the origin that is bounded by the polar hyperplanes of
the vertices of P, is dual to P. This means that there exists an isomorphism
between the facial lattices of P and P* that maps k-faces (ie, faces of
dimension k) to (d — k — 1)-faces (Fig. C.3). Algorithmically, this implies
that to compute the convex hull of n points (n > d), it suffices to place the
origin inside the hull (say, inside the simplex formed by any d + 1 of the
points) and then compute the polytope formed by the intersection of the
n halfspaces (containing the origin) derived from the points by polarity.

Fig. C.3. Isomorphism between a convex hull and its polar polytope.

If we place n distinct points on the moment curve, their convex hull P
forms what is called a cyclic polytope. (The moment curve consists of the
points (¢,#2,...,t%), for any ¢ € R.) The number of (j — 1)-faces of P is
exactly (?), for any j < d/2. It follows that the combinatorial complexity
of the convex hull of n points can be as high as Q(nl%/2). By McMullen’s
Upper Bound Theorem, the cyclic polytope is, in a strong sense, the convex
hull of n points with the most faces. The asymptotic version of the theorem
is the one of interest to us. It states that the convex hull of n points in R?
has O(nl4/21) faces and that, for some point configurations, this bound is
tight.
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C.2 Voronoi Diagrams

Let S be a finite set of points in R®. For each point p € S, we define its
Voronoi cell as the region of points closer (in the Euclidean sense) to p
than to any other ¢ € S. The collection of cells forms the d-cells of a cell
complex.? We assume that no d + 1 points lie in a common hyperplane and
no d + 2 points lie on a common (d — 1)-sphere. Then, the cell complex
is simple, meaning that each vertex is incident to exactly d + 1 edges.
A vertex belongs to d + 1 Voronoi d-cells, and obviously the points of S
giving rise to these cells lie on a common (d — 1)-sphere centered at the
vertex, with no point of S strictly inside it. The d 4+ 1 points on such a
sphere form a Delaunay simplex. The collection of all Delaunay simplices
triangulates the convex hull of S and forms the Delaunay triangulation.
From our discussion, there is obviously a dual relationship between the
Voronoi diagram and the Delaunay triangulation. Computing one provides
the other, and vice versa.

Fig. C.4. A Voronoi diagram and its Delaunay triangulation.

3For convenience, a cell complex is defined in this book as a collection of nonempty,
disjoint, relatively open, polyhedral cells whose closures C1,C2, etc, satisfy the usual
conditions: (i) The boundary of any C; is the union of some C}’s; and (ii) any intersection
C; N C; is empty or some C}. A k-cell is a cell whose affine span has dimension k.
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There are several ways to see why Voronoi diagrams (and, hence, De-
launay triangulations) are basically special cases of convex hulls in one
dimension higher. A relationship between Voronoi diagrams and polytopes
in one dimension higher was exhibited by Brown [59]. Another, discussed
below, is due to Edelsbrunner and Seidel [121].

Choose a system of coordinates (O;z1,...,7451) for R4 given a point
p = (p1,...,pa) in the hyperplane spanned by the first d axes, map p to
the hyperplane h(p) in Rt whose equation is:

Tag+1 = 2p1£L’1 +---+2pdmd — (pf + - +p3).

Geometrically, h(p) is obtained by lifting the point p toward the parabo-
loid 2441 = 2 + --- + 27 in the direction z441, and taking the tangent
hyperplane at that point. Let h(p)T denote the halfspace bounded by h(p)
that contains the origin, ie, lies “above” h(p). Given a set S of n points
in the hyperplane 4,1 = 0, it is easy to show that the faces of the convex
polyhedron (J{ h(p)™ |p € S } project normally to the hyperplane x4, = 0
into the faces of the Voronoi diagram of S. Intuitively, this is because the
squared distance from p to any point ¢ in the hyperplane z;4,1 = 0 is equal
to the vertical drop between h(p) and the vertical projection of ¢ on the
paraboloid, ie,

(af +-+ +a7) — (2p1q1 + -+ 2paga — (p%+---+p3)) = > i—a)
1<i<d

We conclude that any algorithm for computing the intersection of half-

spaces (or, equivalently, convex hulls) can be automatically converted into

one for computing Voronoi diagrams (or, equivalently, Delaunay triangula-

tions) in one dimension lower. The converse is not true.
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