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ABSTRACT
Motivation: Side-chain positioning is a central component of
homology modeling and protein design. In a common for-
mulation of the problem, the backbone is fixed, side-chain
conformations come from a rotamer library, and a pairwise
energy function is optimized. It is NP-complete to find even a
reasonable approximate solution to this problem. We seek to
put this hardness result into practical context.
Results: We present an integer linear programming (ILP)
formulation of side-chain positioning that allows us to tackle
large problem sizes. We relax the integrality constraint to give
a polynomial-time linear programming (LP) heuristic. We apply
LP to position side chains on native and homologous back-
bones and to choose side chains for protein design. Surpris-
ingly, when positioning side chains on native and homologous
backbones, optimal solutions using a simple, biologically relev-
ant energy function can usually be found using LP. On the other
hand, the design problem often cannot be solved using LP dir-
ectly; however, optimal solutions for large instances can still be
found using the computationally more expensive ILP proced-
ure. While different energy functions also affect the difficulty of
the problem, the LP/ILP approach is able to find optimal solu-
tions. Our analysis is the first large-scale demonstration that
LP-based approaches are highly effective in finding optimal
(and near-optimal) solutions for the side-chain positioning
problem.
Availability: The source code for generating the ILP given a
file of pairwise energies between rotamers is available online
at http://compbio.cs.princeton.edu/scplp
Contact: msingh@cs.princeton.edu

INTRODUCTION
Side-chain positioning (SCP) is a key step in computational
methods for predicting and [designing protein structures (e.g.
see Summers and Karplus, 1989; Holm and Sander, 1991;
Lee and Subbiah, 1991; Ventura and Serrano, 2004; Park
et al., 2004). A widely studied formulation of the problem
assumes a fixed backbone, a pairwise energy function, and a
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set of possible rotamer choices (Ponder and Richards, 1987;
Dunbrack and Karplus, 1993) for each Cα position on the
backbone. The goal is to choose a rotamer for each position
so that the total energy of the molecule is minimized. This
formulation of SCP has been the basis of some of the more
successful methods for homology modeling (e.g. Petrey et al.,
2003; Xiang and Honig, 2001; Jones and Kleywegt, 1999;
Bower et al., 1997) and protein design (e.g. Dahiyat and Mayo,
1997; Malakauskas and Mayo, 1998; Looger et al., 2003). In
homology modeling, the goal is to predict the structure for a
protein that is homologous to another of known structure; in
that case the rotamers considered at each position correspond
to a single amino acid. In protein design, the goal is to find a
sequence of amino acids that will fold into a particular back-
bone, and so the rotamers at each position come from several
possible amino acids. Although the goal of SCP is very dif-
ferent in these two cases, the underlying formulation for both
problems is identical.

SCP methods are commonly evaluated using two scales. In
the predictive scale, one asks how well the side-chain con-
formations predicted by the method agree with those that are
found in the actual structure; or, in the case of protein design,
whether the newly designed sequence folds into the desired
shape. In the combinatorial scale, one asks how close the total
energy resulting from the predicted side-chain conformations
is to the lowest possible minimum energy using the given rot-
amer library and energy function. Of course, the predictive
scale measures what we are ultimately interested in (i.e. the
quality of the end result). However, the combinatorial scale is
useful for improving search algorithms and energy functions,
and such improvements are necessary to get higher-quality
predictions of side-chain conformations. Theoretical results
argue that the SCP problem is difficult on the combinatorial
scale: the mathematical problem underlying SCP is not just
NP-complete (Pierce and Winfree, 2002), but also inapprox-
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imable (Chazelle et al., 2004). That is, it is unlikely that there
exists a polynomial-time method that can guarantee a good (let
alone optimal) solution to SCP for all instances of the prob-
lem. However, these are worst-case results: they may not hold
for the classes of problems and energy functions that occur
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in practice. In this paper, we hope to put these theoretical
hardness results into practical context.

We present an integer linear programming (ILP) formula-
tion of SCP. Though derived independently, our formulation is
similar to previous ILP formulations for SCP (Althaus et al.,
2000; Eriksson et al., 2001) and related problems (Klepeis
et al., 2003). Our formulation can tackle larger problem sizes
and can obtain successive near-optimal solutions. Multiple
near-optimal solutions are especially useful in protein design,
where it may be desirable to find several possible sequences
for a particular shape. By relaxing the integrality constraint,
we get a polynomial-time linear programming (LP) heuristic.
Our LP/ILP approach for SCP is as follows. First, we apply
LP to an instance of SCP. If the solution using LP is integ-
ral, then that solution is provably the conformation with the
global minimum energy, and we have found, in polynomial-
time, the optimal solution to the SCP instance. On the other
hand, if the solution using LP is fractional, we run the com-
putationally more expensive (i.e. no longer polynomial-time)
ILP procedure to find the optimal SCP solution.

Using our LP/ILP approach, we evaluate SCP instances
arising on native and homologous backbones, and when
choosing side chains for protein design. We show that, as sug-
gested by earlier studies on much smaller test sets (Althaus
et al., 2000; Eriksson et al., 2001), LP and ILP are highly
effective methods for obtaining optimal solutions for the SCP
problem. The LP/ILP approach is shown to tackle prob-
lems of size up to 10218 easily when packing side chains
on native and homologous backbones, and of size up to
10201 when redesigning protein cores. As proof of principle,
we also obtain multiple (100) near-optimal solutions for a
native-backbone SCP problem of size 1079.

We can use our LP formulation to probe the difficulty of
SCP instances arising in different applications. We label an
instance as ‘easy’ if LP finds an integral (i.e. optimal) solu-
tion. In contrast, if LP finds a fractional solution, we use it
as an evidence that the instance is more difficult to solve.
Our computational experiments on 25 native-backbone prob-
lems and 33 homology-modeling problems show that LP can
almost always find an integral solution when using an energy
function based on van der Waals interactions and a statistical
rotamer self-energy term. Similar, even simpler, energy func-
tions have been the basis for successful homology-modeling
packages (Bower et al., 1997). Since SCP is NP-complete, it
is intriguing that integral solutions are found so readily, and in
these cases, since a polynomial-time procedure has provably
found optimal solutions, it appears that the theoretical hard-
ness results do not apply in practice. On the other hand, when
using the same energy function on 25 protein design problems
of approximately the same size, the LP does not often find
integral solutions. This suggests that the optimization prob-
lems underlying protein design may be considerably more
difficult to solve than those arising in the native- or homology-
modeling settings. We also explore how changing the energy

functions affects the problem’s hardness. The LP approach
sometimes finds optimal solutions under energy function vari-
ants; however, different energy functions affect its ability
to do so.

Further previous work. Perhaps foreshadowing the idea that
the theoretical hardness results for SCP do not always apply
in practice is the considerable progress in the development
of both exhaustive and heuristic techniques for this problem.
Within the past dozen years, a series of papers on dead-end
elimination have given rules for throwing out rotamers that
cannot possibly be in the optimal solution (e.g. Desmet et al.,
1992, 1994; Goldstein, 1994; Lasters et al., 1995; Gordon
and Mayo, 1998; Looger and Hellinga, 2001; Gordon et al.,
2002). Special-purpose heuristic search techniques for spe-
cific energy functions have been successfully applied, as in
the original Scwrl package (Bower et al., 1997), and more
general search methods such as simulated annealing (e.g. Lee
and Subbiah, 1991; Holm and Sander, 1991), A∗ (Leach and
Lemon, 1998), Monte Carlo search (e.g. Xiang and Honig,
2001) and mean-field optimization (Lee, 1994) have also been
used. Specialized graph-theoretic approaches have also been
developed (Samudrala and Moult, 1998; Canutescu et al.,
2003; Bahadur et al., 2004). Of these previous methods, the
exhaustive methods always find the optimal solution but are
not efficient (i.e. may require exponential search), whereas
the heuristics are efficient but do not guarantee finding the
optimal solution. In contrast, our LP formulation is efficient,
and when it finds an optimal solution, this is evident through
integrality; however, it is not guaranteed to find such a solution
(when it does not, ILP is applied). Although mathematical pro-
gramming approaches to SCP (Althaus et al., 2000; Eriksson
et al., 2001; Chazelle et al., 2004) have been suggested pre-
viously, they are extensively tested for the first time here, as
well as extended to handle larger problem sizes and to find
near-optimal solutions.

Biological relevance. While our primary goal is to study
the combinatorial nature of SCP, in order to verify that the
energy functions considered are appropriate for predicting
protein structures for native and homologous backbones, we
compare side-chain conformations predicted by the LP/ILP
approach with those in the native structures. The solutions
found for native and homologous backbones give structures
that are comparable in quality to those found by other meth-
ods using the same rotamer library (Bower et al., 1997; Xiang
and Honig, 2001).

Practical implications. There are several immediate prac-
tical consequences of our analysis. First, our work argues that
attempts to improve search methods should be focused on pro-
tein design problems, as they seem to be computationally more
difficult to solve than homology modeling problems. Second,
in our experience, even seemingly small differences in prob-
lem instances can have a large impact on the ease with which
solutions are obtained. This makes it hard to compare different
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published benchmarks of SCP algorithms, as these algorithms
are often tested with differing energy functions and in different
settings (e.g. design versus homology modeling). To facilitate
comparisons and to encourage the use of LP/ILP approaches,
we are making our software for generating the LP/ILP pub-
licly available. Third, our analysis suggests that the choice of
an energy function should depend on two factors: how biolo-
gically meaningful it is and how it affects the ease with which
optimal or near-optimal solutions are found. For example,
a combinatorially ‘easy’ energy function may be useful in
finding a subset of reasonable predictions that can then be
evaluated using the desired energy function. Finally, and most
importantly, our analysis includes the first large-scale test of an
LP/ILP approach, and we demonstrate that such an approach
provides an effective and practical technique for solving the
SCP problem for both homology modeling and protein design
applications. Because there has been decades of research on
LP, which we can exploit on highly developed machinery;
the advantage of relying on this off-the-shelf technology is
that any subsequent progress in optimizing linear programs
will translate into faster running times for our method. While
there are many fast heuristics for SCP, in many cases, optimal
and successive near-optimal solutions are desired. In these
cases, LP-based approaches provide a general, state-of-the-art
methodology.

METHODS

Problem formulation
The SCP problem can be stated as follows (Desmet et al.,
1992): given a fixed backbone of length p, each residue pos-
ition i is associated with a set of possible candidate rotamers
{ir}. Once a single rotamer for each residue position has been
chosen, the potential energy of a protein system is given by the
formula E = E0 +∑

i E(ir )+∑
i<j E(irjs), where E0 is the

self-energy of the backbone, E(ir ) is the energy resulting from
the interaction between the backbone and the chosen rotamer
ir at position i as well as the intrinsic energy of rotamer ir , and
E(irjs) accounts for the pairwise interaction energy between
chosen rotamers ir and js . In this discretized setting, the place-
ment of each side chain is reduced to finding an assignment
of rotamers to positions that minimizes the overall energy of
the system (the global minimum energy conformation).

It is convenient to reformulate the SCP problem in graph-
theoretic terms. Let G be an undirected p-partite graph with
node set V1 ∪ · · · ∪ Vp, where Vi includes a node u for each
rotamer ir at position i; the Vi’s may have varying sizes. Each
node u of Vi is assigned a weight Euu = E(ir ); each pair of
nodes u ∈ Vi and v ∈ Vj (i 	= j ), corresponding to rotamers
ir and js respectively, is joined by an edge with a weight
of Euv = E(irjs). Zero-weight edges can be thought of as
equivalent to the absence of an edge. The global minimum
energy conformation is achieved by picking one node per Vi

to minimize the weight of the induced subgraph.

Integer linear programming formulation
We first formulate the SCP problem as an ILP, so that a solution
to the ILP gives an optimal solution to the SCP problem. The
ILP is based on the graph formulation of SCP discussed above.
The vertex set of this graph is V = V1 ∪· · ·∪Vp, and its edge
set D = {(u, v) : u ∈ Vi , v ∈ Vj , i 	= j}. Recall that the
nodes correspond to rotamers, and the edges to interactions
between rotamers.

We introduce a {0, 1} decision variable xuu for each nodeu in
V , and a {0, 1}decision variablexuv for each edge inD. Setting
xuu to 1 corresponds to choosing rotamer u, and similarly
setting xuv to 1 corresponds to choosing to ‘pay’ the energy
between rotamers u and v. We constrain our optimization so
that only one rotamer is chosen per residue, and so that we
pay the cost for edge {u, v} if and only if rotamers u and v

are both chosen. The following integer program ensures these
conditions:

Minimize E = ∑
u∈V Euuxuu + ∑

{u,v}∈D Euvxuv

subject to∑
u∈Vj

xuu = 1 for j = 1, . . . ,p∑
u∈Vj

xuv = xvv for j = 1, . . . ,p and v ∈ V \ Vj

xuu, xuv ∈ {0, 1}.
(IP1)

The first set of constraints ensures that we choose exactly
one rotamer for each residue. The second set of constraints
demands that we set the edge variables xuv to 1 for edges
that are in the subgraph induced by the choice of rotamers:
if xvv = 0 then no adjacent edges can be chosen, and if
xvv = 1 then exactly one adjacent edge is chosen for each ver-
tex set. This formulation is similar to the version of (Althaus
et al., 2000) (without modifying the energies to be negative)
and simpler than that of (Eriksson et al., 2001). Additionally,
on the experimental side, Klepeis et al. (2003) use a similar
integer programming formulation to design variants of the
peptide Compstatin that are predicted to improved inhibitory
activity in complement pathways. However, this is a slightly
different model in which side-chain positions are not explicitly
represented.

In practice, the ILP given above can have many variables
and constraints that do not affect the optimization, and the
system can be pruned dramatically. In particular, if all the
pairwise energies between rotamers in positions i and j are
non-positive, then we can remove all variables xuv withu ∈ Vi

and v ∈ Vj such that Euv = 0, and modify the equality con-
straints in (IP1) that contain such an xuv by removing those
variables and changing ‘=’ to ‘≤’. Because we are minimiz-
ing and all the energies between i and j are zero or less, this
change does not affect the optimal solution. A frequent special
case has zero energies between all rotamers in two positions;
this corresponds to residues that are too far apart in the struc-
ture to have any rotamers that interact with each other. The
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more general case involves residues that are far enough apart
that only a subset of their rotamers have interactions with each
other.

More formally, for each Vj , let N +(Vj ) be the set union of
the Vi for which there exists some v ∈ Vi and u ∈ Vj with
Euv > 0. Let D′ be the set of pairs {u, v} with u ∈ Vj such
that either v ∈ N +(Vj ), or v 	∈ N +(Vj ) but Euv < 0. There
will be edge variables xuv only for pairs in D′. Our modified
ILP is as follows:

Minimize E ′ = ∑
u∈V Euuxuu + ∑

{u,v}∈D′ Euvxuv

subject to∑

u∈Vj

xuu = 1 for j = 1, . . . ,p

∑

u∈Vj

xuv = xvv for j = 1, . . . ,p and v ∈ N +(Vj )

∑

u∈Vj :Euv<0

xuv ≤ xvv for j = 1, . . . ,p and v 	∈ N +(Vj )

xuu, xuv ∈ {0, 1}
(IP2)

An inequality constraint is not included if the sum on the
left-hand side is empty. The simple modification of (IP1) given
in (IP2) is crucial in practice, providing in some cases an order
of magnitude speed up.

Multiple solutions
Sometimes it is desirable to find several optimal and near-
optimal solutions. In the present framework, the LP/ILP can
be solved iteratively to find an ensemble of low-energy solu-
tions. At iteration m, all previously discovered solutions are
excluded by adding the constraints

∑

u∈Sk

xuu ≤ p − 1 for k = 1, . . . ,m − 1 (1)

to (IP2), where Sk contains the optimal set of rotamers found
in iteration k. This will require that the new solution differs
from all previous ones in at least one position. As pointed
out by an anonymous reviewer, it may be desirable to obtain
successive solutions that differ more from each other, and this
can be accomplished by replacing p−1 in (1) by p−q, where
1 < q ≤ p.

LP/ILP approach
The ILP formulation is as hard to solve as the original SCP
problem. If we relax the integrality constraints xuv ∈ {0, 1} by
replacing them with constraints 0 ≤ xuv ≤ 1 for u, v ∈ V , we
obtain a linear program, which can be solved efficiently. If the
optimal solution to the relaxed linear program is integral—all
variables are set to either 0 or 1—then that solution is also an
optimal solution to the ILP and SCP problem. So our LP/ILP
approach to find optimal solutions is as follows: solve the
problem of interest using the computationally easier LP for-
mulation. If the solution returned is integral, then the problem

Table 1. The native backbone problem sizes

Prot Len Var Rot Size Time (s)

1aaca 105 85 1523 79 14
1ahoa 64 54 981 49 7.2
1b9o 123 112 2056 112 25
1c5e 95 71 1108 61 7.7
1c9o 66 53 1130 56 8.7
1cc7 72 66 1396 66 17
1cexa 197 146 2556 136 36
1cku 85 60 1093 58 9.5
1ctja 89 61 1021 62 5.9
1cz9 139 111 2332 111 56
1czp 98 83 1170 75 10
1d4t 104 89 1636 84 19
1igda 61 50 926 47 5.6
1mfm 153 118 2134 112 23
1plc 99 82 1156 73 8
1qj4 256 221 4080 218 1.0e2
1qq4 198 143 2045 121 29
1qtn 152 134 2516 132 33
1qu9 126 100 1817 94 20
1rcf 169 142 2396 139 43
1vfy 67 63 939 56 7.3
2pth 193 151 3077 151 68
3lzt 129 105 2074 102 28
5p21 166 144 2874 146 78
7rsa 124 109 1958 100 26

For each protein, Prot gives its PDB identifier, Len gives its length, Var indicates how
many of its side chains have more than one possible rotamer and Rot gives the total
number of rotamers considered. Size gives the log10 of the search space size. Time gives
the number of seconds for the solve phase of CPLEX.
aThe proteins were used to determine the weight of the statistical potential in the basic
energy function (see text).

instance was easy to solve, and we have the optimal solution
to the original SCP problem. Otherwise, we run polynomial-
time Goldstein dead-end elimination (DEE) (Goldstein, 1994)
until no more rotamers can be eliminated and then solve the
more difficult ILP.

The CPLEX package (ILOG CPLEX, 2000,https://www.
ilog.com/products/cplex/) with AMPL (Fourer et al., 2002)
was used to solve the linear and integer programs. All
computation was done on a single Sparc 1200 MHz processor.

Dataset
The primary protein set (Table 1) consists of 25 proteins taken
from Xiang and Honig (2001). The proteins vary in size, ran-
ging from 50 to 221 residues with more than one possible
rotamer. As in Xiang and Honig (2001), only the first chain
in the Protein Data Bank (PDB) file is used for experiments.

For homology modeling, 33 homologs to the proteins of
Table 1 are also used. These protein pairs share between 29
and 87% sequence identity (Table 2). Whereas for some pro-
teins there are other more similar protein sequences present in
the PDB, for evaluation purposes, the chosen homologs give a
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Table 2. The homology modeling problems and their sizes

Template/
target

Seq
id

Var
len

Rot Size Time
(ILP)

1aac/1id2 62 86 1608 82 14
1aac/2b3i 29 87 1242 73 13
1aho/1dq7 50 53 719 44 4.4
1b9o/1f6r 75 114 1999 111 24
1c9o/1csp 82 53 1076 56 7.2
1c9o/1g6p 61 54 1409 60 13
1c9o/1mjc 57 52 862 48 3.2
1cc7/1fe4 37 62 1222 60 13
1cku/1eyt 87 61 1095 58 9.5
1cku/3hip 73 65 1079 59 12
1ctj/1c6r 79 64 1030 62 6.5
1ctj/1cyj 64 66 1291 69 9.5
1ctj/1f1f 46 64 1219 62 8.9
1czp/1doy 73 81 990 69 7.9
1czp/4fxc 79 81 961 70 6.3
1d4t/1luk 31 93 1877 91 26 (1.3)
1igd/1fcl 75 51 899 48 6.8
1igd/1mi0 78 49 723 44 3.2
1mfm/1b4l 54 117 1978 105 23
1mfm/1cob 80 119 1980 108 19
1mfm/1xso 65 114 1826 104 16
1plc/1byo 71 79 1131 70 7.1
1plc/1jxf 44 77 1093 64 7.6
1qj4/1e89 75 220 4154 218 1.2e2
1qq4/1hpg 34 139 1514 105 14
1qu9/1j7h 75 101 1885 97 27
1qu9/1qd9 49 104 1749 97 19 (1.6)
1rcf/1czh 69 140 2151 135 38
1vfy/1hyj 40 57 1060 53 8.8
3lzt/2mef 59 105 2320 108 52
5p21/1kao 49 147 2977 148 71
7rsa/1bsr 81 110 2242 104 41
7rsa/1rra 67 112 2111 104 42

Template gives the PDB identifier for the protein used as the template backbone, and
Target gives the PDB identifer of the protein for which the structure is to be predicted.
Seq ID gives percentage identity between template and target protein sequences, Var
Len gives the number of side-chains that are varied, and Rot gives the total number
of rotamers considered. Size is the log10 of the search space size. Time is the time in
seconds that CPLEX takes to solve the LP. For non-integral solutions, the time to solve
the ILP is given in parenthesis.

wider range of sequence identity. ClustalW (Thompson et al.,
1994), with default settings, was used to align the protein
pairs. For each pair, the protein in the original dataset was
taken as the template backbone, and its sequence homolog
was taken as the target protein to be predicted. If the i-th
residue of the target sequence is aligned to the j -th residue
of the template sequence, then rotamers corresponding to the
i-th residue were considered at the j -th position in the tem-
plate backbone. Any gaps in the target sequence were handled
by modeling the side chains of the native residues of the
template. Any gaps in the template sequence caused the cor-
responding residues in the target sequence to be left out of the
model.

Rotamer library and structure manipulation
We used Dunbrack’s backbone-dependent rotamer library
(Dunbrack and Karplus, 1993). For each 10◦ range of φ, ψ
backbone angles, this library has 320 rotamers, with the
largest number of rotamers, 81, belonging to arginine and lys-
ine. Backbones were held fixed, and missing backbone hydro-
gens were added using the BALL C++ library (Kohlbacher
and Lenhof, 2000), which was also used to manipulate rot-
amers. All non-protein atoms were ignored. Each choice
of rotamers was converted to a three-dimensional structure
using the given backbone atoms and the stock side chains
from (Kohlbacher and Lenhof, 2000). For all computations,
the backbone, alanines and glycines were held fixed.

Dead-end elimination
In the cases where ILP was necessary, we first processed the
problem instances with DEE; no such processing was per-
formed before running the LP. We implemented the Goldstein
DEE condition from (Goldstein, 1994), which says that a rot-
amer u ∈ Vi can be thrown out if there is some other rotamer
v ∈ Vi such that

Euu − Evv +
∑

j 	=i

min
w∈Vj

(Euw − Evw) > 0.

The rotamers u are selected in sequence starting with an arbit-
rary rotamer. Every possible v is tested to see if the above
condition holds indicating that rotamer u can be eliminated.
This process stops when a pass through the rotamers finds
none that can be removed. None of the problems considered
here converge when this simple DEE process is applied.

Energy function
All the energy functions considered consist of a rotamer self-
energy term and a pairwise rotamer interaction term. For the
basic energy function, used for all computations unless other-
wise specified, pairwise rotamer energies are computed using
van der Waals interactions, and self-energies are computed
using both statistical potentials and van der Waals interac-
tions. The basic energy function is similar to that of the Scwrl
package (Bower et al., 1997), though we use a more realistic
van der Waals term.

Van der Waals interactions between rotamers The pairwise
van der Waals interaction energy between rotamers u and
v is the sum of the van der Waals interactions between the
side-chain atoms of u and v. We use the 6–12 Lennard–Jones
formulation of the van der Waals force. The parameters used
in the van der Waals force are those of AMBER96 except
the hydrogen radii are reduced by 50% to account for their
uncertain position. As in AMBER96, for atoms separated by
three bonds (1–4 pairs), van der Waals interaction parameters
are reduced by half, and there is no van der Waals contri-
bution between atoms separated by fewer than three bonds.
Each atom–atom interaction is capped at 100 kcal/mol. As an
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optimization, the van der Waals interactions are taken to be
zero at distances longer than 10 Å and residues are assumed
not to interact if their Cβ atoms are farther apart than 8.0 Å plus
the longest possible extensions of their side chains. Any value
less than 10−6 is considered to be 0. These approximations
generally have insignificant effects on the calculated energies.

Van der Waals interactions in self-energy terms For each
rotamer, the van der Waals energy is computed (as described
above) between each of its atoms and all the fixed backbone
atoms in the system except those corresponding to the current
residue and the residues on either side of it. The self-energy
also includes the van der Waals interactions with atoms in
fixed residues.

Statistical self-energies For each amino acid i in a particular
backbone setting, letpiu be the fraction of times amino acid i is
found in rotamer u, and pi0 be the fraction of times amino acid
i is in its most common rotamer. These values are obtained
from the rotamer library (Dunbrack and Karplus, 1993). As
in (Bower et al., 1997), the statistical self-energy term for a
particular rotameru is given by − ln(piu/pi0), so that the more
common a rotamer, the lower the energy assigned to it.

Combining the statistical self-energies with the van der Waals
interactions In summing up the total energy of the system,
the statistical self-energy term is weighted by a constantC that
is the relative weighting of it in comparison to the physical
van der Waals term. The choice of C can have a large effect on
the accuracy of the solution and the ease with which it can be
found. C can be thought of as the inertia for a residue to remain
in a highly favored side-chain conformation. To calibrate C,
five proteins of varied structure (1aac, 1aho, 1cex, 1ctg and
1igd) were selected from the test set. The LP/ILP algorithm
was applied to each for values of C ranging between 0.5 and
100. Figure 1 shows the average side-chain root mean squared
deviation (rmsd) over the five proteins for various values of
C. It is best to set C to the smallest value that works well so as
to use as much information about the specific fold as possible.
C = 10 was taken to be a good choice.

Evaluating predicted structures
For each protein, we compare the predicted side-chain con-
formations with those found in its crystal structure. We use
two measures of accuracy. First, we compute the percent-
age of χ1 side-chain dihedral angles predicted within 20◦
of the native structure, and the percentage of both χ1 and
χ2 side-chain dihedral angles predicted within 20◦ of nat-
ive. Second, we compute the rmsd between the predicted
structure and the crystal structure. When positioning side
chains on native backbones, rmsd is computed between cor-
responding side-chain atoms only. When positioning side
chains of a target protein on a homologous backbone, the
native backbone of the target protein and the homologous
backbone are first fit together using all the non-hydrogen
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Fig. 1. The average rmsd over five proteins for various values of C.

atoms in both structures (McLachlan, 1982; Martin, 2001,
https://www.bioinf.org.uk/software/profit), and then rmsd is
computed over the side-chain atoms.

Because performance can vary greatly depending on the
location of the residue in the protein, in addition to evaluating
predictions over all residues, we report performance over only
core residues, defined to be those that have <10% of their
possible surface area exposed in the crystal structure. For each
residue, exposed surface area is determined as a percentage
of the surface area of the residue in isolation using the Surfv
package (Nicholls et al., 1991).

COMPUTATIONAL RESULTS
We test the hardness of SCP instances and evaluate the LP/ILP
approach on problems resulting from three applications: pre-
dicting the conformations of a protein’s side chains on its
native backbone, predicting the structure of a protein using
the backbone of a homologous sequence as a template, and
designing a protein sequence for a given backbone.

Native backbone tests
For the each of 25 proteins in Table 1, we ran the LP/ILP
approach to predict side-chain conformations on native back-
bones. We used the native protein sequence from the PDB
file and allowed each residue to assume all the rotamers listed
in the library for the given amino acid and φ, ψ backbone
angles. This resulted in search spaces with up to 10218 pos-
sibilities. Using the basic energy function described in the
previous section, all problems returned optimal integral solu-
tions using LP, and it was not necessary to use the more
computationally expensive ILP formulation. The total CPU
time for solving the 25 LPs using formulation (IP2) was under
12 min; this is approximately 13 times faster than when using
the formulation (IP1).

To ensure that the energy function produces meaning-
ful structures, we compare the side-chain conformations
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Table 3. Prediction of side-chain conformations on native backbones, a com-
parison of the LP/ILP prediction with those of other methods and the crystal
structure

Core residues All residues

(a) LP/ILP χ1/χ1+2 87%/62% 80%/51%
(b) Scwrl χ1/χ1+2 88%/60% 80%/49%
(c) LP/ILP rmsd 1.079 Å 1.553 Å
(d) Scwrl rmsd 1.170 Å 1.649 Å

All values are averaged over the 25 proteins of Table 1. (a) The percentage of residues
over all proteins for which LP/ILP predicted conformation has the χ1 and χ1+2 dihedral
angles within 20◦ of the native structure; (b) these values for Scwrl; (c) the rmsd of
the predicted side-chain conformations from those of the native side chains using the
LP/ILP method; and (d) these are values for Scwrl.

predicted by the LP with the side-chain conformations in the
crystal structure (Table 3). Over all the residues, we find
that 80% of χ1 angles and 51% of the χ1 and χ2 angles
are predicted within 20◦ of native. For just core residues,
our approach leads to 87% of χ1 angles and 62% of the χ1

and χ2 angles predicted correctly. Additionally, our method
obtains an average rmsd per protein of 1.553 Å. This is a
reasonable level of accuracy, as it is comparable with val-
ues obtained when running the widely used Scwrl package
(version 2.9) (Bower et al., 1997) (Table 3) and with what
is reported in Xiang and Honig (2001) when using the same
rotamer library (on a slightly different test set).

Overall, our testing on native backbones shows that when
using a simplified energy function, LP can readily obtain
optimal solutions with respect to the energy function, and that
these optimal solutions correspond to predicted structures of
quality similar to that of other popular approaches.

Homology modeling
We next explore the combinatorial problems associated with
homology modeling. The 33 pairs of homologous proteins
considered, their percentage sequence identity, and the rmsd
between their backbones are shown in Table 2.

We solved the resulting LP formulations for all 33 problems;
this took under 12 min of CPU time. The LP found optimal
solutions for 31 of the 33 pairs. For only two template/target
pairs, 1d4t/1luk and 1qu9/1qd9, the optimal LP solutions were
not integral. For these two problems, the optimal integral
solution was found using DEE and the integer programming
algorithm of CPLEX. A good measure of how close the LP
relaxation objective is to the optimal solution is the relative
gap, defined as:

100
|OPT − lp|

|OPT| (2)

where OPT is the energy value of the optimal integral solution
and lp is the optimal objective for the LP relaxation. The
relative gaps for both 1d4t/1luk and 1qu9/1qd9 were fairly

Table 4. Prediction of side-chain conformations using homology modeling,
a comparison of the LP/ILP prediction with those of other methods and the
crystal structure

Core residues (Å) All residues (Å)

(a) LP/ILP rmsd 2.177 3.230
(b) Scwrl rmsd 2.137 3.260
(c) Backbone rmsd 1.385 1.978

All values are averaged over the 33 problems of Table 2. (a) The rmsd between just side-
chain atoms when comparing the LP/ILP predicted structure with the crystal structure;
(b) this value when comparing the Scwrl predictions with the native structure; and (c)
the rmsd between template and target structures when only considering backbone atoms.

small (0.207 and 15.260, respectively), and the total time for
solving these two integer linear programs was <1 min.

In order to show that the basic energy function is useful in
the homology modeling scenario, we report the accuracies of
our predicted structures. We computed the side-chain rmsd
between the target structures and predicted structures, as well
as the side-chain rmsd obtained by the Scwrl rotamer choices.
The average side-chain rmsd obtained by the LP/ILP approach
with the basic energy function is 3.230 Å, which is competet-
ive with Scwrl’s performance of 3.260 Å when run on the
same test set (Table 4).

Citation for
table 4 not
found. Please
confirm if the
citation
inserted is
appropriate

For these tests, we did not optimize many important aspects
of homology modeling, such as choosing the homolog with the
most similar sequence or hand fixing alignments, hence the
results should not be taken to be the best possible for any of
the methods. However, the use of a simplified energy function
results in predicted structures that are biologically reasonable.
Additionally, optimal solutions with respect to this energy
function are easily found using the LP/ILP approach.

Protein design
We considered the problem of designing novel sequences that
fold into known backbones. We partitioned the amino acids
into the following classes: AVILMF / HKR / DE / TQNS /
WY / P / C / G. For each of the 25 proteins in our native
test set (Table 1), we fixed the surface residues and the native
backbone and allowed the core residues to assume any rotamer
of any amino acid in the same class as the native residue.
We focused on core residues since the basic energy function
optimizes primarily van der Waals interactions. The sizes of
the resulting problems are shown in Table 5.

When applying LP to the resulting problems with the basic
energy function, only 6 out of 25 solutions had integral
solutions. Thus, from the perspective of this LP, the design
problem is more difficult than fitting side chains on native and
homologous backbones. CPU time for solving the the 25 LP
problems was approximately 20 h, with one protein (1qj4)
taking ∼10.5 h.

To obtain optimal solutions for the 19 proteins with non-
integral solutions, we apply DEE and then run the ILP solver

7
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Table 5. Proteins for which the core was redesigned

Prot. Var
len

Rot Size Time
(ILP)

Rel
gap

N

1aac 38 2153 62 3.3e2 (1.3e2) 2.630 4
1aho 18 668 22 4.4 Integral
1b9o 48 1842 69 2.4e2 (9.4) 1.099 0
1c5e 25 1369 42 58 Integral
1c9o 14 757 24 91 (46) 3.936 34
1cc7 18 866 29 95 (2.4) 0.272 0
1cex 78 3926 126 2.6e3 (7.0e2) 0.913 30
1cku 22 897 31 8.8 Integral
1ctj 24 1262 40 28 Integral
1cz9 53 2664 87 1.2e3 (3.2e2) 0.702 27
1czp 30 1475 47 4.4e2 (1.4e2) 1.202 39
1d4t 32 1691 52 1.8e2 (89) 1.039 33
1igd 11 552 18 3.4 Integral

1mfm 46 3215 80 6.5e3 (5.4e3) 3.234 233
1plc 33 1691 54 4.7e2 (1.3e2) 3.991 8
1qj4 124 6655 201 3.8e4 (4.5e5) 2.677 7293
1qq4 72 3500 115 1.5e3 (6.9e2) 4.272 38
1qtn 49 2181 74 2.6e2 (70) 0.558 8
1qu9 43 2057 70 2.3e2 (6.4) 0.162 2
1rcf 65 3189 105 2.7e3 (96) 0.053 0
1vfy 15 665 20 4 Integral
2pth 76 4395 127 1.1e4 (2.4e4) 2.115 1623
3lzt 48 1940 71 4.2e2 (3.9e2) 3.445 45
5p21 70 3624 114 4.1e3 (1.3e4) 2.259 1453
7rsa 46 1993 66 5.7e2 (14) 0.120 0

Var Len gives the number of core positions that were allow to vary, and Rot gives the
total number of rotamers considered. Size is the log10 of the search space size. Time is
the number of seconds CPLEX spent solving the LP, and given in parentheses, the time
for solving the ILP. Rel Gap gives the relative gap, as defined in Equation (2), and is
a measure of how far the energy of the solution of the LP is from that of the optimal
rotamer choice. N gives the number of subproblems CPLEX considered in finding the
optimal choice of rotamers.

of CPLEX. When solving the ILP, CPLEX, in addition to using
many other heuristics, solves several linear programs that are
subproblems of the ILP (these subproblems are referred to as
the branch-and-bound nodes). The number of such subprob-
lems is a very rough indication of the computational effort
expended by CPLEX. The number used for the design prob-
lems is shown in the ‘N ’ column of Table 5. For several of
the problems, many branch-and-bound nodes were needed.
CPLEX was able to find the optimal integral solutions to all
the problems in ∼138 h. Nearly all of that time (125 h) was
spent on the largest problem, 1qj4; the other 18 problems took
only 13 h of computation.

The best way to test a designed sequence is to make the
protein and confirm the predicted structure (e.g. Dahiyat and
Mayo, 1997; Harbury et al., 1998; Malakauskas and Mayo,
1998; Looger et al., 2003; Klepeis et al., 2003; Lilien et al.,
2004); this is beyond the scope of this paper. However, the
basic energy function is reasonable for designing protein cores
as it focuses on van der Waal interactions, and the use of other

energy functions is not likely to make the problem easier (see
below). Thus, while the LP/ILP approach found optimal solu-
tions for these protein design problems, our analysis shows
that protein design problems are likely to be considerably
more difficult to solve than homology modeling problems.

Other energy functions
We also investigated how changing the energy function affects
the ability of LP to find optimal solutions. For five proteins
from Table 1 (1c9o, 1czp, 1d4t, 1qtn and 1vfy), we fit side
chains on their native backbones using two additional energy
function variants.

In the first variant, the self-energies include the van der
Waals interactions with the backbone (as before), but the
statistical term is replaced by a torsion term as well as intra-
side-chain van der Waals interactions. These self-energy terms
are meant to measure the local favorability of a side-chain
conformation. The pairwise interaction energies between
rotamers consist of only van der Waals interactions.

The second variant is the same as the first, except that
the self-energies include electrostatic interactions with the
backbone and the pairwise energies include electrostatic
interactions between side-chains. In all cases, the electro-
static interactions were modeled using the distance-dependent
electrostatic component (ε = r) of the AMBER96 force field.

In contrast to the basic energy function, for which 100% of
the solutions were integral, the LP finds optimal solutions for
only 60% (three out of five) of the proteins using the either
of variant of the energy function. Thus, small changes in the
energy function can influence the ease with which solutions
are found. We note that ILP can still find optimal solutions
for these problems, and additionally that the basic energy
function gives the best accuracy over these proteins (1.634 Å
average rmsd versus 2.069 and 2.409 Å for variants 1 and 2,
respectively).

Obtaining multiple solutions
By adding constraints (1) to the integer program, we can
look at an ensemble of provably near-optimal solutions. Near-
optimal solutions can be used to generate several candidates
for protein design, as well as to analyze the energy landscape
and gauge the difficulty of the global optimization problem.
We found the 10 lowest-energy solutions for four proteins
(1aho, 1cex, 1ctj and 1igd) and the 100 lowest-energy solu-
tions for 1aac, using the basic energy function to fit each
sequence onto its native backbone. Since at each step we
are excluding all previously found solutions, each successive
solution takes longer to find. The relative gap [Equation (2)]
between each successive solution and the global optimum is
plotted in Figure 2. These gaps are very small, and from the
point of view of this energy function, any of several solutions
perform similarly. This indicates that even though LP has no
difficulty finding optimal solutions, no one choice of rotamers
clearly stands out as the right one.
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Fig. 2. Relative gap between the optimal solution (with value OPT)
and the nine next lowest-energy solutions (where the i-th solution
has value xi). Inset shows relative gaps for the 100 lowest-energy
solutions for 1aac. Relative gap at each iteration i is defined as
100(OPT − xi |/|OPT).

DISCUSSION
Our experiments suggest that mathematical programming
should become a widely used technique for attacking SCP
in the context of both homology modeling and protein design.
The described approach exploits general, highly developed
optimization machinery, and it is likely that problems much
larger than those studied here can be solved by employing
faster hardware and more effectively exploiting the CPLEX
package (e.g. using parallelized versions of the software, or
specifying alternate strategies for branching and node selec-
tion). The addition of valid inequalities in a branch and cut
framework as in Althaus et al. (2000) might further speed up
solution of the problems.

For even larger problems, further specialized optimizations
may be necessary. As a first step, we have shown how to
reduce the size of the ILP dramatically, without compromising
optimality, by exploiting the fact that in protein structures
amino acids do not interact with other amino acids that are far
away in 3D. Furthermore, in practice, to solve large instances
optimally, we would suggest first running basic DEE, and then
following with either LP or ILP. We also note that some of the
techniques developed for DEE can be incorporated directly
into ILP if necessary. For example, we can disallow choosing
a certain pair of rotamers (between positions that have some
positive pairwise rotamer energy between them) by removing
the corresponding edge variable from the objective function
and constraints. Alternatively, the LP/ILP approach can be
applied in cases where the DEE procedure does not converge
to a single solution. Finally, as compared with other methods,
the LP/ILP approach is simple to model and flexible enough
to extend easily. For example, we have already shown how to
use ILP to obtain successive near-optimal solutions.

Our analysis suggests that protein design problems are con-
siderably more difficult to solve than homology modeling

problems. For native-backbone and homology modeling,
optimal, biologically realistic solutions can usually be found
quickly using a simple LP relaxation. For protein design,
fewer solutions of the LP relaxation are integral, even with
the same energy function. As suggested by Gordon et al.
(2002), it is possible that for repacking side chains on back-
bones, there are only a few good rotamer choices for each
side chain, whereas for protein design there are several amino
acid choices for each position, each with a few good rotamer
choices. From a computational viewpoint, this suggests that
the design problems are the class of problems on which efforts
to improve the optimization scheme should be focused.

We also find that the choice of energy function affects
the ease with which optimal solutions are found using LP.
For positioning side chains on native and homologous back-
bones, optimal solutions using the basic energy function are
found quickly (typically in polynomial time), and this energy
function yields good solutions (better than the other energy
function variants considered in our tests). This suggests that
even if alternate energy functions are required, it may be bene-
ficial to use an energy function such as the one considered
here for which optimal solutions are readily found. These
solutions can then be used as starting points for an iterative
procedure such as that given by Xiang and Honig (2001) or
for heuristic search algorithms [e.g. as in the original Scwrl
program (Bower et al., 1997)].

Several other authors have considered the combinatorial dif-
ficulty of SCP in the context of packing side-chains onto native
backbones. An excellent, exhaustive study on side chain pos-
itioning has used very different reasoning to argue that the
associated combinatorial problem appears not to be that dif-
ficult (Xiang and Honig, 2001). This study considers packing
side chains on native backbones, and shows empirically that
predicting the conformation of a single side chain while fixing
all others in their native conformations is only slightly more
accurate than the simultaneous prediction of all side chains.
Unlike when integral solutions are found using our approach,
their computational approach cannot guarantee that they have
found a minimum energy solution according to their energy
function. Eriksson et al. (2001) also use an ILP formulation to
suggest that the SCP problem is easy; they apply the method
to a single protein (lambda repressor protein) and find that
the solution of the relaxed linear program always seems to be
integral, even for artificial ‘nonsense’ energy functions. The
hardness result (Pierce and Winfree, 2002; Chazelle et al.,
2004) suggests this is unlikely to be true for all energy func-
tions and proteins, and indeed the LP approach does find
non-integral solutions for two of the homology modeling cases
in our dataset. On the other hand, others (Gordon et al.,
2002) have argued that it is important to consider the precise
energy function being optimized; our results are consistent
with this view.

In light of the hardness results (Pierce and Winfree, 2002;
Chazelle et al., 2004), it is clear that the frequent integrality
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of the LP formulation in our experiments is not a result of
the general structure of the problem but instead is a fea-
ture of the properties of the proteins and energy functions
studied. It is well known that if the constraint matrix for an
LP is totally unimodular (e.g. as in formulations for shortest
path or max-flow problems), the LP has integer optimal solu-
tions. This is not the case here, however, as changing only
the energy function can change whether integral solutions are
found. Nevertheless, the constraint matrices are sparse, and
perhaps the LP is exploiting some other type of underlying
structure. An intriguing open question is to uncover what
features of side-chain positioning allow LP and ILP to find
optimal solutions quickly.
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