Computational
Geometry

Theory and Applications

ELSEVIER Computational Geometry 7 {1997) 327-342

Strategies for polyhedral surface decomposition:
An experimental study *

Bernard Chazelie®*, David P. Dobkin? Nadia Shouraboura®, Ayellet Tal¢

* Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
® Program in Applied and Comput. Math., Princeton University, Princeton, NJ, USA
© Department of Computer Science, Weizmann Institute, Israel

Communicated by E. Welz); submitted 5 May 1996; revised 6 June 1956

Abstract

This paper addresses the problem of decomposing a complex polyhedral surface into a small number of
“convex” patches (i.e., boundary parts of convex polyhedra). The corresponding optimization problem is shown
to be NP-complete and an experimental search for good heuristics is undertaken. © 1997 Elsevier Science B.V.

Keywords: NP-completeness; 3-SAT; Convexity; Surface decomposition; Flooding heuristics

1. Introduction

Convex shapes are easiest to represent, manipulate and render. Even though they form the building
blocks of bottom-up solid modelers, it is more often the case that the convex structure of a geometric
shape is lost in its representation. We are then presented, not with the soiid-modeling problem of
putting together primitive convex objects, but with the reverse problem of extracting convexity out of
a complex shape.

The classical example is that of cutting up a 3-polyhedron into convex pieces. This is often a
useful, sometimes a required, preprocessing step in graphics, manufacturing, and mesh generation. The
problem as been exhaustively researched in the last few years [2-18]. Despite its practical motivation,
however, little of that research has gone beyond the theoretical stage. One possible explanation is that
even the most naive solutions are programming challenges. We observe, however, that in practice one
often need not partition the polyhedron itself but only its boundary. In other words, it often suffices

" Work by Bernard Chazeile, David Dobkin and Ayellet Tal has been supported in part by NSF Grant CCR-93-01254
and The Geometry Center, University of Minnesota, an STC funded by NSF, DOE, and Minnesota Technology, Inc. Work
by Nadia Shouraboura has been supported in part by NSF Grant PHY-90-21984.

* Corresponding author.

(925-7721/97/$17.00 © 1997 Elsevier Science B.V. Al rights reserved.
PII S0925-7721(96)00024-7

328 B. Chazelle et al. / Computational Geometry 7 (1997) 327-342

to decompose a polyhedral surface into a small number of convex patches. By abuse of terminology,
we call a surface convex if it lies entirely on the boundary of its convex hull. We mention some
applications briefly.

In rendering, the coherence provided by convex patches can be exploited to speed up radiosity cal-
culations. For example, from the closed-form expressions recently found for the form factors between
two polygons [19], it is possible to derive faster iterative methods for handling multiple pairs of facets
that are known to lie on one or a few convex patches. Similar speed-ups can be obtained for shading,
clipping, hit detection, etc. Snyder et al. [20] point out the importance and difficulty of exploiting
pelyhedral coherence in collision detection: because polyhedral hierarchies can be defined on arbitrary
convex patches (solid polyhedra are not needed), intersection primitives can be greatly speeded up
when convex surface decompositions are available [14].

Although not as versatile as solid decompositions boundary decompositions have several advantages,
including simplicity of implementation. Also, while a polyhedral sclid decomposition can suffer a
guadratic blow-up [8], boundary decompositions are always linear in size. Better than that, the number
of convex patches can be kept within a constant factor of the number of reflex angles [11]. We have
sathered empirical evidence suggesting that even highly complex surfaces typicaily consist of only a
handful of patches. For example, a standard drinking glass, regardless of its description size, might
involve no more than a dozen convex patches. Intuitively, one should expect only surfaces of litte
coherence, such as crumpled, fractal-like sheets or heavily twisted surfaces, to give rise to many
patches. Of course, a simple object such as a torus can also have bad convex decomposition properties.
But it seems that in practice most objects admit of small convex boundary decompositions.

Contributions of this paper. We present a comparative study of simple heuristics for convex surface
decomposition. The research reported here is mostly of an experimental nature. The standout exception
is the obiigatory first step: motivating the search for heuristics by proving that the problem is NP-
complete. The proof is somewhat technical, so we give an outline in Section 2 and provide the details in
Appendix A. In Section 3 we describe the three classes of heuristics investigated: space partitioning,
space sweep and flooding. Within each class we examine several sub-heuristics and compare their
relative effectiveness. Experimental results are reported and conclusions are drawn in Section 4,

Finding meaningful test data was an important component of this work. In the present case, randomly
generated data is all but worthless. So, we collected several hundred real-life polyhedral models
from manufacturing companies and industrial AutoCAD users. This catalog confirms our working
hypothesis that most objects admit of smali-size boundary decompositions. We implemented various
decomposition schemes from each of the three classes of heuristics; each implementation was tested and
benchmarked against a representative sample of objects from our library. From this experimentation it
appears that flooding heuristics are the most efficient as well as the easiest to implement. We propose a
scheme, called flood-and-retract, which seems the method of choice among the heuristics investigated.

Unsurprisingly, space partitioning techniques fared the worst, The main motivation for including
them in our investigation was that many users are equipped with space partitioning software, so it was
of practical relevance to assess their effectiveness. Space-sweep heuristics were also natural candidates.
Their asymptotic performance is guaranteed to be linear {11], but even the simplest ones are guite
difficult to implement.

An important aspect of this work has been the use of animations to guide our search for good
heuristics. Runs and benchmarks produce numbers that tell us how good or how bad a given heuristic

B. Chazelle et al. / Computational Geometry 7 (1997) 327-342 329

is. But they do not help us to design better heuristics. Visualizing the decompositions does. Physicians
swear by (and live off) the adage that lab results cannot supplant clinical examination. Likewise, we
found that nothing was more useful than the ability to look at a decomposition in three dimensions as
though we held it in our hands. Through this means, weaknesses of the heuristics came to light and
ways to overcome them suggested themselves. In addition to our in-house geometric animation system
GASP [21}, we also used the visualization package GEOMVIEW [1] developed at the Geometry Center.
After it became apparent that flooding heuristics were the most competitive, we animated severai of
them and visually analyzed their most obvious flaws. These animations enabled us to converge rapidly
towards the most promising heuristic, i.e., flood-and-retract. !

2. The complexity of convex surface decompesition

Let § be a polyhedral surface with n vertices, and let S;,..., S be disjoint convex patches whose
union gives S. We show that minimizing the number k is NP-compiete. In our terminology, a polyhedral
surface is a compact piecewise-linear 2-manifold with boundary. We make no assumption on its
orientability or its Euler characteristic. Obviously, convex patches are always orientable, but again
their Euler characteristics are let unrestricted; in other words, the patches may be multiconnected. It
is natural, however, to require that convex patches be at least connected.

Of course, this is only one of many possible variants of the problem: for exampie, we could place
bounds on the Euler characteristics of the patches; we could require that facets not be split; we could
seek a cover and not a partition; we could relax the connectivity requirement; in the case of orientable
surfaces, we could distinguish between convexity and concavity, etc.

2.1. Membership in NP

It is straightforward to argue that the optimization problem is in NP. To begin with, observe that in
an optimal decomposition the facets of any patch can always be assumed to originate from the three-
dimensional arrangement formed by the planes defined by all triplets of vertices of S. Indeed, for any
decomposition that does not satisfy this requirement, we can always extend any facet (if necessary)
until its bounding edges lie in one of those planes. This gives us up to O(n’) candidate facets from
which a minimum decomposition can be guessed. Furthermore only rational numbers are needed, so
bit length is not a problem. To test if a set of facets forms a convex patch, we compute its convex
hull and verify that all the facets lie on the boundary.

2.2. NP-hardness

Let zi,...,z, be n Boolean variables; an instance of SAT consists of n clauses ¢y, ..., ¢, each of
them a disjunction of literals z;, or &. Here is a brief overview of our geometric model: Each variable
xy is associated with a closed polygonal curve L; zigzagging in planes paraliel to xzy. There are
exactly two optimal ways of cutting Ly into convex pieces: each of them corresponds to a different

"o illustrate this process of iterative improvements we have produced a video; this supplement plays the same roie as
traditional figures but with motion and color added [9].

33¢ B. Chazelle et al. / Computational Geometry 7 (1997) 327-342

truth assignment of zg. A clause is modeled by a vertical line segment that connects the curves
corresponding to its literals. The contact between the vertical segment and Ly takes place at a local
y-maximum or y-minimum depending on whether xy, is negated or not in the clause in question. The
remainder of the proof involves transforming the curves into thin strips and then arguing that the
formula is satisfiable if and only if the minimum decomposition is below a certain size. The full proof
is given in Appendix A.

3. Three classes of beuristics

All the surfaces in our library are orientable. The reason is that they usually originate from the
boundary of some polyhedron. This suggested distinguishing between convex and concave patches;
the latter being convex patches (in the old sense) all of whose edges exhibit reflex angles. We shall
specify below which sub-heuristics make this distinction.

Space partitioning. The strategy is to use binary space partitioning [15] to split up the surface into
convex patches. Recall that the method builds a tree by recursively dividing space by a (well-chosen)
cutting plane. Each node v of the tree is associated with a convex polyhedron P,. The idea is to
explore the two children of v if and only if the portion of the surface within F, is not convex. The
advantage of this method is that space partitioning code is widely available, so implementing it is
by and large effortless. One drawback is that facets get split up in the middle: this produces Steiner
points, which cause roundoff errors and can be undesirable. Furthermore the efficiency of the heuristic
is highly sensitive to the input surface. An obvious improvement we use is to cut along reflex edges
ounly. (It does not appear worthwhile optimizing the selection of reflex edges itseif: the only advantage
of the space-partitioning approach seems to be its simplicity, and so adding rules quickly becomes
self-defeating.) In the worst case the number of patches is quadratic. In practice it appears that such
a blowup is unlikely, especially in view of the above edge-selection rule.

Space sweep. 1t was shown in [11] how to decompose a polyhedral surface into a number of convex
patches at most proportional to its number of reflex edges. We implemented a simplified version of
the method which avoided the creation of Steiner points. Although the linearity of the output size was
no longer (theoretically) guaranteed, the simplification seemed to have no adverse effect; on the other
hand, it made coding much easier.

Our heuristic involves sweeping space with a plane: at any given time, the cross-section of the
surface consists of simple polygonal curves which are decomposed into convex pieces. The heuristic
attempts to maintain each curve as long as possible while moving the plane, thus producing convex
patches in the process. Each time a convexity violation is found, we relent from including the violating
facet and start up a new convex curve (and hence, a new patch). It is thus a gross simplification of
the method in {11} it does not take into account many of the more complex features which were
introduced only to ensure optimal asymptotic complexity. Although we lack empirical evidence to
support this, it appears unlikely that these features, introduced solely for the purpose of theoretical
analysis, would reduce the number of patches in practice.

Flooding. Let I be the dual graph of the surface, where nodes represent facets and arcs join nodes
associated with adjacent facets. The class of flooding heuristics refers to the incremental strategy of
starting from some node and traversing the graph H, coliecting facets along the way as long as they

B. Chazelle et al. / Computational Geometry 7 (1997) 327-342 331

form a convex patch. We distinguish between two sub-heuristics. Greedy flooding involves collecting
facets until no adjacent facets can be found that does not violate the convexity of the current patch.
A new patch must then be started, at which point the traversal can resume. Controlled flooding either
includes other stopping rules besides convexity violation or postprocessing on greedy flooding. Our
animations have revealed cases where flooding in a greedy fashion is arbitrarily bad: off the optimal
by a factor proportional to the input size! On the other hand, producing smaller patches by controiied
flooding can sometimes lead to near-optimal decompositions.

Given a convex patch, consider adding a new facet to it. The new patch may fail to be convex for
one of two reasons.
1. Local failure: the edge at which the facet is attached to the patch exhibits nonconvexity.
2. Global failure: the new patch is locally convex everywhere, but some facet fails to be on the

boundary of the new convex hull.
Global failures are rare in practice. Geometrically, they are associated with twisted shapes, as in a
spiral or a drill. Note that global failures are the only reason the surface decomposition problem is
hard. Without giobal failures, any greedy fiooding heuristic produces an optimal decomposition (in
the version of the problem where concave patches are ruled out). Furthermore, covers and partitions
are indistinguishable. In other words, without global failures, trying to cover the surface into convex
patches instead of partitioning it cannot produce fewer pieces. In the presence of global failures,
however, just the opposite is true. This suggests producing controlled-flooding partitions in two steps.
First, flood the surface by covers: this means that when restarting a new patch, allow the traversal
of old facets as well as new ones, Then, in a second pass, transform the covers into partition. in our
experiments we implemented this second pass in a naive manner, by cutting along the edges around
the overlaps and thus removing multiple covers. (Note that this might then increase the number of
patches.) We pursue this approach below.

Flood-and-retract. The first phase, flooding the surface, produces convex patches which might
overlap. The purpose of the second phase is to remove the overlapping by “retracting” each patch.
The main pitfall to avoid is breaking up the patch into several connected components. In Fig. i, for
example, two patches cover the surface and can be easily modified into a 2-patch partition. However, a
naive approach might end up producing up to £2(n) convex patches. Plate 3 gives a three-dimensional

C 1
[———]
C] 1

Fig. }. Two-patch cover.

332 B. Chazelle et al. / Computational Geometry 7 (1997) 327-342

picture of this phenomenon. To avoid this trap, we adopt the following strategy: for each patch in
turn, retract it as much as possible as long as it remains connected. The retraction takes place along
the portions of the boundary of the patch that lie inside other patches. The data structure is quite
simple: we keep a queue of facets to be retracted. We iterate on the following process: remove the
top of the gueue and remove the facet from the patch, unless it disconnects it. After the removal,
check which adjacent facets should be inserted into the queue, and insert them in arbitrary order. Once
each patch has been retracted in this manner, transform the resulting cover into a partition in arbitrary
manner by cutting along edges around the overlapping regions and assigning the shared faces to one
of patches.

4. Experimental reselts

Tables 1 and 2 present the results of our experiments. We implemented 8 heuristics and ran them
on the objects of the library. For the sake of concreteness, we limit our discussion to a sample of 12
representative objects. See Plates 1 and 2. Next to each object, we indicate the number of vertices V,
the number of convex edges and reflex edges. Some edges are incident to coplanar facets: their count
is par. Such edges originate in one of two ways: either the dihedral angle was too close to 7 to decide
on convexity, or the edge was introduced to triangulate a facet, in which case the angle was exactly 7.
The heuristics chosen were the following.

& BSP We adapted existing Binary Space Partitioning code by pruning the tree in the following
fashion: At each internal node, we selected a refiex edge (if any) of the portion of the surface
within the corresponding convex polyhedron F, associated with node v. Then we cut along one of
its adjacent facets to form its two children. One difficulty was to handle the facets that lay within
cutting planes. Note that with this method several disconnected patches might end up in the same
node-polyhedron. Of course, we count then as separate patches. In our experiments, no distinction
is made between convex and concave patches.

e Space-sweep. Both convex and concave patches are admissible in sweep_cc. On the other hand only
convex patches are allowed in sweep_c. Convex violations are detected naively by maintaining the
convex huil of the patches in straightforward fashion.

e Flooding. We consider greedy flooding produced by breadth-first search with convex-concave
patches (bfs_cc) and convex patches only (bfs_c). We also present results on depth-first search with
convex-concave patches (dfs_cc) and depth-first search with convex patches only (dfs_cc). Plates 1
and 2 show the bfs_cc decompositions of the 12 sample objects.

o Fiood-and-retract. We use breadth-first search in the flooding part of the heuristic. Retraction is
performed to remove the overlap between patches (Plate 3). To deal with the (unlikely) case of
several patches criss-crossing one another, special care is taken to prevent excessive fragmenta-
tion.

There 15 a remarkable consistency in the way flooding outperforms its competitors. Binary space

partitioning fares so poorly it probably is worse than doing nothing. Even though we choose the

splitting planes along reflex edges, the number of patches is large even when the number of reflex
edges is small. Space sweep, on the other hand, provides flooding a fairly close race. On epcot
it produces the optimal decomposition, as does any kind of flooding. But this is an exception. On
average space sweep loses to flooding by at least 50% and sometimes much more. On book it loses

W

B. Chagzelle et al. / Computational Geometry 7 (1997) 327-342 33

Table |
Properties of the objects
name V' convex reflex par
i epcot 95 384 192 0
2. mushroom 227 365 142 165
3. glass 81 124 34 49
4, pawn 155 216 96 144
5. bishop 251 352 118 274
6. rook 131 152 80 152
7. spring 910 1626 875 220
8. flashiight 388 549 145 413
9. eyeball 966 1683 24 934
10. torso 321 619 234 162
11, book 88 118 34 88
12. hand 309 525 234 162
Table 2
Resuits
name 1% bsp sweep.cc sweep.c bfscc dfswcc bfscc dfsc f&r
{. epcot 195 344 i29 126 129 129 129 129 129
2. mushbroom 227 567 66 64 56 48 56 49 34
3. glass 81 98 21 21 12 12 13 12 9
4. pawn 155 303 41 40 28 28 31 29 17
5. bishop 251 671 39 33 20 19 20 19 17
6. rook 131 381 34 31 i8 18 i8 18 18
7. spring 910 2144 389 420 277 247 256 234 228
8. flashlight 388 532 62 78 18 18 35 35 i4
9. eyeball 966 642 45 27 4 4 4 4 4
10, torso 321 547 99 89 69 67 70 69 52
1. book 88 131 48 57 13 13 12 12 14
12, hand 309 93] 146 91 89 86 a3 93 78

by a factor of 4. In general, the differences between convex-only and convex-concave are surprisingly
small. Note that (unlike what one might have expected) convex-concave does not always outperform
convex-only: this is owed to the nondeterministic nature of the heuristics.

Flooding performs uniformly well, especially flood-and-retract. The differences between depth-first
search and breadth-first search are small enough to be negligible, although DFS appears to have a
slight edge. Note that visually it might seem that an inordinately high number of patches are produced;
but recall that from a computational standpoint, coplanarity is an elusive property. We chose to make
the program err on the side of robustness. This means that the patches produced are guarantesd to
be convex, but it could be that near-flat convex edges are classified as reflex because of roundoff
erTors,

Plate 3 shows an object, a bracelet, where greedy flooding (and all the previous heuristics for
that matter) performs very poorly. Flood-and-retract avoids the obvious pitfalls and provides a near-

334

B. Chazelle et al. / Computational Geometry 7 (1997) 327-342

Epcot

Pawn

Mushroom

Glass

Plate 1.

Rook

B. Chazelle et al. / Computational Geometry 7 (1997) 327-342

Spring

Torso

Flashlight

Book

Eyeball

Plate 2.

335

336

B. Chazelle er al. / Computational Geometry 7 (1997} 327-342

Bracelet

Flood-and-Retract 1

BFS

Flood-and-Retract 2

DFS

Flood-and-Retract 3

Plate 3.

B. Chazelle et al. / Computational Geometry 7 (1997} 327-342 337

optimal decomposition. The upper-left figure displays the input surface. BFS and DFS decompositions
are shown right below. Note that both produce an additional (unnecessary) patch for half the fingers
of the bracelet. The right-hand side figures show flood-and-retract in action. First, the algorithm floods
the bracelet with a BFS run (dark patch). Then it repeats the same operation starting outside that patch.
Since the dark patch is ignored, we end up with two overlapping patches. Finally the retraction moves
back one of the patches to produce the final two-patch partition of the bracelet.

The strategy of covering first and then retracting is meant to deal with a general shoricoming of
greedy flooding, i.e., fragmentation. This phenomenon is similar tc what happens when partitioning
a tree with fixed-size subtrees. If we start at the root and proceed top-down we run into the risk
of ending up with a linear number of fragments near the leaves, each requiring a distinct tree. Of
course, in that case, we know better not to start at the root but instead to proceed bottom-up. A similar
phenomenon cccurs with flooding. The difference, however, is that unlike tree partitioning flooding
has no natural starting place. The idea of covering first and retracting later is meant to overcome that
intrinsic difficulty by trying to make the starting place immaterial.

5. Conclusion

This paper has investigated the practical issues behind convex surface decomposition, a problem
shown to be NP-complete. We have not addressed issues of implementation, robustness, and compu-
tation timme. Robustness is {as always) a thorny problem. Computation time, however, is not a serious
bottieneck, because all our heuristics run either in O(nlogn) time or in time linear in the input/output
size.

Our conclusion is that the flood-and-retract heuristic should be the method of choice in practice.
Of course, as we observed, in many cases the covering produced in the first phase of the algorithm
will actually be a partition {in which case flood-and-retract reduces to greedy flooding}. In such cases,
the decomposition is optimal or near-optimal and there is no need to pursue the heuristic further, i.e.,
DFS does the job. It remains to be seen if more complex variants can produce significantly better
decompositions.

Acknowledgements

We thank Herb Voelcker and Jovan Zagajac of Cornell University for kindly making their BSP
code available to us, and generally bringing us the benefit of an engineering perspective on the issues
discussed in this paper.

We also thank the referees for their thorough comments and helpful suggestions.

Appendix A
A geometric model for SAT. Let xy,..., T, be n Boolean variables; an instance of SAT consists of
n clauses ¢1,...,Cy, each of them a disjunction of literals x or . Each clause ¢; is represented by

a vertical rectangular strip C; of width £, for some small ¢ > 0. We position Cj so that it lies in the

338 B. Chazelle et al. / Computational Geometry 7 (1997 327-342

z 4 YA
G
“
A :=
AN Ci
Nonpser™ Lot
7 4
Cl C2) ‘l.l
. p
¥
o
oo X
¢ 1 <> x (a) t)
Fig. 2. The clause strips. Fig. 3. The attachment rectangies.

zz-plane and intersects the z-axis in the interval [{,¢ + ¢] (Fig. 2). There is no need to specify the
exact length of the strip: it should simply be long encugh (say, 2n).

Clauses are connected together by closed accordion-like strips that represent the variables. Each
variable has its own small z-interval within which its strip lives. We begin by discussing how the strip
X for varigble x4 is locally attached to a clause strip. Suppose that clause ¢; contains the literal zj.
Then the strip X}, is attached to C; around the point (4,0, &) in the following fashion: two coplanar
{congruent) rectangles parallel to the z-axis abut C; at a 45-degree angie (Fig. 3(b)). Both of these
attachment rectangles are of width & and are separated from each other by &: they are the dashed
regions in Fig. 3(a); point p has coordinates (4,0, &). The strip X} rans into C; through one of these
attachment rectangles and leaves C; through the other one. In projection on the zy-plane, the two
rectangles form two coinciding edges: as in Fig. 3(b), it is convenient to think of these two edges as
forming a small but nonzero angle (even though strictly speaking the angle is zero). One final word
about attachment rectangles: we slightly perturb them so that the contact angles of any two attachments
should be distinct (but very near 7/4 nevertheless). Within a given attachment pair, however, the two
rectangies should be kept copianar.

How do we connect all these attachment rectangles together? Rather than giving long formal def-
initions, we illustrate the construction on a representative example. Suppose that ', C are the only
clauses containing xx and that @y does not appear in any clause. We join the four corresponding
attachment rectangles together by merging them into a single simple closed strip X3, of width £, which
Hes entirely within {k < z < k + 3¢}. The projection of X} on the zy-plane is a simple closed
polygonal line L, (Fig. 5). We impose three requirements:

1. A walk around Ly should constantly alternate between left and right turns.
2. Let abed be the portion of Ly, abutting the (projected) clause strip ce, with Z{bce) = 37w /4 (Fig. 4).

We require that the ray from c to e should intersect bf, where f is the midpoint of ba.

3. The complexity of Ly should be linear in the number of clauses containing xj, or Ty (here, the

number is 2).

Instead of pursuing the construction to treat the other cases, it might be useful at this poin¢ to pause
and motivate the three requirements on Ly. The first requirement implies that if, indeed, the angle
between attachment pairs were not zero (like in Fig. 5) then there would be exactly two optimal

B. Chazelle et al. / Computational Geometry 7 (1997) 327-342 339

a
¢c e f k
4
b
Fig. 4. Ray ce should cut bf. Fig. 5. The projection of a variable strip.
Fig. 6. Convex-cut versus concave-cut. Fig. 7. Convex patch decomposition for the exampie

in Fig. 5.

ways of decomposing I into convex polygonal curves. One is called convex-cut and the other one
concave-cut: a small, self-explanatory example is given in Fig. 6.

The second requirement implies that if a convex patch covers some points in both rectangies of an
attachment pair, then it cannot also cover the mass center of either of the two adjacent variable strip
facets. Because the patch is connected it must overiap with the clause strip, so one case of our claim
follows directly from convexity (the patch would have to zigzag), while the other case follows from
the effect of the second requirement on convexity.

The last requirement indicates that we do not care to minimize the size of Ly {(as long as it remains
linear or even polynomial); this way, the strip X}, has plenty of room to wiggle leisurely between its
attachments to clause strips without seif-intersecting or intersecting other strips.

In Fig. 5 the convex-cut decomposition of Ly, induces a convex patch decomposition of the strip
X, that can be made to include the whole clause strips C|, (; as well (see Fig. 7). Note that the
3-facet patches formed around the clause strips are convex because the two abutting facets are—despite
appearances to the contrary—coplanar.

Similarly, the concave-cut decomposition of Ly induces a convex patch decomposition of Xy, but
now because of the second requirement, it is impossible to include any clause strips. Logically, the

340 B. Chazelle et al. / Computational Geometry 7 {1997) 327-342

RORARSITOREE %
RESIRRRRAIRRRSS
SRR
X3
SERRRRRRRR
RRRRRRERRS: %
Sl
RIS ET Y LY
TR
X1 SRR
Fig. 8. Placing negated literals. Fig. 9. A simple example.

convex-cut (respectively concave-cut) decomposition corresponds to a trae (respectively false) assign-
ment of xy: by including the strips C, C; the decomposition is able to “satisfy” the corresponding
clauses. On the other hand, the concave-cut decomposition is unable to satisfy any of them.

How do we handle the case of negated literals? Suppose that ('; contains Zz. (Obviously we can
assume that no clause contains both z; and Z;.) We must now ensure that convex-cut cannot inclade
(’; but that concave-cut can. For this we need to place the attachment to C» on a concave vertex of
Xy, which is achieved in straightforward fashion (Fig. 8). We call this kind of attachment negative;
the other kind is called positive. If the variable belongs to more than two clauses, we apply the same
rules, running cyclically through the relevant clauses.

This completes the construction of the geometric model of the boolean formula. We claim that it
is satisfiable if and only if there exists a convex patch decomposition of the geometric mode] of size
N =37, |Lg|/2, where |L;! is the number of edges in Ly.

Suppose that the formula is satisfiable. Then, apply to each X}, the particular decomposition cor-
responding to its truth assignment. For each clause ¢; at least gne pair of attachment rectangles is
covered in a single patch (pairs whose literals satisfy ¢;). If the pair is snique we easily extend the
patch to cover all of C;. If there are several, we must be careful not to disconnect existing patches. We
create fictitious border lines across C; to separate the “satisfying” attachment pairs from each other,
and we flood each corresponding patch within its borders. In Fig. 9 the clause is satisfied by z;, =3
and Z4, but not by Z,: we need two borders; one to separate the x; patch from the x; patch, and the
other one to keep the other satisfying patches (for z3 and Z4) separated.

We now show the converse, i.e., that if the surface can be decomposed into N convex patches then
the formula is necessarily satisfiabie. From now on, all convex patches are understood to be part of
such an N-patch decomposition D. We identify a number of special points, which we cali sites.

e For each clause strip C;, declare its mass center to be a clause site.

s For each variable strip X}, declare the mass center of each facet to be a variable site.

Note that the total number of variable sites is 2NV and the number of clause sites in n. Let G be the
graph whose vertices are the variable sites and whose edges connect vertices whose associated sites
are covered by the same patch in the decomposition D. The following result establishes the connection
between minimum decompositions and truth assignments.

B. Chazelle et ai. / Computational Geometry 7 (1997} 327-342 34%

Lemma A.L. The graph G is such that:
(1) no edge conrects two variable sites on different variable strips;
(i) the set of edges forms a perfect matching.

Proof. To begin with, observe that o convex patch can cover more than two variable sites. Indeed,
suppose that a patch covers at least three of them. The perturbation of attachment rectangles makes it
impossible for the patch to contain at least two variable sites on distinct variable strips. (Note that the
case of two sites, one on a positive aitachment and the other on a negative attachment does not even
need the perturbation.) Thus, all three variable sites must belong to the same variable. If two of these
sites are on coplanar attachment rectangles, then as observed earlier, the third site causes a convexity
violation either because of a zigzag pattern or because of requirement (2}. To summarize, a patch can
contain no more than two variable sites, both of which must then belong to the same variable strip;
this proves (i). Note now that if the decomposition size is NV, then each patch must, indeed, cover two
variable sites. The graph thus forms a perfect matching, which establishes (ii). O

There are exactly two ways of forming a perfect matching among the variable sites of the strip Xj.
From this we derive a natural truth assignment for zy, as explained earlier. We declare the variable
to be true (respectively false) if and only if there exists a matched pair of variable sites on a positive
(respectively negative) attachment pair. Note that the perfect matching ensures the consistency of the
assigniment, i.e., if a pair of variable sites on a positive attachment pair is matched, then all others are,
and none of those on negative attachments are (and vice versa).

Given (;, its clause site must be covered by some patch used in the perfect matching. As we observed
earlier, by convexity, this patch must be one that covers the two variable sites on some attachment
pair for some X (because a patch cannot cover a clause site together with two variabie sites that do
not both come from a single attachment pair). The patch in question specifies an assighment of zp
that satisfies ¢;. It follows that every clause is satisfied, which proves that the formula is satisfiable.
This completes the proof of NP-completeness.

References

[1] N. Amenta, S. Levy, T. Munzner and M. Phillips, Geomview: A system for geometric visualization, in:
Proc. 11th Ann. ACM Sympos. Comput. Geom. (1995) C12-C13.

{2] B. Aronov and M. Sharir, Triangles in space or building (and analyzing) castles in the air, Combinatorica
10 (1990) 137-173.

[3] B. Aronov and M. Sharir, Castles in the air revisited, Discrete Comput. Geom. 12 (1994) 119-150.

41 C.L. Bajaj and T.K. Dey, Convex decompositions of polyhedra and robustness, SIAM J. Comput. 21 (1992}
339-364.

[51 M. Bern, Compatible tetrahedralizations, in: Proc. 9th Ann. ACM Sympos. Comput. Geom. (1993) 281-288.

[61 M. Bern and D. Eppstein, Mesh generation and optimal triangulation, in: D.Z. Du and FK. Hwang, eds,,
Compuating in Euclidean Geometry I, World Scientific Series in Computer Science (1992) 23-90.

[71 M. Bern, D. Eppstein and J. Gilbert, Provably good mesh generation, in: Proc. 31st Ann. IEEE Sympos.
Found. Comput. Sci. (1990) 231-241.

{8] B. Chazelle, Convex partitions of polyhedra: a lower bound and worst-case optimal algorithm, SIAM J.
Comput. 13 (1984) 488-507.

342 B. Chazelle et al. / Computational Geometry 7 (1997) 327-342

{91 B. Chazelie, D.P. Dobkin, N. Shouraboura and A. Tal, Convex surface decomposition, video, in: Proc. iith
Ann. ACM Sympos. Comput. Geom. (1995) V-V10.

{101 B. Chazelle and L. Palios, Triangulating a nonconvex polytope, Discrete Comput. Geom. 5 (1990) 505-526.

{11] B. Chazelie and L. Paiios, Decomposing the boundary of a nonconvex polytope, in: Proc. 3rd Scandinavian
Workshop on Aigorithm Theory (1992) 364-375.

{127 B. Chazelle and L. Palios, Decomposition algorithms in geometry, in: C. Bajaj, ed., Algebraic Geometry
and its Applications, Chapter 27 (Springer, Berlin, 1994) 419-447,

{131 B. Chazelle and N. Shouraboura, Bounds on the size of tetrahedralizations, in: Proc. 10th Ann. ACM
Sympos. Comput. Geom. (1994) 231-239.

{14] D.P. Dobkin and D.G. Kirkpartick, Fast detection of polyhedral intersection, Theor. Comput. Sci. 27 (1983)
241253,

{151 H. Fuchs, Z.M. Kedem and B. Naylor, On visible surface generation by a priori tree structures, in: Proc.
SIGGRAPH ’80; also: Comput. Graph. 14 (1980) 124-133.

16} S. Mitchell and S. Vavasis, Quality mesh generation in three dimensions, in: Proc, 8th Ann. ACM Sympos.
Comput. Geom. (1992) 212-221,

{177 1. O'Rourke, Art Gallery Theorems and Algorithms (Oxford University Press, New York, 1987).

{18} J. Ruppert and R. Seidel, On the difficulty of triangulating three-dimensional nop-convex polyhedra, Discrete
Comput. Geom. 7 (1992) 227-253.

{191 P. Schroder and P. Hanrahan, On the form factor between two polygons, in: Proc. SIGGRAPH "93 (ACM
Press, 1993) 163-164.

{207 I.M. Snyder, A.R. Woodbury, K. Fleischer, B. Currin and AH. Barr, Interval methods for multi-point
collisions between time-dependent curved surfaces, in: Proc. SIGGRAPH '93; also: Comput. Graph. 27
{1993) 321-334.

{211 A. Tal and D.P. Dobkin, Visualization of geometric algorithms, IEEE Trans. Visual. Comput. Graphics 1
(1995) 194-204.

